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On a decomposition of structured problems

E A Nurminski
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ABSTRACT

The construction and the analysis of complicated comprehen-
sive models cf complex soclal-economical, technical and/or
environmental systerns is greacly facilitaled by modular design and
implementation. However it creates specific difficulties in coordi-
nating activities of separate modules. These questions are con-
sidered within the fraraework of the theorv of decomposition of
large-scale optimization problems. Theoretical foundations of the

newly developed technique and its computational aspects and
experience are discussed.

1. Introduction

The construction and the analysis of complicated comprehensive models of
complex social-economical, technical and/or environmental systems is greatly
facilitated by the equivalence of the modular principle in systems programming:
split the whole job into pieces and supply for every piece a module which is
responsible for a particular function or which gives an adequate description of a

particular aspect of the system's behavior.

However it creates specific difficulties in coordinating activities of modules
(subsystems, submodels, blocks,etc ...) in a way which at least allows the system
as a whole to function. It is worth noticing that in practice the difficulties with
this problem are the same as trying to coordinate those activities in an optimal
way in order to attain an extreme value of one of the characteristics of the sys-
tem. Such an optimal solution often provides additional insight into the system's

inner mechanics.
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In connection with optimal deczisicns thase questions have always attracted
a lot of attentior from theoreticians and practicians of s¥stems anralysis. In
applied mathematics these queslions were studied within the framework of the
theory of decomposition of large-scale probiems, distributed and parallel pro-
cessing, hierarhical and decentralized decision making, etc... Discussion on the

practical impotance of this approach can be found for instance in(Dirickx79a).

These studies produced a number of important theoretical resulis but from
the practical point of view, until recently, they did not produce computationally
superior methods in comparison with other techniques. However, recently there

were a few improvements and implementations in this fizld which may change

this  opinion. Especially  successful were results  obtained | by
E.Loute,J.Ho,(LouteB0a, Loute78a). T.v.J.Roy.D.Erlenkotter,(ErlenkotteB80a).
T.v.J.Roy(RoyB0a). A.Geoffrion, G.Graves(Geoffrion74a).

A.Geoffrion,(Geoffrion70a). T.Aonuma,(Aonuma78a). and others. Successful
applications were reported by J.Polito and others,(Polito80a). K.

Jornsten(Jornsten79a).

Here we consider the theoretical foundations of a newly developed tech-
nique for decomposition of optimization problems as well as a numerical experi-
ment with the number of test problems. The aim of the latter exercise is to
demonstrate some directions for the potential improvment of the performance

of the algorithm.

Theoretical background for our approach stems from one simple observa-
tion from the standard duality theory. This idea allows us to unite in a certain
way priraal (direct) and dual (indirect) approaches to decomposition of large-

scale problems.

Let us first discuss briefly the advantages and shortcomings of these two

approaches.
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2. Direcl decompositicn
As a typiwcal example we may consider a LP probiem consisting of the two
blocks
min (c 24 + cgzg )
Agzy =~ Bz < by
Apzp + Bgz < bpg
where z, and 2g can be viewed as internal variables of subproblems or submo-
dels 4. 5 and the common variable z links these two subproblems. For a fixed

z however the whole problem (1) splits into two independent problems

min ( cgzy4)
Salz) = [ Agzy + BizAs 0y (®)
and
_ rmn( CBZB) 3
fplz) = Apzp + Bpz = bpg (3)

each of them requiring a smaller commitment of computer and human
resources. Moreover computational efforts for solving btoth (2) and (3) are less
then those needed to solve (1) even without taking into account the economy of

core requirements.

Inspired by this argument the methods of direct or resource-directive

decomposition tend to consider (1) as a problem of the kind

vzmj:n(fA(z)"'fB(z)) (4)

where f4(z) and f g(z) are given by (2) and (3) respectively.

The success of this approach depends on the degree of connectedness of
subsystems A and B. It is worthwhile for a relatively weakly connected A and B

with comparatively few z variables to the number of internal variables z4 g.

