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ABSTRACT 

When an optimization problem depends on parameters, the 

minimum value in the problem as a function of the parameters is 

typically far from being differentiable. Certain subderivatives 

nevertheless exist and can be intepreted as generalized marginal 

values. In this paper such subderivatives are studied in an 

abstract setting that allows for infinite dimensionality of the 

decision space. By means of the notion of proximal subgradients, 

a new general formula of subdifferentiation is established which 

provides an upper bound for the marginal values in question and 

a very broad criterion for local Lipschitzconti~uityof the 

optimal value function. Augmented Lagrangians are introduced 

and shown to lead to still sharper estimates in terms of special 

multiplier vectors. This approach opens a way to taking 

higher-order optimality conditions into account in such estimates. 



AUGMENTED LAGRANGIANS AND MARGINAL VALUES 
IN PARAMETERIZED OPTIMIZATION 

INTRODUCTION 

An enormous variety of optimization problems can be posed 

in the form 

(1.1) minimize F(u,x) over all x E X  , 

where X is some linear topological space (locally convex and 
se~arated), u is a parameter vector ranging over another such 

space U, and F is an extended-real-valued function on U x X. 
For example, a nonlinear programming problem 

minimize f (x) over all x E c satisfying 

where C = X andfi:X -+ R, can be represented in terms of 

u = (ul,. . ,urn) and 

I 

f (x) if x is feasible in 
F(u,x) = 0 

+ a if x is not feasible. 

I 
GO for i = 1, .., s, 
= O  for i = s + 1, .., m, 



The abstract formulation (1.1) is illuminating because 

it applies equally well to problems and parameterizations quite 

beyond the nonlinear programming framework (1.2), and because 

it directs our attention to the fundamental difficulties in 

studying the optimal value function 

These difficulties revolve around the fact that no amount of 

smoothness assumed on the data in the problem, such as smoothness 

of the functions fi in (1.2), is enough to imply that p is 

differentiable. Even if F itself were finite everywhere and 

smooth, differentiability of p could fail. Yet this negative 

observation cannot be the end of the story, because p is an 

extremely important function in many applications. Some 

understanding, however imperfect, of its "subdifferential" 

properties is essential. 

Progress has been made in various directions over the years, 

but recently there have been redoubled efforts in terms of a 

generalized theory of differentiation founded by Clark [I]. For 

the abstract case of (1.4) specifically there are results of 

Clarke [I] and Hiriart-Urruty [2], and when F represents a 

nonlinear (possibly nonconvex) programming problem as in (1.3), 

there are more detailed analyses of Gauvin [3], Gauvin and 

Dubeall [4] , and Rockafellar [5] , [6] , 171 . Here we shall prove 

a new theorem for the abstract case and show how augmented 

Lagrangian functions can be introduced and utilized to get 

improvements. The importance of augmented Lagrangians as a 

theoretical took for such purposes has already been demonstrated 

in work in finite-dimensional nonlinear programming [ 5 ] ,  [6], 

[7]. But the fact that the same idea can be pursued more generally, 

and may even open a new route to the study of higher-order 

optimality conditions for problems that can be put in the form 

(1.1), has not previously been pointed out. 



To set the stage we make the blanket assumptions that F is 

lower semicontinuous, F(u,x) > -a everywhere, and 

for every ;E U and a E R there is a neiohborhood U of ; 
and a compact set K C X such that 

u E U,F (u,x) a + x EK . 
This is relatively painless and has the virtue of ensuring that 

p is a lower semicontinuous function on U with p(u) > -a everywhere. 

It implies further that the optimal solution multifunction 

X: U 2 X defined by 

(1.6) ~ ( u )  = arg min F(u,x) 
X E X  

is upper semicontinuous, nonempty-valued where p < a, and locally 

has values uniformly contained in a compact set. 

Clarke founded his theory of generalized differentiation 

on a concept of "subgradient" and showed that for locally 

Lipschitzian functions on Banach spaces, subgradients are dual 

to certain special directional derivatives. We extended this 

duality in [ 8 ]  to the non-Lipschitzian case through an 

appropriate definition of "subderivatives" slightly more 

complicated than the expressions considered by Clarke. These 

are the sort of derivatives needed in dealing with the optimal 

value function p, since although lower semicontinuity is no 

real problem, we cannot suppose a priori that p is locally 

Lipschitzian. Indeed, we hold the hope of developing by 

subdifferential theory useful conditions that imply p is locally 

Lipschitzian. 

Let u be a point where p (u) is finite. For each h E U, 

let N(h) denote the collection of all neighborhoods of h. The 

(~pper) subderivative of p at u is the quantity 

(1.7) 
t 

p (u;h) = sup [lim sup [in£ p(ul+th') - p(ul)]] 
U E  N(h) u' + u 

h'E U t 
p(ul) + p!u) 
t 3 - 0  



This limit may initially seem rather peculiar, not to mention 

complicated, but it emerges as fundamental in so many ways that 

the reader would do well to reflect carefully on its meaning. 

