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Reproductive investment is a central trait for population dynamics and productivity. Fishing and environmental variations are major drivers
affecting population structure, dynamics, and adaptation of life-history and behavioural traits. However, those factors are often considered in-
dependently, and few studies take into account their joint effect. In this study, we investigate the contribution of environment, fishing pres-
sure, and intra-specific competition to variation in the reproductive investment of the Norwegian spring-spawning herring (Clupea harengus),
a stock that has been fished for centuries, and monitored for decades. Reproductive investment and post-spawning weight were affected dif-
ferently by growth rate (measured as mean age-at-length), sea surface temperature, North Atlantic Oscillation, and spawning stock biomass
in periods with no fishing, unselective fishing, and low but size-selective fishing. We hypothesize that those changes can be explained by direct
effects of exploitation such as age truncation and changes in migration patterns. Our results highlight how fishing, by affecting population-
level dynamics, can modify the impact of environmental variations on life-history traits.
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Introduction
Investment into reproduction is a major life-history trait directly

contributing to fitness. It is constrained by important trade-offs

(e.g. between growth and reproduction or between current and

future reproduction) shaped by the total energy available, the sur-

vival landscape, and the environmental conditions (McBride

et al., 2015). These trade-offs and the optimal strategies arising

from them have been extensively observed (e.g. Reznick and

Endler, 1982; Reznick et al., 1990, 1996) and investigated by theo-

retical models (e.g. Roff, 1992; Stearns, 1992; Charlesworth,

1994). The main expectations from theory are that (i) reproduc-

tive investment increases with age due to the trade-off between

current and future reproduction; (ii) an increase in mortality in

all age-classes will lead to an increased reproductive investment
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earlier in life; and (iii) similarly, if mortality increases after a cer-

tain age (or in one specific age class), reproductive investment

increases before and decreases after that age (Fabian and Flatt,

2012).

Fisheries are an important source of mortality in exploited

stocks and have the capacity to induce changes in life-history

traits of wild populations through two major mechanisms

(Rijnsdorp and van Leeuwen, 1992; Reznick and Yang, 1993; Law,

2000): first, by removing individuals, fishing can induce compen-

satory changes in density-dependent traits such as growth. Those

changes are plastic, usually occur fast, and are easily reversible, at

least in principle. Second, by changing the selection landscape

and introducing an additional source of mortality, fishing can in-

duce more durable, evolutionary changes in traits important for a

stock’s dynamics and productivity (Trippel, 1995; Rochet, 1998;

Law, 2000). Such fishing-induced evolution has been widely

documented, most frequently as a decrease in age and size at mat-

uration (Ernande et al., 2004; Jorgensen et al., 2007; Heino et al.,

2015).

Another, often overlooked, effect of exploitation is its joint ef-

fect with environment [see Planque et al. (2010) for a review]. At

the population level, the removal of individuals can alter the age-

structure, biocomplexity (Hilborn et al., 2003), and spatial range

of a population (Corten, 2001), which, in turn, can decrease its

buffering capacity (Field and Francis, 2002) and tighten the link

between recruitment and environmental conditions (Brander,

2005). At the individual level, Morrongiello et al. (2019) showed

that exploitation affects the expression of growth thermal reaction

norms in the purple wrasse and, therefore, modifies the adaptive

capacity of the species to deal with climate change. To our knowl-

edge, very limited number of studies have considered the joint ef-

fect of exploitation and environmental variation on reproductive

investment (Hidalgo et al., 2012).