The direct way of solving (4) would be through numerical methods updating



-4 -

the linking variable z, using computed values of funclivns £, (z) and f;{z) and
their differential characteristics (subgradients in this case so long as these func-
tions are convex and nondifferentiable in a nontrivial case). Weil-known
Bender’'s decomposition schieme{Bzader«62a). is an example ¢® surh a deveicp-
menl. It may be lovked upon as a cutling piane algorithm (Kel'ey8a). appled
to the problem (4). There is a s'gnificant number of partitioning methods which
are applicable to the structur=d problems of the form {1) development of which
started with{(Rosen63a). Review of advances in this field and a biblicgraphy on
the subject is published in{Mclina79a).

Another approacn widely used in theory and in practice is subgradient
optimization which is based on computing function values f4{z) and jp(z)
togerther with subgradients of these functions. An application of subgradient
optimization procedure for decomposition of linear programming ﬁroblems was

considered in.(Ermolev73a).
For the function (2) the computation of its subgradients is based on a solu-

tion of a dual problem

max p(BAz—b)=k'(BAx—b)|p'€P' (5)

PAy +c, =<0

where P’ is a solution set of the problem (5).

The subdifferential 8f 4(x) consists of the vectors
afA(Z) =\p .BA | y4 .EP.]

and it gives a constructive base for developing subgradient-besed optimization

routines. Of course for fB(x) there are similar relations.

This approach has a long list of striking achievements starting with pioneer-

ing works in the 60's (Shor62a, Ermolev66a, Polyak67a). not to mention recent
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advances cornected with the polynemially bounded miethed For LP Zee
(WolfefGa). for delails on ilne latler and{Lemarechal?8a). fcr a bibiiograpny on
subgradisnt optimization.

The major difficuly with this approach is the complicated raiure of the
aggr-gaied functions f4(z) and fp{z) and it creates a number of specific
difficulties in solving the problem (4). Generclly speaking, they are convex
piecewise linear {unctivns possibly undefined for some values of » for which
either (2) or (3) is infeasible.

Let us first disciss probiems connected with the dornain of definition cf the
functions (2).(3). We assume for a moment that it is (2) whicl. is infeasible for
sormre X. For such z, the dual problem (5) becomes unbounded and provides no
information about the direction of desirable changes in z, first - to restore feasi-
bility, second - to reach optimality. As a remedy it is nessessary either intro-
duce artificial variables, or take into account directly the domain of definition of

the functions f4(z) fp(z) in optimization routines.
Let us consider these two ways.

The domain of definition for functions f,(z).fg(z) can, theoretically, be

easily represented through Farkas' lemma:

where
X4, = {set of all x such that fA'B(I) < m}

Using Farkas' lemma it can be reduced to the constraint
b/i "BAZ EK(AA) (6)

where K{4,) is a cone

K(AA) = [u |‘U,AA > 0]
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Constraint {8} ad:ls Le problem (4) a number of linear con:traints equal to the

number of internal variabies in subp-oblems & and B and siginificant'y compli-
cates it Indirect usage of (6) through row generation technigque complicates the

logic of an algorithm and siows down the rate of convergence,.

The second possibility which we have merticner! is to add sriificial vari-
ables. Artiiﬁcial variables can be added to {2) to ensure its feasibiliiy in a simple
way:

Jalz) =l

s

(7)
Agzy — Yy =by — Epx

where C4 = 0 is a penalty cost associated with violation of the constraints in the
subproblem 4. Problem (7) is always feasible but difficulties may arise with
finding C4 such that at an optimal point = artificial variables y, are equal to
zero. Big values of C4 may cause numerical instability. Also (7) has an enlarged

number of variables and it creates additional computational overhead.

Even without problems connected with the domain of definition of the func-
tions (2),(3). the rather complicated nature of these piecewise linear functions
appearing after such decomposition of large scale problems makes it difficuit to
develop fast computational methods for their minimization. Sometimes simple
subgradient minimization procedures are efficient enough for solving these

problems but in other cases their convergence is reported to be slow.

