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Abstract 
 
Rooftop solar PV (RTSPV) currently accounts for 40% of the global solar PV installed capacity and 
one-fourth of the total renewable capacity additions in 2019. Being decentralised in nature, RTSPV 
technology can lead to consumer driven breakthrough in tackling climate change, reducing local air 
pollution, and providing affordable energy access to the areas lacking electrification. Thus, it is 
pertinent to assess the role of RTSPV in the future energy systems. Currently some global Integrated 
Assessment Models (IAMs) represent solar PV technology as an aggregation of Utility (UTSPV) and 
RTSPV deployment application, which makes it difficult to assess the potential of RTSPV, including 
related socio-economic transitions at a global scale. This can be attributed to limited studies being 
conducted to assess RTSPV as a separate deployment application from utility scale application.  
 
 To mitigate these gaps in the literature, here we assess the role of RTSPV technology at a 
global scale by designing a Machine Learning based assessment framework that is capable of 
estimating RTSPV potential for electricity generation at a global scale with a high spatiotemporal 
resolution and also provide a global building dataset that can aid in cross disciplinary research 
utilising geomapped global building data. The datasets generated by this framework were then used 
to create a new tool that will aid researchers in identifying and selecting fully mapped building 
footprint mapping from Open Street Map (OSM) dataset for use in their research. Further, we utilise 
this framework to estimate future changes (medium time horizon) in potentials using spatially 
explicit built-up extent and population datasets derived from Shared Socioeconomic Pathways (SSP). 
Finally, with the aid of 12-region MESSAGEix-GLOBIOM model and updated country-wise technology 
supply cost curves (derived from estimated potentials and costs), we assess the role of RTSPV in 
achieving low carbon energy and climate mitigation scenarios.  
 

 From the assessment, we find that for different growths envisioned under the SSPs, 
global rooftop area will increase between 3-26% by 2050 compared to its 2020 values. We also find 
that a rooftop area growth of 7-200% by 2050 over its 2020 values can be observed for different 
continents for SSP narratives. This highlights the importance of policy formulation with 
consideration to variation in growth rates between regions. The current global building stock has 
enough rooftop area to meet the current yearly aggregated global electricity demand. When 
converting the available global rooftop area to technical potential of RTSPV technology, a growth in 
technical potential of between 25-50% over 2020 values can be observed for different worlds 
envisioned by the SSP narratives. The largest growth in technical potential between years 2020-2050 
occurs in regions that have high quality solar resource endowment. In terms of technology attributes 
and building archetypes, net rooftop availability is the largest constraint in deployment of RTSPV 
technology. Our analysis show that a threshold of global net 50% rooftop availability is present 
beyond which only marginal uptake of RTSPV occurs. This threshold reduces to 30% when emission 
bounds are introduced into the global energy systems. Finally, the spatially explicit assessment 
showed that there is a mismatch between quality of solar resource and the hotspots of built-up areas 
which highlights the need for informed sub-national policy formulation dealing with RTSPV 
technology. 
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1. Introduction  
 
Low carbon and cost-effective electricity generation has the potential to contribute significantly in 
tackling the problem of climate change, energy access and sustainable development. Current 
electricity generation from renewable energy sources is primarily derived from wind, hydro and 
solar. Amongst these, solar photovoltaics (PV) are the fastest growing technology, of which rooftop 
solar PV (RTSPV) currently occupies 40% of the total installed solar PV capacity1. To better 
understand the role that RTSPV will play in the future energy systems, we need to assess the global 
electricity generation potential of it and analyse the dynamics of RTSPV in a global energy system 
using scenario analysis and modelling.  
 
 A global assessment of RTSPV technology is a complex task as the smallest unit of assessment 
is a rooftop. This complexity is compounded by the fact that building stock archetypes change 
between geographies and are dependent on the socio-economic and cultural factors prevalent in the 
region of interest (ROI). In the past, bottom-up2–7 modelling approaches were used to assess the roof 
area at sub-national and national scales. Here, the studies focussed on extrapolation of relationships 
between socioeconomic drivers and rooftop area from a small sample region to a larger ROI. 
Although these methods are good for rapid estimation of rooftop area, they often report lower 
accuracies8 than the highly spatially resolved methods that utilise large scale surveying of building 
stocks. On the other hand the highly spatially resolved techniques like LiDAR9,10 based rooftop 
mapping which use drone mounted laser to map landscape in 3D, and Machine Learning (ML) based 
Object detection11,12 have shown promising results for ROI covering continental scale. 