Norwegian spring-spawning herring (NSS herring; Clupea

harengus) is a widely distributed and very abundant pelagic fish,

with a current stock size of �4 million tons (ICES, 2018). It can

live up to 25 years and reach a body length of 40 cm. It presents

an indeterminate, density-dependent growth and reproduces an-

nually after maturation (i.e. iteroparity). A very specific charac-

teristic of NSS herring is its extensive migrations between

spawning, feeding, and overwintering grounds (Dragesund et al.,

1997; Varpe et al., 2005). The amount of energy allocated to its

basic needs (e.g. growth, reproduction) largely depends on the

amount of resources acquired during the short feeding season

(Slotte, 1999a, b; Stephens et al., 2009; Kennedy et al., 2011),

when it preys mainly on Calanus sp. Around September, NSS her-

ring migrates to the overwintering grounds, currently located

along the northern part of the Norwegian coast. In January, it

starts swimming southwards and spawns between February and

April, mainly off the coast of Møre in central Norway (Slotte and

Fiksen, 2000). This capital breeder type of strategy (Jönsson,

1997) makes NSS herring a particularly interesting study species

to investigate relationships between environmental conditions,

resource acquisition, and trade-off between growth and

reproduction.

NSS herring has been exploited for centuries. Catches in-

creased steadily from the 1920s onwards. Modernization of the

fleet in the early-1960s kept the numbers increasing, with the

highest annual catch recorded in 1966, reaching almost two mil-

lion tonnes. However, catches rapidly dropped and, in the late-

1960s, over-harvesting caused the stock to collapse, leading to the

closing of the fishery (Toresen and Østvedt, 2000; Sandberg,

2010). Almost 15 years later, the strong 1983 year-class allowed

the stock to recover. During the decades preceding the collapse,

no minimum landing size existed and the average catch size in

the last two decades before the collapse was 22 cm, and large

amounts of immature fish were caught (calculated from ICES,

2019). This fishery on small herring has been suggested to have

led to growth overfishing and, together with overall too high

catch rates and resultant recruitment overfishing, contributed to

the collapse (Sandberg, 2010). Iceland and USSR established a

minimum landing size limit of 25 and 26 cm in 1970, respectively,

and Norway established a minimum landing size limit at 20 cm in

1970 and further increased it to 25 cm in 1977 (Sandberg, 2010).

Consequently, during the collapse period (here defined as 1970–

1989) the average size in catch was 29 cm (calculated from ICES

(2019), although strict restrictions were in place and catches were

only a fraction of those before and after this period. In the last pe-

riod (1990–2015), the average catch size was 34 cm (calculated

from ICES, 2019).

Given the long and, at times, heavy exploitation history of this

stock, it is surprising that so far only two papers have attempted

to disentangle the effects of exploitation and environment for the

NSS herring life-history traits. Focusing on size and age at matu-

ration, Engelhard and Heino (2004a, b) detected weak changes at-

tributable to fisheries-induced evolution and could not conclude

on the presence of evolutionary changes. Adaptation to fishing in

NSS herring might be occurring through other life-history traits,

but these have so far been mainly studied in the light of environ-

mental and internal drivers [body growth and trade-off between

number and size of oocytes (dos Santos Schmidt et al., 2020), ga-

metogenesis (dos Santos Schmidt et al., 2017), spawning migra-

tion (Slotte, 1999a, b), and timing of maturation (Slotte and

Fiksen, 2000)]. Because reproductive investment together with

survival and recruitment success forms the basis of stock produc-

tivity and resilience, investigating the long-term changes in repro-

ductive investment and the joint effects of environment and

exploitation on this trait is necessary to increase our understand-

ing of the stock’s dynamics.

In this study, we use multivariate regression analyses to investi-

gate changes in the reproductive investment and the post-

spawning weight of NSS herring in a time period ranging from

1935 to 2015 and spanning from open access fishery via a collapse

to a well-managed fishery. We set out to investigate the joint ef-

fect of fishing and environmental variations on reproductive in-

vestment by comparing the relationship between a proxy of

gonad weight and environmental variables at different periods,

corresponding to different exploitation patterns and population

states.