3. Indirect decomposition

Indirect or dual decomposition is based on dualization of certain key con-
straints in an LP problem. Partial or complete dualization cf extremal problems
often allows the decomposition of an initially large-scale problem into smaller

ones with some coordinating program of moderate size. This idea underlies



many known scherres of ducompeoesiticn the most wide's Known being the devom-
positina rinciple due te Dantziz and %elie {Dantzigbia)

For problem (1) cr equivelently {4) this key constraint may be the cenven-
tion that variahle z must have the s. me valie in the functicn; {2} and {3).

By explicit formulaiion of tlus cons'raint for the problem (4 and sabse-
quent dualizing we czn obtain the dual problem

v = - rzr)linf "ap) + £ p(-p) (8)

where f * () is the conjugate of function f 4{z)
L J

J A(P)=sxipipx—f,4(z)’} (9)

and f 'B(p) is the conjugate of funclion f g{=) respectevely.

Dual variables p are customarily interpreted as prices for linking variables
z. Computation of the values _f,;,_fB' can be interpreted as a local optimization

in subproblems A,B for a set of a given prices p provided by master problem.

Problem (B) can then be solved by a number of methods updating prices p

using values of functions f/;,B and their subgradients.

It is useful to notice that.f .A.B are convex functions with subgradients
z .A.B equal to the solutions of (9). In other words subgradients of the functions
f.A.B are proposals of the local subproblems in terms of the Dantzig-Wolfe
decomposition scheme. It then becomes clear that the Dantzig-Wolfe decompo-
sition method can be interpreted from the point of vizw of nondifferentiable

optimization as a cutting plane algorithm applied to the dual problem (8B).

Convergency properties of this scheme and its practical significance have
been widely discussed. This scheme, to its advantage. has a nice clear concept of

trade-offs between the master problem and subproblems, it appeals to economic
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interpretations and has inspired many discussions on the mechanisnis of
optimal decision making.

This approach has an advantage thal in due process oniy the objective func-
tions cf subproblems AP are going to be changed so it is prssible to use a previ-
ous local optimal solution as a starting peint ior the new iteraiion. Alsc the prob-
lem of local infeasibility of (2),(3) does not appear in this case, all links are
under the control of local subproblems and they delermine the most profitable

values of the linking variables.

However, as a rule, it violates the balance of the systen. as a whole and con-
sequently it requires special means to restore the balanced solution. Also com-

putationally it does not have a good repu!ation, mainly due to the slow conver-

gency on the final stages of solution.

Another problem with indirect decomposition is the problem of restoring a
primal solution z * from the solution p * of the dual problem (8). Straightforward

use of the relation

Ta(zs) —pazs =sup (fa(z) — piz ) (10)

7 5(zp) ~ pgzg =sup (fp(z) —pgz) (11)
may and will produce quite different local solutions z 4, = °5 even for optimal
p * and for bringing them together one needs to know all the solutions of
(10).(11) which is practically impossible. What is currently being done is to keep
track of all the solutions of (9) for prices generated in the course of the optimi-

zation process. The final solution is then generated as a convex combination of

these intermediate solutions.(Lasdon70a).



4. Tucoretical background

A possible way to overcome the difficiilies associated with the priinal
approach (£) is to simplily functions f,{z).f,.(z) leaving unchanged thoso pro-
perties which are essential {rom the optimization pnint ¢f view. On the other
band, it would aisc be desirable to preserve the advantages mentioned above of
the dual problem (8).

For this purpecse we will use a parlicular lype of approximation for the fune-
tions f ,{(z).f p{z) . the nature of which is exemplified below. The most interest-
ing feature of this approximation is that it has the same optima: sclution as the
original problem. The potential interest of this approximation from an optimi-
zation point of view is that it can also be computed in a way which resembles the
dual problem (B). The remarkably simple structure of this approximation
makes it possibie to solve the correspondent extremal problem in a few itera-
tions.