 
The Lidar based rooftop mapping is currently the most accurate method of determining the 

rooftop area along with capturing the rooftop attributes at scale. But these methods require 
significant investment in aerial imaging and computational costs as a result of which the most 
common implementation of LiDAR based rooftop mapping is limited to a city scale analysis. ML based 
models form the next class of methods that can aid in detection of building rooftops at scale, but 
these methods have shown limited suitability for a global scale study as the trained ML models 
require heavy investment in training data that should have enough diversity to cover a global ROI13. 
Additionally, server scale computational environment is required to train and generate inference 
from these trained ML model which requires significant cost and time investment. As a result of this, 
the largest ROI tackled by a ML based approach covers the continent of Africa14. It can be inferred 
from the progress made by ML based algorithm that a global scale study is feasible, but due to the 
complexities of computation time and generation of data for model training it may be sometime till 
we reach the milestone of open source global geomapped building dataset. 

 
A third stream of methods that can aid in rapid assessment of rooftop area at ROIs spanning 

continental scales is to use a hybrid approach. This approach utilises spatial relationship between the 
landcover mapping (derived from remote sensed imagery), socioeconomic metrices and actual on 
ground building stock attributes to infer rooftop area for out of sample regions. Two9,15 studies that 
have demonstrated this hybrid approach utilise either statistical inferencing or ML based modelling 
to generate these relationships.  

 
Generation of a harmonised dataset that documents the global rooftop area is of extreme 

importance to not only energy system modellers but also to the national and international research 
institutions as this spatially explicit dataset can aid in energy access, disaster management, 
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sustainable growth studies and in tackling the global problem of climate change mitigation. Of more 
importance is that a global harmonised spatially explicit dataset be generated that documents the 
future spatial growth in the rooftop area to aid in cross domain scenario analysis and policy 
formulation. Here, with an aim to assess the role of RTSPV in global energy transitions we extend the 
methodology that the author of this study have developed in a previous study published in Nature 
Communications16 where they have assessed the global RTSPV potential for renewable electricity 
generation in 2015, by incorporating the Shared Socioeconomic Pathways (SSP) narratives to assess 
the global rooftop area at a 1/8 degree spatial resolution and at a monthly temporal resolution for 
years spanning 2020-2050. The SSP narratives17 examine how global society, demographics and 
economics might change over the next century by quantifying the narratives into numerical metrics 
that can be interpreted by mathematical models. 
 

The global rooftop area estimates for SSP narratives along with updated global Utility scale 
potential assessment and costs were then used to run technology uptake and climate change 
mitigation scenarios using IIASA’s global 12 region MESSAGEix-GLOBIOM model. This way we 
analysed the role of rooftop solar PV in addressing the twin challenges of sustainable development 
and climate change with co-benefits in advancing the sustainable development goals (SDG) 7 and SDG 
13 in global energy systems using an updated technology specific potential and costs along with 
scenario analysis. The generated datasets can also aid in advanced spatially explicit energy access, 
energy planning and updated energy demand analysis by cross disciplinary teams housed at IIASA. 
Additionally, spatially explicit datasets will aid in not only informing global energy policy questions 
but also aid in analysing local energy policy questions using national MESSAGEix-GLOBIOM models.  

 
The novelty of this study lies in the first high resolution spatiotemporal global assessment of 

RTSPV technology for the current year and into the medium-term time horizon (2020-2050). 
Further, the tools developed in this study have utility not only for the energy system modellers but 
also for the research working in cross disciplinary research dealing with urban growth, energy access 
and climate change adaptation. The study also documents the first research into the effects of rooftop 
availability, panel efficiencies and emission bounds on RTSPV technology. Finally, this study 
demonstrates how a high-resolution spatiotemporal assessment of technology can be ingested into 
global energy models to inform energy policies ranging from city level to a global level.  

 
The study is divided into three parts – Methods, MESSAGEix framework implementation and 

Results. In methods, we briefly describe the methodological basis of the study and how the generated 
datasets can be accessed and used. In MESSAGEix framework implementation we discuss how the 
datasets generated in this study can be used in a global energy system model. Finally, we document 
our findings in the results section and conclude with discussion of the results in a broader context. 
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2. Methods 
 
To assess the role of RTSPV technology in global energy transitions, we divide the study into work 
packages - Data collection, Machine Learning framework development, and implementation of new 
potentials and costs in 12 region global MESSAGEix-GLOBIOM Model. The primary role of the ML 
framework is to train on the collected data and estimate rooftop area present in each tile of a custom 
global grid. The three work packages were executed sequentially with check and balances being 
implemented at the end of each work package to form the methodological basis of the study. The 
following paragraphs will discuss in detail how these work packages were implemented. 
  