Material and methods
Data description and selection
Our dataset consists of a combination of survey and catch data

collected by the Institute of Marine Research (Norway) from

1935 to 2015. Data were first visually inspected and clearly false

outliers removed. Only data sampled in the geographical limits

determined for the NSS herring stock, in the Norwegian Sea

(above 58 N), were used.

Until the mid-1970s, purse seine was the main gear used for

the sampling, while both purse seine and pelagic trawl dominated

afterwards (Supplementary Figure S1). A comparison of the
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samples taken by these two main gear types in the same period

revealed that pelagic trawls caught lighter individuals compared

to seines (Supplementary Figure S2 and Table S1). We therefore

excluded individuals sampled with pelagic trawls from further

data analysis to avoid any bias due to changes in sampling gear.

There were no statistical differences between females and males,

and we therefore pooled both sexes together (Supplementary

Figure S3 and Table S2).

The selected data contained 126 664 sexually mature individu-

als (99 808 maturing/mature and 23 920 spent), sampled along

the Norwegian coast between January and April (Supplementary

Figure S4). For each individual, the following parameters were

considered: whole body weight (g), total length (cm), sex, matu-

rity stage and age (years; read from scales) (Mjanger et al., 2006).

Gonad weight measured directly was available only from

1994 onwards. We therefore needed a proxy of reproductive in-

vestment available through the whole time series. In capital

breeders such as Atlantic herring, reproductive investment can

reliably be estimated from the energy loss during spawning

(Rijnsdorp et al., 2005). Because each individual could only be

observed once, the reproductive investment R at year i was esti-

mated at the population level as the difference between the

mean weight before spawning Wpre and the mean weight after

spawning Wpost at year i (1)

Ri ¼ Wprei
�Wposti

: (1)

This measurement was obtained by first aggregating individu-

als of similar length (1-cm bins) and maturity stage. Even though

it would have been desirable to aggregate the data also by age

class, this was not possible due to the limited number of observa-

tions per year. However, age plays a smaller role than length and

condition in NSS herring (Slotte 1999a, b; Slotte and Fiksen,

2000), and age distribution is relatively similar between sampled

pre-spawning and spent individuals both across (Supplementary

Figures S8 and S9) and within (Supplementary Figure S10) years,

increasing the confidence in our proxy of reproductive

investment.

The annual pre-spawning weight-at-length was calculated as

the mean weight of maturing and mature fish (maturity stages 4

and 5), and the post-spawning weight-at-length as the mean

weight of the spent individuals (maturity stages 7 and 8)

(Mjanger et al., 2006). Weight measurement up until April was

considered to exclude as much as possible the weight gained dur-

ing the feeding season starting around May. Note that males and

females were pooled together as weight-at-length data were not

affected by sex (Supplementary Figure S3; Engelhard and Heino,

2004a).

NSS herring usually first reproduces at a length between 29

and 30 cm but can start maturing from sizes as small as 27 cm

(Toresen, 1990; Engelhard and Heino, 2004a). In our analyses, we

focused on the most abundant length classes—from 31 to

36 cm—and excluded any year and length class combination with

<5 pre- or post-spawning individuals.

To confirm our choice of reproductive investment index, we

compared it to gonad weight data available from 1994 onwards.

We regressed the mean annual gonad weight against our index

for each length class, to evaluate the significance of the relation-

ship between the two datasets. In addition, we estimated the cor-

relation between the gonad data and our index using the

Pearson’s correlation coefficient. Slopes for length classes 33 cm

and above were significantly positive but not for length classes 31

and 32 cm (although close to significance for size 32 cm,

Supplementary Table S2). The R-squared and Pearson’s correla-

tion coefficient showed reasonable values for length classes 33–

36 cm (R2 between 0.53 and 0.75; Pearson’s coefficient from 0.73

to 0.87). However, it seems that our index is weakly correlated to

gonad weight for length class 31 (Supplementary Table S2).

Nevertheless, we consider our proxy to acceptably reflect repro-

ductive investment (Figure 1).