First we consider some general results concerning this approximation.

Let f{z) be a closed convex function bounded from below. Let f °(m)

denotes its conjugate
J(m) =supinz - f(z)}
z
We have the well-known relationship between f (z) and f *(r)
f(=z)=sup {nz — f"(m) |

which is valid under rather broad assumptions.(Fenchel49a).

For a given cenvex function f (z) we define a new function fp(z):
z)= -
folz) fr%%[i nz —~ f (m){ (12)

where 1 is a subset of the space X of dual variables.
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Definition. Function faf{x)} given by expression (i2) is calied the II-

approximation of f{ ).

The properties of Lhis {function which are essz2ntial from an coplri;zation
point of view depend on characteristics of the =et Tl and the belavior of the
function f {z) in the neighbcrhood of extremsl points.

~Here are a few extreme cases: if this set coincides with the wliole dual
spice X ther under the rather broad assumptions Saix) = f{z)(Fenche!49a).

On the ¢ther hend if set I collapses to a single point 71 = § 0 { then

falz)=z0-f"(0) =inf f(z)=f
F
where f ° is the inf-value of the function f (z).

In a nontrivial case if {0} <1 < X°, when both inclusions are strict , the
function f j(z) is something of an intermediate between these tvo extremes.
' Here we give a few simple results concerning fnlz) which originally

appeared in(Nurminski79a). Proofs are essentialy simplified.

Theorem 1. If 0€<Il then

inf fg(z) = inf f (z)
Proof. First:

Fulz) = sup {nz — 5 °(m)} =
e
suﬁinz -sup {nmz — f(z)} =
me z

sup {7z — {1z ~ £ (z)}} = 1 (=)
e
On the sther hand

»

fo(z)=0z —f°(0) =1

which proves the statement.

Theorem 2. If f(x) is a closed convex function and II is an absorbing set, then



any minimum of fgfz) if it exists, is a miniraum of f(x).
Proof. let us assume that f-(z) attains its minimum al some pcint z% Then «f
the theoram is not true f;{z% < £{z% and due to separation argumerts the-e
is a vector p and scalar £ > 0 such that fer any =

Flz)—faiz®)=plz ~2% + e
Also for any z due to the theorem :

F(z)-fnlz% =0

Multiplying the first inequality by « >» 0 and the second by '—a = 0, and summirg

them, we obtain:
f(z) -z =ap(z -z9% + ¢
We can always take o small enough to insure ap = 7ell but also ¢’ = ga > 0. Then
f(z) - rolz 0) = wi(zx —z% + &

7zl - f(z% =27z - f(z) + e

7z0 - gz =7 *(m) + e'-;
And finally
z9) = suﬁ §f mz0 *(m) § = 720 - i = fn(xo) + &
This contradiction proves the statement.

Theorem 3. If convex function f (z) attains its minimum at point z * and set IT is

such that

Mcar (z°)
then

falz)=71"+ su% mz —z°) (13)
e
Proof. Rather straightforward:

It caf(z’) and nell then
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j'(rr):sum n;r-—f(z)j:rrz:’—f' (14)
x
To demonstrale il notice Lthal at leasl
L

fim=nz’ ~f

On the other hand

fiz)z=r"+»nc -z
So

fimy<supirz —f ' —-nz+rz’y=nz" - f
P o

Substituting (14) into the definition of fp(z) yields (13).

5. Computational aspects.

Consider now some computational problems of how to deal with the function
Sr(z). Results from the previous chapter show that under rather mild condi-

tions

inf f (z) = inf f (=)
z

z (15)

and f g(z) inherently may have a very simple structure (13)

Curiously enough , for instance , if the function f (z) has strictly positive
directional derivatives at the optimum, and set Il is a sphere small enough to be

* contained in  8f (z ") then

su@) =5z +ylz —z°|
where 7 is a radius of a sphere and one iteration of the steepest descent method
applied to function f{(z) provides us with a solution of the problem (15).

