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Abstract

Achieving the 1.5 °C climate target requires, among others, a sustainable trans-

formation of the heat supply. We downscale different European decarbonization

scenarios of the heating sector to the Austrian municipal level, using tailor-made

downscaling techniques accounting for infrastructure requirements of renewable

heat sources and the topology of centralized heat networks. We demonstrate

that allocating district heating networks as part of the downscaling from na-

tional results to a local resolution is crucial for a cost-effective and efficient

decarbonized heat supply in Austria in 2050. We identify potential for eight

different districts with centralized heating networks, supplying heat demand

between 0.6 and 12 TWh. Nevertheless, seven of these networks do not reach

the heat density required for economic and technical efficiency from today’s

techno-economic perspective and industry benchmarks. We conclude that the

decarbonization leads to centralized heat networks with lower heat densities.
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Nomenclature

Type Description Unit

Set and index

t ∈ T = {1, . . . , T} Set of heat generation technologies/sources, index by t

r ∈ R = {1, . . . , R} Set of sub-regions, index by r

s ∈ S = {0, 1, ∗} Stage of iterations, index by s

Variables

qt Heat generation per t TWh

ρr Population density per r 1//km2

pr Total population per r 1

σt Minimal network infrastructure requirements per t 1//km2

πr Available potential of heat network infrastructure per r 1//km2

q̂t,r Heat generation per t and r TWh

qheatr Heat demand per r TWh

q̃t Available heat generation per t TWh

Gs Centralized heat network graph at s

ns Node of centralized heat network graph at s

lsk,j Line connecting nodes k and j at s

qsns Nodal centralized heat generation at s TWh

q̃sns Nodal on-site heat generation at s TWh

πs
ns Nodal benchmark indicator value at s 1

αns Number of triangles with direct neighboring nodes 1

βns Number of connection lines to the graph 1
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1. Introduction

To implement the pathway in line with the Paris Climate Agreement [1] as anal-

ysed by the IPCC’s Special Report on Global Warming of 1.5°C (SR15) [2], the

European Commission has set deep decarbonization targets together with na-

tional governments. In particular, the ”EU Green Deal” describes the concrete

goals in Europe, namely, a climate-neutral and resource-conserving economy

and society (see, e.g., [3]). The overarching goal is to reduce carbon emissions

to net-zero and hence achieve climate neutrality by 2050. The principles of a

net-zero, decarbonized society are based on three key points: (i) reduction of

the energy demand (see, e.g., Oshiro et al. [4] and Grubler et al. [5]), (ii) de-

ployment and generation of renewable energy technologies (see, e.g., Bakhtavar

et al. [6]), and (iii) an increase in efficiency regarding the provision of energy

services and the associated optimal utilization of sustainable energy sources.

To achieve these long-term ambitions, the European Commission recently pre-

sented ”Fit for 55”, a concrete roadmap to 2030. This program commits to a

55 % reduction in CO2 emissions in 2030 compared to to those in 1990 [7]. The

concrete measures affect almost all sectors of the energy system and should lead

to a significant efficiency improvement and a massive overall reduction in fossil

fuels. It implies, among others, binding annual targets to reduce energy con-

sumption and to extend the already established EU emissions trading system

(EU ETS) to new sectors. In addition to transportation, the building sector

will be part of the EU ETS in the future. In the building sector, using the an-

nual anchored emissions reduction, this means a defined roadmap to complete

decarbonization of the heating and cooling demand. In this paper, we look at

what deep decarbonization of building heating demand may look like in 2050

in Austria and the implications of the corresponding sustainable energy mix for

centralized heating networks.

3



1.1. Implications of decarbonization on the heating sector

The scope of changes required by 2030/2050 in the heating sector becomes even

clearer at the national level. In Europe, the average share of renewable energies

in the heating and cooling sector in 2018 is only just above 20 % on average, for

all EU member states [8]. It is, in fact, higher in some countries, for example,

in Austria, it is above 34 %. However, fossil fuels continue to dominate there

as well. To be even more specific for the heating sector, of the nearly 4,000,000

residential dwellings in Austria, more than 900,000 are heated with natural gas,

and more than 500,000 with oil [9]. If these heating systems are converted to

renewable energy supply by 2050, this corresponds to a retrofitting of 50,000

units per year, or more than 130 per day - only in Austria. To achieve this goal,

measures that go beyond the electrification of heat supply are necessary, which

may requre an expansion of district heating networks. This holds true even

when substantial heat saving measures are installed such as better insulation of

buildings [10].

Centralized heating networks are particularly advantageous for supplying densely

populated or urban areas because of high heat densities [11]. In addition to

heat density, the connection rate is a key factor determining the efficiency of

district heating/cooling networks and thus their implementation. In Austria, a

benchmark of 10 GWh/km2 at a connection rate of 90 % is currently used when

deciding whether to supply an area with district heating1. This reference value

is in line with findings regarding district heating networks also from the Scandi-

navian region (Denmark, Sweden, and Finland) [12]. These are rough estimates,

but they do allow an initial assessment of the economic viability or feasibility

of a district heating network. In a detailed consideration and evaluation of dis-

trict heating networks, numerous factors play a decisive role. Nussbaumer and

Thalmann [13] thoroughly elaborate on the network design and its impact on

the profitability of centralized heat networks. In their study, Laasasenaho et al.

