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O n  a decomposition of structured problems 

E. A. FJurmins ki 

IIASA 

ABSTRACT 

The construction and the analysis of complicated comprehen- 
sive models cf corny;!.~~ sooIhl-economical, technical and/or 
environmental systems is gruaclj' facil.itaLed by modular design and 
implementation. However it creates specific difficulties in coordi- 
nating activities of separate modules. These questions are con- 
sidered within the framework c,f tbe theory of decomposition of 
large-scale optimization problems. Theore tical foundations of the 
newly developed technique and its computational aspects and 
experience are discussed. 

The construction and the analysis cf complicated comprehensive models of 

ccmplex social-economical, technical and/or environmental systems is great!y 

facilitated by the equivalence of the modular principle in systems programming: 

split the whole job into pieces and supply for every piece a module which is 

responsible for a particular function or whch  gives an adequate description of a 

particular aspect of the system's behavior. 

However it creates specific difficulties in coordinating activities of modules 

(subsystems, submodels, blocks,etc ...) in a way which a t  least allows the system 

as a whole to function. It is worth noticing that  in practice the difEculties with 

this problem are the same as trying to coordinate those activities in an optimal 

way in order to  attain an extreme value of one of the characteristics of the sys- 

tem. Such an optimal solution often provides additional insight into the system's 

inner mechanics 



In connection with optim a1 decisicns thase questions have a!.ways attrac tcd 

a lot of attentior from theoreticians and practicians of systems analysis. In 

applied mathematics these quesl.ions were studied with111 the framework of the 

theory of decomposition of large-scale probiems, distributed and parallel pro- 

cessing, hierarhical and decentralized decision making, etc ... Discussi~n on the 

practical impotance of this approach can be found for instance in(Dirickx79a). 

These studies prot5uoed a nurrtber of important theoretical results but from 

the practical point of view, until recently, they did not produce computationally 

superior methods in comparison with other techniques. Howoverr, reccntly there 

were a few improvements and implementations in this Aeld which may change 

this opinion. Especially successful were results obtained by 

E.Loute, J.Ho,(LouteBOa, Loute78a). T.v.J.Roy,D.Erlenkotter,(Erlenkotte80a). 

T.v.J.Roy(RoyR0a). A.Geoffrion, G.Graves(Geoffrion74a). 

A.Geoffrion, (Geoflrion?Oa). T.Aonurna, (Aonurna78a). and others. Successful 

applications were reported by J.Polito and others,(Polito8Oa). K. 

Jornsten(Jornsten79a). 

Here we consider the theoretical foundations of a newly developed tech- 

nique for decomposition of optimization problems as well as a numerical experi- 

ment with the number of test problems. The aim of the latter exercise is to  

demonstrate some directions for the potential improvment of the performance 

of the algorithm. 

Theoretical Sackground for our approach stems from one simple observa- 

tion from the standard duality theory. This idea allows us to unite in a certain 

way prirnal (direct) and dual (indirect) approaches to decomposition of large- 

scale problems. 

Let us first discuss briefly the advantages and shortcomings of these two 

approaches. 



2. Direc: decorcpositicn 

As a typical example w e  may consider. a LP probiem cor?.sls!.lr.g of th;. two 

blocks 

min (c,, Z A  + CB ZB ) 

where z A  and z g  can be viewed as internal variables of subproblems or submo- 

dels A ,  3 and the common variable z links these two subproblems. For a fixed 

z however the whole problem ( 1 )  splits into two indspendent problems 

min ( cA z A )  
~ A ( z )  = 1 A A z A  + BAz * hA 

and 

min ( c B z g )  
~ B ( z )  = [ A B z B  + i s z  bB  

each of them requiring a smaller commitment of computer and human 

resources. Moreover computational efforts for solving t o th  (2) and (3) are  less 

then those needed to solve ( 1 )  even without taking into account the economy of 

core requirements. 

Inspired by this argument the methods of direct or resource-directive 

decomposition tend to consider (I) as  a problem of the kind 

v = min (  PA^) + f ~ ( z )  ) 
Z 

where f A ( z )  and f ~ ( z )  are  given by (2) and (3) respectively. 

The success of t h s  approach depends on the degree of connectedness of 

subsystems A and B. It is worthwhile for a relatively weakly connected A and 8 

with comparatively few z variables to  the number of internal variables ~ A , B .  