Bolstered by the mathematical evidence already compiled of the 

robustness of this definition in application to a large number 

of situations, one is tempted to suggest that these subderivatives 

are just what should be put in mind when the subject of "marginal 

values" in the parameterized problem (1.1) comes up. 

Some of the properties of subderivatives are quite 

surprising. As a function of h, pt (u;h) is lower semicontinuous 

and sublinear (convex and positively homogeneous), not identically 

+ rn. If h is such that 

(1.8) in£ [lim sup [sup p(u'+th1)l1 < , 
u~N(h) u1 -, u h l €  u t 

p is said to be directionally Lipschitzian at u with respect to 

h; Lipschitz continuity of p in a neighborhood of u corresponds 

to h = 0. It turns out that if (1.8) holds for any h at all, 

then the set 

has a nonempty interior, and for every hEint D( ) ,  (1.8) holds 

and the limits in (1.7) and (1.8) coincide. When the space U 

is finite-dimensional, this conclusion holds even without the 

prior assumption that (1.7) is satisfied by at least one h. Note 

that in these cases where (1.7) and (1.8) give the same value, 

there is a certain uniformity in the behavior of the difference quotient 
t with respect to the way h is approached, and in fact p (u;h) is 

then continuous locally in h. See [83 for the proofs of these 

assertions. 

For the dual concepts, we need to refer to the space U* of 

continuous linear functionals on U; we write (y,h) for the pairing 

of elements Y E U *  and h E b .  The subgradient set of p at u is 



and the singular s u b g r a d i e n t  set is 

(1.11) t 
aOp(u) = { y ~ ~ * J ( ~ , h ) < o ,  Vh with p (u,h) < m )  

These are closed convex sets, and the second is obviously the 

polar of the cone D(u). The basic properties of the subderivative 

function imply that either ap (u) # B and 

or ap(u) = jl and 

t -m for yED(u) , 
(1.13) P (uth) = 

+m for y ~ D ( u )  . 

The case where ap(u) consists of just a single element y 

corresponds by (1.12) to a strong form of differentiability 

of p at u with Vp (u) = y. When p is convex, as is true under 

(1.4) when F is convex, ap(u) is the usual subgradient set of 

convex analysis. Again we refer the reader elsewhere [ I ] ,  [8], 

for the details. 

The relationship between ap(u) and aOp(u) is quite simple. 

Obviously from (1.10) and (1.11), one has 

Thus the rays in 20p (u) represent the "points of ap (u) lying 

at a," except that there can be such "points" even when ap(u) 

is empty, as 2n 1 3  . In any event, a" p (u) is a sort of 

measure of the unboundedness of ap(u). When the space U is 

finite-dimensional (which is the case we will mainly be 

occupied with, although the decision space X will be allowed 

to remain either finite or infinite-dimensional) , a0 (u) consists 



of just the zero vector if and only if 3p(u) is nonempty and 

compact (see [6,Prop.3]), and this is in turn equivalent (by the 

facts cited in the preceding paragraph) to p being finite and 

Lipschitz continuous on a neighborhood of u. More generally, 

estimates of aOp(u) can provide information about directionally 

Lipschitzian behavior of p at u. 

Estimates of ap(u) and aOp(u) are both of interest, therefore, 
t in connection with bounds on the subderivatives p (u;h). Outer 

estimates and corresponding upper bounds will be the theme of 

the rest of this article. 

2. PROXIMAL SUBGRADIENTS AND A SUBDIFFERENTIATION FORMULA 

A special technique has recently been developed for 

analyzing subgradients in the finite-dimensional case. While 

an infinite-dimensional generalization of some sort may be 

possible, none has yet been worked out. This technique involves 

lower quadratic supports to a function, and when applied to the 

optimal value function p for the nonlinear programming model 

(1.3), it is intimately connected with the theory of augmented 

Lagrangians [5]. Although augmented Lagrangian functions have 

been studied for nonlinear programming problems with infinite- 

dimensional parameter vectors u (cf.[9]),we shall limit 

ourselves here, because of the technique in question, to finitely 

many parameters and a s s u m e  h e n c e f o r t h  t h a t  

A vector y is called a p r o x i m a l  s u b g r a d i e n t  of p at u 

(a point where p is finite) if for some r > 0 sufficiently 

large and some E 0, 

(2.2) 
r p(ul) 2 p(u) + (y,ul-u)- - I U ~ - U ( ~  2 when (u' - ul < E . 

(Here 1 .  j denotes the Euclidean norm). A condition that can be 

seen to be equivalent is the following: there is a function 

q of class c2 on a neighborhood of u such that q p, q(u) = p(u), 

and Vq(u) = y. Let 



(2.3) a*p(u) = Iy( y is a proximal subgradient at u) . 

