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ract 

eving sustainable development requires a transition from the current production fashion 

 to the environmental degradation to a cleaner production. Such a substitution can be co

 new technology is less productive. In this paper, we present a two-sector endogenous gro

el that analyzes the potential of a transition from a more productive brown sector to a 

uctive green sector. The representative agent maximizes the weighted sum of the present v

e utility of consumption and the amenity value of green production. We derive a closed-f

al solution using a suitable version of the Pontryagin Maximum Principle. For an econo

hich the brown sector dominates initially, we obtain that as long as the preference tow

 production is positive, the optimal solution always has a single switching point and

wing structure. Initially, the representative agent distributes the output between investmen

reen sector and consumption, making no investment in the brown sector. This allows attain

ticular critical ratio between green and brown capital stocks in the fastest way. Once this r

een reached, the optimal solution switches to that, which allows both capitals to grow at

 rate. The representative agent has to sacrifice his/her consumption to invest in the gr

r, especially in the initial period, which is due to the amenity that this sector provides. Un

tant productivities, a full substitution of brown production by green production is not possi

r, they co-exist and evolve proportionally. Three parameters are positively related to the r

e green capital stock: the social discount rate, the (augmented) productivity of the gr

al, and a representative agent’s preference towards the green production amenity.   

ords: green growth, environmental quality, two-sector economic growth model, AK-mo

unt factor   Jo
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lights  

 An optimal economic growth model with green and brown sectors is analyzed   

 The objective function includes an amenity value of green production 

 We find analytically an optimal path for consumption and investments in two sectors 

 Full substitution of brown production is not optimal if the productivity gap is big 

 Amenity of green production compromises consumption, but not growth  

hical Abstract 
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troduction 

eving the environmentally sustainable development requires a substantial transition from

nt production fashion that leads to the degradation of the natural environment to

ronmentally friendly production (UNGA, 2015). For an individual country, such a transi

be costly, which raises concerns that it can compromise economic growth and welfare

prehensive valuation of both tangible and non-tangible environmental services (Costanz

997, 2014, 2017) has great potential to be used for their endogenization in economic po

ization models (Mäler, 1991). This would allow to trade off the preservation of 

ronment with the required investments.  

As a proxy, environmental economists introduce a “damage function” to account

omic losses to production from a lower environmental quality in their models (Manne 

els, 2005; Maurer et al., 2013; Nordhaus, 2008). Limited available observations mak

cult to establish plausible functional forms for the damage function, let alone t

etrization (Bretschger and Pattakou, 2019; Weitzman, 2012). Researchers ad

ervative assumptions, which leads to model-based levels of the environmental degrada

are often too high from the sustainability perspective. For example, the welfare-opti

erature rise in the most recent version of the DICE model is ca. 2.5 C (to be achieve

; Nordhaus, 2017). This is higher than the resolutions of the Paris agreement that states

to keep the warming below 2 C in the 21st century (UNFCCC, 2015). 

A number of stylized environmental economics models include a broad notion of

ironmental quality” to represent both tangible and a non-tangible value of the environm

o close the loop and operationalize the negative impact of the environmental degradation

conomy (Acemoglu et al., 2012; Cassou and Hamilton, 2004; Gerlagh and Keyzer, 20
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lders et al., 2014). Again, empirical evidence is insufficient (Galeotti, 2007) and thus mode

ine different assumptions regarding environmental quality aiming to reveal general patte

example, Gerlagh and Keyzer (2004) assumed that the environmental quality is positi

ed to the stock of a natural resource, which is extracted and used for production, and wh

etion creates a disutility for consumers. Smulders et al. (2014) employed a similar but a m

ral natural resource management model, which additionally assumes that the resou

ction is costly and that the economic output depends also on the natural resource stock; t

resource depletion decreases productivity. Acemoglu et al. (2012) considered 

ronmental quality, which is negatively related to the output of a dirty sector; in one m

tion analyzed in this paper, higher values of the environmental quality lowered 

uctivity of both clean and dirty sectors. Cassou and Hamilton (2004) considered a flow

ronmental quality, which is used for production and is inversely related to the stock of

y” capital. 

Environmental pollution has two dimensions: domestic and transboundary. In the la

 harmful emissions are generated in one country, but cause damage in another country

ing borders with the flows of air or water. Some pollutants can travel over larger distan

house gases, most notably, carbon dioxide, mix up well in the atmosphere such tha

entration level is fairly uniform globally. The adverse effects of the global warming cau

e carbon dioxide (IPCC, 2014) depend on the vulnerability of a particular locality. Clim

ge vulnerability varies greatly across the globe (Maplecroft, 2016), but generally the Glo

h is more vulnerable than the Global North, while the Global North continues to emit

ominant share of the greenhouse gases (GHG) (Pardikar, 2020). A small and heavily pollu

try of the Global North does not have enough incentive to transit from dirtier to clea
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uction if a large portion of the pollution that this country generates is transboundary. T

ment motivates us to consider in this paper a different way to endogenize environme

erns in economic models: instead of penalizing production that leads to the environme

adation (implemented either through a damage function or a disutility from a lower qualit

nvironment), we consider rewarding production that is environmentally friendly.  

Namely, we consider a two-sector economy, in which both brown and green sec

uce an identical final good. We assume a representative agent to be an eco-min

preneur, who maximizes the present value of the future utility that depends on consump

reen production. Thus, the instantaneous utility function is augmented with the amenity v

the agent associates with the green sector output. We assume the mathematically conven

ithm of the green sector output for the amenity value formula. The environmental impac

n production is not included in our model.  Nevertheless, the representative agent in our m

he intention to transit to a greener production technology, despite its lower productivity. T

tion can be motivated by the agent’s intrinsic wish to preserve the environment of the pl

in the model, it is translated into the amenity value that the agent assigns to the green sec

In the literature that employs stylized environmental economics models, the analysi

ive incentives and inspirations to develop clean production has not received suffic

tion yet. We are aware of only few papers featuring such models. Rauscher (2009) and M

 (2013) assumed that the environmental quality is positively related to the abatement rate

ded it in the utility function that is being maximized. In a similar way, a number of pa

sing on the management of natural resources incorporated the resource stock in the ut

tion (Ayong Le Kama, 2001; Gerlagh and Keyzer, 2004; Lafforgue, 2005; and Wirl, 2004

portant to emphasize that these models combine positive incentives with penali
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ronmentally-unfriendly production. Our model, on the contrary, focuses on the posi

tives only.   

Two approaches to model a transition from brown to green production are prevalent in

ture. In the first approach, it is assumed that the economic output is produced by a sin

ology, whose adverse impact on the environment can decrease over time due to investm

atement, resource efficiency or productivity growth (Krautkraemer, 1985; Lans Bovenb

mulders, 1995; Rovenskaya, 2010; Smulders, 1995). In the second approach, two compe

ologies are considered – a dirtier one and a cleaner one – and over time, the role of the di

uction is decreasing and the role of a cleaner production is increasing due to appropr

stments in these sectors (Acemoglu et al., 2012, 2016; Boucekkine et al., 2013a; Cassou 

ilton, 2004; Cunha-e-Sa et al., 2010). Our model is of the latter type, though in the above c

rs, investment aims to enhance sector productivity, while in our model we focus on cap

mulation. The model from (Boucekkine et al., 2013a) is similar to ours as they too empl

sector AK model without any productivity growth; however, that model includes pollu

mics and focuses on an optimal time of the full, binary switch from a dirtier to a cle

ology, which occurs in order to reduce damages from pollution.  

By considering two sectors, green and brown, our model allows us to introduce the ame

e green production and thus it allows us to model positive motivations for sustainab

formation. Usually, even when stylized, two-sector endogenous growth models are 

plex to find their closed-form solutions analytically. Hence, researchers often resort to

y-state analysis while the trajectories can only be obtained numerically. As we focus on

ition issue, time is a critical dimension, and thus, when building the model, we opted for

lest possible one that can be solved analytically.  
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Mathematically, our model is an optimal control problem over an infinite time horizon.

he logarithmic utility of consumption, which tends to infinity as the consumption rate te

ro. We solve the model by applying a version of the Pontryagin Maximum Principle f

ov, 2014), which provides necessary conditions for optimality for infinite-horizon opti

rol problems with locally unbounded instantaneous utility functions. We construct a se

idate, extremal solutions, and, by applying the sufficient conditions for optimality f

rstad and Sydsaeter, 1977), select a single extremal solution that satisfies these suffic

itions and hence is optimal.  

The rest of the paper is organized as follows. Section 2 introduces the model and formul

ptimal control problem over an infinite time horizon. Section 3 first presents a set of

ssary conditions for optimality from the Pontryagin Maximum Principle, which includes 

lar control regimes and one singular control mode, see subsection 3.1. Subsection 3.2 pres

odel assumptions. Next, in subsection 3.3 we consider a special case, in which the in

es of the green and brown sector capital stocks constitute precisely a certain critical ratio 

pendent on the model parameters. We show that in this special case, the optimal contro

lar, and the green and brown sectors grow proportionally. In subsection 3.4, we consid

 realistic and general case when the proportion of the initial values of the green and bro

als is lower than the critical ratio, i.e., the brown sector dominates initially. In this section

ulate the main result of this paper, namely, in this case, the optimal control consists of 

. Starting from the initial time moment and as long as the ratio between the stocks of the gr

brown capitals remains lower than the critical, it is optimal to invest a maximal (from

ssary conditions) fraction of the total output into the green capital and nothing into the bro

al. This will allow the green capital stock to grow quickly and reach the critical ratio at s
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 𝜏. After this time moment onwards, a singular control is optimal, and the green and br

rs grow proportionally as in the special case from subsection 3.3. Subsection 3.5 speci

 the switching time 𝜏 could be computed numerically and provides necessary mathemat

dations for the suggested approach. Finally, section 4 contains some economic interpretat

e singular optimal path. Section 5 presents a short discussion.  

odel 

consider a two-sector competitive market economy consisting of a continuum of ident

itely lived agents who act both as producers and as consumers (Cassou and Hamilton, 20

homogenous final good (similar to capital-owning entrepreneurs from (Moser et al., 20

cher, 2009)). The population is assumed constant and normalized to 1. Agents use the sto

een capital, 𝐾𝐺(𝑡), and brown capital, 𝐾𝐵(𝑡) to produce the corresponding outputs 𝑌𝐺(𝑡)

) according to the AK production function (McGrattan, 1998), that is 𝑌𝐺(𝑡) = 𝐴𝐺𝐾𝐺(𝑡) 

) = 𝐴𝐵𝐾𝐵(𝑡). The total output then becomes  

= 𝐴𝐺𝐾𝐺(𝑡) + 𝐴𝐵𝐾𝐵(𝑡).          (1) 

At each moment of time 𝑡 ≥ 0, the total output 𝑌(𝑡) is distributed between consump

, investment 𝐼𝐺(𝑡) in the green sector, and investment in the brown sector 𝐼𝐵(𝑡):  

= 𝐶(𝑡) + 𝐼𝐺(𝑡) + 𝐼𝐵(𝑡).         (2) 

Capital stocks 𝐾𝐺(𝑡) and 𝐾𝐵(𝑡) accumulate thanks to investments and depreciate as foll

) = 𝐼𝐺(𝑡) − 𝛿𝐺𝐾𝐺(𝑡), 𝐾𝐺(0) = 𝐾𝐺0       (3a)

) = 𝐼𝐵(𝑡) − 𝛿𝐵𝐾𝐵(𝑡), 𝐾𝐵(0) = 𝐾𝐵0,       (3b

e 𝐾𝐺0 > 0 and 𝐾𝐵0 > 0 determine the initial capital stocks respectively; parameters 𝛿𝐺

𝐵 > 0 are the respective depreciation rates.   
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The representative agent’s instantaneous utility 𝑈(𝑡) consists of two components 

= ln 𝐶(𝑡) + 𝜔 ln 𝑌𝐺(𝑡),         (4) 

e the first term ln 𝐶(𝑡) is the utility of consumption that is standard in the neoclass

omic growth theory taken in the logarithmic form for simplicity; ln 𝑌𝐺(𝑡) in the second t

zes the representative agent’s determination to develop green production and 𝜔 ≥ 0 is

ht he/she attributes to this determination in his/her total utility – we assume diminish

inal returns and also adopt the logarithmic form for the amenity value of green production

licity.  