The direct way of solving (4) would be through numerical methods updating 



the linking variable z ,  using comput.e:l ~ c t l ~ i i l ~  of f~:ncll.,ns a!-!J f ,.:z) ar;d 

their differentkl  char;lct.~rist:cs (:;ubgrarllent.s ir! this case so lang as i h e ~ ~  func- 

tions are convex and nondifferentiab!e in a nontrivial case). iY2ll-known 

Bender's decomposition sclLcrne:Ikaders62a). is an  er;aw.ple c" suilh a cieveicp- 

n ~ e n t .  It :n?y be lobked !.ipor? as a cutling plane ~lgori lf?.m :ICcl'cy81>,), a ~ ~ ! i ; d  

to the problem (4). There i~ a significant number of partitioning rnet.hods which 

are applicable to the structur-.d p-oblerns of the form. (1) development o! wl.:ich 

s tarted with(Rosen63a). Review o: advances in t h s  Peld and a bibli~graphy on 

the subject is pub!ished in(Yclina70a). 

Another approach widely used i.n theory and in practice is subgriidient 

optimization whch is based OP- computing function values f A ( z )  anc  j B ( x !  

togerther with subgradients of these functions. An application of subgradient 

optimization procedure for decomposition of linear programming problems was 

considered in. (Ermolev73a). 

For the function (2) the computation of its subgradients is based on a solu- 

tion of a dual problem 

max ~ ( B ~ z  - b  ) =  b * ( ~ p  - b  ) I P * E P * ]  

p A A  + c~ 0 

where P* is a solution set  of the problem (5). 

The subdifferential d f  A ( z )  consists of the vectors 

and it gives a constructive base for developing subgradient-besed optimization 

routines. Of course for f B(x) there are similar relations. 

This approach has a long List of striking achievements starting with pioneer- 

ing works in the 60's (ShorGZa, Ermolev66a, Polyak67a). not to mention recent 



ac!v,;r,ces ~.or,:ioct.sd .vith :he pnlync!nially boundol n.ietl>cd f:;r LP. 5t.e 

(\iYclfc.f!~a). for rielails or; i h e  l r ! tL~r .  1lnd:Lcmd:.ecn,117C.{a). fc:. a bibilo6rapi). cr, 

subgrad i~n t  optimization. 

The majar difficul~~ with this a p p r o ~ c h  is the cornpliciited r_si:ure of t.he 

agar.-gaied fmctions f A ( z )  and f 3 ( z )  ar,d it creates a nclmbe; oP spec:ifir.: 

diff~culties in solving the problem (G). Generclly speaking, they are cor~vex 

piecwiae l i~ .ea r  rurlctions possibl:~ uridefined for some values of r tor which 

either (2) or ( 3 j  1s infeasible. 

Let us first ciisc~lss problems connected with the domain cf &finition c f  the 

functions ( 2 ) , ( 3 ) .  We assume for a momect that it is (2) whicl, is infeasible for 

son.5 x. For such z ,  the dual problem (5) becomes unbounded and provides no 

information about the direction of desirable changes in z ,  Arst - to restore feasi- 

bility, second - to reach optimality. As a remedy it is nessessary either intro- 

duce artificial variables, or take into account directly the domain of definition of 

the  functions f A (z), f  B ( x )  in optimization routines. 

Let UCL consider these two ways. 

The domain of definition for functions f  A ( z ) ,  f  ~ ( z )  can, theoretically, be 

easily represented through Farkas' lemma: 

where 

X A , ~  = [ se t  of all x  such that f A S B ( z )  < m 1 
1 

Using Farkas' lemma i t  can be reduced to the constraint 

bA - BA2 E K ( A A )  

where K ( A ~ )  is a cone 



Cqn~trnint (E) ad!is LC? pr.:b:zm (c) a ;.lumber of linear ~on:~!;.aints eqc;ai t- !he 

num be!. of ~,n.tr:.cn;:l viir ~;ik)ies in itlbp.-i',Sl<:rilr 4 end B a ~ t !  sigr!,fi,??.nt!y compli- 

cates i l  Indirect usage of (6) through row gzneration technici~e com?!.icateu the 

logic of an algorithm and S ~ O W S  rioivn t,he rate of conveb-gence. 

The second possibility which w e  have n~ecticr~eri is to  add r.rtifir.ia: \:%ri- 

ables. Artificial variables can be a d d ~ d  to (2) to ecsure its feasibilily in a s:,nple 

way: 

I rnin ( cAzA + CAyA) 

'A(z) = 1 AAzA - y~ bA - 

where CA 2 0 is a penalty cost associate2 with violation of the constra.;nts in the 

subproblem A .  Problem (7) is always fezsible but difficulties may arise with 

finding CA such that  a t  a n  optimal point z artificial variables y~ are  equal to 

zero. Big values of CA may cause numerical instability. Also (7) h ~ s  an  enlarged 

number of variables and it creates additionai computational overhead. 