1http://www.austrian-heatmap.gv.at/ergebnisse/
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[14] emphasize the optimal location of heat generation units/sources within cen-

tralized heat networks, enabling a cost-optimized heat supply. Gopalakrishnan

and Kosanovic [15] focus on the optimal heat generation technology dispatch.

When examining the economic viability of district heating networks, building

renovation measures must also be taken into account (see, e.g., [16] and [17]).

Hietaharju et al. [18] recently show in their analysis that a 2 − 3% building

renovation rate per year results in a 19− 28% decrease of the long-term district

heating demand. This also reduces the heat density. However, studies show

that a reduction in heat density is not necessarily a barrier to district heating

networks [19]. Reidhav and Werner [20] show how energy taxes can improve

the profitability of sparse district heating networks in Sweden. Following these

considerations and in light of ambitious CO2 reduction targets, it can also be

assumed that the rising CO2 price can have an effect similar to the energy tax.

Of course, this is valid only in the case of deep decarbonization of the generation

mix feeding into centralized heat networks. Di Lucia and Ericsson [21] show that

biomass significantly contributed to the decarbonization of the district heating

network and replaced fossil fuels in the feed-in generation mix in Sweden. In

their multi-criteria study, Ghafghazi et al. [22] also identify wood pellets as

the optimal system option for fueling district heating networks. Eventually, the

increasing cooling demand and the co-design of centralized networks for heating

and cooling can also increase the economic viability of these and counteract the

reduction of heat density from an economic point of view [23].

1.2. Implications of large-scale numerical model results at the local level

For quantifiying solutions of complex planning problems, researchers use numer-

ical models. In general, these models strike a balance between complexity and

aggregation. Integrated assessment models (IAMs) are large numerical models

covering complex interrelationships between climate, society, economics, policy,

and technology [24]. Wilkerson et al. [25] and van Vuuren et al. [26] deal with

IAMs and their role in understanding global energy decarbonization pathways.

Schwanitz [27] evaluates IAMs of global climate change and discusses, among
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others, the appropriate level of regional (spatial) aggregation of countries in the

modeling analysis. Generalizing this aspect reveals an aspect already known

but essential in the context of large numerical models. It becomes necessary for

modelers to set priorities regarding the level of detail, which inevitably creates

trade-offs in the analysis regarding the granularity of temporal, spatial, and

other dimensions [28]. Gambhir et al. [29] also highlight this aspect of aggre-

gation bias in their critical review of IAMs. They propose, among others, that

IAMs should be increasingly be supplemented with other models and analyt-

ical approaches. Not least for this reason, large-scale detailed energy systems

models also play a significant role in the analysis of energy systems in the con-

text of climate change. Compared to IAMs, they more strongly emphasize the

level of detail in terms of techno-economic characteristics. However, the lack of

granularity remains: these global systems models consider only a highly aggre-

gated spatial resolution. To name just two selected approaches, Capros et al.

[30] (PRIMES) and Löffler et al. [31] (GENeSYS-MOD) provide energy system

models focusing on the European energy system with a spatial resolution at the

country level. Further approaches are needed to disaggregate results obtained at

the country level to finer scales, such as districts, neighborhoods, and other local

levels. In this context, Backe et al. [32] provided a novel approach in the con-

text of merging local activities/behavior in sustainable local communities into a

large energy system model (bottom-up linkage). In their study, they integrated

local flexibility options into the global energy system model EMPIRE, which

provides, in principle, only country-level resolution. This and other work con-

firms the emerging trend of making top-down and bottom-up linkages between

different spatial-temporal levels of resolution to drive decarbonization across all

sectors.

1.3. Objective and contribution of this work

Against this background, the core objective of this work is downscaling Euro-

pean decarbonization scenarios of the heating sector to the community/distribution
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grid level serving end-users in 2050. In particular, downscaling considers the

highly efficient and local use of sustainable heat sources in centralized heat

networks (e.g., co-firing hydrogen in cogeneration plants and large-scale waste

utilization, etc.). In addition, the topography of district heating networks is

of particular importance and plays a crucial role in applied downscaling. This

allows estimates of realistic and cost-effective decarbonized district heating net-

works in 2050 to be obtained, which can be compared with existing networks.

Thereby, the heat density of district heating networks serves as a comparative

indicator and permits a rough estimation of the changes needed for centralized

heating networks considering the 1.5°C climate target. An Austrian case study

is conducted, downscaling the results of the heating sector in 2050 from the

large numerical energy system model GENeSYS-MOD, from the country to the

community/distribution grid levels.