Working from a result of Clarke [ I ,  p.2541 about normal cones 

to closed sets, we demonstrated in [5] that not only is 

a*p (u) C ap (u) , but more significantly, the multifunction a*p 
serves completely to determine ap and aOp as follows: for the 

sets 

k k k Y(u) = I ~ / s ~ ~ + ~  with y E ~ * ~ ( u  ,uk+u, p(u )+P(u)) I 

k Y0(u) = {y3hkyk'y with hk'Of~kEa*~(uk) ,Uk4Urp(u )-'p(u)], 

one has (denoting the closure of a set by "cl" andthe convex 

hull by "co") 

Dual to these expressions there are, by the relations explained 
t 

in § 1 , corresponding formulas for p (u; h) and cl D (u) , but of 
particular note is the estimate 

(2.6) 
t 

p (u,h) G lim sup (yk,h) . 
ykEa*p (uk) 

uk+u 
k 

p(u ) -'p (u) 

This is "tight" in a sense we shall not go into here. 

In the results we now state and prove, subgradients and 

subderivatives of F are used to estimate those of p. The 

definitions of such things for F are the obvious analogue of 

those for p and involve the natural pairing of Rn x X with 

Rn x x*. 



THEOREM 1. 

Assuming (1.5) and (2. I), consider any u where p is finite, 

and Let 

M(U) = { y J ~ ~ ~ ~ ( ~ )  with (y,o)~a~(u,x)) , 

Then 

Proof: 

Resting our argument on (2.5), we are obliged only to 

demonstrate that 

For the first inclusion, choose any y ~ Y ( u )  and corresponding 
k 

sequences of elements y , uk, as in the definition (2.4) of Y (u) . 
k Since p (u ) + p (u) , we have (at least for k large enough) that 

k p(u ) is finite and hence by our blanket assumption (1.5) that 
k k 

x(uk) # $. Choose any x E X  (u ) and recall that (1.5) implies 

the multifunction X is upper semicontinuous and maps some 

neighborhood of u into a compact set. From this it can be 

supposed, passing to a subsequence if necessary, that x 
k 

converges to some x E X(u) . (Without some restriction on the 

topology of X, we should really at this stage employ the 

language of nets or filters, rather than speak of sequences 

and subsequences,butthis would affect nothing essential.) For 

some rk ? 0 and ck > 0, we have by definition of the relation 
k k k k 
y E a*p (u ) , the value p (u ) and set X (u ) , that 

k k  k k k k 2 r 
(2.10) F(ul ,xl) 2 F(u ,x ) + (y ,ul- u ) - - Iu' - u I 2 k 

for all x 1 € X  and U ' E R ~  satisfying ( u p  - u ( < ck , 

where 

(2.11) 
k k  k 

F(u ,x ) = p(u ) +p(u) = F(u,x) . 



If X were finite-dimensional, we could conclude from (2.10) that 
k 

(y ,o)E~*F (uk,xk) and hence in the limit, via the formula for 

aF analogous to (2.5) for ap, that (y, 0)EaF (u,x) and consequently 

y€M(u). The infinite-dimensional case of X requires a more direct 

approach, however, to establish that (y, 0) EaF (u,x) . 
Suppose it were true that (y, 0)gaF (u,x) . Then by the 

duality between subgradients and subderivatives there would 

have to exist ( h , w ) E ~ ~  x X with 

k k k k  > sup [limsup[inf [F(u +thl,x +tw') - F(u ,x ) I ]  . 
u~N(h) k + a  h'EU t 

Then for every u~N(h) and sequence tki 0, we would in 

particular have (using (2.11 ) and the definition of p) 

k k k k  
(y,h) > lim sup [in£ F(u +t h1 ,x +tkwl) - F(u ,x ) 1 k 

k-+rn ~ ' E U  
(2.12) w'E X tk 

k k = lim sup [inf p (u +tkh') - P (u ) 1 . 
k + a ,  h l E  U 

tk 

But on the other hand we know 

when 



Taking the arbitrary neighborhood U in (2.12) to be of the form 

(2.14) U = I h l )  \ h l - ~ ( G E )  for some E > 0 , 

we may select the arbitrary sequence tk 1 0 in such a manner 

that tkrk 1 0 and 

k k I (u +tkhl) - u I < " when ~ ' E U  . 
as is obviously possible simply by requiring t < E ~ / E .  Then k 
(2.13) implies for u1 = uk + tkhl that 

k k 
p(u +tkhl) ' p(u ) 

\h1l2 G 2 for all k, 
tk 

or by taking the infimum over both sides subject to h'EU, that 

and in the limit 

Since there was free choice of E in (2.34), this inequality 

leads to a contradiction with (2.12). Therefore it is impossible 

that (y,~)@a~(u,x), and the proof of the first inclusion in 

(2.9) is complete. 