Results of the previous chapter show that for the purpcses of simplifying of
the function f(z) it is desirable to have the set I1 as small as possible. Once the
conditions of the theorem 3 are satisfied the [I-approximation f (z) will have a

very simple structure and its minimization will create no problerns.
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However if the set Tl i¢ too small, optimal point = * and optimal value £ arc
not generally speaking identifiable from the equation (i), First . if 1 doesn't
satisfy the conditions of the thecrem 1, then f(z) may have no minima at all
no matter how well-defined the functlion f (z) is. Moreover , if conditions of the
thecrem @ are satisfied but not those of the theorem 2, then fp(z) may have
extra minimas which are not solutions of the original problem. One example of

such a situation was considered above with the set 'T being a singlton { 0 {.

In this connection one important property of nondifferentiable problems is

relevant. Formally it may be expressed as
Oe€intdf(z") (16)

and in slightly different forms it was studied on different occasions by many
authors. One example of the related property is the Haar condition which is
very important for minmax optimization.(Hald79a). It is easy to show that for
descrete minmax problems the Haar condition implies (18). Property (18) was
formulated in (Nurminski7?4a). and was called a condition of essential

nondifferentiability.

1

The particular features of the essentially nondifferentiable problems are
the uniqueness of the optimal point and strict positiveness of all directional
derivatives at this point. It was also observed that such problems have addi-
tional stability properties and it has been used for gaining computational advan-

tages.

Condition (18) leaves enough room to satisfy conditions of the theorem 3
and also have a set Il rich enough to identify =z * and inf f (z) from (13). In this
case, due to the simple structure of the function fp(z) its minimization can be

effectively performed by a great variety of simple methods.

As an typical example we may consider a minimization of this function by



the cutting plane miethod.{Kelley60a). This mueihod maintains some sel of points
at which correspondent values of the function and ils gradient { subgradient to
be exact ) are calculated. Calculated [unction values and subgradients are used
to form a system of linear equatiops which defines {he next approximalicn of an

optimal solution to enter this set or tc be a terminating point.

So long as an epigraph of fr(z) iz a cone this method is particularly well
suited for solving (15). Once a nonsingular linear system of 'he cutting plane
method applied to the function fp{z) is formed it gives an exact solution of the

problem {15).

Taking this into account it becomes clear that the only precaution in using
the cutting plane method in this case , is to choose the set of trial points in such
a way that this set is representative enough so that the final linear system is

nonsingular.

For a number cf technical reasons it is preferable to choose these points as
the vertices of a large enough simplex-like body. This problem will be discussed

latter on.

The simplicity of the function f j(z) is however deceiving because computa-
tion o! a single value fp(z) involves a solution of two nested optimization prob-
lems and it is not quite clear why it brings about any computational advantage

at all.

In fact it is difficult to expect any advantages for the optimization problem
(16) of the general kind. However for the structured problems of the type (1) it
may make sense and result in a decomposition algorithm which combines some

advantages of the primal and dual approaches.

In application of the cutting plane algorithm to the problem (15) it is nes-

sassary to compute the value and subgradients of the function fp(z) at some
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1

trial points In what foliows we consider thesz calculations ijor the function
flx) = faiz) + fglz) seneraied by the preblem (1).
Without loss of generality corsider calculetion of f(z) and its subgradient

at z = 0. By definition

4

fal0) = Sua[§—SUPi7TI —falz) - fplz) (17)
nE: x
Notice that a subgradient of fp(0) is a solution 7° of the external "sup” in

the problem (17}

By introducing two distinct variables z,.zp and dualizir.g the constraint

.’L'Az.’L'B

one can obtain the foilowing expression

1 1
S0 =sup_  inf sup {fa(Z4) + pzy + fplzg) —pzp + Ty + 5Mzp )=
ne€ll zy,zp p

. , 1 ; 1
sup ElnfEfA(IA)TpZA + "“92 TZ 4 ; +1nfEfB(zB)—sz+ -—12 Zp ; =
p.mell =z, zp