Selection of explanatory variables
The choice of explanatory variable was limited by collinearity and

time coverage of potential time series. Many potentially impor-

tant variables such as zooplankton density, competitor abun-

dance, and detailed oceanographic information had to be ignored

because the available time series were too short. As our interest in

this study lies in the long-term patterns, we chose to focus on ex-

planatory variables for which time series covering the whole pe-

riod of our dataset (1930–2015) were available.

Temperature is an important driver of many physiological pro-

cesses and can also affect resource availability and allocation

(Clarke and Johnston, 1999; Pörtner et al., 2008). This was

accounted for by the averaged Norwegian Sea surface temperature

(SST) (National Center for Atmospheric Research, 2017) during

the feeding season (May to August, Supplementary Figure S11).

The North Atlantic Oscillation (NAO) (National Center for

Atmospheric Research, 2017) describes the large-scale fluctua-

tions in the difference of atmospheric pressure between the

Icelandic low-pressure centre and the Azores high-pressure ridge.

It is associated with the strength of the westerly winds across the

Nordic Seas and governs the circulation’s strength of Atlantic and
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Figure 1. Time series of the mean annual gonad weight (plain line)
and of our proxy for reproductive investment (dots) for length
classes 31–36 cm. The shaded areas represent different time periods:
before the collapse where fishing was unselective (white, 1935–
1969), during the collapse where fishing was anecdotal and
regulated with minimum landing size (light grey, 1970–1989), and
after the collapse where fishing was regulated with minimum
landing size and a harvest control rule (dark grey, 1990–2015.).
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Arctic waters in the area. Plankton abundance in a given year is

shown to be correlated to the spring NAO the year before

(Skjoldal, 2004). The averaged NAO in spring (March to May) 2

years before spawning was therefore used as a proxy for feeding

conditions (Supplementary Figure S12).

We selected the spawning stock biomass (SSB) as an estimate

of intra-specific competition (Olsen et al., 2007; Huse et al.,

2012). We used the log-transformed SSB in the analyses to linear-

ize the relationship between SSB and our explanatory variable.

The stock assessment used for advisory purposes only spans from

1988 onwards (ICES, 2017), but for the reference point estima-

tion purposes a stock assessment with a longer time perspective

has been conducted (ICES, 2018; Aanes, pers. comm., see

Supplementary Figure S12 for SSB).

To account for potential trade-offs between growth and repro-

duction, the mean age-at-length (referred to as Age (at length) in

the rest of the manuscript) was included as it reflects differences

in growth rates—high age-at-length corresponds to slow somatic

growth, and vice versa.

Finally, human activities have the potential to induce changes

in the life-history traits of wild populations. As the fishery’s

selectivity and activity changed during the last 80 years, and as

there was no other measurement of selectivity, the data were di-

vided into three periods: (i) where fishing was non-selective and

intense in the last part of the period (1935–1969), (ii) collapse

period when there was very little targeted fishing (1970–1989),

and (iii) after the collapse period when fishing has been kept

low and a minimum landing size of 25 cm has been in effect

(1990–2015).

The reproductive investment at any given year can be assumed

to be affected by environmental factors experienced by NSS her-

ring the year before the spawning season (e.g. down-regulation

through atresia; Kurita et al., 2003), but also up to 4 years before

the spawning event considered (e.g. reduction in oogonia pro-

duction through apoptosis; dos Santos Schmidt et al., 2020).

However, due to the nature of our data, individuals of different

ages were aggregated and it becomes difficult to determine which

lag is the most appropriate. To account for this effect, each covar-

iate, except Age (at length), was averaged over 3 years before the

spawning season.