The method applied consists of three different scenario-independent downscal-

ing techniques. In the first technique, proportional downscaling uses population

as a stylized proxy (section 2.1). In the second, a sequential downscaling ap-

proach is presented, disaggregating from the country level to the sub-region

level. Thereby, the population density and infrastructure requirements of heat

technologies serve as additional criteria in the downscaling (section 2.2). Fi-

nally, an iterative downscaling algorithm is presented. The algorithm applies

benchmarking based on graph-theory. It computes centralized heat supply at

the local (community) level, see section 2.3. Section 3 presents and discusses

the results of this work. Sections 3.1 and 3.2 show heat generation by source at

different spatial levels. Sections 3.3 and 3.4 present centralized heat networks

at a high spatial granularity. Section 3.5 synthesizes the results of centralized

heat networks and compares heat densities of centralized heat networks in 2050

with today’s values. Section 4 concludes this work and provides an outlook for

future work.
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2. Materials and methods

This section explains the methodology developed in this work. Section 2.1

describes proportional spatial downscaling using population as a proxy. Building

on this, section 2.2 presents the sequential downscaling and section 2.3 presents

the iterative downscaling algorithm in detail. Finally, section 2.4 concludes this

section and explains the open-source tools used in this work.

2.1. Proportional spatial downscaling using population as a proxy

Proportional downscaling is a well-established technique for spatial disaggre-

gation and is often used in scientific and practical studies. Equation 1 shows

a mathematical formulation of proportional downscaling for disaggregation of

energy demand d from the country to the local levels, using population p as a

proxy.

dlocal =
plocal
pcountry

· dcountry (1)

The fields of application of proportional downscaling are not limited to the mod-

eling of energy systems but to different fields of scientific and practical studies.

The reason for this is the intuitive application and that it offers possibilities

for tailor-made adaptions, in particular, related to the downscaling driver and

proxy [33]. In this context, van Vuuren et al. [33] provide a comprehensive

analysis of different proxies for the downscaling of global environmental change,

including gross domestic product, emissions and other indicators. However, in

the context of downscaling aggregated values of energy systems, one often finds

proportional downscaling using population as a proxy (see, e.g., Ahn et al. [34],

van Vuuren et al. [35], and Alam et al. [36]). For further information, we refer

the reader to van Vuuren’s study [35], providing a systematic classification of

downscaling techniques going far beyond the simple proportional downscaling

method discussed so far. The reader can find population-based downscaling in

the authors’ categorization under algorithmic and proportional downscaling. In

addition, they showed that novel downscaling methods have emerged in recent
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years as the scientific community has increasingly recognized the necessity for

spatial and temporal disaggregation.

2.2. Sequential downscaling (from the country to the sub-region level)

The sequential approach (Algorithm 1) downscales the heat generation by source

from the country to the sub-region levels. Before explaining the algorithm in

detail, Table 1 provides an overview of the spatial nomenclature of this work

using the European nomenclature of territorial units for statistics2 (NUTS) and

gives some examples of Austria. In particular, the different spatial levels of the

applied downscaling are marked in gray. According to the NUTS nomenclature,

Algorithm 1 downscales from the NUTS0 level to the NUTS3 level.

The purpose of the sequential downscaling algorithm is to provide a downscaling

technique that considers the variation in efficiency of renewable heat sources and

the increasing role of biomass and waste heat sources, in particular, in densely

populated areas. Hence, we claim that

• limited amounts of hydrogen (and/or ”green” gas) should preferably be

used in district heating networks if they are used for heat supply (similar

to Gerhardt et al. [37] and Zwickl-Bernhard and Auer [38]).

• high shares of biomass in the heating sector result in a high utilization rate

of waste sources in waste incineration plants [39]. These waste incineration

plants feed into district heating and therefore depend on the infrastructure

of centralized heating networks (see, e.g., Sahlin et al. [40]).

Besides, we claim that high shares of air-source heat pumps (or geothermal

sources) in the heat supply can only be realized if they are used as a co-firing heat

source in district heating networks. We therefore consider two main aspects,

namely that geothermal sources will contribute significantly to decarbonizing

the feed-in energy mix of existing district heating grids in the future (see, e.g.,

2https://ec.europa.eu/eurostat/web/nuts/background.
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[41]), and that the provision of high shares of geothermal-based heat supply

requires the distribution through district heating infrastructure [42]. Besides, it

is highly uncertain whether small-scale geothermal units at the end-user’s level

will be economically viable in the future, because of the high investment costs

expected.

To incorporate the abovementioned relevant technology-specific aspects, heat

technologies/sources are downscaled according to their necessity of distribution

infrastructure. Therefore, population density serves as a criterion, indicating

the possibility of centralized heat networks. Table 2 provides a qualitative

overview of the different heat generation technologies/sources and their heat

network/infrastructure requirements.

Source Requirements Rural Town/Mixed Urban Supporting
references

Heat technology Heat network Sparse Moderate Dense

Biomass Median x x [43, 44, 39]

Direct electric None x x x

Synthetic gas Low x x x

Hydrogen High x [45, 46, 47]

Heat pump (air) None x x x [48]

Heat pump (ground) High x [49, 50, 41]

Heat storage None x x x

Table 2: Qualitative overview of heat generation technologies/sources and their requirements
for heat network infrastructure. The prioritized preferences of heat sources in sub-regions
are marked by the gray cell. In addition, selected references supporting this assumptions are
cited.

The sub-regions used to downscale the corresponding heat sources are marked.

Note that the different types are characterized by population density. Exem-

plarily, direct electric heating is a heat generation technology with no significant

heat network requirements. It is downscaled to all types of sub-regions. In con-

trast, hydrogen is a heat source with high requirements and thus prioritized

preferences (marked by the gray cell color). The right column refers to selected

references whose key findings are in line with this approach/these assumptions.
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Building on this, the sequential downscaling algorithm is presented below (Al-

gorithm 1).