We consider the model over an infinite time horizon and introduce the total utility as  

𝑒−𝑟𝑡𝑈(𝑡)𝑑𝑡
∞

0
,           (5) 

e 𝑟 > 0 is a social discount rate.  

We introduce fractions 𝑐(𝑡) =
𝐶(𝑡)

𝑌(𝑡)
, 𝑢𝐺(𝑡) =

𝐼𝐺(𝑡)

𝑌(𝑡)
,  and 𝑢𝐵(𝑡) =

𝐼𝐵(𝑡)

𝑌(𝑡)
, and treat quant

) and 𝑢𝐵(⋅) as controls. By setting these, the representative agent regulates the cap

mulation processes and defines his/her consumption. We assume that 𝑢𝐺(⋅) and 𝑢𝐵(⋅)

wise continuous functions over [0,∞), such that 

𝑡), 𝑢𝐵(𝑡)) ∈ 𝒰 = {(𝑢𝐺 , 𝑢𝐵) ∈ ℝ
2: 𝑢𝐺 , 𝑢𝐵 ∈ [0,1), 𝑢𝐺 + 𝑢𝐵 < 1}, 𝑡 ≥ 0.   (6) 

xclude the boundary 𝑢𝐺 + 𝑢𝐵 = 1 from 𝒰 since in this case the instantaneous utility func

𝑈(𝑡) = ln[(1 − 𝑢𝐺(𝑡) − 𝑢𝐵(𝑡))(𝐴𝐺𝐾𝐺(𝑡) + 𝐴𝐵𝐾𝐵(𝑡))] + 𝜔 ln(𝐴𝐺𝐾𝐺(𝑡)) is loc

unded, as ln(1 − 𝑢𝐺 − 𝑢𝐵) → −∞ as 𝑢𝐺 + 𝑢𝐵 → 1 − 0. Thus, the set 𝒰 of admissible con

es is not closed.  

Combining (1)-(6), we obtain the following optimal control problem: 

x
,𝑢𝐺(⋅)

∫ 𝑒−𝑟𝑡(ln[(1 − 𝑢𝐺(𝑡) − 𝑢𝐵(𝑡))(𝐴𝐺𝐾𝐺(𝑡) + 𝐴𝐵𝐾𝐵(𝑡))] + 𝜔 ln(𝐴𝐺𝐾𝐺(𝑡)))𝑑𝑡
∞

0
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           (7a)

) = 𝑢𝐺(𝑡)(𝐴𝐺𝐾𝐺(𝑡) + 𝐴𝐵𝐾𝐵(𝑡)) − 𝛿𝐺𝐾𝐺(𝑡), 𝐾𝐺(0) = 𝐾𝐺0,     (7b

) = 𝑢𝐵(𝑡)(𝐴𝐺𝐾𝐺(𝑡) + 𝐴𝐵𝐾𝐵(𝑡)) − 𝛿𝐵𝐾𝐵(𝑡), 𝐾𝐵(0) = 𝐾𝐵0,     (7c)

) ∈ [0,1),  𝑢𝐵(𝑡) ∈ [0,1),  𝑢𝐺(𝑡) + 𝑢𝐵(𝑡) < 1.      (7d

 that for any admissible controls, the integral in (7a) converges as solutions to the lin

tions (7b), (7c) are bounded by exponential functions. Thus, we can apply the standard no

ptimality here, i.e., we seek for controls 𝑢𝐺(⋅), 𝑢𝐵(⋅) that would satisfy (7d) and wo

imize the utility function (7a) together with the corresponding phase variables 𝐾𝐺(⋅), 𝐾

fying (7b-c). We denote the optimal controls as 𝑢𝐺
∗ (⋅) and 𝑢𝐵

∗ (⋅), and the optimal trajecto

∗(⋅) and 𝐾𝐵
∗(⋅). 

ptimal solution   

Necessary conditions for optimality  

optimal control problem (7) has two important features, which complicate its analysis f

ontrol-theoretic viewpoint. First, it is formulated over an infinite time horizon. This typ

al control problems may exhibit a certain “degeneracy” in the sense that in the optimum

angian multiplier associated with the utility function in the Hamiltonian (𝜆0) may equal z

ev and Veliov, 2017). The possibility of such a case requires a careful investigation. Ano

plication of the infinite-horizon problems is that the “natural” generalizations of 

versality condition, which would allow to narrow down the set of solutions of the adj

m, may not hold true (Aseev and Veliov, 2017; Aseev et al., 2012).  Jo
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Second, due to the local unboundedness of the instantaneous utility function, the se

issible control values 𝒰 (6) is not closed. Most of the existence theorems available in

ture are formulated only for compact (e.g., Seierstad and Sydsæter, 1987, Th 3.15) or, at le

d admissible control sets (Aseev, 2018). Therefore, the existence question requires a spe

tion. To overcome this complication, one could try to prove that an optimal control prob

 a non-closed control set can be replaced by the same optimal control problem, where

rol set is a compact subset of the original control set. This replacement would work if 

d prove that the sets of optimal solutions in these two problems coincide. In case of opti

rol problems over infinite time horizons such a proof may be rather laborious; e.g., Aseev

zhimskii (2007) consider a series of finite approximations of the infinite horizon opti

rol problem for this purpose and then prove convergence of their solutions to the solutio

riginal problem (see Theorem 18.1 therein).  

Instead of following this route, in order to solve problem (7) in the presence of the abo

tioned features, we apply a version of the Pontryagin Maximum Principle (PMP) that 

ially developed to deal with problems with locally unbounded instantaneous utility funct

ov, 2014, Th. 3). This version of the PMP therefore does not require the closedness of the

dmissible control values. Thanks to its special assumptions, this theorem excludes 

nerated case of 𝜆0 = 0 and furthermore establishes that the optimal adjoint variables take o

ive values. Thus, Theorem 3 from (Besov, 2014) allows to significantly narrow down the

tremal trajectories in comparison to more general PMP theorems for infinite horizon opti

rol problems, e.g., that from (Seierstad and Sydsæter, 1987, Th. 3.12). In Appendix A.1

 that all the conditions of Theorem 3 from (Besov, 2014) hold true for problem (7), and he

heorem can be applied for problem (7). Note that under these conditions, a solution to prob
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xists thanks to Theorem 1 in (Besov, 2014); actually, only some of these conditions

ssary for the existence. 

Next, let 𝜆(⋅) = (𝜆𝐺(⋅), 𝜆𝐵(⋅))
𝑇
 be the vector of present-valued adjoint variables, 𝐾(

⋅), 𝐾𝐵(⋅))
𝑇 and 𝑢(⋅) = (𝑢𝐺(⋅), 𝑢𝐵(⋅))

𝑇 be the vectors of capital stocks and cont

ctively. Due to Theorem 3 from (Besov, 2014), we put 𝜆0 = 1 and consider only posit

ed adjoint variables 𝜆(⋅). Then the Hamiltonian is as follows 

, 𝜆, 𝑢) = ln[(1 − 𝑢𝐺 − 𝑢𝐵)(𝐴𝐺𝐾𝐺 + 𝐴𝐵𝐾𝐵)] + 𝜔 ln(𝐴𝐺𝐾𝐺) + 𝜆𝐺(𝑢𝐺(𝐴𝐺𝐾𝐺 + 𝐴𝐵𝐾𝐵) −

) + 𝜆𝐵(𝑢𝐵(𝐴𝐺𝐾𝐺 + 𝐴𝐵𝐾𝐵) − 𝛿𝐵𝐾𝐵).       (8) 

The following maximizes the Hamiltonian over 𝑢 ∈ 𝒰 (see Appendix A.2 for details) 

, 𝜆) =

{
 
 
 

 
 
 (
max {0,1 −

1

𝜆𝐺𝑌
}

0
) , 𝜆𝐺 > 𝜆𝐵 > 0,

(
0

max {0,1 −
1

𝜆𝐵𝑌
}) , 𝜆𝐵 > 𝜆𝐺 > 0,

(
𝑢𝐺
∗

𝑢𝐵
∗ ) : 𝑢𝐺

∗ + 𝑢𝐵
∗ = max {0,1 −

1

𝜇𝑌
} , 𝜆𝐺 = 𝜆𝐵 = 𝜇 > 0,

   (9) 

 the third case being a singular control. Our analysis in section 3.4 will reveal that star

 some time moment 𝜏, this singular control is optimal in problem (7), and along 

sponding part of the optimal path, the green and brown sectors grow at the same rate. 

The adjoint variables evolve according to: 

) = (𝑟 + 𝛿𝐺)𝜆𝐺(𝑡) −
𝐴𝐺

𝑌(𝑡)
− (𝜆𝐺(𝑡)𝑢𝐺(𝑡) + 𝜆𝐵(𝑡)𝑢𝐵(𝑡))𝐴𝐺 −

𝜔

𝐾𝐺(𝑡)
,    (10

) = (𝑟 + 𝛿𝐵)𝜆𝐵(𝑡) −
𝐴𝐵

𝑌(𝑡)
− (𝜆𝐺(𝑡)𝑢𝐺(𝑡) + 𝜆𝐵(𝑡)𝑢𝐵(𝑡))𝐴𝐵.     (10

The stationarity2 condition for the Hamiltonian takes the following form 

                                          
e “stationarity” means that the Hamiltonian is asymptotically stationary, i.e. it vanishes as time goes to infi

s considerations we follow the terminology from (Besov, 2014). 
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𝐻(𝐾(𝑡), 𝜆(𝑡), 𝑢∗(𝐾(𝑡), 𝜆(𝑡))) = 𝑟 ∫ 𝑒−𝑟𝑠 (ln [(1 − 𝑢𝐺
∗ (𝐾(𝑠), 𝜆(𝑠)) −

∞

𝑡

(𝑠), 𝜆(𝑠)))𝑌(𝑠)] + 𝜔 ln(𝐴𝐺𝐾𝐺(𝑠))) 𝑑𝑠. 

ing time 𝑡 to infinity (see (8), (9)), we obtain the following standard transversality condit

Appendix A.3 for details):  

𝑒−𝑟𝑡𝜆𝐺(𝑡)𝐾𝐺(𝑡) = lim 
𝑡→∞

𝑒−𝑟𝑡𝜆𝐵(𝑡)𝐾𝐵(𝑡) = 0.      (10

As follows from (Besov, 2014, Th.3), the adjoint equations with the transversality condit

-c), the state equations (7b-c) with their initial conditions, and the maximum condition

titute the full set of the necessary conditions of the Pontryagin Maximum Principle

lem (7). It turns out that any trajectory (𝐾(⋅), 𝜆(⋅), 𝑢(⋅)) satisfying (7b-c), (9), and (10a-

al in problem (7). We establish this fact using the sufficient conditions of optimality f

rstad and Sydsaeter, 1977, Ths. 3 and 10), see Theorems 1 and 2 below. 

Useful notations and additional assumptions on model parameters  

enote by 𝐷 = 𝐷𝐵 − 𝐷𝐺  the difference between augmented productivities of the brown 

 capitals respectively, where 𝐷𝐵 = 𝐴𝐵 − 𝛿𝐵 > 0 and 𝐷𝐺 = 𝐴𝐺 − 𝛿𝐺 > 0. Further, in 

, we make the following assumptions.  

 The brown capital is more productive than the green capital: 𝐴𝐵 > 𝐴𝐺 . 

 The augmented productivity of the brown sector exceeds the augmented productivity of

 sector at least by the discount factor: 𝐷 > 𝑟. 

 The productivity of the green sector is greater than the discount factor: 𝐴𝐺 > 𝑟. 

s also denote 

(
𝐷

𝜔𝑟
+
𝐷−𝑟

𝑟
)
−1

 .          (11Jo
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meter 𝑞 represents a critical ratio between the green and brown capital stocks, which deline

 economy types depending on the initial conditions as will be shown in the theorems belo

Optimal solution for the economy, in which the initial brown and green capital stock va

titute exactly the critical ratio 𝑞. 