Even without problems connected with t.he domain of definition of the func- 

tions (2),(3). the rather complicated nature of these piecewise linear functions 

appearing after such decomposition of large scale problems makes it dificuit to 

develop fast computational methods for their minimization. Sometimes simple 

subgradient minimization procedures are  effkient enough for solving these 

problems but in other cases their convergence is reported to be slow. 

3. 1ndirec t decomposition 

Indirect or dual decomposition is based on dualization of certain key con- 

straints in an LP problem. Partial or  c~rnp le te  dualization cf extremal problems 

often allows the decomposition of an  initially large-scale problem into smaller 

ones with some coordinating program of moderate size. Ths  idea underlies 



For prob!om :',j c r  eclclivclen;!! ( 4 )  Lhis key cv.nstr.bi~;t n a y  be the cc~nveg- 

tlon that variiihle x must t:&vc- tile s q  me valile in the func:t.is:;; ( 2 )  and I?). 

By t-x~llci t  ior.ri>ulaiion of 1:;s ccns'ln,nt for. the p!-ci?leril ( 4 )  and %,]Lie- 

quent dua!izing we c a n  obtain the d ~ a !  problem 

where f  is the conjugate of function f A ( x )  

and f  * B ( P )  is the conjugate of funclioil f  B ( z )  respectevely. 

Dual variables p are customarily i ~ ~ t e r p r e t e d  as prices for linking variables 

x . Computation of the values f  f  can be interpreted as a local optim.iz~$tiori 

in subproblems A,B for a set  of a given prices p provided by master problerr~ 

Problem ( 8 )  can then be solved by a number of methods updating prices p 

using values of functions f  i,B and their subgradients. 

It is useful to notice t ha t .  f  * A , B  are  convex functions with subgradients 

z * A  equal to the  solutions of (9). In other words subgradients of the functions 

f  are  proposals of the local subproblems in terms of the Dantzig-Wolfe 

decomposition scheme. !t then becomes clear that the Dantzig-Wolfe decompo- 

sition method can be interpreted from the point of view of nondifferentiable 

optimization as a c ~ t t i n g  plane algorithm applied to the dual problem ( 8 ) .  

Convergency properties of this scheme and ~ t s  practical significance have 

been widely discussed. Thls scheme, to its advantage. has a nice clear concept of 

trade-offs between the master problem and subproblems, it appeals to economic 



inlerpr.~tat.ions a ;~d  has insl~ired many discussions on the mechnnis;:is ol' 

o p t i ~ ~ a l  eecision rnak i~g .  

Ths apprecach has an adtraniilge thal in due process or$! the objective func- 

tions C P  subproble~ns A,B are  going to be c!ldnged so it is pc,.dsi5le to use a previ- 

ous local uy,tirnal so!ution as ;I. startirlg poir!t ir>r the new itcr.a:I:c;~. Alsc the pr95. 

lem of local in€e.isibility of (2),(3) does not appear in this case, all links are 

under the control of local subproblems and, the$ determine :he most profitable 

values of the linking variables. 

iiowever, as a rule, it violates the baian.:e of the systsn, 3s a whole and con- 

sequently it r e q ~ i r e s  special means to restore the balanced solution. Also com- 

putationally it does not have a good repui ation, mainly due to the slow conver- 

gency on the final stagss of solution. 

Another problem with indirect decomposition is the problem of restoring a 

primal solution z from the solution p of the dual problem (8). Straightforward 

use of the relation 

!A (XI?.) - p4.z; = sup (f A ( z )  - pA.2 ) (101 

may and will produce quite different local solutions z * A ,  z * B  even for optimal 

p and for bringing them together one needs to know all the solutions of 

(10),(11) which is practically impossible. What is currently being done is to keep 

track of all the solutions of (9) for prices generated in the course of the optimi- 

zation process. The final solution is then generated as a convex combination of 

these intermediate solutions.(Lasdon7Oa). 



4. T~lcoreti c d  backgrouad 

A possibie ..vzy to overcome the dific~;:tics associaled :lrith the  p;i;:n(ti 

approach (4)  is to .;ircp:iij I!.:ilc!ioqs f 2 ( z ) ,  f ,:.(.z) l e a v i ~ ;  unzhangeri thosc, pro- 

perties which are es~en:ial  f rom tile optim:zatiofi point i.:f view. On ttLe ot5cr 

hand,  it w ~ u l d  & k c  b e  6es;i;aSle tr; Freser.;e fi2vdntages r.:entioned abor? Q' 

the dual problem (8). 