Statistical analyses
To explain the variation in the reproductive effort and the post-

spawning weight, we used multivariate linear models. As Age (at

length) and SSB were collinear, we used two separate models (2

and 3, respectively) to study their respective effect

Weightaij þ b1ij
SSTþ b2ij

Ageþ b3ij
NAOþ e; (2)

Weightaij þ b1ij
SSTþ b2ij

SSBþ b3ij
NAOþ e; (3)

where weight is the reproductive investment or the post-

spawning weight, aij is the intercept associated to length class i

and period j, b1ij to b3ij are the slopes corresponding to the differ-

ent covariates for each length class i and period j, and e is the

remaining variation.

Our goal being to find the simplest model explaining the

variations in reproductive investment and post-spawning weight,

selection of the environmental variables was made using the back-

ward selection, i.e. starting with the full model and sequentially

removing variables until we reached the most parsimonious mod-

els (as measured by the AIC). All the analyses were performed

with R (R Core Team, 2019). Goodness of fit and potential auto-

correlation were assessed by visual inspection of the residuals

(Supplementary Figures S13–S20).

Results
Reproductive investment
The most parsimonious models for describing the long-term var-

iations in NSS herring reproductive investment included all the

covariates, but not all interactions with length i and period j (4

and 5), and are summarized in Supplementary Tables S3 and S4

Rijaij þ b1j
SSTþ b2ij

Ageþ b3j
NAOþ e; R2 ¼ 0:52; (4)

Rijaij þ b1j
SSTþ b4ij

SSBþ b3j
NAOþ e; R2 ¼ 0:55: (5)

As expected, the reproductive investment was, in general,

higher for larger individuals (Figure 2). For all length classes,

gonad weight was the lowest during the collapse (period 2, 1970–

1989) and relatively similar between periods 1 and 3 (1935–1969;

1990–2015).

The effect of SST and NAO on the reproductive investment

was dependent on the period, but not on the length class

(Supplementary Table S3). Before the collapse (period 1), the go-

nad weight seemed hardly influenced by SST, while it decreased

with an increasing NAO. This last relationship got reversed dur-

ing the collapse period (period 2), as gonad weight increased with

NAO but became non-significant after the collapse (period 3).

The effect of SST switched from being non-significant to positive

during and after the collapse. However, the significance of this re-

lationship varied between the model including SSB or including

Age (at length) (Supplementary Tables S3 and S4). It should

therefore be interpreted with caution.

The effect of Age (at length) changed between length and pe-

riod (Figure 2 and Supplementary Table S3). Note that Figure 2

illustrates mean annual growth rate instead of Age (at length),

and as high Age (at length) corresponds to slow mean annual

growth rate, the slopes in Figure 2 have the opposite direction

than what is described below. Before the collapse (period 1), the

relationship between Age (at length) and gonad weight was not

significant, even though it shifted progressively from negative

(31-cm length class) to positive (36-cm length class). During the

collapse (period 2), Age (at length) had a significant negative ef-

fect for all length classes, at the exception of length class 36 cm,

for which it was non-significant. On the opposite, after the col-

lapse (period 3), the slope between Age (at length) and reproduc-

tive investment started as non-significant for length class 31 cm

and progressively increased, to become significantly positive for

length class 36 cm.

Before the collapse, the reproductive investment was positively

correlated with SSB in all length classes (Figure 2 and

Supplementary Table S4). This relationship changed to signifi-

cantly negative during the collapse period, at the exception of

length class 36 cm, for which it became non-significant. After the

collapse, the effect of SSB on the reproductive investment became

non-significant, at the exception of length class 36 cm, for which

it became positive.
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Post-spawning weight
The final models to study the long-term variations in NSS herring

post-spawning weight included all the covariates except SSB, but

not all interactions with length i and period j (6 and 7). Some

auto-correlation was detected in the residuals and was dealt with

by adding a first-order autoregressive structure to the model,

using the “gls()” function in R from the nlme package (R Core

Team, 2019). As R2 is not computed for these models, we calculated

a pseudo R2 (p.R2) as the correlation between raw and fitted data

Wpostij
aij þ b1j

SSTþ b2i
Ageþ b3j

NAO; p:R2 ¼ 0:88: (6)

Wpostij
aij þ b1j

SSTþ b3j
NAO; p:R2 ¼ 0:87: (7)

As expected, bigger individuals also had a heavier post-

spawning weight (Supplementary Tables S5 and S6). Post-

spawning weight was relatively similar before (period 1) and after

the collapse (period 3) but higher during the collapse (period 2).