, we consider the special case of the parameter values, in which the initial capital stock va

titute exactly the critical ratio 𝑞 (11): 
𝐾𝐺0

𝐾𝐵0
= 𝑞. Theorem 1 below provides the optimal cont

oblem (7) for this special case, which also serves as a useful input to the analysis of the m

ral and realistic case of an economy, in which the brown capital initially dominates: 
𝐾𝐺0

𝐾𝐵0
<

 case is presented in section 3.4.  

rem 1. If 
𝐾𝐺0

𝐾𝐵0
= 𝑞, an optimal solution satisfies the third (singular) case in (9) over the en

 interval [0,∞). That is, constant controls  

) =
𝑞(𝐴𝐺−𝑟+𝐷)

𝑞𝐴𝐺+𝐴𝐵
= 𝑢𝐺

∗  and 𝑢𝐵
∗ (𝑡) =

𝐴𝐵−𝑟

𝑞𝐴𝐺+𝐴𝐵
= 𝑢𝐵

∗  for all 𝑡 ≥ 0    (12

ptimal in problem (7). The corresponding optimal brown and green capital stocks grow

ame rate (𝐷𝐵 − 𝑟) as follows  

) = 𝐾𝐺0𝑒
(𝐷𝐵−𝑟)𝑡  and 𝐾𝐵

∗(𝑡) = 𝐾𝐵0𝑒
(𝐷𝐵−𝑟)𝑡 for all 𝑡 ≥ 0    (13

the adjoint variables coincide and decay at the same rate as follows  

) = 𝜆𝐵(𝑡) =
𝜔

𝐷𝐾𝐺0
𝑒−(𝐷𝐵−𝑟)𝑡 for all 𝑡 ≥ 0.   

proof of Theorem 1 is presented in Appendix B. Note that under the conditions of Theo

ong the optimal solution 

)𝐾𝐺
∗(𝑡) =

𝜔

𝐷
  and 

𝐾𝐺
∗ (𝑡)

𝐾𝐵
∗ (𝑡)

= 𝑞 for all 𝑡 ≥ 0;       (14
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ptimal controls can be expressed as follows 

) = 𝑢𝐺
∗ =

(𝐴𝐺+𝐷−𝑟)𝐾𝐺
∗ (𝑡)

𝑌∗(𝑡)
 and 𝑢𝐵

∗ (𝑡) = 𝑢𝐵
∗ =

(𝐴𝐵−𝑟)𝐾𝐵
∗ (𝑡)

𝑌∗(𝑡)
, 𝑡 ≥ 0,    (15

e 𝑌∗(𝑡) = 𝐴𝐺𝐾𝐺
∗(𝑡) + 𝐴𝐵𝐾𝐵

∗(𝑡). Relations (14) are important for Theorem 2 in the 

ection and the representation of optimal controls (15) allows for interpretations provide

ection 4.1. Note that in this special case, optimal controls are constant over time and, he

 is no switching. 

Optimal solution for the economy, in which the brown sector dominates initially 

his paper aims to investigate the possibility and potential of greening of the economy,

me that at the beginning of the model’s time horizon, the brown sector significantly domin

e economy, i.e., here we focus on the case of 
𝐾𝐺0

𝐾𝐵0
< 𝑞. Theorem 2 below provides opti

rols in problem (7) in this case, which is the main result of our paper.  

rem 2. If 
𝐾𝐺0

𝐾𝐵0
< 𝑞, there exists a unique switching time 𝜏 > 0, such that for 𝑡 ∈ [0, 𝜏] it is

case in (9) that delivers an optimal solution, and for 𝑡 > 𝜏, an optimal solution satisfies

 (singular) case in (9). That is, controls 

) = {
1 −

1

�̅�𝐺(𝑡)�̅�(𝑡)
, 𝑡 ∈ [0, 𝜏],

𝑢𝐺
∗ , 𝑡 > 𝜏,

 and 𝑢𝐵
∗ (𝑡) = {

0, 𝑡 ∈ [0, 𝜏],
𝑢𝐵
∗ , 𝑡 > 𝜏,

     (16

ptimal in problem (7); here �̅�(𝑡) = 𝐴𝐺�̅�𝐺(𝑡) + 𝐴𝐵�̅�𝐵(𝑡). Optimal state and adjoint varia

) = {
�̅�𝐺(𝑡), 𝑡 ∈ [0, 𝜏],

�̅�𝐺(𝜏)𝑒
(𝐷𝐵−𝑟)(𝑡−𝜏), 𝑡 > 𝜏,

 and 𝐾𝐵
∗(𝑡) = {

�̅�𝐵(𝑡), 𝑡 ∈ [0, 𝜏],

�̅�𝐵(𝜏)𝑒
(𝐷𝐵−𝑟)(𝑡−𝜏), 𝑡 > 𝜏,

 (17
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) = {
�̅�𝐺(𝑡), 𝑡 ∈ [0, 𝜏],

�̅�𝐺(𝜏)𝑒
−(𝐷𝐵−𝑟)(𝑡−𝜏), 𝑡 > 𝜏,

 and 𝜆𝐵(𝑡) = {
�̅�𝐵(𝑡), 𝑡 ∈ [0, 𝜏],

�̅�𝐵(𝜏)𝑒
(𝐷𝐵−𝑟)(𝑡−𝜏), 𝑡 > 𝜏.

 (18

witching time 𝜏 > 0  and functions (�̅�𝐺(⋅), �̅�𝐵(⋅), �̅�𝐺(⋅), �̅�𝐵(⋅)) satisfy the following bound

e problem over [0, 𝜏] 

) = 𝐷𝐺�̅�𝐺(𝑡) + 𝐴𝐵�̅�𝐵(𝑡) −
1

�̅�𝐺(𝑡)
,    �̅�𝐺(0) = 𝐾𝐺0, �̅�𝐺(𝜏) = 𝑞�̅�𝐵(𝜏),   (19

) = −𝛿𝐵�̅�𝐵(𝑡),                                     �̅�𝐵(0) = 𝐾𝐵0,     (19

) = −(𝐷𝐺 − 𝑟)�̅�𝐺(𝑡) −
𝜔

�̅�𝐺(𝑡)
,                                       �̅�𝐺(𝜏) =

𝜔

𝐷�̅�𝐺(𝜏)
,   (19

) = (𝑟 + 𝛿𝐵)�̅�𝐵(𝑡) − 𝐴𝐵�̅�𝐺(𝑡),                              �̅�𝐵(𝜏) = �̅�𝐺(𝜏) =
𝜔

𝐷�̅�𝐺(𝜏)
.  (19

Over [0, 𝜏], the optimal trajectory and adjoint variables are defined as a solution

tions (19), which are obtained by substituting controls (16) into equations (7b), (7c), (1

). Conditions at the right-hand-side boundary in (19a) and (19d), �̅�𝐺(𝜏) = 𝑞�̅�𝐵(𝜏) 

) = �̅�𝐵(𝜏) =
𝜔

𝐷�̅�𝐺(𝜏)
, ensure the continuity of optimal trajectories and adjoint variables w

iting from the first (𝑡 ∈ [0, 𝜏]) to the third (𝑡 ∈ (𝜏,∞)) case of (9) (compare (19a), (19c) w

ions (14)). The BVP (19) contains four differential equations over a time interval with

own right-hand-side boundary 𝜏 and five boundary conditions. Lemma 1 in Appendix 

lishes that a solution to (19) exist, while Lemma 2 in Appendix C.2 proves that this solu

ed satisfies the first condition in (9). In this case 
𝐾𝐺
∗ (𝑡)

𝐾𝐵
∗ (𝑡)

=
�̅�𝐺(𝑡)

�̅�𝐵(𝑡)
< 𝑞 for all 𝑡 ∈ [0, 𝜏). O

), the optimal control, phase and adjoint trajectories are the same as those in Theorem 1

e shift by 𝜏) and in this case, 
𝐾𝐺
∗ (𝑡)

𝐾𝐵
∗ (𝑡)

= 𝑞 for all 𝑡 ∈ [𝜏,∞). 

In order to prove Theorem 2, first, we will show that relations (16)-(18) satisfy

ssary conditions for optimality of the PMP, then we will prove that solution (16)-(18
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al applying the sufficient conditions for optimality, which we show to hold true for

mal solution (16)-(18). The proof of Theorem 2 can be found in Appendix C.3.  

Optimal solution (16)-(18) has the following interpretation. As long as the brown se

inates in the economy, i.e., as long as the ratio between the two capital stocks is lower 

ritical ratio: 
𝐾𝐺
∗ (𝑡)

𝐾𝐵
∗ (𝑡)

< 𝑞, it is optimal to invest the fraction of the total output equal to 𝑢𝐺
∗ (𝑡

1

�̅�𝐺(𝑡)�̅�(𝑡)
 into the green capital and nothing into the brown capital. This will allow the gr

al stock to grow quickly and reach the critical ratio 
𝐾𝐺
∗ (𝜏)

𝐾𝐵
∗ (𝜏)

= 𝑞 at time 𝑡 = 𝜏. After 𝑡 = 𝜏, 

al to invest constant fractions of the total output in the development of the green and bro

rs (specified in Theorem 1), which will maintain the same proportion of the green and bro

als over time, i.e.,  
𝐾𝐺(𝑡)

𝐾𝐵(𝑡)
= 𝑞 for all 𝑡 ≥ 𝜏. Note that if the ratio between the initial cap

s were the opposite, i.e., in the case of an economy, in which the green sector domin

lly 
𝐾𝐺0

𝐾𝐵0
> 𝑞, the “mirror” strategy would be optimal. This dynamic is schematically illustr

e phase plane of variables 𝐾𝐺, 𝐾𝐵 in Figure 1. 

 

𝐾𝐺0
𝐾𝐵0

< 𝑞 

 

𝐾𝐺0
𝐾𝐵0

= 𝑞 

 

𝐾𝐺
∗(𝑡)

𝐾𝐵
∗(𝑡)

= 𝑞 

 

𝐾𝐵 

𝐾𝐺0
𝐾𝐵0

> 𝑞 

 
𝐾𝐺 0 
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e 1. Optimal trajectories in the phase space for three qualitatively different cases of the initial conditions: 
𝐾

𝐾

0
< 𝑞, and 

𝐾𝐺0

𝐾𝐵0
> 𝑞. In the second/third case, in order to reach the singular ray 

𝐾𝐺

𝐾𝐵
= 𝑞, the investment int

/green sectors should be zero. Once the singular ray is reached, investments in the green and brown cap

d be such that 𝐾𝐵
∗(𝑡) and 𝐾𝐺

∗(𝑡) grow proportionally.  

Note that for optimal consumption share the following formula is valid: 

) = 1 − 𝑢𝐺
∗ (𝑡) − 𝑢𝐵

∗ (𝑡) =
1

𝜆𝐺(𝑡)𝑌∗(𝑡)
, 

s 

)𝑌∗(𝑡) = 𝐶∗(𝑡) = ((
𝑑

𝑑𝐶
ln 𝐶)

𝐶=𝐶∗(𝑡)
)
−1

, 

btain that 

n𝐶)
𝐶=𝐶∗(𝑡)

= 𝜆𝐺(𝑡). 

 – see formula (4) – we obtain that the marginal utility of consumption is equal to the shad

 of the green capital. Note that such equality appears also as a necessary condition

ality in the classical one-sector Ramsey model, see e.g. (Acemoglu, 2009, p. 299, Eq. (8.3

The next section is devoted to how one can find a solution to (19) numerically. 