For this purpcse w e  rvil.1 use ?. par1,iculcir type of approximat-ion Tor the Cur,r:- 

tions f A (t), f B(z) , the rlaturc of which is exemplified below. The most interest- 

ing feature of this approxirn.atlor? is that it has the same optima: sc.!c~ti.jr~ as the 

original problem. The potential interest of t h s  approximation f;om an  optirni- 

zation point of view is that  it can also be con~puted in a way which resembles the  

dual problem (8). The remarkably simple structure of this approximation 

makes it possible to solve the correspondent extrernal problem in a few itera- 

tio ns. 

First we consider some general results concerning this approximation. 

Let f (t) be a closed convex function bounded from below. Let f *(n) 

denotes its conjugate 

f *(n) = s u p  1 nz - f (z) 1 

We have the well-known relationship between f (2) and f *(n) 

which is valid under ra ther  broad asaumptions.(Fenche149a). 

For a given convex function f (z) we define a new function f n(z): 

where TI is a subset of the space X* of dual variables. 



Defini Lion. Fl~nct in~i  f !  glveil by ox2ression 7) is cailed . :I- 

apprortirnat~on or f (  :). 

The properties of !his function which are es~er?tial f:,oin an c~pi l r~: lzat ivn 

point of viev: depend on r.har.~cteristics of the s e t  TI and t h e  be!-.avior of t h ~  

function f ( z )  i? the n~-.igl~bc:r!i_ood of extrpmiil poi~lts.  

. Here are  a few extreme cases; if this set  coincides with the wl:o!e 2ual 

spLee X *  tiler, ~ n d e r  the rather broad assumptions f nl,z) = j (x).(Fenche!49a). 

On the <?!.her h ~ n d  if se t  TI co!lapses to  a single point 11 = I 0 ] then 

where f  i? the inf-value of the function f ( z )  

In a nontrivial case if I 0 1 c ll c X* , when both inclusions are  strict , the 

function f n ( z )  is somethi- of an  intermediate between these tv:o extremes. 

' Here we give a few simple results concerning f  n ( ~ )  which originally 

appeared in(Nurminski79a). Proofs are  essentialy simplified. 

Theorem 1. If O ~ l l  then 

inP f  , (z)  = inf f ( z )  

Proof. First : 

s u ~  ( s x  - sup ( nz - f  ( z ) ]  r 
IF€ z 

s u b  I"" - I "" - f  (")l l = f  (4 
IF€ 

On the sther hand 

f n ( z )  2 0.x - f  *(o) = f 

which proves the statement. 

Theorem 2. If f(x) is a closed convex function and ll is an  absorbing se t ,  then 



a n y  minimum of f rI'z) ~f it exists, 1s a rniriir,lu,n 9: f(u). 

0 Proof. I,et US dssdrne that j r T ( z )  dttainc: :ts n~ir-.im~.in~ al; some pc:nt z . Then ~f 

the thcornm is not \ rue  fn ( zO)  < f ( z O )  and 2cle to scliaration a;-.gl-;:ner,ts tb,c.--e 

is a vector p arid scalar E. . 0 such that f c r  any ,- 

Also for any z due to the theorem 1 

0' I " ( 4  - f n , z  ! k O  

Multiplying the first inequality bv cx ;, 0 a r~d  the second by 1 -a 1 0, and sumlnlr,g 

them. we obtain: 

f ( 2 )  - f n(zo)  2 ap (r - zO)  + E ' ;  

We can always take a small enough to insure ap = 7 r ~ I - l  but also e '  = &a > 0. Then 

f ( 2 )  - jn ( zO)  2 7r(z - 2 0 )  + &I;  

*zO - f l l (zO) r RZ - f ( z )  + r ' ;  

And finally 

jZ ( z0 )  = su  ,z0 - f *(n)  j 2 %zO - f '(3) 2 f n ( z O )  + E ' ;  

f r €  FI 

This contradiction proves the statement. 

Theorem 3. If convex function f ( 2 )  attains its minimum at point z  and set  TI is 

such that 

then 

Proof. F2ather straightforward: 

If TI c aj ( z  *) and TETI then 



To dcmo~st.ral e !i notice l h a l  a t  !easl. 

On the other hand 

So 

Substituting (14) into tne definition crl jn(z) yields (13). 

5. Computational aspects. 

Consider now some computational problems of how to deal with the function 

In(z). Results from the previous chapter show that under rather mild condi- 

tio ns 

inf p (z) = inf pn(~> 
Z Z 

and Jn(z) inherently may have a very simple structure ( i3)  

Curiously enough , for instance , if the function I(z) has strictly positive 

directional derivatives at  the optimum, and set ll is a sphere small enough to be 

contained in a f (z ') then 

where y is a radius of a sphere and one iteration of the steepest descent method 

applied to function fn(x) provides us with a solution of the problem (15). 