2.1 Data collection  
We started the task of data collection by defining a global fishnet (FN) grid at a spatial resolution of 
1/8 degree. This grid cell has an approximate resolution of 14 km2 at equator and the size of the grid 
cell is dynamic based on the latitude it lies in. This spatial resolution of the grid was chosen to match 
the FN resolution of SSP derived population and built-up extent datasets which we discuss later in 
this report. A 14km2 FN also provides us with a large enough extent to capture city limits at scale and 
small enough extent to not cover the entire conurbations within itself.  
 
 Next, we chose 2020 as our base year with 2030, 2040, and 2050 as our medium-term time 
horizon projection years. Primary datasets collected during this study can be categorised into either 
a Vector Dataset (building footprint polygons and geo-mapped roads) or Raster Datasets (base year 
population, base year built-up extent, future SSP derived griddled population, future SSP derived 
griddled built-up extent and future country wise SSP derived GDP). The attributes of the different 
base year datasets and their sources are documented in Table 1 with visual depiction in Figure 1.  
 

From the collected data from big data sources, we observed that full country coverage of 
base year building polygon data is available for USA, UK, Australia, and Canada. Full continental 
coverage is available for Africa18 sans the North Africa covering countries above Sahara Desert.  For 
the rest of the world, building polygon data is available in Open Street Maps19, but the coverage is 
sporadic with good spatial coverage available for European continent. This mismatch between 
completeness of OSM derived building footprints encouraged us to create our own OSM Gap 
Detection Tool to capture selected data that has full completeness based on our FN grid. The base 
year population count data covers the entire global landmass hence no further filtering or sampling 
of the dataset was required. 

 
The base year global built-up extent dataset has global coverage for the year 2019. We 

assumed that the coverage at the end of 2019 will be equivalent to the year 2020 built-up extents. 
The built-up layer captures the extent of human made modifications on the earth. Using a suite of 
remote sensing techniques, these structures can be isolated from the natural landscape and the area 
occupied by these structures can be converted into a raster grid where each grid cell can represent 
either the built-up area contained within it or the percentage of area that is built-up. Naturally, built-
up extent will capture roads, tennis courts, carparks, airport runways etc. that do not form part of 
the building footprint and can sometime cover 2-3 times more area than a building footprint in a 
built-up raster cell. To account for this, we created a ML model to downscale the built-up extent to 
estimated rooftop area which we will discuss in next sections.  
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Table 1 | Base year layers used in this study along with their attributes and sources 

 
 

 
Figure 1 | Spatial spread of the base input datasets. Global geo-mapped roads extracted from Open Street Maps, a. Global 
human made built-up areas extracted from Copernicus Land Monitoring Program GLC V3.1 2020, b. Building footprint 
polygons derived from big data sources, c. Global geo-mapped population count for 2020 at 100m resolution derived from 
World POP project, d. The brighter yellow colour represents relatively high values of respective metrics in the datasets, with 
gradation to red colour representing low values of respective metrics in the datasets. Presence of light grey colour represents 
absence of data in the respective datasets with dark grey representing ocean. 
 

The next step in our study after collection of base datasets for the year 2020 is to collect SSP 
derived datasets for the years 2020, 2030, 2040 and 2050. In total, we collected SSP derived data for 
gridled population23, built-up extent24, and GDP25 per country data for the years 2020-2050. The 
gridled population count dataset and built-up extent dataset are available as raster dataset at 1/8-
degree resolution, with GDP per country dataset being mapped to respective country boundaries 
using administrative boundary dataset from GADM project V3.6 (https://gadm.org/data.html). The 
attributes of the different SSP derived datasets are documented in Table 2 with visual depiction of 
change in metrics between year 2020 and 2050 depicted in Figure 2. 

 
 

Layer Type Region Attribute Format Size 
FN Fishnet Grid Global ~ 3 million polygons Vector 

Polygon 
N.A. 
 