The proof of the second inclusion is identical in the 

finite-dimensional case and only a little different when X is 

infinite-dimensional. In the latter case, the relation 

(yf~)$ZaO~(u,x), which must be proved impossible, means that 

there exists (h,w) E R~ x X with 

t 
F (u,x;h,w) < but i(y,~), ( h , ~ )  ) > 0 . 

t Keeping to the earlier pattern, one can deduce from F (u,x;h,w) < 

that 



k k 
(2.16) lim sup [inf p(u +tkhl) - P(U ) 1 < " 

k+rn h l E  U 
tk 

for every IJ E N (h) and sequence t 1 0. On the other hand, through k 
appropriate choice of tk and U we still have (2.15), and 

multiplying this through by hk (where hk 1 0  and hkyk+ y as in 

the definition of Yo(u)) and taking the limit as k+m we get 

from (2.16) that 

This being valid for arbitrary E 0, we see a contradiction 

to the starting inequality ( (y, 0) , (h, w) ) > 0 , and the second 
inclusion in (2.9) is thereby confirmed. 

COROLLARY 1. 

Under t h e  h y p o t h e s i s  o f  Theorem I ,  one  a l s o  has  

(2.17) ap (u) c cl co [M (u) +M; (u) 1 , 

where 

M ~ ( u )  = { y 1 3 ~ ~ ~ ( ~ )  withaF(u,x) =%and (yf9)~a0~(u,x)) . 

P r o o f :  
Since aF(u,x) +  OF (u,x) = aF (u,x) , all the information 

represented by 2°F (u,x) is already embodied in aF (u,x) when 

aF(u,x) # %. In fact 

COROLLARY 2. 

U n d e r t h e  h y p o t h e s i s  o f  Theorem I ,  i f  ~ ( u )  c o n s i s t s  o f  a  

s i n g l e  e l e m e n t  x one  has  



P r o o f .  As in Corollary 1 ,  we use the fact that 

aF(u,x) + aO~(u,x) = aF(u,x). Since aF(u,x) and a°F(u,x) are 

closed convex sets, the "cl" and "cow operations can be omitted. 

COROLLARY 3. 
Under t h e  h y p o t h e s i s  o f  Theorem I ,  i f  

(2.21) ~ X E X ( U )  and y # 0 w i t h  (Y,o)E~'F(u,x) , 

t h e n  p i s  L i p s c h i t z  c o n t i n u o u s  on  a n e i g h b o r h o o d  o f  u. 

P r o o f :  
In this case we have aOp(u) = {O) by the second inclusion 

in (2.20). Then p is Lipschitzian around u, as explained in 

5 1 .  

Corollary 3 provides a far more general criterion for 

Lipschitz continuity than has previously been available. An 

elementary fact that has long been recognized (e.g., Clarke [lo]) 

is the following: if for some neighborhood U of s there is a 

set S C X such that 

(2.22) the functions F(-,x) for x E S  are all Lipschitzian 

on U with respect to a common Lipschitz constant X , 

and 

(2.23) X(ul) C S for all U'EU , 

then p is Lipschitzian on U (with the same constant A). In 

contrast, Corollary 3 makes no demands on the properties of F 

over an entire set of the form U x S but only at the crucial 

points (u' ,x) with x € X (u) . Nor does it even require F (u' ,x) 

to be Lipschitzian in u' on a neighborhood of u when xEX(u). 

For example, if u' and x are simply real variables and 



one has for (u,x) = (0,O) that a°F(O,O) = {(t,t)l t 2 0). It is 

true then that there is no y f 0 with (y,O)EaO~(O,~), yet 

F(ul,O) is not even finite on an entire neighborhood of u' = 0, 

much less Lipschitzian on such a neighborhood. 

Although distant from a discussion of "marginal values" in 

parametric optimization, there is another consequence of 

Theorem 1 that is well worth recording for the sake of other 

applications. This concerns the calculation of normal cones, 

which can be defined as follows: for a closed set H and its 

indicator function 

the normal  c o n e  to H at a point U E H  is 

COROLLARY 4. 
L e t  G be a  nonempty  c l o s e d  s u b s e t  o f  R~ x XI and 

l e t  

H = {UER*~~XEX with (u,x)EG} , 

X(U) = {XEX ( (U,X)EG) . 

Suppose  t h a t  f o r  e a c h  ~ E H  t h e r e  i s  a  n e i g h b o r h o o d  U of G and 

a  compac t  s e t  K C X  s u c h  t h a t  X(u) C K f o r  a l l  uEU. Then  H i s  

c l o s e d  and 

P r o o f :  
Simply take F in Theorem 1 to be the indicator SG. The 

compactness condition in the corollary is the corresponding 

version of (1.5) . 



COROLLARY 5. Under t h e  a s s u m p t i o n s  i n  C o r o l l a r y  4 ,  s u p p o s e  u 

i s  a p o i n t  o f  C s u c h  t h a t  

~ X E X ( U )  and y # 0 w i t h  (y,O)€NG(u,x) . 