Finding the switching time 𝜏 numerically 

nd 𝜏 from (19), it is sufficient to consider equations (19a), (19b), and (19c) as these equat

ndependent from �̅�𝐵(⋅). Using an explicit solution to (19b), �̅�𝐵(𝑡) = 𝐾𝐵0𝑒
−𝛿𝐵𝑡 for all

], the BVP (19) can be reduced to  

) = 𝐷𝐺�̅�𝐺(𝑡) + 𝐴𝐵�̅�𝐵(𝑡) −
1

�̅�𝐺(𝑡)
, �̅�𝐺(0) = 𝐾𝐺0, �̅�𝐺(𝜏) = 𝑞𝐾𝐵0𝑒

−𝛿𝐵𝜏,

) = −(𝐷𝐺 − 𝑟)�̅�𝐺(𝑡) −
𝜔

�̅�𝐺(𝑡)
,                           �̅�𝐺(𝜏) =

𝜔

𝑞𝐷𝐾𝐵0𝑒
−𝛿𝐵𝜏

.
  (20Jo
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s introduce 𝑧(𝑡) =
�̅�𝐺(𝑡)

�̅�𝐵(𝑡)
 and 𝑠(𝑡) = �̅�𝐺(𝑡)�̅�𝐵(𝑡). Also, let 𝑧0 =

𝐾𝐺0

𝐾𝐵0
. Then (20) is equiva

e following: 

= (𝐷𝐺 + 𝛿𝐵)𝑧(𝑡) + 𝐴𝐵 −
1

𝑠(𝑡)
, 𝑧(0) = 𝑧0, 𝑧(𝜏) = 𝑞,

= −(𝐷𝐺 + 𝛿𝐵 − 𝑟)𝑠(𝑡) −
𝜔

𝑧(𝑡)
,                       𝑠(𝜏) =

𝜔

𝑞𝐷
.
     (21

convenience of this transformation is due to the fact that in (21), the boundary condition

ontain the time moment 𝜏 in the right-hand side. If we find a solution of the BVP (21), t

olution of the BVP (20) can be found by the inverse transformation of variables: �̅�𝐺(𝑡

)𝑧(𝑡) = 𝐾𝐵0𝑒
−𝛿𝐵𝑡𝑧(𝑡) and �̅�𝐺(𝑡) =

𝑠(𝑡)

𝐾𝐵0𝑒
−𝛿𝐵𝑡

. We have the following 

osition 1. Solution (𝑠(⋅), 𝑧(⋅)) to (21) exists and satisfies the following inequalities  

𝑧(𝑡) ≤ 𝑞 and 𝑠(𝑡) ≥
𝜔

𝑞𝐷
 for all 𝑡 ∈ [0, 𝜏].  

The proof of Proposition 1 can be found in Appendix D. Proposition 1 allows to make

wing estimation of the right-hand side of the first equation in (21) for all 𝑡 ∈ [0, 𝜏]: 

(𝐷𝐺 + 𝛿𝐵)𝑧0 + 𝐴𝐵 −
𝑞𝐷

𝜔
≤ (𝐷𝐺 + 𝛿𝐵)𝑧(𝑡) + 𝐴𝐵 −

1

𝑠(𝑡)
≤ (𝐷𝐺 + 𝛿𝐵)𝑞 + 𝐴𝐵.   (22

Now using solution 𝑡 ↦ (𝑠(𝑡), 𝑧(𝑡)) to (21) over [0, 𝜏], we exclude 𝑡 and introd

tion 𝑧 ↦ 𝑠(𝑧) over [𝑧0, 𝑞]. This function is subject to the following initial value problem (I

 [𝑧0, 𝑞]: 

=
−(𝐷𝐺+𝛿𝐵−𝑟)𝑠(𝑧)−

𝜔

𝑧

(𝐷𝐺+𝛿𝐵)𝑧+𝐴𝐵−
1

𝑠(𝑧)

, 𝑠(𝑞) =
𝜔

𝑞𝐷
.       (23

ates (22) guarantee the existence of a solution to (23) on the entire segment [𝑧0, 𝑞].  
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In order to find 𝜏 numerically, one should first solve the IVP (23) and obtain 𝑠0 = 𝑠(

, one should solve the IVP for the differential equations from (21) with initial condit

= 𝑧0 and 𝑠(0) = 𝑠0. Time moment 𝜏 > 0 such that 𝑧(𝜏) = 𝑞 will be the sought-for switch

. Note that in this case, equality 𝑠(𝜏) =
𝜔

𝑞𝐷
 holds automatically because of the initial condi

3). The following proposition provides a lower estimate and an upper estimate for 𝜏. 

osition 2. The following estimate for switching time 𝜏 holds: 

𝐵
ln

𝑞(𝐷𝐺+𝛿𝐵)+𝐴𝐵

𝑧0(𝐷𝐺+𝛿𝐵)+𝐴𝐵
≤ 𝜏 ≤

1

𝐷𝐺+𝛿𝐵
ln

𝑞(𝐷𝐺+𝛿𝐵)+𝐴𝐵−𝑞𝐷/𝜔

𝑧0(𝐷𝐺+𝛿𝐵)+𝐴𝐵−𝑞𝐷/𝜔
.  

This estimate is derived as a part of the proof of Lemma 1 in Appendix C.1. The differe

een the upper and lower bounds decreases with decrease of 𝑞𝐷/𝜔 and 𝜏 is greater for big

ortion 𝑞/𝑧0. Thus, the greater is the initial gap between green and brown sector’s endowm

𝐾𝐺0/𝐾𝐵0 < 1), the longer it takes to achieve the singular mode of optimal proporti

th. 

me properties of the proportional optimal growth path  

is section, we will focus on the singular control (ray) described in section 3.3, so we assu

𝐾𝐺0

𝐾𝐵0
= 𝑞. We make four major observations.  

The brown sector is the sole engine of growth, whose rate is determined by the augmen

uctivity of the brown capital and the social discount factor  

an be seen from formulas (13), the optimal growth rate of both capitals in the singular con

e is (𝐷𝐵 − 𝑟); due to the AK-model assumption, the output grows with the same rate 

bly, this optimal growth rate depends neither on the parameters of the green sector no
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ht 𝜔. In fact, in this model, the growth rate of the economy would be the same even in

nce of green capital (compare e.g. with (Acemoglu, 2009, p. 391, Eq. (12.15)). This is beca

ks to its higher productivity, it is the brown capital that solely generates growth in the mo

ed, from (15) one can see that the optimal investment in the accumulation of the green cap

= 𝑢𝐺
∗𝑌∗(𝑡) = (𝐴𝐺 + (𝐷 − 𝑟))𝐾𝐺

∗(𝑡), exceeds the entire output of the green sector, 𝑌𝐺
∗(𝑡

𝐺
∗(𝑡), while the optimal investment in accumulation of the brown capital, 𝐼𝐵

∗(𝑡) = 𝑢𝐵
∗𝑌∗(𝑡

− 𝑟)𝐾𝐵
∗(𝑡), is smaller than the output of the brown sector, 𝑌𝐵

∗(𝑡) = 𝐴𝐵𝐾𝐵
∗(𝑡). The part of

n sector’s output 𝑟𝐾𝐵
∗(𝑡), which is not used for investment in this sector, is distribu

een consumption and investment in the green sector. Such a donor-recipient relation betw

n and green production happens because there is no technological change in our model. 

 sector has a lower productivity than the brown sector over the entire time horizon, and, s

o starts from a lower capital stock, it can never overtake the brown sector. As it does

ribute to consumption, the only incentive to develop the green sector is due to its ame

e defined by weight 𝜔.  

A full replacement of brown production by green production is not possible if the product

between the brown and green capitals is greater than the social discount rate   

fraction of the green capital in the total capital stock becomes 

𝐺(𝑡)

+𝐾𝐺(𝑡)
=

𝑟

𝐷

𝜔

1+𝜔
.          (24

ake three observations. First, obviously, if the representative agent places zero weight on

ity of green production (i.e., if 𝜔 = 0), the optimal fraction of the green capital in the t

al stock is zero, which means that due to 𝐴𝐵 > 𝐴𝐺 , it is optimal to develop the brown se

. 
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Second, higher values of 𝜔 promote green production, however, even under an infini

 𝜔, the optimal fraction of the green capital in the total capital stock only reaches as hig

1 (see Assumption (A2)). This is because in this model, the brown sector is needed for gro

to its higher productivity and even a very high amenity of green production alone is not 

ad to a full transition from brown to green production.  

This critical role of the brown sector for growth can be seen from the following reason

linear production function implies that the time gradients of the brown and green capital sto

roportional to the total output. The maximization of the discounted weighted sum of

ithmic utility of consumption and the logarithmic amenity value of green productio

valent to the maximization of the discounted weighted sum of the logarithm of 

umption rate, the output growth rate, and the growth rate of the green capital. If the weigh

menity value of green production were zero, the optimal output growth rate would be (𝐷

ue to the productivity gap between brown and green production, the optimal output gro

in the model with a positive amenity weight cannot be higher than (𝐷𝐵 − 𝑟). For exampl

 the entire time horizon, the investment into the brown sector were zero and eve

umption were zero too, the green production would grow with rate 𝐷𝐺 , which, accordin

assumptions, is lower than (𝐷𝐵 − 𝑟). Despite the positive amenity weight shifts 

tribution of the available resources to allow for the green sector to grow, the output rate (𝐷

 still attainable and hence is optimal in this case too.  

Third, the share of the green capital in the total capital stock is negatively related to

rence between the augmented productivities of the brown and green sectors 𝐷. Hence,

ive role of the brown capital is lower for a higher augmented productivity of the green cap

as 𝐷 = 𝐷𝐵 − 𝐷𝐺) and/or a higher discount rate 𝑟. While the latter would lead to lower gro
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 the former would not affect the growth rate. In the limit case, when the difference betw

ugmented productivities of the brown and green sectors 𝐷 tends to the discount factor 𝑟, 

= 𝜔. Thus, only in this limit case, a full transition to green production is possible, w

ires an infinitely high weight 𝜔.  

A higher social discount leads to a higher contribution of the green capital stock to the t

tal stock in the economy  

rge body of literature within the environmental economics discusses the role of the so

unt rate (SDR) pointing out that lower SDRs are likely to be more favorable to 

ronmental policies. For example, in the DICE model, lower SDRs lead to higher social c

rbon (Nordhaus, 2017) and more stringent abatement policies (Nordhaus, 2008, Chapte

lar results were derived in a number of other models ((Horowitz, 1996; Huang and Cai, 19

me just a few). This positive effect of the lower SDRs on the environmental quality is tha

e fact that in these models, due to the cumulative effects, the current decisions on mitiga

late into economic damages from the environmental degradation in the future. Higher SD

unt these future damages more strongly and this disincentivizes current mitigation.  

Our model does not include this mechanism. Rather, higher SDRs discount more stron

 the future utility of consumption and the amenity of the green production, equally. Du

fact, we observe that a higher 𝑟 implies a higher share of the green capital in the total cap

 (see formula (24), subsection 4.2) and thus higher SDRs are favorable for the transition 

er technology. At the same time, higher SDRs lower economic growth rate (𝐷𝐵 − 𝑟) as t

to lower investment rates 𝑢𝐵
∗  in the brown sector (see (12)) and higher consumption rates 

ection 4.4). Hence, since it is the brown capital that is the driver of growth in the modeJo
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er discount factor means less growth and a smaller share of the brown capital in the t

al stock.  

Optimal consumption rate is lowered by a higher amenity of green production and a lo

l discount rate  

g (12), we obtain  

) = 1 − 𝑢𝐺
∗ (𝑡) − 𝑢𝐵

∗ (𝑡) =
𝐷𝑟

𝜔(𝐴𝐺𝑟+𝐴𝐵(𝐷−𝑟))+𝐴𝐵𝐷
.  

, in our model, a higher weight 𝜔 leads to a lower optimal consumption rate. Altho

asing consumption and, hence, decreasing investment in capital accumulation can l

omic growth thus reducing industrial pollution, in our model, as well as in some ot

ha-e-Sa et al., 2010; Gradus and Smulders, 1993; Rauscher, 2009), where a cle

uction is an available option, it is optimal to decrease consumption and use the released fu

ance the transition to a cleaner production.   

However, only a part of the burden associated with the development of the green se

 on consumption. From formulas (11), (12), we can see that the optimal investment rate 

rown sector 𝑢𝐵
∗  is lower for higher values of 𝜔 and the optimal investment rate into the gr

r 𝑢𝐺
∗  is higher. In other words, a greater preference of the representative agent towards gr

uction drives the share of the brown capital down and the share of the green capital up 

e the green sector development happens also at the expense of less investment into bro

r while keeping the same growth rate. 

Furthermore, due to assumption (A1), higher social discount rates 𝑟 increase the opti

umption rate, which is a rather standard outcome for such type of models (Cunha-e-Sa etJo
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; Rauscher, 2009). At the same time, the difference between the consumption rate at 𝜔

t a given positive weight 𝜔 becomes 

) − 𝑐(𝑡|𝜔) =
𝜔𝑟

𝐴𝐵

𝐴𝐺𝑟+𝐴𝐵(𝐷−𝑟)

𝜔(𝐴𝐺𝑟+𝐴𝐵(𝐷−𝑟))+𝐴𝐵𝐷
 . 

 one can see that a higher discount rate leads to higher consumption losses and in case o

ing to infinity, the loss in the consumption rate tends to 
𝑟

𝐴𝐵
. 

iscussion  

 paper contributes to the literature, which analyzes the relation between the long-t

omic growth and the environmental quality seeking to find solutions, which reduce the tra

and take advantage of synergies. We presented and analyzed a stylized two-sector gro

el that includes the brown and green sectors. The production function is linear, and the t

uction output is a sum of the outputs of the two sectors. The representative agent, who 

al-owning eco-minded entrepreneur, maximizes the weighted sum of the present value of

y of consumption and an amenity value of green production.  