  

BF2020 2020 Building 
Footprint 

USA, Canada, UK, 
Australia, Africa 

~ 800 million 
buildings 

Vector 
Polygon 

~100 GB 

BF2019 2020 Building 
Footprint 

Rest of the world 
- OSM 

~ 250 million 
buildings 

Vector 
Polygon 

~200 GB 
  

PPLN2021 2020 Population 
Count 

Global 100m Resolution Raster ~1GB  

BU2022 2020 Built-up Area Global 100m Resolution Raster ~3GB 

RL2019 Road Length Global ~ 34 million km Vector 
Polylines 

~100 GB 

a b 

c d 



 

 
5 

 
Table 2 | SSP derived layers used in this study along with their attributes and sources 

 

 
Figure 2 | Relative change in metric for SSP2 derived datasets between 2020 and 2050.  
a, Global change in geo-mapped population. Red coloured areas have relatively lowest change in population between 2020 
and 2050, with blue-coloured areas representing relatively highest change in population. b, Global change in geo-mapped 
built-up areas. Red coloured areas have relatively lowest change in Built-up area between 2020 and 2050, with yellow-
coloured areas representing relatively highest change in Built-up area. c, country-wise change in GDP. Red coloured areas 
have relatively lowest growth in GDP between 2020 and 2050, with blue-coloured areas representing relatively growth in 
GDP. 
 

2.2 Base year calibration and spatial harmonisation 
After collection and verification of base year datasets, SSP derived datasets we conducted a 
harmonisation of base years across the datasets. As discussed previously, 2020 was chosen to be our 
base year and in line with that except for the base year building polygon and base year Built-up 
extent, all other layers have 2020 datapoints. To account for this, we assumed that the 2019 Built-up 
extent of our BU20 layer will represent the 2020 datapoints. Additionally, the BF20 layer polygon 
will be assumed to represent building footprints for 2020 year. These assumptions add-in a 
component of uncertainly in the harmonisation, but at a global scale these assumptions will have 
very slight effect on the final output of the study due to the design of our ML framework which we 
discuss in next sections. 
 

Layer Type Region Attribute Format Size  

PPLNX,Y* Future SSP derived 
griddled population 
count 

Global 1/8 degree Raster N.A. 
 

BUX,Y* Future SSP derived 
griddled built-up 
extent 

Global 1/8 degree Raster N.A. 
 

GDPX,Y* Future SSP derived 
country-wise GDP 

Global Country wise Vector 
Polygon 

N.A. 
 

* where "X" is the SSP narrative number, "Y" is the year for which the respective metric is provided. 
  

a b 

c 
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 After aligning the datasets to a common base year, we aligned the datasets on a common 
spatial resolution. For this we first started mapping the base year datasets to the FN grid. We 
overlayed the FN grid on top of the BF20, PPLN20, BU20 and RL20 datasets and used a cookie cutter 
approach to cut and aggregate the datasets within each unique FN grid cells. Next, BU20 layer 
boundary inside each FN was chosen as the region of interest and any datapoint outside this BU20 
boundary but inside the FN boundary was not considered. This provided us with the first stage of 
spatial harmonisation where only datapoints inside the BU20 layer extents were considered. To 
achieve this, we used area outside the BU20 layer as a masking layer to select datapoints that are not 
masked, Figure 3.  
 

The base year vector datasets representing non-masked BF20 and RL20 datasets were 
processed on the ARCGIS PRO V2.8 platform, where we used the inbuilt multicore enhancements to 
process the cutting and aggregation of vector dataset at scale. After the cutting step, each building 
polygon and road polyline feature inside each unique FN grid cell was aggregated to represent a 
single value per FN grid cell. It should be noted that a polygon falling on the FN grid cell boundary 
was intersected at the boundary and only the area of the polygon inside of the respective FN was 
attributed to that FN. 

 

 
Figure 3 | Process flow of data aggregation for FN grid   
The process starts with creation of a FN grid of 1/8 degree resolution over global land mass. Next, BU20 layer is used as a 
masking layer to delineate areas where built-up structures are present in year 2020. The masking layer along with the FN grid 
are then used to map vector and raster datasets to FN grid that underlie the masking layer. Finally, the vector and raster 
dataset values are aggregated for each fishnet to generate single value per FN grid cell. Here the vector datasets intersecting 
FN boundary are split at the boundary and aggregated to the respective FN grid cells while the raster datasets are aggregated 
by the means of weighted sum. 