Then  0 E int C. 

P r o o f :  
This specializes Corollary 3 to the case treated in 

corollary 4. 

We now state the dual form of Theorem 1. 

THEOREM 2. 

Under t h e  h y p o t h e s i s  o f  Theorem 1 ,  one  h a s  

(2 - 24) pr (u; h) G sup t inf F (u,x;h,w) f o r  a l l  h. 
xEX(u) W E X  

P r o o f :  
Suppose first that ap(u) # 9, so that (1.12) is valid. 

The estimate already obtained for ap(u), which we take in the 

form in Corollary 1 above, then says 

Noting that MtO(u) is closed under multiplication by positive 

sca.lars and letting 

(2.25) A = {h(( y:h) 0 for all y O ~ ~ l o  (u)} 
= 'l {hl(y,h) \( 0 whenever (~,O)E~F(U,X)} , 
X E X (u) 
a F(U,X) = 9 

we can translate this into 

(2.26) 
t 

p (u;h) \( sup SUP (y,h) for all h E A  . 
x EX(u) (yrO)EaF (utx) 
aF(urx)#% 

The definition of aF (u,x) entails that when (y, 0 ) ~ a F  (u,x) 



w e  have  

( ( Y , o ) ~ ( ~ , w ) )  ~ F ~ ( u . x ; ~ , w )  f o r  a l l  (h ,w)  . 

There f  o r e  

(2 .27 )  SUP 
t 

( y , h )  G  i n £  F  ( u , x ; h , w )  f o r  a l l  h ,  
( y , O ) ~ a ~ ( u , x )  W E  x 

a n  e s t i m a t e  which i n  d u e  c o u r s e  w i l l  b e  employed i n  ( 2 . 2 6 ) .  

L e t  u s  n e x t  a n a l y z e  t h e  se t  A i n  (2 .25 )  a  b i t  f u r t h e r .  

F o r  x ~ X ( u )  w i t h  a F ( u , x )  = JJ w e  h a v e  by t h e  a n a l o g u e  o f  ( 1 . 1 3 )  

f o r  F  t h a t  

t f o r  ( h l w ) E E ( u I x )  r 

(2 .28)  F  ( u , x ; h , w )  = 
+a f o r  ( h 1 ~ ) P :  E ( u , x )  r 

where E ( u , x )  i s  a  c e r t a i n  nonempty convex  c o n e  whose p o l a r  i s  

a 0  F ( u , x )  . The p o l a r i t y  i m p l i e s  t h a t  when ( y ,  0 )  € a 0  F ( u ,  x )  w e  have  

( ( Y ~ o ) ,  (h ,w))  G  0  f o r  a l l  ( h , w ) E E ( u , x )  , 

s o  t h a t  

Hence ( 2 . 2 8 )  y i e l d s  

t (-a if 3 w  w i t h  ( h , w ) E E ( y , x )  , 
i n f  F ( u I x ; h l w )  = 
w E X  I+- o t h e r w i s e  

-m if ( y , h )  G  ~ , V ( ~ , O ) E ~ ~ F ( U , X )  , 

+a o t h e r w i s e  . 



Consequently 

t 
SUP inf F (u,x;h,w) >[-a if ~ E A  

Substituting (2.27) into (2.26) for xEx(u) with aF(u,x) # pl 

and using (2.29), we extract from (2.26) the desired estimate 

(2.24). 

3. THE ROLE OF AUGMENTED LAGRANGIArJS 

While Theorems 2 and 3 have much to say about the optimal 

value function p, they do not go far enough in one important 

respect. They really are first-order results only. The vectors 

y such that (y, 0)~aF (u,x) or (y,O)€aO F(u,x) do help characterize 

the optimal it^ of an xEX(u), but there may be more of them than 

are needed or relevant. It would be nice if one could pare the 

set down by considering second-order properties, for instance, 

but this is difficult to do directly in the context of the function 

F even in situations like nonlinear programming. Some of the 

trouble comes from the fact that F itself may not be the best 

vehicle for expressing the optimality conditions in question. 

Often some kind of Lagrangian does the job better. 

In nonlinear programming with smooth objective and 

constraints, second-order estimates of ap(u) can be derived by 

way of the usual (quadratic-type) augmented Lagrangian function; 

see [7]. What we propose to do here is to trace the general 

chain of reasoning and demonstrate that in principle, at least, 

it provides a method of taking higher-order conditions into 

account in estimates for ap(u). As a matter of fact, it may even 

assist in the discovery of the form those conditions might take. 

The first step is the definition of the augmented Lagrangian 

in the general framework of problem (1.1): for each 

U E R ~ ,  X E X ,  ~ E R ~  and r > 0, set 

(3.1) 2 L (x,y) = inf l~(u, 'XI-(y,ul-U) + l u l - u l  } . 
Utr u'E R 



To get very far with this concept of augemented Lagrangian, it 

would be necessary in a given case to be able to calculate the 

infimum in closed form. We do not pretend that is easy, although 

some powerful results in conlTex analysis can be brought to bear 
m 

when F(*,x) is convex on R for each x E X ,  say. Yet there are 

some highly significant situations where the calculation is 

elementary, and there could be others. 