Algorithm 1: Sequential downscaling algorithm (NUTS0 to NUTS3)

1 t: Heat generation by technology/source (t ∈ T );
2 r: Sub-region (or NUTS3 region) (r ∈ R);

input : Heat generation by technology/source at NUTS0 level: (qt);
Population density per sub-region r (ρr);
Total population per sub-region r (pr);
Minimal network infrastructure requirements of t (σt);
Available potential of heat network infrastructure at r (πr);

output: Heat generation by technology/source at NUTS3 level (q̂t,r);

Initialization:
Sort elements t in T descending by σt;

qheatr ←−
∑
t qt ·

pr∑
r pr

; // Calculate heat demand at each sub-region

3 q̃t ←− qt ; // Available heat generation for each technology/source

4 πr ←− ρr ; // Population density determines network potential

5 begin
6 foreach t do
7 List = [ ]; // Collect valid sub-regions

8 demand = 0; // Remaining demand that needs to be covered

9 R
′

= R \ {∀r ∈ R : πr ≤ σt}; // Get valid sub-regions by criteria

10 foreach r
′ ∈ R′

do
11 if qheatr ≥ 0 then

12 List = List ∪ r′
; // Add valid sub-regions to collection

13 demand += qheatr ; // Total demand of valid sub-regions

14 end

15 end
16 foreach l ∈ List do
17 q̂t,r =

qheat
r

demand · q̃t; // Population-based downscaling

18 qheatr −= q̂t,r; // Reduce heat demand at r

19 end

20 end

21 end

The inputs are as follows: (i) heat generation by technology/source at the

NUTS0 level, (ii) population as well as population density at the NUTS3 level,

and (iii) empirical assumptions in terms of network infrastructure requirements
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per heat technology/source and potentials for heat network infrastructure (see

Table 2). The algorithm itself consists of three main parts: initialization, pre-

calculations, and downscaling. First, the initialization of the algorithm sorts

the heat generation technologies/sources in descending order in terms of net-

work infrastructure requirements. Then, the calculation starts with the first

technology/source (highest requirements) (line 6). For this technology/source,

all possible sub-regions are collected (line 9). Those sub-regions already fully

supplied (no remaining heat demand) are filtered out (line 11). After further

pre-calculation steps, the available amount of heat generation is downscaled to

all valid sub-regions using population as a proxy. This procedure is repeated

sequentially for each heat technology/source. The outputs of the sequential

downscaling algorithm are heat generation by source and the amount of heat

demand covered by centralized heat networks at the NUTS3 level.

2.3. Iterative downscaling (from the sub-region to community levels)

This section explains the methodology of the iterative downscaling algorithm.

We propose this downscaling technique projecting heat generation by technol-

ogy/source from the sub-region (NUTS3) to the community levels (LAU) (see

Table 1). This in-depth spatial resolution is imperative for realistic network in-

frastructure planning, as stated by Zvoleff et al. [51]. The underlying concept of

iterative downscaling is based on graph theory and assessing network topology

using benchmark indicators.
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Algorithm 2: Iterative downscaling algorithm (NUTS3 to LAU level)

1 s: Stage of iteration (s ∈ {0, 1, ∗});
2 Gs: Centralized heat network graph at stage s;
3 Ns: List of nodes at stage s: (ns ∈ Ns);
4 Ls: List of lines connecting nodes k and j at stage s: (lsk,j ∈ Ls);
5 Qs: Centralized heat generation at stage s: (qsns ∈ Qs);
6 Q̃s: On-site heat generation at stage s: (q̃sns ∈ Q̃s);
7 Πs: Benchmark indicator value at stage s (πsns ∈ Πs);

input : G0 = {N0, L0, Q0, Q̃0};
output: G∗ = {N∗, L∗, Q∗, Q̃∗};

Initialization:
s = 0, iter = True;

8 begin
9 while iter = True do

10 foreach n ∈ N s do
11 Πs

ns = f(Ns, Ls, Qs); // Calculate benchmark indicator value

12 end
13 i with πsi = min(Πs); // Get node with lowest indicator value

14 Ns+1 = Ns \ i; // Remove node from graph obtaining next stage

15 q̃ =
∑
Ns+1 q̃sns ; // Calculate available on-site heat generation

16 if q̃ ≥ qsi then
17 foreach ns+1 do

18 qs+1
ns+1 = qsns +

qsi
q̃ · q̃

s
ns ; // Increase centralized heat amount

19 q̃s+1
ns+1 = q̃sns − qsi

q̃ · q̃
s
ns ; // Decrease on-site heat amount

20 end
21 Ls+1 = Ls \ {∀lsk,j : k = i ∨ j = i}; // Remove connecting lines

22 Gs+1 = {Ns+1, Ls+1, Qs+1, ˜Qs+1}; // Create new network graph

23 Gs = Gs+1; // Set updated heat network graph as new input

24 else
25 iterate = False; // Stop iteration because of no reallocation

26 G∗ = Gs; // Set heat network graph as result

27 end

28 end

29 end

2.3.1. Algorithm description

The iterative downscaling algorithm is presented in Algorithm 2. The idea is

to assess, benchmark, and improve the topology of centralized heat networks.