 
 The base year raster datasets representing non-masked PPLN20 and BU20 datasets were 

processed on the Google Earth Engine26 platform. Both the datasets were clipped at the boundary of 
the overlapping FN and the pixels completely inside the FN were aggregated as is, with pixels falling 
on the boundary being aggregated using weighted summation where the value attribution of the pixel 
in consideration is calculated based on the area of the pixel inside the FN. It should be noted that 
while PPLN20 dataset represents simple population count at 100m resolution, the BU20 layer pixel 
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represents the percentage of built-up area inside each 100m pixel. Hence, the aggregation of BU20 
pixel was done by multiplying the pixel area by pixel value to represent true built-up area 
represented by each 100m resolution pixel.   

 
The SSP derived population PX,Y and BX,Y  for Y equal to 2020 were spatially harmonised to 

FN grid by mapping the values from spatially harmonised PPLN20 and BU20 datasets derived in the 
previous steps. This aids in first providing a common base year value for estimation of future 
aggregated rooftop areas per FN grid cell and second removes any mismatch of datapoints and data 
values between the base datasets and SSP derived datasets. The mismatch between the datapoints 
occur due to PX,2020 and BX,2020 using exogenous methodologies and frameworks to estimate the values 
in their respective datasets. As an example the BX,2020  dataset points depicting presence of built-up 
area is derived from a model that uses GHSL27 layer from JRC for the year 2015 thereby not 
incorporating some newly developed areas in east China, Figure 4. Additionally, mismatch between 
data values can occur when for a FN grid cell BX,2020 layer either under or over represents the value 
depicted by BU20 dataset. As a result of these mismatches, for a BU20 layer’s global aggregated built-
up area of 1.46 million km2, BX,2020 layer only represents 0.98 million km2 of global aggregated built-
up area. This highlights the importance of harmonising the datasets both at a common temporal and 
spatial slice. 
 

 
Figure 4 | Discrepancies between BU20 layer and SSP derived BUX,2020 layer 
a, Global FN grid cell depicting the discrepancies between BU20 and BUX,2020 layer. Red and orange coloured region FN grid 
cells have BU20 values more than BUX,2020 dataset values while blue FN grid cells have BUX,2020 values more than BU20 values. 
In general, the blue coloured FN grid cells signify overrepresentation of built-up area in BUX,2020 layer and red coloured regions 
signify underrepresentation of built-up area. b, zoomed in region of Asia where red coloured FN grid cell are observed in East 
China with blue coloured grid cells being observed in coastal regions. c, zoomed in region of east coast of USA where blue 
colour FN grid cells are observed in coastal regions.  

a

b c
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After harmonising the PX,2020 and BX,2020 datasets for each of the SSP scenarios, the future 
datapoint and data values per FN grid cell of the respective datasets were recalculated using the 
following 

 
!!,# = (!!,# − !!,$%$%) + !!'(20 

 
 

+!,# = (+!,# − +!,$%$%) + +,20 
 
where, for each unique FN grid cell, X is the SSP scenario, Y is the year for which datapoint and value 
is calculated, PPLN20 is the base year population count and BU20 is the base year Built-up area. This 
effectively captures the absolute growth in the metrices per FN grid cell over the harmonized base 
datasets. For GDP value per FN grid cell, we devised population weighted down mapping of country 
level GDP value using the following  
 

GDP!,# =
GDP&,!,#
!&,!,#

∗ !!,# 

 
where, for each unique FN grid cell, X is the SSP scenario, Y is the year for which datapoint and value 
is calculated, C is the country for which aggregated metrics are calculated at country level. This GDP 
downscaling methodology although being imperfect, adds in a new feature layer representing GDP 
weighted population count per FN grid cell for training our ML model discussed in next section. 
Finally, we create the population density layers for both base year datasets and SSP derived datasets 
using the following   
 

PD20 = PPLN20
3('()*

 

 

PPLND!,# =
P!,#

3('()*
 

 
where, for each unique FN grid cell, X is the SSP scenario, Y is the year for which the datapoint and 
data value is calculated and FNArea is the geodesic area occupied by the FN grid cell. 
 
 

2.3 Machine Learning model  
We designed a ML based framework based on XGBoost28 ML model to estimate aggregated rooftop 
area per FN grid cell. The ML framework accomplishes the task of first extracting FN grid cell from 
BF20_OSM layer derived from OSM global building footprint dataset that have complete building 
footprint polygon mapping and second to estimate the aggregated rooftop area per sample FN grid 
cells. The flow of data and steps involved in development of ML framework is shown in Figure 5. 
 