From the mathematical point of view, this problem is interesting because the logarith

 of the utility components and the linearity of the production function allows for derivin

dimensional optimal control analytically. This turns to be possible despite the constraint

dmissible values of the two controls are interrelated, the set of admissible values in ℝ2 is

d and instantaneous utility function is locally unbounded. Consequently, we were abl

e and analyze the optimal trajectories in the model – contrary to similar models in

omic literature, which usually at their most allow for the explicit derivation of a steady st

hich the optimal path converges in the long run. For instance, a similar-to-ours, two-se

model from (Boucekkine et al., 2013a), which we mentioned in the Introduction, requir
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ial form of the first-order conditions (Boucekkine et al., 2013b) to derive the optimal solu

g with the optimal switching time; and, consequently, it is not possible to obtain an analy

ion in that model. With the optimal trajectories being available analytically, our mo

ides input to the discussion of the transition to a cleaner production over time.  

The analysis of the model presented here is done with the full mathematical rigor, nam

arefully address the problem of existence of an optimal solution and verify the validity 

enient form of the transversality conditions. For these purposes, we used an existence theo

a version of the Pontryagin Maximum Principle that are formulated for optimal con

lems over infinite time horizons with locally unbounded instantaneous utility functions. Un

 conditions, which hold true for our problem, this version of the PMP provides a se

ssary conditions for optimality. These conditions include a stationarity condition, from w

erived a transversality condition.  

We considered our two-sector growth model under assumptions (A1)-(A3), which seem

ausible. (A1) assumes that the brown capital is more productive than the green capital, w

standard assumption in models analyzing a transition to a cleaner technology (Acemogl

012, 2016; Boucekkine et al., 2013a). (A2) is a stronger version of (A1) as it assumes that

uctivity of the brown sector exceeds the productivity of the green sector at least by the disco

r plus the difference of the depreciation rates of the brown and green capitals. While it is v

cult to obtain reliable empirical estimates of productivities 𝐴𝐵 and 𝐴𝐺  and thus vali

mption (A2), we find this case of a significantly lower productivity of the green capital t

 interesting and relevant for the challenge of the sustainability transition. A hig

uctivity of the green capital would facilitate this transition; thus, one can expect that if

 higher than 𝐴𝐵, the representative agent would prefer to invest in the green cap
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mulation only. However, a rigorous analysis of cases 𝐴𝐵 ≤ 𝐴𝐺  and especially 𝐴𝐺 < 𝐴

𝑟 + 𝛿𝐵 − 𝛿𝐺 would require a significant effort and space for presentation. Hence,

one it to future studies. Finally, (A3) assumes that the productivity of the green secto

er than the discount factor. A sufficiently high productivity is necessary to ensure posi

th; for example, in one-sector AK model, the productivity of capital is considered to be hig

 the discount factor plus the depreciation rate (see (Acemoglu, 2009; p. 390, Eq. (12.12

h is an even stronger assumption than ours.  

From the economic point of view, our model yields a few interesting insights. Recall 

nly reason to develop the green sector in our model is its amenity value for the representa

t. The main result of this paper is that in this model, a full substitution of brown produc

reen production is not possible; rather, in an optimal solution, they co-exist and ev

ortionally. The representative agent has to sacrifice his/her consumption to invest in gr

uction, especially in the initial period. Three parameters are positively related to the rati

reen capital stock: the social discount rate, the (augmented) productivity of the green cap

a representative agent’s preference towards the green production amenity. However, hig

l discount rates lead to lower economic growth rates, while the green capital producti

r assumption (A1) as well as the preference towards the green production amenity do

t growth.   
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pendix A. Analysis of necessary conditions for optimality 

Checking conditions and applicability of Theorem 3 from (Besov, 2014)  

te the right-hand side of (7b), (7c) by 𝑓(𝐾, 𝑢) = (𝑓𝐺(𝐾, 𝑢), 𝑓𝐵(𝐾, 𝑢))
𝑇
 and the discoun

tion in the integrand in (7a) by 𝑔(𝐾, 𝑢). We check conditions (A1)-(A3), (A5), (A6), (Ag

rem 3 in (Besov, 2014) as follows. 

ition (A1): 

following inequalities hold for any 𝐾 > 0 and 𝑢 ∈ 𝒰: 

(𝐾, 𝑢)⟩ = 𝐾𝐺𝑢𝐺(𝐴𝐺𝐾𝐺 + 𝐴𝐵𝐾𝐵) − 𝛿𝐺𝐾𝐺
2 + 𝐾𝐵𝑢𝐵(𝐴𝐺𝐾𝐺 + 𝐴𝐵𝐾𝐵) − 𝛿𝐵𝐾𝐵

2 ≤ (𝐴𝐺 −

𝐺
2 + (𝐴𝐵 − 𝛿𝐵)𝐾𝐵

2 + (𝐴𝐺 + 𝐴𝐵)𝐾𝐺𝐾𝐵 ≤ (𝐴𝐺 − 𝛿𝐺)𝐾𝐺
2 + (𝐴𝐵 − 𝛿𝐵)𝐾𝐵

2 + (𝐴𝐺 + 𝐴𝐵)(𝐾𝐺

2 ≤ 𝐶‖𝐾‖2,   

e 𝐶 = max{(𝐴𝐺 − 𝛿𝐺 + (𝐴𝐺 + 𝐴𝐵)/2), 𝐴𝐵 − 𝛿𝐵 + (𝐴𝐺 + 𝐴𝐵)/2)}. 

ition (A2): 

(𝐾) = {(𝑥, 𝑥0) ∈ 𝑅3: 𝑥0 ≤ 𝑔(𝐾, 𝑢), 𝑥 = 𝑓(𝐾, 𝑢), 𝑢 ∈ 𝒰} is convex for any 𝐾 > 0 thank

inearity of 𝑓(𝐾,⋅) in 𝑢, the convexity of 𝒰, and the concavity of 𝑔(𝐾,⋅) in 𝑢 for any 𝐾 >
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bvious that for any admissible control 𝑢(⋅): 𝑢(𝑡) ∈ 𝒰, 𝑡 ≥ 0, trajectories 𝐾𝐺(⋅) and 𝐾𝐵(⋅)

ded, i.e., there exist some positive 𝐶1 > 0 and 𝐶2 > 0, such that 𝐾𝐺(𝑡) ≤ 𝐶1𝑒
𝐶2𝑡 and 𝐾𝐵(𝑡

2𝑡 for all 𝑡 ≥ 0. Then 

(𝑡), 𝑢(𝑡)) = ln[(1 − 𝑢𝐺(𝑡) − 𝑢𝐵(𝑡))(𝐴𝐺𝐾𝐺(𝑡) + 𝐴𝐵𝐾𝐵(𝑡))] + 𝜔 ln(𝐴𝐺𝐾𝐺(𝑡)) ≤

𝐴𝐵𝐶1𝑒
𝐶2𝑡] + 𝜔 ln(𝐴𝐺𝐶1𝑒

𝐶2𝑡) = 𝐶3 + 𝐶2̅𝑡,      (A1

e 𝐶3 =  ln[2𝐴𝐵𝐶1] + 𝜔 ln(𝐴𝐺𝐶1) 𝐶2̅ = 𝐶2(1 + 𝜔). Then  

−𝑟𝑡𝑔(𝐾(𝑡), 𝑢(𝑡))𝑑𝑡 ≤ ∫ 𝑒−𝑟𝑡[𝐶3 + 𝐶2̅𝑡]𝑑𝑡
∞

𝑇
=

𝑒−𝑟𝑇[𝐶3𝑟+�̅�2𝑇𝑟+�̅�2]

𝑟2
= ℎ(𝑇),   

e ℎ(𝑇) > 0, ℎ(𝑇) → +0, while 𝑇 → +∞. 

ition (A5): 

eed to prove that for any 𝐾 > 0, there exists 𝑢 ∈ 𝒰 such that 𝑓(𝐾, 𝑢) > 0. Note that b

ponents of 𝑓(𝐾, 𝑢) are linear and strictly increasing in 𝑢𝐺  and 𝑢𝐵. Also, 𝑓(𝐾, �̅�) = 0 for 

𝛿𝐺𝐾𝐺

𝐴𝐺𝐾𝐺+𝐴𝐵𝐾𝐵
 and �̅�𝐵 =

𝛿𝐵𝐾𝐵

𝐴𝐺𝐾𝐺+𝐴𝐵𝐾𝐵
. 

, as 𝛿𝐺 < 𝐴𝐺 and 𝛿𝐵 < 𝐴𝐵, it holds that �̅�𝐺 + �̅�𝐵 < 1.  

ider controls 𝑢𝐺 = �̅�𝐺 + 𝜀 and 𝑢𝐵 = �̅�𝐵 + 𝜀 with such (sufficiently small) 𝜀 > 0 that th

rols are admissible. Then 𝑓(𝐾, 𝑢) > 0 for these controls. 

ition (A6): 

following inequalities hold for any 𝐾 > 0 and 𝑢 ∈ 𝒰: 

,𝑢)
=

𝐴𝐺

𝐴𝐺𝐾𝐺+𝐴𝐵𝐾𝐵
+

𝜔

𝐾𝐺
> 0 and 

𝜕𝑔(𝐾,𝑢)

𝜕𝐾𝐵
=

𝐴𝐵

𝐴𝐺𝐾𝐺+𝐴𝐵𝐾𝐵
> 0,  

,𝑢)

𝐵
= 𝐴𝐵𝑢𝐺 ≥ 0 and 

𝜕𝑓𝐵(𝐾,𝑢)

𝜕𝐾𝐺
= 𝐴𝐺𝑢𝐵 ≥ 0.  
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ition (Ag): 

, it is obvious that 𝑔(𝐾, 𝑢) → −∞ as (𝑢𝐺 + 𝑢𝐵) → 1 − 0. Let us put 𝑎(𝐾) = ‖
𝜕𝑔(𝐾,

𝜕𝐾

,𝑢)
 does not depend on 𝑢 – see the proof of condition (A6) above. Then  

𝐾,𝑢)

𝐾
‖ ≤  𝑎(𝐾)(|𝑔(𝐾, 𝑢)| + 1), for all 𝐾 > 0 and 𝑢 ∈ 𝒰. 

, all the conditions of Theorem 3 from (Besov, 2014) hold true for problem (7) and henc

ments can be used to solve this problem. In particular, we can put 𝜆0 = 1 and consider o

ive-valued adjoint variables 𝜆𝐺(⋅) > 0  and 𝜆𝐵(⋅) > 0. 

Finding a maximizer of the Hamiltonian 

, let us rewrite the Hamiltonian (8) as follows  

, 𝜆, 𝑢) = ℎ(𝑢) + ln𝑌 + 𝜔 ln(𝐴𝐺𝐾𝐺) − 𝜆𝐺𝛿𝐺𝐾𝐺 − 𝜆𝐵𝛿𝐵𝐾𝐵, 

e 

= ln(1 − 𝑢𝐺 − 𝑢𝐵) + (𝜆𝐺𝑢𝐺 + 𝜆𝐵𝑢𝐵)𝑌 and 𝑌 = 𝐴𝐺𝐾𝐺 + 𝐴𝐵𝐾𝐵. From this representa

e Hamiltonian, it is obvious that its maximizer 𝑢∗ = (𝑢𝐺
∗ , 𝑢𝐵

∗ ) with respect to 𝑢 ∈ 𝒰 coinc

 the maximizer of function ℎ(𝑢). Depending on the relation between (positive) 𝜆𝐺 and

 may be three different cases.  