PSSR S iop =) — £5 = m) =

", fl:rpBEH § —fal-7g) — fp(-mg) =

ry b A {SAma) + S 5]

It the set Il is centrally symmetric: II = —II then

F0(0) = —inf { £ (mg) + fp(mg)} (18)
my+mgell

This value may be represented as a solution of the problem

max ( —v )
v s famg) + f5(mp) (19)

Ty + ﬂBEH



- 186 -

and it generalize< a master problem appearing in resourse-d.reclive diecomposi-
tion: schemes. Comparing {18) and (8) it becomes clzar that complete dualiza-
tion or thz Dantzig-Welfe decomposition scheme corresponds to the choice
=103
Computalion of the functions f,;(ﬂA),fL;(nB) can be interpreted us a lzcal
optimization in separate subproblems A.B Taking subproblem A as an example
one can see
IENE Szllpiﬁ,ax/, —Jalzg) )= (20)
A

= - min (CAZA — M4Zy )

Agzy + Bpx < by

so computation of the function fA‘(ﬂ'A) is equivalent to the solution of the local
subproblem A (B) with additional cost accociated with priced linking variables.
In this sence the approéch proposed above has all the advantages of the dual

decomposition of the Dantzig-Wolfe type.

Applying the cutting plane procedure for {19) one can think of it as being
organized in the following way:

Phase 1.

For given prices 7 ,7rp solve subproblems (20) and obtain subgradients-

proposals 7, ,Zgp together with the optimal values in subproblems v, vp:

Vg4 = f,q.(”,q)
vg = fg(ng)
Phase 2.

Modify the master problem (20) of the cutting plane method by including a

new constraint:

“US'T)A +‘!_)B+§A1TA +EBTTB



whiere Ty ¢ are some constant terms:
Tug

Solve the new master problam.obtain new prices 714,72 and if the stoppirg
criteria is not satisfied go to ?i1ase 1
It is known that after a finite nwnber of such steps a soluticn (7. 7g) will
be obtained. Then the sun: 1TA' + n;; is a subgradient of the function f(z) at the
point z = 0 and the optimal value —v * is equal to the value of the function S lz)
at zero. Combining these values calculated at different points z*i=1,..,/ one
can form a system of linear equations:
flenlEt -2t = g, | (21)

i=1,....1

- . . L
where f ° .z * are unknown optimal value and solution,for every 1 n, is a subgra-

dient of f4(z) atz = zt and f; = fiz*).

The computational process can be controlled first by the choice of points z*
in {18) which can be done either in an adaptive or predetermined way. An
important feature of this approach is that so far as the geometry of level sets of
the function fp{z) is determined by the set Tl, these points can be chosen in
advance making computations of n'i' and f, corresponding to different zt
independent of each other. It allows wide use of parallel computing in solving
(13) and of the sharing of the computational efforts between independent but

similar processes.

Another degree of freedom in this approach is the choice of a set II in a
definition of the [l-approximation. It is possible to obtain extremely simple
results in the case when this set is equal to the difference of two simplices with

some scaling:



1

-;1:—-H=iz—y:x,y?ﬂ;Ez-Sl;Zyisl" (22)

where ¢ > 0 is small enough to ensure satisfaction of the conditions of the

theorem 3.

6. Numerical examnple

Preliminary numerical experience with this aigorithm was given
in(NurminskiB0a). with the randomly generated LP problems. Here wz consider
in a more detailed way an application of the proposed idea to the mini-scale
problem used by 1.M.Beale(Beale63a). to ilustrate his melbod of parametric

decomposition.

This problem nas three linking variables which link together two subprob-
lems each with 6 internal variables and 3 equations. The constraint matrix,
coefficients of the objective function and right-hand side are shown in the tables
1 and 2.

Table 1. Subproblem A.

row zl z2 z3 z4 25 76 x1 X2 x3 rhs
cost 2. 1. 1. -1.8 -1. -0.5

eq 1 -1, -1, -1, 1. 2. =2 2.
eq 1. -1, -1. 1. -1. 1. 4.
eq 1. -1, -2, -1, -1. 1. 2.