The nonlinear programming model (1.2),(1.3), offers the 

prime example; note that in that case F(u,x) is indeed convex 

in u for fixed x, regardless of any nonconvexity of the functions 

fi. Formula (3.1) then yields (see [I 1 1  ) : 

where 

i 
if f (x) + ui - > -yi/rt 

Oi (fi (XI + ui,yitr1 = 

2 -yi/2r otherwise 

The valuable computational and theoretical properties of this 

function are well known. It is easy to see that L (x,y) is 
utr 

always nondecreasing in r and concave in y. If F(u,x) is con- 

vex in u, it can be shown that L (x,y) is continuously dif- 
u t r 

ferentiable in y ,  except when u,r,x, are such that it is iden- 

tically +a in y. 



A mild assumption will simplify the general discussion that 

follows : 

m 
(3.5) p majorizes some quadratic function on R , or equiv- 

alently, there exist 3 E Rm, E RmI T > 0, such that 

inf L, (x I T )  > 
xEX U I Y  

(The equivalence asserted in (3.5) is immediate from the defin- 

i t i o n ~ ~ £  P and LUIr in terms of F) . Clearly (3.5) is quite a 

mild assumption in situations where only local properties are 

really at stake, as here. It is satisfied trivially if p is 

bounded below, i.e., if F is bounded below, and in conjuction 

with our blanket assumption (1.5) this could always be arranged 

by some innocuous modification of the values of F(u,x) when lul 

is large. 

The key to using the augmented Lagrangian in the study of 

subdifferential properties of p is the following connection with 

the proximal subgradients of p considered in (2.2), (2.3). Recall 

that (x,y) is said to be a s a d d l e  p o i n t  of L if 
utr 

LUIr(xl ,y) - > L (x,y) > L (x,y') for all XIEX, y'€Rm. 
U I ~  - utr 

Let 

(3.7) S(u) = {(xty)(3r>0 with (x,y) a saddle point of L 1 .  
U I ~  

3* Assume (1.5). (2.1) and (3.5), and  c o n s i d e r  a n y  u 

w i t h  p(u) < a. One h a s  

* 
(3.8) (x,Y) E s (u) * x E x (u) and  y E a p (u) . 

F u r t h e r m o r e ,  t h e  f o r m u l a s  

h o l d  w i t h  



(3.10) y(u) = { y 1 3 x ~ ~ ( u )  and (xk,yk) -+(x,Y) with 

k k 
(xktyk) E s (uk) , u 'u, p(u 'P(u) 1 I 

k k 
(3.11) yO(u) = { ~ ~ ~ X E X ( U )  and (x tAky ) '(x,~) with 

k k Ak+Ot(~ktyk)ES(~ Uk'ut P(U )'P(u)} 

P r o o f .  
Condition (3.5) ensures that when y E a*p (u) , as defined 

by property (2.2) holding for some r and E, then simply by choos- 

ing r somewhat laiger if necessary, one can have the same property 

globally (see [Ill): 

(3.12) p(ut) 2 p(u) +(yIut-U) -6-/2) I U ' - U / ~  for all U'E R~ . 

Since p(u) - < F(u,x) for all XEX, and equality holds if and only 

if x E X (u) , we see that the two conditions y E a*p(u) and x E X (u) 
are equivalent to 

(3.13) 
L 

F ( u ~ , x ~ )  - > F(U,X) + (yIul-U) - r/2)ut-u( 
for all u t  E Rm, x t E  X , 

or even better, 

(3.14) L (xtty) - > F (u,x) for all x t E  X , 
u I r 

Since on the other hand it is always true from the definition 

of L that 
utr 

(3.15) L (x,yt) :F(U,X) for a l l y t ~ ~ m  
utr 

(take y t  in place of y in (3.1) and consider u t =  u), we see that 

(3.14) is equivalent to the saddle point condition (x,y) E S (u) . 
This proves (3.8) . 

Already in (2.5) we cited formula (3.3) as valid with Y (u) 

and Yo(u) expressed by (2.4), and the job now is to verify that 

these expressions are equivalent to (3.10) and (3.11). This is 



easy. For a sequence uk +u with (uk) +p (u) < we have for k 
k k sufficiently large that p(u ) < a  and hence X(u ) # @ .  By the 

properties of the multifunction X mentioned in $1 as consequences 
k k of assumption (1.5), any sequence of points x E X  (u ) will have 

a subsequence converging to some x ~ X ( u ) .  (The same argument was 

given in the proof of Theorem 1, where it was pointed out that 

"sequences" should really be replaced by "nets" when X is a gen- 
eral locally convex space.) Thus in considering a sequence of 

k elements yk E a*p(u ) ,  we might just as well be considering a se- 
k k quence of pairs (xk, yk) with xk+x E X (u) and both y E a*p (U ) and 

k k k k  x E X  (u ) holding for all k. The latter conditions mean (x ,y ) 
k E S (u ) , as demonstrated above. Formulas (3.10) and (3.11 ) there- 

fore define the same sets as the formulas in (2.4), and the proof 

of Theorem 3 is complete. 