This is achieved in our proposed approach by iterative downscaling. Essentially,
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the main steps of the algorithm can be summarized as follows:

1. Downscale the results of the sequential downscaling algorithm from the

NUT3 to the LAU levels using population as the downscaling driver, to

obtain the initial heat network graph G0 (input).

2. Benchmark each node of the heat network graph (line 11), identify the

node with the lowest indicator value, and remove the node from the graph,

generating a reduced heat network graph (lines 13 and 14).

3. Check if the amounts of centralized and on-site heat generation can be

reallocated (line 16).

4. If yes, reallocate centralized and on-site heat generation for all nodes (lines

18 and 19); otherwise stop algorithm.

5. Update heat network graph and jump to step 2.

Recent studies support this approach, focusing on the topography of energy

systems and networks (see, e.g., [52]). Bordin et al. [53] conduct an approach

for the optimized strategic network design of centralized heat systems. Allen

et al. [54] evaluate the topology of centralized heating systems and conclude

that the optimization of the topology is promising to facilitate the adoption of

centralized heat networks.

2.3.2. Heat network topology benchmarking using graph theory

So far, we have introduced only the function f(Ns, Ls, Qs) (see line 11 in the it-

erative algorithm (Algorithm 2)) as a calculation procedure of the benchmarking

indicator value. Below, we describe and discuss the approach of using a weighted

cluster coefficient as a function and benchmarking indicator.

The proposed benchmarking indicator value is derived from graph theory. De-

tailed information in the context of network analysis using indicators can be

found in the fundamental work by Strogatz [55]. Morever, we refer the reader

to Sanfeliu and Fu [56], in which network topologies and their transformation

are described in detail. In this work, we use a weighted cluster coefficient as a

benchmark indicator and determine the transformation path of the centralized
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heat network graph. Equation 2 shows the calculation of the weighted cluster

coefficient

cns =
qns

max qs
· αn

s

βns

(2)

where q is the amount of centralized heat supply, α is the number of triangles

that can be formed with direct neighboring nodes, and β is the number of lines

connecting to the graph for node n at stage s. In the context of the fundamental

concept of alpha, we refer again to the literature. In particular, the study in [57]

comprehensively deals with cluster coefficients and provides related generalized

concepts. In addition, relevant aspects of the cluster(ing) coefficient are shown

in [58]. In the works cited and also in this study, the aim is to achieve a high

value of the cluster coefficient for each node considered (i.e., α
β ≈ 1). However,

we extend the basic concept of the cluster coefficient from the literature and

propose a weighting with the relative centrally supplied heat quantity. From an

energy economics point-of-view, at least two important aspects are considered

in the benchmarking process: (i) a high connection rate to the centralized heat

network and (ii) a connection of those areas to the network that have a high

heat demand and heat density, respectively. Both aspects are investigated in

the literature. For example, Nilsson et al. [59] focus on the importance of

the connection rate of centralized heat networks. Besides, Dochev et al. [60]

investigate the impact of linearly decreasing heat densities and the influence on

the profitability of the centralized heat networks.

2.4. Development of an open-source package building on pyam

The method described will be released as an open-source Python package in the

course of publishing this work at the author’s GitHub account. In this package,

we build on the existing open-source Python package pyam [61]. Pyam is an

open-source package for the analysis and visualization of integrated assessment

and macro-energy scenarios. In this work, it is used particularly for (i) the
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linkage between the sequential and the iterative downscaling algorithms, (ii)

the internal calculation steps within both downscaling algorithms, and (iii) the

visualization of the results. Besides, we used the open-source Python package

networkx [62], when implementing the iterative downscaling algorithm. We refer

to the repository for the codebase, data collection, and further information.

3. Results and discussion

This section presents the results of the Austrian case study. Four different sto-

rylines are investigated, covering a wide range of possible future developments of

the Austrian energy system in the context of European deep decarbonization.

Section 3.1 shows the heat generation mix supplying the heat demand (resi-

dential and commercial) at the country level. Section 3.2 describes the heat

generation mix obtained on a more granular geographical scale, at sub-regional

and community levels. Potentials of a centralized heat network are presented

further in section 3.3. Section 3.4 shows the centralized heat networks at the

community level. Finally, section 3.5 compares the projected centralized heat

networks in 2050 with today’s networks, based on heat density.

3.1. Heat supply of the Austrian residential and commercial sector in 2050: four

different decarbonization scenarios obtained from the Horizon 2020 project

openENTRANCE

This section presents the heat generation mix covering the Austrian residential

and commercial heat demand in 2050 for four different storylines, which have

been developed within the Horizon 2020 openENTRANCE project. They are

named as follows: Directed Transition, Societal Commitment, Techno-Friendly,

and Gradual Development. Within each of them, specific fundamental develop-

ment of the energy systems is described while aiming for a sustainable transition

of the provision of energy services. The first three storylines assume different

approaches to limit global warming to around 1.5 °C as laid out in the Paris

Agreement. The last storyline (Gradual Development) can be interpreted as
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less ambitions storyline, limiting global warming to around 2.0 °C climate tar-

get.

Below, the storylines are described briefly, before the quantitative results at the

country level are presented. For a more detailed description of the storylines,

refer to [63] and [64]. Further information is also available on the website of the

project3 and on GitHub4.