Results of the previous chapter show that for the purpcses of simplifying of 

the function In(z) it is desirable to have the set ll as small as possible. Once the 

conditions of the theorem 3 ere satisfied the ll-approximation f *(z) will have a 

very simple structure and its minimization will create no problems. 



Flowever. i f  th? set 71 is too qrnal?, opi in~, l l  poi.nt 3: aild opt ,ma1 v a l ~ : c  ,f arc  

not gc.;lcr,+lly spu*li~,lg identir1at)le from the equation ( i ? ) .  First , II 2 i c c sn ' t  

satisfy the zondit~o:is of thz thecrpm 1, then f n(z) n a y  have r,o minima a t  all 

no matter  how well-defined the function f (x) is. Moreover , if conditions of the 

ther,re!n 1 are  satisfied but r;ot those o! the theorem 2, then f n ( z )  may have 

extra rninimas which are not solutions of the original prob!em. One example of 

such a situation was considered above wikh the set 9 being a singlton I 0 1. 

In this connection one important property of nondifferentiable problenis is 

relevant. F'ormally i t  may be expressed as 

0 E int a f (Z *) (16) 

and in slightly different forms it was studied on different occasions by many 

authors. One example of the related property is the Haar condition whlch is 

very important for minmax optimization.(Hald79a). It is easy to show that for 

descrete minmax problems the Haar condition implies (16). Property (16) was 

formulated in (Nurminski74a). and was called a condition of essential 

nondiff erentiability. 

The particular features of the essentially nondifferentiable problems are  

the uniqueness of the optimal point and strict positiveness of all directional 

derivatives a t  this point. It was also observed that  such problems have addi- 

tional stability properties and i t  has been used for gaining computational advan- 

tages. 

Condition (16) leaves enough room to satisfy conditions of the theorem 3 

and also have a set TI rich enough to identify z and inf f ( z )  from (13). In this 

case, due to  the simple structure of the function f n ( z )  its minimization can be 

effectively performed by a great variety of simple methods. 

As an typical example we may consider a minimization of this function by 



the catling plane ;;iethod.<KelleyGOa). This n ~ e i h o d  m<,intain> S C J I I : ~  scl. of poi:xts 

at  which correspondent values of the functior: and ;ts g!-sd.ient : subgradient to 

be exact ) are calculated. Calculated function values and subgradients are used 

to form a system of linear equati.or?s which dekss :be next approximal.icn of an 

optimal solution to enter  th.is set or  tc  be a terminating p o i ~ t .  

So long as a n  epigraph of f n(z) is a cone this method is particularly well 

suited for solving (15). Once a nonsingular linear system of :.he cutting planr? 

method applied to  the functior, f n ( ~ )  is Formed it gives an  exact solution o l  the 

problem (15). 

Taking t h s  into account it becomes clear that the only precaution in using 

the cutting plane method in this case , is to choose the set  of trial points in such 

a way that this set is representative enough so that the final linear system is 

nonsingul ar . 

For a number cf technical reasons it is preferable to choose these points as  

the vertices of a large enough simplex-like body. T h s  problem will be discussed 

lat ter  on. 

The simplicity of the function f n(z) is however deceiving because computa- 

tion of a single value f =(x) involves a solution of two nested optimization prob- 

lems and it is not quite clear why it brings about any computational advantage 

a t  all. 

In fact it is difficult to expect any advantages for the optimization problem 

(16) of the general kind. However for the structured problems of the type (1) i t  

may make sense and result in a decomposition algorithm whch  combines some 

advantages of the primal and dual approaches. 

In application of the cutting plane algorithm to the problem (15) it is nes- 

sassary to compute the value and subgradients of the function f =(x) a t  some 



t r . 1 ~ 1  p o ~ n i s  lr: ~ h d i  f01;~) i ' i ' :  we collsider i h e s  calculntioris ;(>I. tile f ~ ! l ~ t i @ n  

f ( 2 )  = f A  ( . x )  A f (:E 1 *;c::eraivT: by t.5.e pr-oblcln ( I ) .  