SST had a negative effect on post-spawning weight before and

during the collapse, but became positive, after the collapse

(Supplementary Tables S5 and S6). The significance of this rela-

tionship was different depending on whether Age (at length) or

SSB was used in the model. It should therefore be interpreted

with caution. The effect of NAO on post-spawning weight

switched from negative before and during the collapse to positive

after the collapse.

The effect of Age (at length) on post-spawning weight was the

same before (period 1) and during the collapse (period 2) but

varied between length classes (Supplementary Table S5): it

switched progressively from significantly positive for the 31-cm

length class to non-significant for the 36-cm length class. After

the collapse (period 3), the post-spawning weight was positively

correlated to Age (at length) for length classes 31–33 cm, but this

120

100

80

60

40

20

3 4 5 6

)g(tne
mtsevni

evitcudorpe
R

4 6 8 10

31 cm32 cm
33 cm

34 cm35 cm
36 cm

3 4 5 76

120

100

80

60

40

20

3 6 9

)g(tne
mtsevni

evitcudorpe
R

0 0.2 0.4 0.6 0.8

31 cm
32 cm

33 cm
34 cm

35 cm
36 cm

2 4 6

Mean yearly growth (cm/yr)

Spawning stock biomass (million t)

10
8
6
4
2

1930 1935 1940 1940 1950 1955 1965 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

ssa
moib

kcots
gnin

wap
S

)t
noilli

m(

Figure 2. Effect of mean age-at-length (upper row) and SSB (middle row, note that the x-axes use different scales) on the reproductive
investment of NSS herring for each length class and period. For the sake of visualization and interpretation, we used the mean yearly growth
(size divided by mean age-at-length) to represent the trade-off between growth and gonads rather than mean age-at-length directly. The
bottom row shows how the SSB varied since 1930. Until 1970, there were no minimum size limits, and both adult and juvenile herring were
caught. The fishing pressure intensified in the early-1960s and the stock collapsed a few years later. The stock started to recover with the
exceptionally abundant 1983 length class and was considered fully recovered by 1989. Since its recovery, the stock has been closely monitored
and managed with harvest control rule and minimum size limit has been in effect.
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relationship was not significant for the others. Our analysis

showed no statistical relationship between SSB and post-

spawning weight.

Discussion
Disentangling the effects of environment and fishing pressure on

exploited fish stocks is a complex but major task to increase our

understanding of population- and ecosystem-level processes ob-

served and can hopefully help build sustainable management

plans. However, only a few studies have explored the joint effect

of exploitation and environmental variation [reviewed by

Planque et al. (2010)] and focused mainly on population-level dy-

namics such as recruitment (Brander, 2005; Ottersen et al., 2006),

migration patterns (Petitgas et al., 2006), and stock’s resilience

and productivity (Hilborn et al., 2003; Kjesbu et al., 2014; Le Bris

et al., 2018). To our knowledge, only one study investigated the

combined effect of exploitation and environment at the individ-

ual level (on growth; Morrongiello et al., 2019). Our study brings

insight into how population size, status, and exploitation can

change the relationship between a population’s reproductive

investment and environmental factors.