The underlying concept of the four storylines is a three-dimensional space con-

sisting of the following parameters: technology, policy, and society. Each story-

line describes a specific pathway to reach a decarbonized energy system taking

into account a pronounced contribution of two dimensions. Regarding the third

dimension, a development is assumed that leads to no significant contribution

to the decarbonization of the energy system.

• Directed Transition looks at a sustainable provision of energy services

through strong policy incentives. This bundle of actions becomes neces-

sary because neither the markets nor the society adequately pushes sus-

tainable energy technologies.

• Societal Commitment achieves deep decarbonization of the energy system

by a strong societal acceptance of the sustainable energy transition and

shifts in energy demand patterns. Thereby, decentralized renewable en-

ergy technologies together with policy incentives facilitate a sustainable

satisfaction of energy service needs. Due to the shift in energy demand,

no fundamental breakthroughs of new clean technologies are required.

• Techno-Friendly describes a development of the energy system where a

significant market-driven breakthrough of renewable energy technologies

gives rise to the decarbonization of energy service supply. Additionally,

society acceptance supports the penetration of clean energy technologies

and the sustainable transition.

3https://openentrance.eu/
4https://github.com/openENTRANCE
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• Gradual Development differs from the other storylines: it assumes emis-

sions reductions that (only) stabilize the global temperature increase at

2.0 °C. At the same time, a combination of each possible sustainable

development initiative of the energy system is realized in this storyline.

Although the other three dimensions contribute to decarbonization, they

do not push it sufficiently and result in a more conservative storyline than

the others.

Table 3 shows the heat generation by technology/source in Austria in 2050 for

the four different storylines. These values were obtained during the course of

the Horizon 2020 project openENTRANCE and are the modeling results cal-

culated using the open-source model GENeSYS-MODv2.0 [65]. According to

the underlying assumptions in the storylines, the heat generation of the differ-

ent sources/technologies varies significantly in some cases (e.g., hydrogen-based

heat generation in Directed Transition and Gradual Development (7.62 TWh)

or heat pump (ground) generation in Techno-Friendly and Societal Commit-

ment (14.78 TWh)). The gray-colored column Σ presents the total heat genera-

tion using centralized heat networks, which varies between 19.49 TWh (Techno-

Friendly) and 35.23 TWh (Gradual Development).

Heat generation
by source in TWh
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(g
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H
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n

Σ

S
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n
e

Directed Transition 5.37 2.13 0.36 22.73 19.50 14.84 1.03 25.90

Societal Commitment 5.37 1.98 1.35 15.71 21.47 10.58 2.18 29.02

Techno-Friendly 5.37 1.53 2.79 25.95 6.69 16.36 7.43 19.49

Gradual Development 5.37 1.81 5.35 9.68 21.21 15.57 8.65 35.23

Table 3: Heat generation by source in TWh, supplying residential and commercial heat de-
mands in Austria 2050 for the different scenarios. Values obtained from the Horizon 2020
project openENTRANCE and GENeSYS-MOD.
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3.2. Heat technology generation in 2050 on different spatial granularities

Figure 1 shows the heat generation per technology/source on different spa-

tial granularities: the country (NUTS0), sub-region (NUTS3), and community

(LAU) levels (from left to right). The level of spatial details increases from the

left to the right. In the middle, the residential and commercial heat supply in

representative rural and urban sub-regions, respectively, is presented. The rural

sub-region Mostviertel-Eisenwurzen (NUTS3 code AT121) shows high shares

of heat pumps (air sourced) and small-scale heat storage systems. In addi-

tion, synthetic gas and direct electric heating systems supply the heat demand.

The urban sub-region South Viennese environs (AT127) is mainly supplied by

ground-sourced heat pumps, biomass, and hydrogen. Air-sourced heat pumps

and, again, heat storage cover the remaining demand. Throughout the pie charts

within the figure, shares of heat generation using centralized heat networks are

indicated using blue edges. On the extreme right, an example of the resulting

centralized heat network at the community level for the four different scenarios

is presented. Within the four subfigures presenting centralized heat networks

(each for one storyline), the size of the points represents the amount of heat

demand using centralized supply in a community. The comparably high heat

demand in the Gradual Development scenario results in an extensive central-

ized heat network infrastructure (see lower right subfigure in Figure 1). The

other three centralized heat networks are characterized by fewer (less supplied

small sub-regions) and smaller points (less supplied heat demand by the central-

ized heat network). Figure 2 compares the heat generation by source between

2020 (today) and 2050 for the four different scenarios. The height of the bars

shows the absolute differences by source between both years, whereby a neg-

ative difference indicates less heat generation by this source in 2050 for the

Societal Commitment scenario. This scenario is more prominently presented as

this scenario has the lowest total heat demand (−18.15 TWh). In addition, the

scenarios with the lowest and highest differences, respectively, are marked for

each heat source and the total demand. For instance, the highest decrease is

seen in natural gas in the Directed Transition scenario (−53.76 TWh).
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Figure 2: Comparison of heat generation by source between the reference year 2020 (black
line) and 2050 in Austria. The height of the bars shows the absolute increase/decrease in 2050
in the Societal Commitment scenario. The scenarios with the lowest and highest differences,
respectively, are indicated by the markers.
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3.3. Sub-regions in Austria 2050 with high potentials for centralized heat supply