Table 2. Subproblem B.

row zl 22 z3 z4 25 z8B x1 X2 x3 rhs

cost 1. 1. 5 -186 -1. -0.5

eq 1. 1. -1 -1. 2. 4,
eq 1. 1. -1, -2 1. -1

eq 1. -1, 1. -1. 1. 3. 5.

In each subproblem variables z; — zg are internal variables and z; — z4 are
links.

In accordance with the theory , one has to choose a set of points in which
correspondent values of fp{z) and subgradients are to be computed. These

points were chosen in the following way : 3 of them were taken as nonzero ver-



tices »7 ti.s simples

T, + T+ 135Kk (3

Ty 5 %p s %3 20

and the fourti poirt was taken as
T, =2p=2Zg=—R (243
where R is some constant large cnough.

Not only this is the simplest way of choosing these points hiil it aiso
simplifies theoretical consideraticns.

An advantage of (22) and thc way how trial points are chosen iz that it is
pos«ible to show that for nondegenerate probleins and for R big eiiough, subgra-
dients of the function f(z) computed at these points automaticaly form a non-
singular linear system of the cutting plane methed. It also allows a simple way

of representing the final results and avoiding some numerical problems during

the concluding phase.

The pattern of the subgradients of the function fp(z) calculated at
different trial points can be done visibly with the the help of some graphs. So
far as the subgradients of the fp{z) are almost everywhere extreme points of
the set 11, they can be naturally represented as directed arcs of a graph with
n +1 vertices, where n is the number of linking variables. In this way the (i.j)
arc may represent a subgradient equal to the diflerence of i—~th and j-th
extreme points of the simplex with some scheme for enumeration of the ver-

tices. For brevity we will call this graph a subgradient graph.

Notice that there are no (i,i) arcs unless the optimal solution coincides

with one of the points z*.

The natural enumeration of the simplex vertices with 0 as an origin and the

1 —th node having nonzero i—th coordinate is very convenient and will be used in
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what follows.

The arcs in the graph may be given values corresponding to the right-hand
side of the system (21) Then if the constant 7 is big enough Lnere it a cycle in a
correspondent subgradient graph and Lhe optimal value of the pircblem (13) is
the averaze cost associated with Lhe arcs in the cvele.

The algorithm described above was applied to the given problern with
different values for ¢ and #. Il occurred that its perforrmance Jdid not depend
significantly on the particular numerical values for these nararneters so far as
they were realistic. Results discussed below were obtained for
£=0.01, R = 10000

On fig.1 the convergence in the value of the master problem for one of the

trail points is shown.

It took 9 cycles for all points to reach a solution of the problem {15), which
is not a very good result for such a mcdest problem. It can be improved ,how-
ever, by using another faster method for solving (15) rather than the cutting

plane algorithm, which is known for its slow convergence.

The justification for such a belief lies in the fact that during the computa-
tion very early (actually even on the first cycle between master and subprob-
lems) the correct values for subgradients of function fp(z) were found and
further progress was done only in getting more and more accurate value of

/u(z) at correspondent points.
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This phenomaencon gives riss tr the pessibiiity of ferming ap accuele mdrix
of the linear svsterm of the cutting dlane methad already oo Lhie first cycies of
the coordinating process. During succeeding iterations only the right-nand sice

of this systom charges ailowing early estimales of the values of linking variables
and structure= of bases to be chosen in the sabproblams.

On the other hand it al'ows one to get rid of nonactive constraints in {15),
reduce this probleia to an urconditioral problem of nondifferentiable optimiza-
tion and use for the resulting problem the fast numerical methods developed for
instance by Shor{Shnr79.) T.emarcchal{LenarechalBCa). and others.

The pattern of the subgradients of the function f p{z) is shown in fig.2

Fig.2. The subgradient graph.

:

——— & .
v 1 2

Convergence in linking variables and estimates of the optimal value of the
objective function are illustrated in table 3.