Without ~ Q S S  of generality corsider ca!cul~tlon of f r I ( z )  and its sctbgradient 

at  z = 0 .  By definit~on 

Notice that n subgradient of f = ( O )  is a solution no of the euterzal "sup" in 

the problem (17) 

By introducing two distinct variables zA ,za and dualizir-g the canstraint 

ZA = Z B  

one can obtain the  foilowing expression 

1 1 
f n(0) = sup i d  sup ! f A ( z A ) + p z ~  + ~ B ( ~ B ) - P ~ B  + T ~ A  + T ~ B  1 = 

" E n  Z A , Z B  P 

1 1 

sup l i d l  f A ( z A )  ~ p z , !  + TZA I L i d  ~ ~ B ( z B ) - P ~ B +  @ B  I = 
P , X E ~  Z A  Z B  

If the  set  Il is centrally symmetric: n = -n then 

This value may be represented as  a solution of the  problem 

max ( -v ) 

f i ( " A )  + f i ( " B )  

" A  +  BE^ 



and it generalize. iz master problem &p;ica:-ing in resourse-cii~ective ::ecornposl- 

t io:~ schemes. Comparil-r! ( 1 8 )  and (8) it becomes clenr that  complete dualiza- 

tion or thz Dantzig-Wolfe decomposlticln scheme corresponds to thc choice 

n = t o j .  

Comput a l i o n  of the f:~nct.ions f i(rrA), f i:ng) can b e  inierpre ted i-is a !ccal 

optimization in separate subproblems A ,  B Taking subproblem A as a n  example 

one cdn see 

= - min ( c A  ZA - n ~ z ~  ) 

AAzA + BAx ': b A  

so computation of the function f i ( n A )  is equivalent to the  solution of the local 

subproblem A (8) with additional cost accociated with priced linking variables. 

In this sence the approach proposed above has all the advantages of the dual 

decomposition of the Dantzig-Wolfe type. 

Applying the cutting plane procedure for (19) one can think of it as being 

organized in the following way: 

Phase 1. 

For given prices ?rA,RB solve subproblems (20)  and obtain subgradients- 

proposals ZA,zg together with the optimal values in subproblems vd ,vg: 

Phase 2. 

Modify the master problem (20) of the cutting plane method by including a 

new constraint: 



wk,e re  i.2,us are s o m ~  constar,l ter!r;s: 

Solve the new master pr.ob!-?m.obtain n e w  prices T T ~ , ? ~  a::< if ihe s t~3pir .g  

criterla is ::at. satis!';.cd go to Pilase ! . 

It is knowr. that  after a fit:ite nui~lber of such steps a soluticn ( ~ i ; , T i i >  will 

. 
be obtained. Then the suni ~i; - sr,? is a subgradient of the function f z(z) a t  the 

. 
point z = 0 and the optimal ::due -a is equal to the vaicle of t.he funciion f n(z) 

a t  zero. Combining these values calculated a t  different points zi,i=l ,..., I one 

can form a system of linear equations: 

f *+";(zi - z * )  = fi (21) 

i = l ,  . . . ,  I 

where f ,z are  unknown optimal value and solution,for every i rr: is a subgra- 

* {  a dient of f ,l(z) a t  z = zi and f = f TJ ,z ) 

The computational process can be controlled first by the choice of points zi 

in (18) which can be done either in an adaptive or predetermined way. An 

important feature of this approach is that so far as the geometry of level sets  of 

the function f *(z) is determined by the set  n,  these points can be chosen in 

advance making computations of rr: and fi corresponding to different zi 

independent of each other. It allows wide use of parallel computing in solving 

(13) and of the sharing of the computational efforts between independent but 

similar processes. 

Another degree of freedom in t h s  approach is the choice of a se t  3 in a 

definition of the TI-approximation. It is possible to obtain extremely simple 

results in the case when t h s  set  is equal to the difference of two simplices with 

some scaling: 



where E > 0 is small er,ough to ensure satisfaction of the conditions o f  t he  

thelorern 3. 

6. Numerical axcnple 

Preiiminary numerical experience with this aigorithm Thas given 

in(NurniinsldR0a). with the randomly gexerater! LP problems. Here w2 consider 

in a more detailed way an application of the proposed idea to the mini-scale 

problem user! by ::. K.Beale(BealeB3a). to i~lustrate his melbod of parametric 

decomposi t.ion. 

Ths  2roblem has three linking variables whch link together two subprob- 

lems each with 6 internal variables and 3 equations. The constraint matrix, 

c~e f f~c i en t s  of the objective function and right-hand side are  shown in the tables 

1 and 2. 

Table 1. Subproblem A. 

Table 2. Subproblem B. 

] 
row 21 22 23 24 25 z6 x l  x2 x3 rhs 
cost 2. 1. 1. -1.5 -1. -0.5 
eq 1. -1. -1. -1. 1. 2. -2. 2. 
e q 1. -1. -1. 1. -1. 1. 4. 
eq 1. -1. -2. -1. -1. 1. 2. 