The potentials for centralized heat supply in Austria in 2050 are limited to

densely populated areas (urban areas). In particular, the results indicate eight

different sub-regions (NUTS3 regions) that are supplied by centralized heat net-

works (see Figure 3). Although the exact numerical numbers differ, the eight

sub-regions in each scenario are (partially) supplied by centralized heat net-

works. Table 4 shows the centralized and on-site (decentralized) heat supply in

the sub-regions. Thereby, the connection rate is assessed by the share of cen-

tralized heat supply in the total heat demand. Note that the population den-

sity varies in these sub-regions between 163 persons/km2 (AT211 - Klagenfurt-

Villach) and 5124 persons/km2 (AT130 - Vienna).

3.4. Centralized heat network topology at the community level

This section presents the centralized heat network topology of the sub-region

South Viennese environs (AT127) and all included communities. In Figure

3, this particular sub-region is marked by the orange box. Figure 4 shows

the projected centralized heat network topology. In particular, the network

topology is presented for the initial condition (as a result of the sequential

downscaling, i = 1) and the final condition (i = 51) of the network. The

distribution of the benchmark indicator values of the centralized heat network

depending on the number of iterations is presented in the middle. The mean

value is marked in orange. The supply area decreases with an increasing number

of iterations. In the community analysed here, the termination criterion of

the algorithm is reached when 25 communities are connected (starting from

75 in the initial condition). The number of connected population decreases by

38 %, starting from a population of 386.000 being connected to the centralized

heating network in the initial condition. After the final iteration (i = 51), the

termination criterion is reached. Note that the iterative reduction of small sub-

regions supplied does not necessarily result in one contiguous network (see the

results for the Gradual Development scenario in Figure 1).
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in TWh in %

Sub-region Storyline Centralized On-site Connection rate
S
o
u
th

V
ie

n
n
es

se
en

v
ir

on
s

(A
T

12
7)

Directed Transition 1.56 1.01 61

Societal Commitment 1.80 0.49 79

Techno-Friendly 1.13 1.45 44

Gradual Development 2.28 0.36 86

V
ie

n
n
a

(A
T

13
0
)

Directed Transition 8.60 5.58 61

Societal Commitment 9.90 2.70 79

Techno-Friendly 6.25 7.80 44

Gradual Development 12.57 1.96 87

K
la

g
en

fu
rt

-
V

il
la

ch
(A

T
2
11

)

Directed Transition 1.31 0.90 60

Societal Commitment 1.50 0.46 77

Techno-Friendly 0.56 1.66 25

Gradual Development 1.83 0.43 81

G
ra

z
(A

T
22

1)

Directed Transition 1.99 1.29 61

Societal Commitment 2.30 0.62 79

Techno-Friendly 1.45 1.85 44

Gradual Development 2.92 0.46 86

L
in

z-
W

el
s

(A
T

31
2
)

Directed Transition 2.68 1.74 61

Societal Commitment 3.09 0.84 44

Techno-Friendly 1.95 2.49 44

Gradual Development 3.92 0.61 87

S
al

zb
u
rg

an
d

su
rr

ou
n
d
in

gs
(A

T
32

3)

Directed Transition 1.61 1.05 61

Societal Commitment 1.86 0.51 78

Techno-Friendly 1.17 1.49 44

Gradual Development 2.36 0.37 86

In
n
sb

ru
ck

(A
T

33
2)

Directed Transition 1.36 0.93 59

Societal Commitment 1.56 0.48 76

Techno-Friendly 0.58 1.72 25

Gradual Development 1.90 0.45 81

R
h
ei

n
ta

l-
B

o
d
en

se
e

(A
T

34
2
)

Directed Transition 1.42 0.92 61

Societal Commitment 1.64 0.45 78

Techno-Friendly 1.03 1.32 44

Gradual Development 2.08 0.32 87

Table 4: Centralized heat supply and on-site heat generation in the eight Austrian sub-regions,
with potentials of centralized heat networks in 2050
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3.5. Comparison of 2050’s and today’s centralized heat networks using heat den-

sity as a criteria

In the following, the centralized heat network in Graz (AT221) is shown in detail.

This area is selected for illustrative purpose, because it provides representative

results in terms of both the applied downscaling and achievable heat density

benchmarks of centralized heat networks. Figure 5 shows the heat density of

the centralized heat network in the Techno-Friendly scenario.
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Figure 5: Heat density of the centralized heat network in Graz (AT221) 2050 in the Techno-
Friendly scenario. The gap of heat density between 2050s and today (black dashed line) is
marked by the pink bar.

The x-axis shows the three different downscaling techniques. The numerical

numbers indicate a significant increase of the heat density by the sequential

(+0.69 GWh/km2) and, in particular, the iterative downscaling (+3.61 GWh/km2).