Remarks. In comparing the estimate in Theorem 3 with the one in 

Theorem 1, we need only remember the inclusions Y(u) CM(u) and 

(u) C M  (u) established in the proof of Theorem 1 to see that 0 
Theorem 3 is in every respect sharper. The challenge in applying 

Theorem 3 is to make use somehow of the properties of the augmented 

Lagrangian to analyze the limiting saddlepoint condition in (3.10) 

and (3.11) and thereby get a better grip on the nature of the 

multiplier vectors in Y (u) and Yo (u) . 
In the finite-dimensional nonlinear programming case (3.2) 

with all functions fi of class c2 and no abstract constraint 
n (i.e., C = R  ) ,  we have recently used this approach in [ 7 1  to show 

that 

2 2 
ap(u)cclco{ u K (u.x)+ u K ~ ( u , ~ ) I  , 

xEX (u) xEX (u) 

(3.16) 
2 

avp(u) Cclcol u Ko(u.x)I , 
xEX (u) 

2 where K (u,x) is the set of all y = (yl,. . . ,ym) satisfying the 
first and second-order conditions: 



0 and yi[fi(x) +u.] = 0 for i = l ,  ... s , (a) Yi - 1 

(3.17) 

2 m 
(c) w [V fo (XI + 1 yi~2fi (x) lw - > o for all w, 

i= 1 

such that Vfi(x) -w = 0 for all constraint 

indices i having f. (x) + u = 0 , 
1 i 

2 and K (u,x) is the same thing but without the terms Vf (x) and 
2 0 0 

V f0(x) in (b) and (c). By utilizing (3.16) in various ways it 

was possible in [7] to deduce that if xEX(u) and the special 
2 

constraint qualification K (u,x) = (0) is fulfilled, then there 
2 0 

exists some y E K (u,x) , i.e., the conditions (a) , (b) , (c) are ne- 
cessary for optimality. 

While we do not, as yet, have other concrete examples where 

by means of augmented Lagrangians higher-order optimality con- 

ditions can be determined and incorporated into estimates of 

ap(u), we can nevertheless sketch the pattern that might be fol- 

lowed in analogy with the second-order nonlinear programming re- 

sults just described. In order to facilitate this, we shall as- 

sume 

(3.18) F (u, x) is convex in u for each x. 

Let 

(3.19) C = {x€X13 u E R m  with F(u,x) <a) . 

Obviously 

(3.20) g c  * L (x,y) = +a for all u,r,Y, 
utr 

but otherwise the definition (3.1) of L (x,y) concerns the min- 
u, r 

imum of a coercive, strictly convex function of u l E  Rm that is 

not identically +a . This minimum is accordingly finite and 



attained at a unique point, which will be denoted by 

(3.21) v(u,r,x,y) = arg min in (3.1) 

Then by theorems in convex analysis we have 

(3.22) L (x,y) finite for all u,r,y, 

with V L ( x , ~ )  = v(utrrxry) - u 
Y utr 

Let us now consider an element y€Y(u) and try to analyze it 
k 

further in terms of xktyk and u , as in (3.10). The condition 
k k  k 

(x ,y ) ES(u ) in (3.10) means that for rk> Osufficiently large 

one has 

k k As we know, this entails x €X(u ) ,  so that 

Moreover the second inequality in (3.23) can be written simply as 

As for the first inequality in (3.23), we observe it implies for 

arbitrary w E x,wk-t w, tktO, that 

(3.26) 
k k k  

(X +tkW ty ) -LUk 
k k  

Luk, rk (X ,y ) 2 0 for all k . 
"k 

For q = 1,2, ..., and arbitrary W E X  let us define the follow- 
ing expression which is suggested by (3.26) but independent of 

k k k  the particular sequence of elements u ,x ,y and rk that might 

be available: 



Lu' , r  
( x l +  t w l , y l )  - L U l  ( x l  , y l )  , r  

Sup [ lim sup [ in£ 1 1  
w EN(w) (u'  , x l  , y l )  - + ( u , x , ~ )  W ' E W  tq 
6 > 0  F(ul , x l )  -+F(u,x) O < t < 6  

v ( u l  , r , x l  , y l )  = u l  
r  -+ 

Then for x and y as in the definition (3.10) of Y(u) we may con- 

clude from the foregoing that 

(3.28) Aq(u,xty;~) 2 0  for all w E X  . 
9: Note that A (u,x,y;w) is also positively homogeneous of degree q 

with respect to w: 