Before and after the collapse
The effects of NAO and SST on the reproductive investment and

the post-spawning condition during the post-collapse period

(1990–2015) correspond to expectations (Jennings and Beverton,

1991; Skjoldal, 2004) and can emerge through several, mutually

non-exclusive, processes: (i) better feeding conditions (i.e. num-

ber and quality of food items; Skjoldal, 2004), (ii) increased phys-

iological rates and metabolism, influencing processes related to

energy acquisition and allocation (Blaxter and Holliday, 1963;

Bailey, 1982), and (iii) increased gonad development rates

through hormone synthesis, secretion, metabolism, and gameto-

genesis (Wood and McDonald, 1997; dos Santos Schmidt et al.,

2017).

The unexpected patterns we observe during the collapse (i.e.

negative effect of NAO and SST on reproductive investment)

could be explained by changes in NSS herring migration and dis-

tribution between the two periods. Between 1950 and 1965, the

stock’s feeding grounds were located between the North of

Iceland and the middle of the Norwegian Sea, while they covered

most of the Norwegian Sea going from the Faroe Islands to Bear

Island in the North of Norway in the 1990s (Figure 3; Skjoldal,

2004). Espinasse et al. (2017) showed that different Calanus spe-

cies, at different locations over the Nordic Seas, are not impacted

the same way by the hydrographic conditions induced by NAO.

For example, a positive NAO is linked to a high abundance of

Calanus finmarchicus on the coast of Northern Norway but to a

low abundance of Calanus hyperboreus in Northern Iceland. Our

assumption that a positive NAO reflects good feeding conditions

was based on data gathered after 1990, linking the biomass of C.

finmarchicus in Atlantic waters of the Norwegian Sea to herring

condition (Skjoldal, 2004). The relationship between NAO and

feeding conditions for NSS herring could therefore have changed

with the feeding grounds location, thus changing the correlation

between NAO and gonad weight.

Before the collapse, we could see a trade-off in energy

allocation in the 31-cm length class, as years of slow growth were

associated with a higher post-spawning condition and vice versa,

while the reproductive investment stayed the same. Reaching a

large size early pays off later in terms of lifetime reproductive out-

put as bigger individuals have a lower metabolic rate (Winberg,

1956, 1961), higher survival (Gislason et al., 2008, 2010), higher

optimal swimming speed (Ware, 1975, 1978), and lower relative

cost of migration (Slotte, 1999a, b; Slotte and Fiksen, 2000; Slotte

et al., 2000; Jørgensen et al., 2008). However, condition seems to

play an important role in migration distance and spawning time,

thus influencing egg and larvae development and survival (Slotte

et al., 2000). Even though our data do not allow us to conclude

why some years have a high growth and low condition and not

others, this trade-off only affected the smallest size class (31 cm),

probably because this length class is dominated by first-time

spawners, which are particularly vulnerable to variations in their

energetic status (Slotte, 1999b).

After the collapse, slower growth was associated with higher

condition for length classes 31–33 cm, as well as to higher gonad

weight, even though the latter relationship was significant only

for the 36-cm length class. Such changes in energy allocation be-

tween the two periods are difficult to explain, and we can only

draw hypotheses in an attempt to understand them. One possible

explanation could be the changes in mortality patterns, induced

by fishing, predation, or starvation (e.g. through low-resource

availability or high inter-specific competition) as theory predicts

an increase in reproductive investment with higher mortality

(Reznick et al., 1990; Roff, 1992; Stearns, 1992; Jørgensen and

Holt, 2013). Fishing mortality seems an unlikely cause for this, as

it has been kept relatively low since the stock’s recovery. In addi-

tion, it targets individuals above 25 cm in this period and this

type of selectivity, targeting mostly mature individuals, typically

induces little evolutionary pressure on life-history traits (Ernande

et al., 2004). Some studies suggest intensification of inter-specific

competition for shared food resources between the main pelagic

stocks (NSS herring, blue whiting, and mackerel) of the area in

the last decade (Huse et al., 2012; Bachiller et al., 2018) that could

contribute to the results observed. However, as data on zooplank-

ton and other pelagic stocks are temporally limited compared to

(a) 1950 - 1962 (b) 1965 - 1966
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75°N