However, comparing the heat density value obtained with the heat density values

of today’s centralized heat networks reveals a significant gap (see the hatched

pink bar). Here, in the Techno-Friendly scenario, it is 4.53 GWh/km2. Accord-

ing to references from the practice (see, e.g., in http://www.austrian-heatmap.

gv.at/ergebnisse/), the heat density of today’s networks is assumed to be

10 GWh
km2 with a connection rate of 90 %. The gap of heat density varies between
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the different scenarios. Figure 6 shows the heat densities in the sub-regions

and compares the results in the different scenarios. It shows the scenarios with

the lowest and highest heat densities. The bottom bar shows the value and

scenario with the lowest heat density among the four different scenarios for

each sub-region. The hatched bar indicates the increase of heat density and

the corresponding scenario compared to the lowest value. In five sub-regions,

the Techno-Friendly scenario is the scenario with the lowest heat density. The

Directed Transition scenario is the scenario with the highest heat density in

four sub-regions. Note that Vienna (AT130) is not shown for the sake of clarity.

The heat density there varies between 15.1 GWh
km2 in the Techno-Friendly and

30.3 GWh
km2 in the Gradual Development scenario.

South
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Klagenfurt-
Villach
(AT211)
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(AT221)
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(AT312)
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(AT342)
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Heat density of centralized heat networks in GWh
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heat density (bottom bar)
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Societal Commitment
Techno-Friendly
Gradual Development

Figure 6: Comparison of the heat density in different scenarios for each sub-region. The
bottom bar shows the scenario with the lowest heat density. The hatched bar indicates the
increase of heat density and the corresponding scenario compared to the lowest value.
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4. Conclusions and recommendations

Sustainable energy transition requires methods to bridge the gap between global

decarbonization pathways and the resulting necessary measures at a local level.

This work emphasizes the development of different downscaling algorithms,

which we apply to the Austrian heating sector (residential and commercial)

under several storylines in line with the Paris Agreement. We analyse results

at the community and grid levels, considering technology-specific infrastructure

requirements for the highly efficient usage of heat sources.

We found that the prioritized perspective of efficiency and local utilization of

renewable heat sources implies substantial changes for the further development

of district heating networks in the decarbonized Austrian heat supply toward

2050. This implies small-scale (< 1 TWh) and large-scale (> 12 TWh) district

heating networks in terms of the amount of heat delivered. The results demon-

strate that particularly densely populated areas are still beneficial supply areas

for district heating networks and offer adequate heat densities. Nevertheless,

most district heating networks in 2050 (seven of eight) will not reach the heat

density benchmarks of today’s networks and have a significant heat density gap.

However, considering the increasing importance of local renewable heat sources

feeding into district heating networks, we assume that these centralized net-

works will become required in the future and crucial in the decarbonization of

the heating sector.

We anticipate our work as a starting point for discussing the role of centralized

heat network infrastructure for enabling large-scale, highly efficient and local

integration of renewable heat sources such as biomass/waste, hydrogen, ground-

sourced heat pumps, or geothermal units. In particular, we see a need for further

research on the trade-off between local integration of heat sources and the cost-

intensive deployment of district heating networks. Future work may elaborate

on the increasing cooling demand and how the cooperative design of district

heating and cooling networks can contribute to the profitability of centralized
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heating and cooling infrastructure.
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Appendix A. Data and further empirical settings

Description Data availability Data source

GENeSYS-MOD v2.0 Heat generation by source [66] [31]

Austrian population density in 2019 Statistik Austria

Austrian population in 2050 Eurostat

Table A.1: Empirical data settings

Appendix B. Further methodology illustrations

Figure B.1 shows an illustrative example of the iterative downscaling algorithm

(Algorithm 2). It shows two different conditions of a simple graph. In the first

condition (i), the network topology consists of four nodes (A-D) and four lines.

It is shown in the subfigure in the top left. The table below (bottom left) shows

the amount of centralized and on-site heat supply as well as the indicator value

for each node. Note that the numbers are only for illustration. Node A has

the lowest indicator value (see marker [1] in the left table) and, therefore, its

amount of centralized heat supply (marker [2]) is reallocated to the remaining

nodes of the network (marker [3]). This process increases the on-site heat supply

accordingly at node A as this node is not connected to the network in condition

i + 1 and increases the amount of centralized heat supply at nodes B-D (see

the larger nodes in the top right subfigure). The heat demand of node A in

condition i+ 1 is covered only by on-site heat supply. Node A is removed from

the graph and thus disconnected from the network.
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Node Centralized On-site Demand Indicator value

A 4 6 10 0.5

B 10 5 5 1

C 10 5 15 1

D 10 10 20 1.5

[1]

[2]

[3]

Node B

Node C
Node D

Node A
Centralized supply area

(2)

(3)

Node B

Node C
Node D

Node A
Centralized Supply area

Node Centralized On-site Demand Indicator value

A 0 (-4) 6 (+4) 10 No value

B 11 (+1) 4 (-1) 5 1

C 11 (+1) 4 (-1) 15 1

D 12 (+2) 8 (-2) 20 1.5

Iteration

Condition i (Nodes A-D connected) Condition i+1 (Nodes B-D connected)

Figure B.1: Illustrative example of Algorithm 2 showing a simple graph with four nodes in
two different conditions. The node with the lowest indicator value in condition i (node A)
is removed from the graph (markers [1]-[3] in the table at the bottom left). The amount of
centralized heat supply from node A is reallocated to the remaining nodes B-D (see table at
the bottom right).
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