Table 3. Convergence of the linking variables.

. Beal's problem
cycle optimum x1 X2 x3
1 0.255269e+03 0.4928e+02 0.1363e+02 0.12B86e+0R
2 0.230243e+03 0.4979e+02 0.1220e+02 0.1258e+02
3 0.652849e +02 0.4320e+02 0.1319e+01 0.1197e+02
4 -0.612910e+01 0.3557e+02 0.8429e+00 0.7896e+01
5 -0.713570e+01 0.3506e +02 0.8385e+00 0.7857e+01
6 -0.128984e +02 0.2898e+02 0. e+00 0.7636e+01
7 -0.179449e+02 0.8945e+01 0. e+00 0.4500e+01
8 -0.184409e+02 0.2441e+01 0. e+00 0.4500e+01
9 -0.185000e+02 0.9500e+01 0. e+00 0.4500e+0:

It is also interesting to analyse the changes in the structure of the bases in

the subproblems for the approximate solutions shown in the table 3.
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Table 4. Structure of the bazis ir the scbproblems

basis variables |

cycle  subproblem A scbproblem B
11(a) 2 A 8 2 4 5

2 2 4 86 2 3 5 |

3 2 4 B8 1 3 5

4 2 4 6 1 3 5

5 2 4 6 1 3 5

6 2 4 6 1 3 5

7 i) 2 4 1 3 5

8 ib) 2 4 1 3 5

9 ilb) 2 4 ¢+ 3 5

These results show that there is some stability in the bases for the subprob-
lems generated during the optimization proczss. It obviously can be used for

speeding up the whole process.

Another interesting peculiarity of this method is the possibility of revealing
a hidden decompositivn in linking variables. In fact from fig.2 one may notice
that for calculating the optimal value of the problem one does not need to know
all the arcs of the subgradient graph and the values associated with them
because (1,3) and (3,1) arcs already form a cycle. Adding to them the (0.1) arc
one has the possibility of determining the optimal values of the linking variables
z, and r5 without any knowledge of z;. Then z,; and z3 can be fixed at their
optimal levels and a reduced problem of the same type be formed with con-
straints matrices, cost rows and right-hand sides given by the following tables

derived from tables 1 and 2 :

(a) During this cycle subproblem B had also variable 23 at upper boundary which was additio-
naly set to avoid unboundness in subproblems.
(b) Degenerate basis variable.
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Table 5. Suvproblam 4"

Jrow 2y 28 23 z& 7B 8 X rhs !
cost 2. 1 1. -t |
| eq 1 -1 -1 -1 1.5 \
| eq : -1 -t -1 -10. |
i_eq b I U~ P 7. |

Table 6 Subproblem B

row zi 22 z3 z4 z5 28 X rhs |
cost 1. 1. 5 -~i. !
eq 1. 1. -1 -t 4.5 {
eq 1. 1. -1 -2 ! 4.5
eq 1. -3, 1. -1 3. 4.5

Variables z; - zg are internal variables for the new subproblems A" B', z is
the only remaining link corresponding tc the variable z; in the original fermula-
tion.

Computational experience shows that the number of cycles between master
and subproblems strongly depends on the number of linking variables so the
reduction of this number at an early stage of the solution may bring significant
savings in computational efforts. In this particular example decomposed solu-
tion of the problem given by tables 5.8 required only 2 cycles between master

and subproblems.

Summary
It is too early to make any deflnite conclusions about the merits and the

shortcomings of the proposed method. It is at the eary stage of its development

and is not so mature that it can compete with well established techniques.

The notion of Il-approximation is based- on the general convex duality and

can be applied to nonlinear problems as well.

In applications to structured linear programming problems it allows to
combine price-directed decomposition approach with resource-directed decom-

position.



The particular implementation of the computational rrocess makes it possi-
ble to reveal some =subsels of linking variab‘es which can be deterimined weil
before completing the whole process, reducing in this way the total amount of
computations.
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