In each subproblem variables z - z e  are  internal variables and z - z3 are 

links. 

In accordance with the theory , one has to choose a set  of points in which 

correspondent values of f =(z) and subgradients are to be computed. These 

points were chosen in the following way : 3 of them were taken as nonzero ver- 

. row zl  22 23  24 25 26 x l  x2 x3 rhs 
cost 1. 1. 5. -1.5 -1. -0.5 
eq 1. 1. -1. -1. 2. 4. 
eq 1. 1. -1. -2. 1. -1. 
e q 1. -1. 1. -1. 1. 3. 5. 



and the ?oilr?\l poirt was t d k e n  as 

where r? is some constant l s rge  cnc,ugt.t 

Sot only t h s  is ti;e simplest walr of choosing these points b1:1 i t  also 

simplifies theoretical c~n.;;5eratic>;.s. 

An advantage of (22) and tkc. way hs-~c trial points are  chosen ia that it is 

posq.ible to show that  for nondegencrate problems and for R big eiiough, subgra- 

dients of the function f a(x) computed a t  these poiats automatical) form a non- 

singular linear system of the cutting plane method. It also allo~*ls a simple way 

of representing the final resillts and avoiding some numerical problems during 

the concluding phase. 

The pattern of tbe subgradients of the function f =(z) calculated a t  

different trial points can be done visibly with the the help of some graphs. So 

far as the subgradients of the f =(z) are  almost everywhere extreme points of 

the se t  3,  they can be naturally represented as directed arcs  of a graph with 

n-! vertices, where n is the number of linking variables. In thts way the (i,j) 

arc  may represent a subgradient equal to the difference of i-th and j-th 

extreme points of the simplex with some scheme for enumeration of the ver- 

tices. For brevity we will call thts graph a subgradient graph. 

Notice that  there a re  no (i,i) arcs unless the optimal solution coincides 

with one of the points z'. 

The natilral enumeration of the simplex vertices with 0 as an origin and the 

i -th node having nonzero i-th coordinate is very convenient and will be used in 



what f:>llows. 

The arc. in  the grash  rnaq be given values corresponding to the right-h:nd 

side 0; the systetx ( 2 i )  Then il' ?he canstant R is big enot:gh lirere is 3. cjrclc in a 

correspondent ~ubgracJient graph and ?he opki~nal vr;lue GIP lhe pi.(;blem ( :3 )  is 

the averSagk cost. associated 31th ti1:l arcs in the cyrle. 

The algorithm described abave was applied to the given problem with 

different va!ues fcr E and 2 .  I t  occurred that  its ?erfnrmance did [lot depend 

 significant:^ on the particular numerical values for these parameters so Par as 

they were realistic. Results discussed belob- be ie  obtained for  

& = O . O l ,  R = i0000. 

On fig.1 the convtrgence in  the value of the master problem for one of the 

trail points is shown. 

It took 9 cycles for all points to reach a solution of the problem (!5), which 

is not a very good result for such a mcdest problem. It can be improved ,how- 

ever, by using anoth9r faster method for solving (15) rather than the cutting 

plane algorithm, which is known for its slow convergence. 

The justification for such a belief lies in the fact that during the computa- 

tion very early (actually even on the first cycle between master and subprob- 

lems) the correct values for subgradients of function f n ( z )  were found and 

further progress was done only in getting more and more accurate value of 

f n ( 2 )  a t  correspondent points. 
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Fig.!. Co~vorgenc t i  of the inoster prob)cm 



This phcnom~.nc;n gives r;sc t r  the  p ( . . ~ ~ i b i ! ; : . ~  rjf fct rning L I >  ,:cX~Ur.::.e i:~~:il.rjx 

of 1 k p 4  1i~lc:ir s:.!.stnrn of thc c u t t i r ~ g  ?\dilc rneih.?d alrerld:: :!ri \.I.:,: :irr-.! cY[:lt.S cff 

the coordirlat.ing process. During succeeding iterations 9nl; ';he r,ight-hand si:'? 

of this syst:!m c h x g e s  ailowing early estimalc-s of the valclcs oi linking variables 

and e t r :~cture  of bas23 to be chose? in the s~bprob lems .  

On the other hand it al:ows orie to get rid of nonactive c.3ristraints in (15), 

reduce this problei-:, to Z:I ur.-conditi.oca1 problem of nondiFcreniiaSle opt.imi.73- 

tion and ilse for the resulting problem the fast numerical methoits developed fur 

instance by ~hor(S!1oi-79<:.). 7 .E marccha!(!,er~arecha18~a). and o t i~c rs .  