We interpret (3.28) as an abstract qth-order optimazity 

condition associated with the optimal solution x and multiplier 

vector y for problem (1.1). This designation is supported by the 

fact that the nonlinear programming result cited above is based 

on a demonstration that for xEX(u), 

1 2 2 [ A  (u,x,y;w) > 0 and A (u,x,~;w) > 0, WEW] YE K (utx) t - - 

1 
where K (u,x) consists of the vectors y satisfying (3.17) (a) (b) , 

2 and K (u,x) consists as before of the ones satisfying (3.17) (a) 

(b) (c) . 
With such motivation we can introduce for q = 1,2, ..., the 

multiplier set 

j (3.30) yq(u) = xEX(u) with A (u,x,y;w) - > 0, iiw, j=l, ...q 1 .  

The conclusion is then the following. 



THEOREM 4. 
Assume 1 . 5  2 . 1  (3.5) and (3.18), and c o n s i d e r  

any u w i t h  p(u) <a. One has  

1 2 
(3.32) ~ ( u )  >Y (u) 3 Y  (u) 3.. . 3Y(u) , 

1 2 (3.33) M (u) 3Y0(u) 3Yo(u) I - - -  IY0(u) t 
0 

and f o r  q=1,2, ..., 

Proo f .  
Most of the demonstration has been built up in the pro- 

logue to the theorem, so that only the estimate in Theorem 3 

needs to be applied to get (3.34). One feature has not been 

dealt with, however, and that is the initial inclusions in (3.32) 

and (3.33). Without these, it would not be possible to claim 

that (3.34) is any sharper an estimate than the one in Theorem 1. 

The initial inclusion in (3.32) can be verified by fixing 
1 

any u,x,y, such that A (u,x,y;w) - > 0 for all w E X  and showing that 

(y , 0) E a F  (u ,x) , or in other words that 

1. 
(3.35) (y,h) - < F (u,x;h,w) for all ~ E R ~ ,  W E X  , 

where 

(3.36) 

lim sup [ in£ 
F(ul+ thl,x'+ tw') - F(u',x') 

sup [ I 1  . 
U EN(h) u , x  -+ u x  h'E U t 
w EN(w) P(u',x') -+ F(U,X) W'E w 

tJ.0 

1 Turning to the formula (3.27) for A (u,x,y;w) , we recall the mean- 
ing (3.21) of the requirement v(ut,r,x',yt) = u' and note that it 

implies 



At the same time we have by definition (3.1) that 

2 
L (x1+tw',y') <F(u",x1+tw') - ( y ' , ~ " - u ' ) + ( r / 2 ) ) u " - u ' )  , vu" , u', r - 

or by writing u"=u1+th' , 

From (3.37) and (3.38) we obtain the following estimate for even- 

tual application to (3.27) for q = l  (here U and W denote neigh- 

borhoods of h and w, and we assume U is bounded): 

(3.39) Lul (xl+ twl,y') -Lul (xl,y') 
l i m  sup [ i n £  ? rr I 

(u',xl,y') -, (u,x,y) w'EW t 
F(ul,x') + F(u,x) O<t<d 
v(ul,r,x',y') = u l  

r+O0 

F(ul+ th',xl+ tw') - F(u',xl) _(yl,hl)+ < l i m  sup [ i n£  [ r t  
- 
(u',xl,y') -, (u,x,y) hlEU t 2 
F(u',x') -, F(u,x) W'EW 

r + a  O<t<d 

< F(ul+ th1,x'+ tw') - F(u1,x') 
- l i m  sup [ i n £  [ -(y',h') ] ] 
(u',x',yl) + (u,x,y) hlEU t 
F(u',x') -, F(u,x) wlEW 

tJ.0 

where the last step is justified by the fact that no matter how 

r-tm in the "lim sup", corresponding values of tJ.0 could be chosen 

so that rt 1 h' 1 * + 0 uniformly in hl€ U (because U is bounded) . 
Since (3.39) holds for any bounded U E N (h) , and the infimum 

over h l €  U increases if anything as U diminishes, we can take the 

supremum in U (the same as the limit as U shrinks to Ih)) and see 

that the term (y1,h') at the end of (3.39) must wind up as (y,h) . 
Thus to the chain of inequalities already generated we can add: 



F ( u ' + t h ' , x ' + t w ' ) - F ( u t , x ' )  
< s u p  [ - 1 i .m  s u p  [ inf  1 1 - ( y , h )  

u ~ N ( h )  ( u l , x ' )  + ( u , x )  ~ ' E U  t 

This is then an upper bound for the first expression in (3.39). 

When it is invoked in the definition (3.27) of the condition 
1 A (u,x,y;w) > 0, we obtain by formula 3.36 the desired inequality - 
(3.35). 

The proof of the first inclusion in (3.33) is parallel, and 

with this the proof of Theorem 4 is complete. 
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