65°N

60°N

70°N

75°N

65°N

60°N

20°W 10°W 0° 10°E 20°E 20°W 10°W 0° 10°E 20°E

(c) 1972 - 1986 (d) 1990 - 2002

Wintering area Main spawning area

Secondary spawning areaPossible new wintering area since 2002

Feeding area

Figure 3. NSS herring migration before (a and b), during (c), and after
(d) the collapse [inspired from Skjoldal (2004)]. The oceanic feeding
migration pattern has continued into present time (ICES, 2019).
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our time series, a more mechanistic approach is necessary to con-

firm or dismiss this hypothesis.

During the collapse
The positive relationship between mean annual growth rate and

reproductive investment observed during the collapse period

lends support to Reznick et al.’s (2000) hypothesis that challenged

the then (and maybe still) dominating view where higher invest-

ment into reproduction would automatically mean lower invest-

ment into somatic growth, and there would be a clear trade-off

between these two costs where the amount of available energy

would be divided between the two. However, it is not only the al-

location that is flexible but also the acquisition can be changing.

This would mean that individuals can vary in their energy acqui-

sition capacities, and those with high energy acquisition rate

would have both high somatic growth rates and high reproduc-

tive investment, while the individuals with low-energy acquisition

capacity would both grow slowly and reproduce less (Enberg

et al., 2012). This is exactly what we observe in the collapse pe-

riod, and to some extent in the period before the collapse

(Figure 2), but why this pattern is reversed in the post-collapse

period is not immediately clear to us.

Intra-specific competition could be assumed to have been low

when the stock was in the collapsed state, and we do indeed ob-

serve higher mean yearly growth rates and size at age during the

collapse, supporting the studies suggesting that intra-specific

competition was low during this period (Engelhard and Heino,

2004a; Toresen, 1990). However, reproductive investment and

post-spawning weight show a negative relationship with the

spawning stock size, implying potentially some other mechanisms

of intra-specific competition, for example due to the stock having

been restricted to a small area on the Norwegian coast (Figure 3).

Do the observed changes have a genetic basis?
One issue that is often raised when investigating the effects of ex-

ploitation on life-history traits (Heino et al., 2015), and that we

could not address because of the nature of our data, is the contri-

bution of genetic changes to the patterns observed. For example,

are the differences in energy allocation (i.e. the relationship be-

tween mean age-at-length and gonad weight) observed before

and after the collapse only phenotypic or do they have a genetic

basis? First, the population collapse induced a potential bottle-

neck, meaning a loss of allelic diversity that may, in turn, affect

phenotypic traits (Maruyama and Fuerst, 1985). However, this

hypothesis is not supported for NSS herring and it is not likely

that the stock collapse durably affected the genetic pool of the

population (Gaggiotti et al., 2009). Second, recent studies dem-

onstrate that fishing can affect the allelic variation in a population

while inducing no changes at the phenotypic level (Giske et al.,

2014; Therkildsen et al., 2019). In addition, Therkildsen et al.

(2019) showed that size-selective fishing caused greater loss of ge-

netic diversity compared with size-independent fishing. These

findings suggest that the loss of genetic diversity in NSS herring

due to fishing may be stronger in the current period rather than

before the collapse. As we could not investigate those questions in

this article, we suggest the genetic analysis of historical NSS her-

ring samples as an essential follow-up of this work.

Understanding how anthropogenic activities can directly or in-

directly influence the relationship between life-history traits and

environmental factors at the population level is important to

ensure the correct use and interpretation of the data. This is espe-

cially true when relationships between traits or between traits and

environment are extracted from observational data and then

plugged into simulation models. We believe the findings pre-

sented in our article can help, for example in parameterizing

models for management strategy evaluations, which often lack in-

formation about the effects of environment and intra-specific

competition on central processes such as growth and recruitment,

which are directly linked to reproductive investment and energy

allocation.
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