 1: 𝜆𝐺 > 𝜆𝐵 > 0. Introducing a new variable 𝑣 = 𝑢𝐺 + 𝑢𝐵, we rewrite function ℎ(𝑢) as a 

o functions: ℎ(𝑢) = ℎ1(𝑣) + ℎ2(𝑢𝐵), where ℎ1(𝑣) = ln(1 − 𝑣) + 𝜆𝐺𝑌𝑣, 𝑣 ∈ [0,1) 

𝐵) = −(𝜆𝐺 − 𝜆𝐵)𝑌𝑢𝐵 ,  𝑢𝐵 ∈ [0,1). Maximizers 𝑣∗ and 𝑢𝐵
∗  of functions ℎ1(𝑣) and ℎ2(𝑢𝐵)

max {0,1 −
1

𝜆𝐺𝑌
} and 𝑢𝐵

∗ = 0 correspondingly. Returning to the original variables, we h

max {0,1 −
1

𝜆𝐺𝑌
}. 
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 2: 𝜆𝐵 > 𝜆𝐺 > 0. Similarly to case 1, using representation ℎ(𝑢) = ℎ3(𝑣) + ℎ4(𝑢𝐺), wh

) = ln(1 − 𝑣) + 𝜆𝐵𝑌𝑣, 𝑣 ∈ [0,1), and ℎ4(𝑢𝐺) = −(𝜆𝐵 − 𝜆𝐺)𝑌𝑢𝐺 ,  𝑢𝐺 ∈ [0,1), we get 

max {0,1 −
1

𝜆𝐵𝑌
}  and 𝑢𝐺

∗ = 0.  

 3: 𝜆𝐺 = 𝜆𝐵 = 𝜇 > 0. In this case, ℎ(𝑢) = ln(1 − 𝑣) + 𝜇𝑌𝑣, 𝑣 ∈ [0,1), from which

in that 𝑣∗ = max {0,1 −
1

𝜇𝑌
} and, in the original variables, any vector 𝑢∗ = (𝑢𝐺

∗ , 𝑢𝐵
∗ ) ∈ 𝒰 s

𝑢𝐺
∗ + 𝑢𝐵

∗ = 𝑣∗ = max {0,1 −
1

𝜇𝑌
} maximizes ℎ(𝑢). 

Deriving transversality conditions 

ing time 𝑡 to infinity in the stationarity condition 

𝐻(𝐾(𝑡), 𝜆(𝑡), 𝑢∗(𝐾(𝑡), 𝜆(𝑡))) = 𝑟 ∫ 𝑒−𝑟𝑠 (ln [(1 − 𝑢𝐺
∗ (𝐾(𝑠), 𝜆(𝑠)) −

∞

𝑡

(𝑠), 𝜆(𝑠)))𝑌(𝑠)] + 𝜔 ln(𝐴𝐺𝐾𝐺(𝑠))) 𝑑𝑠,  

ight-hand side vanishes, and we obtain the following equality: 

𝑒−𝑟𝑡𝐻(𝐾(𝑡), 𝜆(𝑡), 𝑢∗(𝐾(𝑡), 𝜆(𝑡))) = 0.       (A3

to formula (9), we have the four following cases for 𝑢∗(𝐾(𝑡), 𝜆(𝑡)), 𝑡 ≥ 0: 

. 𝑢𝐺
∗ (𝑡) = 𝑢𝐵

∗ (𝑡) = 0, 

. 𝑢𝐺
∗ (𝑡) = 1 −

1

𝜆𝐺(𝑡)𝑌(𝑡)
, 𝑢𝐵

∗ (𝑡) = 0, 

. 𝑢𝐺
∗ (𝑡) = 0, 𝑢𝐵

∗ (𝑡) = 1 −
1

𝜆𝐵(𝑡)𝑌(𝑡)
, 

. 𝑢𝐺
∗ (𝑡) = 𝑢𝐵

∗ (𝑡) = 1 −
1

𝜇(𝑡)𝑌(𝑡)
. 

tituting each of these cases into formulas (8) and (A3-1) and taking into consideration estim

1), we obtain that in all these four cases conditions (10c) must be satisfied for the form

1) to hold true. 
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 and below we omit to indicate the dependence of state, adjoint variables and control on 

e formulas more succinct and transparent. All the formulas with omitted 𝑡 in this section

for all 𝑡 ≥ 0. 

Let us consider the third case in formula (9), that is, assume that 𝜆𝐺 = 𝜆𝐵 = 𝜇 > 0 

𝑢𝐵
∗ = max {0,1 −

1

𝜇𝑌
}. By differentiating the former equality over time, we obtain �̇�𝐺 =

fter applying formulas (10),  

𝛿𝐺)𝜆𝐺 −
𝐴𝐺

𝑌
− (𝜆𝐺𝑢𝐺 + 𝜆𝐵𝑢𝐵)𝐴𝐺 −

𝜔

𝐾𝐺
= (𝑟 + 𝛿𝐵)𝜆𝐵 −

𝐴𝐵

𝑌
− (𝜆𝐺𝑢𝐺 + 𝜆𝐵𝑢𝐵)𝐴𝐵. (B-

s assume that 𝑢𝐺
∗ + 𝑢𝐵

∗ = 1 −
1

𝜇𝑌
> 0. Substituting this relation into (B-1), using that 𝜆

𝜇 and simplifying, we rewrite (B-1) as follows:  

=
𝜔

𝐷
.            (B-

ifferentiating equation (B-2) over time, we obtain 

+ 𝜇�̇�𝐺 = 0,      

y using differential equations (7b) and (10a), 

𝛿𝐺)𝜇 − 𝜇𝐴𝐺 −
𝜔

𝐾𝐺
)𝐾𝐺 + 𝜇(𝑢𝐺

∗𝑌 − 𝛿𝐺𝐾𝐺) = 0.     

, resolving for 𝑢𝐺
∗ , we get  

(𝐴𝐺−𝑟+𝐷)𝐾𝐺

𝑌
          (B-

1 −
1

𝜇𝑌
− 𝑢𝐺

∗ =
𝐴𝐵𝜇𝐾𝐵+𝑟𝜇𝐾𝐺−𝜔−1

𝜇𝑌
.       (B-

, we can write a differential equation for the adjoint variable 𝜇 using equation (10b): 

(𝑟 + 𝛿𝐵)𝜇 −
𝐴𝐵

𝑌
− 𝜇 (1 −

1

𝜇𝑌
)𝐴𝐵 = −(𝐷𝐵 − 𝑟)𝜇.    
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solut

𝜇(𝑡) 5) 

From

𝐾𝐺(𝑡 6) 

Let u

�̇�𝐵 = 7) 

Subs alue 

prob

𝐾𝐵(𝑡

As 
𝐾

𝐾

𝐾𝐵(𝑡 8) 

Henc

𝐾𝐺(𝑡)

𝐾𝐵(𝑡)
9) 

Let u and 

(B-9

𝑢𝐺
∗ =

𝑢𝐵
∗ =

Note hich 

mean

Journal Pre-proof
 the initial condition 𝜇(0) =
𝜔

𝐷𝐾𝐺(0)
=

𝜔

𝐷𝐾𝐺0
, which we obtain from (B-2) at 𝑡 = 0, we get

ion to the Cauchy problem as follows  

=
𝜔

𝐷𝐾𝐺0
𝑒−(𝐷𝐵−𝑟)𝑡 = 𝜆𝐺(𝑡) = 𝜆𝐵(𝑡),   𝑡 ≥ 0.      (B-

 condition (B-2) further we obtain 

) = 𝐾𝐺0𝑒
(𝐷𝐵−𝑟)𝑡,   𝑡 ≥ 0.        (B-

s substitute relations (B-2) and (B-4) into differential equation (7c): 

𝑢𝐵
∗𝑌 − 𝛿𝐵𝐾𝐵 = 𝐷𝐵𝐾𝐵 − (

𝐷

𝜔
+ 𝐷 − 𝑟)𝐾𝐺 .      (B-

tituting (B-6) in (B-7) with the initial condition 𝐾𝐵(0) = 𝐾𝐵0, we solve the linear initial v

lem and obtain  

) = (−𝐾𝐺0 (
𝐷

𝜔𝑟
+
𝐷−𝑟

𝑟
) (1 − 𝑒−𝑟𝑡) + 𝐾𝐵0) 𝑒

𝐷𝐵𝑡,   𝑡 ≥ 0. 

𝐺0

𝐵0
= 𝑞, we get 

) = 𝐾𝐵0𝑒
(𝐷𝐵−𝑟)𝑡,   𝑡 ≥ 0.        (B-

e,  

= 𝑞, 𝑡 ≥ 0.          (B-

s derive the formulas for 𝑢𝐺
∗  and 𝑢𝐵

∗  by substituting relations (B-2), (B-5), (B-6), (B-8) 

) into relations (B-3) and (B-4): 

𝑞(𝐴𝐺−𝑟+𝐷)

𝑞𝐴𝐺+𝐴𝐵
,   

𝐴𝐵−𝑟

𝑞𝐴𝐺+𝐴𝐵
.  

 that assumptions (A1)-(A3) ensure that 𝑞 > 0, 𝑢𝐺
∗ > 0, 𝑢𝐵

∗ > 0, as well as that 𝐷𝐵 > 𝑟, w

s that capitals (B-6), (B-8) grow at the same rate and adjoint variables (B-5) decay.  Jo
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Thus, we proved that controls (12) and corresponding trajectories (13) with adjoint varia

) satisfy the conditions of the Pontryagin Maximum Principle.  

To prove their optimality, we check the conditions of Theorems 3 and 10 from (Seier

ydsaeter, 1977), which supply the sufficient conditions for optimality. Let �̅� = max(𝜆𝐺 ,

onsider  

, 𝜆) = max
𝑢∈𝒰

𝐻(𝐾, 𝜆, 𝑢) =

𝐴𝐺𝐾𝐺 + 𝐴𝐵𝐾𝐵) + 𝜔 ln(𝐴𝐺𝐾𝐺) − 𝜆𝐺𝛿𝐺𝐾𝐺 − 𝜆𝐵𝛿𝐵𝐾𝐵,     if 𝜆𝐺 ≤ 0 and 𝜆𝐵 ≤ 0,

ln �̅� + 𝜔 ln 𝐴𝐺𝐾𝐺 + �̅�((𝐴𝐺 − 𝛿𝐺)𝐾𝐺 + (𝐴𝐵 − 𝛿𝐵)𝐾𝐵)  − 1,            otherwise.
  

iously, function 𝐻∗(⋅, 𝜆) is concave in 𝐾 for any 𝜆 ∈ ℝ2.  

Let us now prove that lim
𝑡→∞

⟨𝑒−𝑟𝑡𝜆(𝑡), 𝐾(𝑡) − 𝐾∗(𝑡)⟩ ≥ 0 for any admissible 𝐾(⋅) and adj

ble (B-5). The following equalities are true: 

𝜇(𝑡)𝐾𝐺
∗(𝑡) = 𝑒−𝑟𝑡

𝜔

𝐷𝐾𝐺0
𝑒−(𝐷𝐵−𝑟)𝑡𝐾𝐺0𝑒

(𝐷𝐵−𝑟)𝑡 =
𝜔

𝐷
𝑒−𝑟𝑡  

𝜇(𝑡)𝐾𝐵
∗(𝑡) = 𝑒−𝑟𝑡

𝜔

𝐷𝐾𝐺0
𝑒−(𝐷𝐵−𝑟)𝑡𝐾𝐵0𝑒

(𝐷𝐵−𝑟)𝑡 =
𝜔

𝑞𝐷
𝑒−𝑟𝑡.     

efore, transversality condition (10c) holds, and lim
𝑡→∞

⟨𝑒−𝑟𝑡𝜆(𝑡), 𝐾∗(𝑡)⟩ = 0. T

𝑒−𝑟𝑡𝜆(𝑡), 𝐾(𝑡) − 𝐾∗(𝑡)⟩ = lim
𝑡→∞

⟨𝑒−𝑟𝑡𝜆(𝑡), 𝐾(𝑡)⟩ ≥ 0 thanks to the positivity of 𝜆(𝑡) 

, 𝑡 ≥ 0. Hence, solution (12), (13), (B-5) is optimal in problem (7). 
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prese

C.1. 

Lem

Proo

The 

�̇̅�𝐺 =

�̇̅�𝐺 =
-1)  

9b). 