The patterr,  of the subgradients of the function f n(z) is s h - m  in fig.2 

Fig. 2. The subgradient graph. 

Convergence in linking variables and estimates o! the optimal value of the 

objective function are illustrated m table 3. 

Table 3. Convergence of the linking variables. 

Beal's aroblern 
cycle o ~ t i r n u m  x l  x2 x3 

1 0.255269e+03 0.4928e+02 O.i363e+02 0.1286e+02 
2 0.230243e+03 0.4979e+02 0.1220e-~02 0.1258e+02 
3 0.652849e+02 0.4320e+02 0.1319e+01 0.; 19?e+02 
4 -0.61291Oe+Ol 0.3557e+02 0.8429e+00 0.7896e+01 
5 -0,?13570e+O 1 0.3506e 402 0.8385e.c 00 
8 -0.128984e +02 0.2898e +02 9. e +00 0.7636e+01 
7 -0.179449e+02 0.8945e+Ol 0. e+OO 0,7857ei01 0.4500e+01 1 
8 -0.184409e+02 0.3441et01 0. e+OO 0.4500e+01 
9 -0.185000e +02 0.9500ei01 0. e+OO 0.4500e+01 

I t  is also interesting to  analyse the changes in the  structure of the bases in 

the subproblems for the approximate solutions shown in the table 3. 



Table 4 3tructut.e 3f  the bazis ir. thc n ~ b ? r o b l c t r ~ s  

bi.rs~s variables -.----- I 
I cycle subproblem A s,!Lpr..~blein B 

2 4 6 2 4  
i 

5 1 
2 4 6 2 3  5 
2 4 6 1 3  

4 2 4 6 1 3  5 
5 2 4 6 i 3  5 1 

2 4 6 1 0  
l(b) 2 4 1 3 
l(b) 2 4 1 3 
l(b) 2 4 1 3 

These results show that there is some stabl1it.y in the bases for the subprob- 

lems generated during the optimization proczss. It ~bviously can be used for 

speeding up the whole process. 

Another inkeresting peculiarity of this method is the possibility of revealing 

a hdden  decompositic~n in linking variables. In fact from flg.2 one may notice 

that for calculating the optimal value of the problem one does not need to know 

all the arcs of the subgradient graph and the values associated with them 

because (1,3) and (3,l)  arcs already form a cycle. Adding to them the (0.1) arc 

one has the possibility of determiaing the optimal values of the linking irariables 

zl and z3 without any knowledge of z2. Then z, and z3 can be fixed at  their 

optimal levels and a reduced problem of the same type be formed with con- 

straints matrices, cost rows and right-hand sides given by the following tables 

derived Prom tables i and 2 : 

(a) Curing this cycle subproblem B had also variable 23 at  apper boundary which was additie 
nalp set to  avoid unboundness in mbproblems. 
(b) Degenerate basis variable. 



Table 5. Subprobl:?tx A ' .  
--- - 

I r ,  .!1 2.2 2 ,  z i  25 6 s 1'h3 : 

I cost 2. 1. 1. -' A .  

/ eq 1. -1. -1. - 1. 2. 1.5 1 
1 eq 

3 - .  - 1  - 1  
I .  L .  -1. -10. , 

Table 6 Subproblem B'. 

Variables z l  - z g  are internal variables for the new subproblems A ' , B 1 ,  z is 

the only remaining link corresponding tc the variable z2 in the original fcrxula- 

tion. 

Computational experience shows that  the number of cycles between master 

and subproblems strongly depends on the number of linking variables so the 

reduction of this number a t  an  early stage of the solution may bring significant 

savings in computational efforts. In ths particular example decomposed solu- 

tion of the problem given by tables 5 ,0  required only 2 cycles between master 

and subproblems. 

It is too early to  make any definite conclusions about the merits and the  

shortcomings of the proposed method. It is a t  the eary stage of its development, 

and is not so mature that  it  can compete with well eqtablished t e c h q u e s .  

The notion of n-approximation is based. on the general convex duality and 

can be applied to nonlinear problems as well. 

In applications to structured linear programming problems it allows to 

combine price-directed decomposition approach with resource-directed decom- 



The particulz?. irnpl?l?ent;l.tion of the computal.lon+l I.r,)cess xakes  i t  pcxsi -  

ble to reve;~! some subscls rrf 1it;king variab'es which can be dcter :r lnc< ?+it.il 

before erirnpleting t h e  whole process, reducing in this wiry the toihl amourit of 

computations 
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