Also

�̇� =

�̇� =
-2) 

Let u  and 

cons

𝑑𝑠

𝑑𝑧
= -3) 

over

Journal Pre-proof
endix C. Proof of Theorem 2  

ections C.1 and C.2 present auxiliary lemmas useful to prove Theorem 2. Subsection 

nts the proof of Theorem 2. 

Proof of Lemma 1 

ma 1. (�̅�𝐺(⋅), �̅�𝐵(⋅), �̅�𝐺(⋅), �̅�𝐵(⋅)) and 𝜏 > 0 as a solution to (19) exists.  

f. 

BVP (19) can be reduced to  

𝐷𝐺�̅�𝐺 + 𝐴𝐵�̅�𝐵 −
1

𝜆𝐺
, �̅�𝐺(0) = 𝐾𝐺0, �̅�𝐺(𝜏) = 𝑞𝐾𝐵0𝑒

−𝛿𝐵𝜏,

−(𝐷𝐺 − 𝑟)�̅�𝐺 −
𝜔

�̅�𝐺
, �̅�𝐺(𝜏) =

𝜔

𝑞𝐷𝐾𝐵0𝑒
−𝛿𝐵𝜏

.
    (C1

Let us introduce 𝑧 =
�̅�𝐺

�̅�𝐵
 and 𝑠 = �̅�𝐺�̅�𝐵, where �̅�𝐵(𝑡) = 𝐾𝐵0𝑒

−𝛿𝐵𝑡 is the solution of (1

, let 𝑧0 =
𝐾𝐺0

𝐾𝐵0
. Then (C1-1) is equivalent to the following: 

(𝐷𝐺 + 𝛿𝐵)𝑧 + 𝐴𝐵 −
1

𝑠
, 𝑧(0) = 𝑧0, 𝑧(𝜏) = 𝑞,

−(𝐷𝐺 + 𝛿𝐵 − 𝑟)𝑠 −
𝜔

𝑧
,                       𝑠(𝜏) =

𝜔

𝑞𝐷
.
      (C1

s get rid of the time dimension by dividing the second equation in (C1-2) by the first one

ider the following initial value problem (IVP): 

−(𝐷𝐺+𝛿𝐵−𝑟)𝑠−
𝜔

𝑧

(𝐷𝐺+𝛿𝐵)𝑧+𝐴𝐵−
1

𝑠

, 𝑠(𝑞) =
𝜔

𝑞𝐷
.        (C1
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Let us first prove the existence of a solution to (C1-3) over 𝑧 ∈ [𝑧0, 𝑞]. Consider a com

= {(𝑧, 𝑠): 𝑧 ∈ [𝑧0, 𝑞], 𝑠 ∈ [
𝜔

𝑞𝐷
, 𝑆̅]} where 𝑆̅ >

𝜔

𝑞𝐷
 is some fixed number. Due to the positi

e denominator in Ω, the right-hand side (RHS) of equation (C1-3) and its derivative w

ble 𝑠 are continuous in Ω. Then RHS of (C1-3) is Lipschitz continuous in Ω and hence t

s a unique solution to (C1-3) defined in some neighborhood of 𝑧 = 𝑞. 

We have the following estimates of the RHS of (C1-3) in Ω: 

) =
−(𝐷𝐺+𝛿𝐵−𝑟)𝑠−

𝜔

𝑧0

(𝐷𝐺+𝛿𝐵)𝑞+𝐴𝐵
≤

−(𝐷𝐺+𝛿𝐵−𝑟)𝑠−
𝜔

𝑧

(𝐷𝐺+𝛿𝐵)𝑧+𝐴𝐵−
1

𝑠

≤
−(𝐷𝐺+𝛿𝐵−𝑟)𝑠−

𝜔

𝑞

(𝐷𝐺+𝛿𝐵)𝑧0+𝐴𝐵−
𝑞𝐷

𝜔

= 𝑓+(𝑠).  

s calculate the lower and upper solutions 𝑠−(⋅), 𝑠+(⋅) of the IVPs with 𝑓−(𝑠) and 𝑓+(𝑠

s, and the initial condition from (C1-3): 

) = {
−

𝜔

𝑧0(𝐷𝐺+𝛿𝐵−𝑟)
+ [

𝜔

𝑞𝐷
+

𝜔

𝑧0(𝐷𝐺+𝛿𝐵−𝑟)
] exp (−

𝐷𝐺+𝛿𝐵−𝑟

(𝐷𝐺+𝛿𝐵)𝑞+𝐴𝐵
(𝑧 − 𝑞)) , if 𝐷𝐺 + 𝛿𝐵 − 𝑟 ≠

−
𝜔

𝑧0((𝐷𝐺+𝛿𝐵)𝑞+𝐴𝐵)
(𝑧 − 𝑞) +

𝜔

𝑞𝐷
,                                                               if 𝐷𝐺 + 𝛿𝐵 − 𝑟

) =

𝜔

𝑞(𝐷𝐺+𝛿𝐵−𝑟)
+ [

𝜔

𝑞𝐷
+

𝜔

𝑞(𝐷𝐺+𝛿𝐵−𝑟)
] exp(−

𝐷𝐺+𝛿𝐵−𝑟

(𝐷𝐺+𝛿𝐵)𝑧0+𝐴𝐵−
𝑞𝐷

𝜔

(𝑧 − 𝑞)) , if 𝐷𝐺 + 𝛿𝐵 − 𝑟 ≠ 0,

𝜔

((𝐷𝐺+𝛿𝐵)𝑧0+𝐴𝐵−
𝑞𝐷

𝜔
)
(𝑧 − 𝑞) +

𝜔

𝑞𝐷
,                                                               if 𝐷𝐺 + 𝛿𝐵 − 𝑟 = 0.

  

asy to prove that in all three cases – 𝐷𝐺 + 𝛿𝐵 − 𝑟 > 0, 𝐷𝐺 + 𝛿𝐵 − 𝑟 < 0, and 𝐷𝐺 + 𝛿𝐵 −

unctions 𝑠−(⋅) and 𝑠+(⋅) are decreasing. It means that 𝑠−(𝑧) >
𝜔

𝑞𝐷
 and 𝑠+(𝑧) >

𝜔

𝑞𝐷
 for all

). Then by applying the Chaplygin Existence Theorem (Szarski, 1965, Prop. 31.1) 
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ins the existence and uniqueness of a solution to (C1-3) for 𝑧 ∈ [𝑧0, 𝑞] as well as estim

) < �̅�(𝑧) < 𝑠+(𝑧) where �̅�(𝑧) is a solution to (C1-3) and 𝑧 ∈ [𝑧0, 𝑞]. 

Let 𝑠0 = �̅�(𝑧0). Then a solution to the IVP with equations from (B2) and initial condit

= 𝑧0 and 𝑠(0) = 𝑠0 exists. Then one can find such 𝜏 that 𝑧(𝜏) = 𝑞, while 𝑠(𝜏) =
𝜔

𝑞𝐷
. Su

s because of the following estimates of 𝑧(⋅):  

(𝐷𝐺 + 𝛿𝐵)𝑧 + 𝐴𝐵 −
1

𝑠
≥ (𝐷𝐺 + 𝛿𝐵)𝑧 + [𝐴𝐵 −

𝑞𝐷

𝜔
], 𝑡 ∈ [0, 𝜏],  

(𝐷𝐺 + 𝛿𝐵)𝑧 + 𝐴𝐵 −
1

𝑠
≤ (𝐷𝐺 + 𝛿𝐵)𝑧 + 𝐴𝐵, 𝑡 ∈ [0, 𝜏],  

≥ −
𝐴𝐵−𝑞𝐷/𝜔

𝐷𝐺+𝛿𝐵
+ (𝑧0 +

𝐴𝐵−𝑞𝐷/𝜔

𝐷𝐺+𝛿𝐵
) exp((𝐷𝐺 + 𝛿𝐵)𝑡), 𝑡 ∈ [0, 𝜏], 

≤ −
𝐴𝐵

𝐷𝐺+𝛿𝐵
+ (𝑧0 +

𝐴𝐵

𝐷𝐺+𝛿𝐵
) exp((𝐷𝐺 + 𝛿𝐵)𝑡), 𝑡 ∈ [0, 𝜏], 

h leads to estimate 

𝐵
ln

𝑞(𝐷𝐺+𝛿𝐵)+𝐴𝐵

𝑧0(𝐷𝐺+𝛿𝐵)+𝐴𝐵
≤ 𝜏 ≤

1

𝐷𝐺+𝛿𝐵
ln

𝑞(𝐷𝐺+𝛿𝐵)+𝐴𝐵−𝑞𝐷/𝜔

𝑧0(𝐷𝐺+𝛿𝐵)+𝐴𝐵−𝑞𝐷/𝜔
;  

o the fact that the corresponding curves (𝑧(𝑡), 𝑠(𝑡), 𝑡 ∈ [0, 𝜏]) and (�̅�(𝑧), 𝑧 ∈ [𝑧0, 𝑞]) coin

e space of variables (𝑧, 𝑠). The constructed solution will be a solution to (C1-2) and there

inally obtain a solution to (C1-1). 
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Proof of Lemma 2 

ma 2. (�̅�𝐺(⋅), �̅�𝐵(⋅), �̅�𝐺(⋅), �̅�𝐵(⋅)) and 𝜏 > 0 as a solution to (19) has the follow

erties:  

i) 1 −
1

�̅�𝐺(𝑡)�̅�(𝑡)
> 0 for all 𝑡 ∈ [0, 𝜏], and  

ii) �̅�𝐺(𝑡) > �̅�𝐵(𝑡) > 0 for all 𝑡 ∈ [0, 𝜏). 

f. 

s first introduce new variables, which will be used in the proof of Lemma 2 below. We de

�̅�𝐺

�̅�𝐵
, 𝑛 = �̅�𝐵�̅�𝐺 , ℎ = �̅�𝐺�̅�, 𝑘 = �̅�𝐺�̅�𝐺 , 𝑙 = �̅�𝐵�̅�𝐵  

erive differential equations for all new variables as follows. 

�̇̅�𝐺

�̅�𝐵
−
�̅�𝐺�̇̅�𝐵

�̅�𝐵
2 = −(𝐷𝐺 + 𝛿𝐵)𝑚 −

𝜔

𝑛
+ 𝐴𝐵𝑚

2,        (C2

�̇̅�𝐵�̅�𝐺 + �̅�𝐵�̇̅�𝐺 = (𝐷𝐺 + 𝛿𝐵 + 𝑟)𝑛 + 𝐴𝐵𝑙 − 𝐴𝐵𝑘 −
1

𝑚
,     (C2

�̇̅�𝐺�̅� + �̅�𝐺 �̇̅� = 𝑟ℎ − (𝜔 + 1)𝐴𝐺 −
𝜔𝐴𝐵

𝑧
+ 𝐴𝐵(𝛿𝐺 − 𝛿𝐵)𝑠,    (C2

�̇̅�𝐺�̅�𝐺 + �̅�𝐺 �̇̅�𝐺 = 𝑟𝑘 + 𝐴𝐵𝑠 − 𝜔 − 1,        (C2

̅̇
𝐵�̅�𝐵 + �̅�𝐵�̇̅�𝐵 = 𝑟𝑙 − 𝐴𝐵𝑠.         (C2

s prove the following 

osition 3. Let (�̅�𝐺(⋅), �̅�𝐵(⋅), �̅�𝐺(⋅), �̅�𝐵(⋅)) and 𝜏 > 0 be a solution to (19). Then the follow

ualities hold:  Jo
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𝐷
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�̅�𝐵(𝜏

∎ 

We r > 1 

whil
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≤
𝜔

𝐷
 and 𝑙(𝑡) ≥

𝜔

𝑞𝐷
  for all t ∈ [0, 𝜏]. 

f. Consider differential equations (C2-4) and (C2-5). For 𝑡 ∈ [0, 𝜏), we obtain the follow

ates for derivatives �̇� and 𝑙 ̇(here we use inequality 𝑠(𝑡) >
𝜔

𝑞𝐷
, 𝑡 ∈ [0, 𝜏), proven in the p

mma 1): 

𝑟𝑘 + 𝐴𝐵𝑠 − 𝜔 − 1 > 𝑟𝑘 + 𝐴𝐵
𝜔

𝐷
(
𝐷

𝜔𝑟
+
𝐷−𝑟

𝑟
) − 𝜔 − 1 > 𝑟 (𝑘 −

𝜔

𝐷
)    (C2

  

𝑙 − 𝐴𝐵𝑠 < 𝑟𝑙 − 𝐴𝐵
𝜔

𝑞𝐷
< 𝑟 (𝑙 −

𝜔

𝑞𝐷
).       (C2

last transitions in (C2-6) and (C2-7) are due to assumptions (A1), (A3).  

ider differential equation (C2-4) and a differential equation with the RHS equal to the

ession in (C2-6), both with the initial condition 𝑘(𝜏) = �̅�𝐺(𝜏)�̅�𝐺(𝜏) =
𝜔

𝐷
. The solution to

hy problem for the latter differential equation is obviously 𝑘(𝑡) =
𝜔

𝐷
 for all 𝑡 ∈ [0, 𝜏]. T

 the Comparison Theorem (Budincevic, 2010) and estimate (C2-6), we obtain that 𝑘(𝑡) <

0, 𝜏). 

g the same argumentation for (C2-5) and (C2-7) with the initial condition 𝑙(𝜏

)�̅�𝐵(𝜏) =
𝜔

𝑞𝐷
, we prove that 𝑙(𝑡) >

𝜔

𝑞𝐷
, 𝑡 ∈ [0, 𝜏).  

eturn to the proof of Lemma 2 and below we prove condition (i). Let us prove that ℎ(𝑡)

e 𝑡 ∈ [0, 𝜏], which will prove condition (i). We have  Jo
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ℎ(𝑡) 1 in 
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whic

) =

𝜔

𝐷
, w
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= �̅�𝐺(𝜏)�̅�(𝜏) =
𝜔

𝑞𝐷
(𝑞𝐴𝐺 + 𝐴𝐵) >

𝜔

𝑞𝐷
𝐴𝐵 > 1;  

ast inequality follows from assumptions (A1)-(A3). Then there exists an interval (𝜏̅, 𝜏] s

ℎ(𝑡) > 1 while 𝑡 ∈ (𝜏̅, 𝜏].  

We are going to prove that ℎ(𝑡) > 1 also for all 𝑡 ∈ [0, 𝜏]. Let us suppose the contr

ely, ℎ(𝜏̅) = 1. Using formula (C2-3) and assumptions (A1), (A3), we have then 

= 𝑟 − (𝜔 + 1)𝐴𝐺 −
𝜔𝐴𝐵

𝑧(�̅�)
+ 𝐴𝐵(𝛿𝐺 − 𝛿𝐵)𝑠(𝜏̅) < −

𝜔𝐴𝐵

𝑧(�̅�)
+ 𝐴𝐵(𝛿𝐺 − 𝛿𝐵)𝑠(𝜏̅).  

≥ 𝛿𝐺 , due to the positivity of 𝑧(⋅) and 𝑠(⋅) we have 

𝐴𝐵

�̅�)
+ 𝐴𝐵(𝛿𝐺 − 𝛿𝐵)𝑠(𝜏̅) < 0.  

> 𝛿𝐵 then  

𝐵

̅)
+ 𝐴𝐵(𝛿𝐺 − 𝛿𝐵)𝑠(𝜏̅) =

𝐴𝐵(𝛿𝐺−𝛿𝐵)

𝑧(�̅�)
(𝑘(𝜏̅) −

𝜔

𝛿𝐺−𝛿𝐵
) <

𝐴𝐵(𝛿𝐺−𝛿𝐵)

𝑧(�̅�)
(
𝜔

𝐷
−

𝜔

𝛿𝐺−𝛿𝐵
) < 0  

use 𝐷 > 𝛿𝐺 − 𝛿𝐵 (as 𝐴𝐵 > 𝐴𝐺  thanks to assumption (A1)). Hence, ℎ̇(𝜏̅) < 0 and there

< ℎ(𝜏̅) = 1 in a right neighborhood of 𝜏̅, which contradicts the assumption that ℎ(𝑡) >

]. Thus, we proved that ℎ(𝑡) > 1, while 𝑡 ∈ [0, 𝜏], which proves condition (i). 

Let us now proceed to the proof of condition (ii) of Lemma 2. From the Proposition 3

in 𝜆𝐵(𝑡) =
𝑙(𝑡)

�̅�𝐵(𝑡)
≥

𝜔

𝑞𝐷𝐾𝐵0
> 0, 𝑡 ∈ [0, 𝜏]. The next step is to prove that 𝑚(𝑡) > 1, 𝑡 ∈ [0

h will imply condition (ii) of Lemma 2.  

We know that 𝑚(𝜏) =
�̅�𝐺(𝜏)

�̅�𝐵(𝜏)
= 1. From formula (C2-1) and because 𝑛(𝜏) = �̅�𝐵(𝜏)�̅�𝐺(𝜏

e have  
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) = −(𝐷𝐺 + 𝛿𝐵) − 𝐷 + 𝐴𝐵 = 0.  

ifferentiating (C2-1) and substituting (C2-2), we further obtain  

−(𝐷𝐺 + 𝛿𝐵 + 2𝐴𝐵𝑚)�̇� +
𝜔

𝑛2
((𝐷𝐺 + 𝛿𝐵 + 𝑟)𝑛 + 𝐴𝐵𝑙 − 𝐴𝐵𝑘 −

1

𝑚
).  

lling that �̇�(𝜏) = 0 and 𝑚(𝜏) = 1, we have  

) =
𝜔

(
𝜔

𝐷
)
2 ((𝐷𝐺 + 𝛿𝐵 + 𝑟)

𝜔

𝐷
+ 𝐴𝐵

𝜔

𝑞𝐷
− 𝐴𝐵

𝜔

𝐷
− 1) =

𝐷(𝐴𝐵−𝑟)

𝑞
> 0. 

e, �̈�(𝜏) > 0 and then there exists such �̂� ∈ [0, 𝜏) that �̇�(𝑡) < 0, 𝑡 ∈ (�̂�, 𝜏) and thus 𝑚

ases while 𝑡 ∈ (�̂�, 𝜏) and, in turn, 𝑚(𝑡) > 1, 𝑡 ∈ (�̂�, 𝜏). 

We want to prove that 𝑚(𝑡) > 1 for all 𝑡 ∈ [0, 𝜏) and not only in the interval (�̂�, 𝜏). Le

ose the contrary, namely 𝑚(�̂�) = 1. We have  

) = −(𝐷𝐺 + 𝛿𝐵)𝑚(�̂�) −
𝜔

𝑛(�̂�)
+ 𝐴𝐵𝑚

2(�̂�) = 𝐷 −
𝜔

𝑛(�̂�)
.      (C2

s consider the differential equation (C2-2) in the interval [�̂�, 𝜏). Using the Propositio

mptions (A1)-(A3), and the fact that 𝑚(𝑡) ≥ 1, 𝑡 ∈ [�̂�, 𝜏), we obtain the following estimat

 of (C2-2) for 𝑡 ∈ [�̂�, 𝜏): 

(𝐷𝐺 + 𝛿𝐵 + 𝑟)𝑛 + 𝐴𝐵𝑙 − 𝐴𝐵𝑘 −
1

𝑚
≥ (𝐴𝐵 − 𝐷 + 𝑟)𝑛 + 𝐴𝐵

𝜔

𝐷
(
𝐷

𝜔𝑟
+
𝐷−𝑟

𝑟
) − 𝐴𝐵

𝜔

𝐷
− 1 >

− 𝐷 + 𝑟)𝑛 − (𝐴𝐵 − 𝐷 + 𝑟)
𝜔

𝐷
= (𝐴𝐵 − 𝐷 + 𝑟) (𝑛 −

𝜔

𝐷
).     (C2

ider differential equation (C2-2) and a differential equation with the RHS equal to the

ession in (C2-9), both with the initial condition 𝑛(𝜏) = �̅�𝐵(𝜏)�̅�𝐺(𝜏) =
𝜔

𝐷
. The solution to

hy problem for the latter differential equation is obviously 𝑛(𝑡) =
𝜔

𝐷
 for all 𝑡 ∈ [�̂�, 𝜏]. T
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 the Comparison Theorem (Budincevic, 2010) and estimate (C2-9), we obtain that 𝑛(𝑡) <

�̂�, 𝜏).  

Hence, 𝑛(�̂�) <
𝜔

𝐷
 and from the relation (C2-8) we obtain that �̇�(�̂�) < 0. This means 

sufficiently small right neighborhood of �̂� inequality 𝑚(𝑡) < 1 holds. This is a contradic

 the supposition that 𝑚(𝑡) > 1 while 𝑡 ∈ (�̂�, 𝜏). Hence, 𝑚(𝑡) > 1 when 𝑡 ∈ [0, 𝜏) 

ition (ii) of Lemma 2 is proved. 

Proof of Theorem 2 

mmas 1 and 2 above, it is proven that controls (16) and corresponding trajectories (17) w

int variables (18) exist and satisfy the conditions of the Pontryagin Maximum Principle

e their optimality, as in the proof of Theorem 1, we check the conditions of Theorems 3

om the paper (Seierstad and Sydsaeter, 1977) as follows. 

In Appendix B we proved that maximized Hamiltonian 𝐻∗(⋅, 𝜆) is concave in 𝐾 for 

2. Let us now prove that lim
𝑡→∞

⟨𝑒−𝑟𝑡𝜆(𝑡), 𝐾(𝑡) − 𝐾∗(𝑡)⟩ ≥ 0 for any admissible 𝐾(⋅) 

int variable (18). The following equalities are true for 𝑡 ≥ 𝜏: 

𝜆𝐺(𝑡)𝐾𝐺
∗(𝑡) = 𝑒−𝑟𝑡

𝜔

𝑞𝐷𝐾𝐵0𝑒
−𝛿𝐵𝜏

𝑒−(𝐷𝐵−𝑟)(𝑡−𝜏)𝑞𝐾𝐵0𝑒
−𝛿𝐵𝜏𝑒(𝐷𝐵−𝑟)(𝑡−𝜏) =

𝜔

𝐷
𝑒−𝑟𝑡  

𝜆𝐵(𝑡)𝐾𝐵
∗(𝑡) = 𝑒−𝑟𝑡

𝜔

𝑞𝐷𝐾𝐵0𝑒
−𝛿𝐵𝜏

𝑒−(𝐷𝐵−𝑟)(𝑡−𝜏)𝐾𝐵0𝑒
−𝛿𝐵𝜏𝑒(𝐷𝐵−𝑟)(𝑡−𝜏) =

𝜔

𝑞𝐷
𝑒−𝑟𝑡.     Jo
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efore, lim
𝑡→∞

⟨𝑒−𝑟𝑡𝜆(𝑡), 𝐾∗(𝑡)⟩ = 0. Then lim
𝑡→∞

⟨𝑒−𝑟𝑡𝜆(𝑡), 𝐾(𝑡) − 𝐾∗(𝑡)

𝑒−𝑟𝑡𝜆(𝑡), 𝐾(𝑡)⟩ ≥ 0 thanks to positivity of 𝜆(𝑡) and 𝐾(𝑡), 𝑡 ≥ 0. Hence, found solution (

is optimal for problem (7). Theorem 2 is proved. 

endix D. Proof of Proposition 1  

e proof of Lemma 1, we show that solution (𝑧(𝑡), 𝑠(𝑡), 𝑡 ∈ [0, 𝜏]) to problem (C1-2) 

ion (𝑠(𝑧), 𝑧 ∈ [𝑧0, 𝑞]) to problem (C1-3) coincide in the phase space. Then we automatic

in the estimate 𝑧0 ≤ 𝑧(𝑡) ≤ 𝑞 for all 𝑡 ∈ [0, 𝜏]. Inequality 𝑠(𝑡) ≥
𝜔

𝑞𝐷
, 𝑡 ∈ [0, 𝜏], follows f

ollowing, established in the proof of Lemma 1, estimates of the solution (𝑠(𝑧), 𝑧 ∈ [𝑧0, 𝑞]

lem (C1-3): 

) < 𝑠(𝑧) < 𝑠+(𝑧), where 𝑠−(𝑧) >
𝜔

𝑞𝐷
 and 𝑠+(𝑧) >

𝜔

𝑞𝐷
 for all 𝑧 ∈ [𝑧0, 𝑞). 
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