 We start the development of the ML framework by extracting sample FN grid cells 
from the base year datasets. The FN grid cells that have complete coverage for PD20, BU20, RL20 
and BF20 datasets are selected as sample FN grid cells and the extracted sample layers are named 
here as PDS20, BUS20, RLS20 and BFS20 respectively. The PDS20, BUS20, RLS20 sample FN grid cells 
then act as independent variables with BFS20 acting as dependent variable for the M1 model. The M1 
model is then trained by using 10-fold cross validation strategy and 1000 hyper tuning iterations. The 
10-fold cross validation strategy enables the use of complete input dataset for training purposes and 

(1) 

(2) 

(3) 

(4) 

(5) 
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aids in reducing the problem of overfitting in conjunction with 1000 rounds of hyper tuning 
iterations. The trained M1 model then accepts PD20, BU20, RL20 layers as drivers to estimate the 
aggregated gross rooftop area for all the global FN grid cells, BFFN20 layer. 
 

 
Figure 5 | Overview of ML framework  
The ML framework is divided into two stacked XGBoost models. The first model “M1” aids in selection of samples from global 
OSM building footprint dataset and outputs result for OSM Gap Detection tool. The second model “M2” combines the samples 
from first model with BFS20 samples and uses the SSP derived drivers to estimate the aggregated rooftop area per FN grid cell. 

 
At this stage, we have a global estimate of rooftop area for the year 2020 which we then use 

to extract samples from BF20_OSM layer. For this, we compare at FN level the values of BFFN20 and 
BF20_OSM layer. For the FN grid cells where the ratio between BF20_OSM and BFFN20 is in between 
1.1 and 0.9 i.e., where BF20_OSM values show 90- 110% of BFFN20 values, those FN grid cells are 
selected for their completeness of building footprint mapping and extracted as BFOSM20 sample layer. 
This comparison between M1 model predicted values and OSM derived values also lends itself to 
development of a OSM Gap detection tool which we discuss in further in next section.  

 
After tuning, training, and inferencing of BFOSM20 layer from M1 model, we shift our focus to 

the M2 Model which will enable the estimation of global gross aggregated rooftop area per FN grid 
cell for SSP narratives. For this, we combine the BFS20 samples from base year dataset with BFOSM20 
samples. We also resample PD20, BU20 and GDPX,Y layers to collect samples based on FN grid cells 
covering our combined building footprint samples to generate PDS,OSM20, BU S,OSM20 and GDPS,OSM,2,2020 

layers. The GDPS,OSM,2,2020 layer here represent population based downscaled GDP per sample FN grid 
cell for samples covering base year and OSM derived Building footprint FN grid cells for SSP2 
narrative and 2020 year. The PDS,OSM20, BUS,OSM20, GDPS,OSM,2,2020 sample FN grid cells then act as 
independent variables with BFS20 and  BFOSM20 acting as dependent variable for the M2 model. The 
final sample FN grid cells used in our study is shown in Figure 6. 
 

M1 Model
PDS20
BUS20
RLS20

BFS20

Estimated 
rooftop area 
per FN grid 

cell 
(BFFN20)

BF20_OSM

Selected FN 
samples from 

BF20_OSM 
layer

(BFOSM20)

M2 Model
PDS,OSM20
BUS,OSM20

GDPS,OSM,2,2020

BFS20

PP
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D
X

,Y

BU
X

,Y
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P X

,Y

BFX,Y

OSM Gap 
Detection tool

PD
20
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20
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L20

Selection of samples from OSM derived building footprint dataset Estimation of aggregated rooftop area per FN

Model inputs color key
Blue: Independent variables
Green: Dependent variable
Red: Drivers
S: Sample FN grid cells
S,OSM: Base year samples plus OSM derived samples
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Figure 6 | Global distribution of sample FN grid cells  
For FN grid cells covering USA, Canada, Africa, UK, and Australia BF20 layer was used. For the rest of the world, OSM derived 
FN grid cell was used after selecting them from inferencing of M1 model. 

 
The M2 model is trained by using 10-fold cross validation strategy and 1000 hyper tuning 

iterations. At the conclusion of this step, we have our final M2 model which then accepts PPLNDX,Y, 
BUX,Y and GDPX,Y layers as drivers to estimate a global BFX,Y layer for five SSP narratives and years 
ranging from 2020-2050. The final BFX,Y layer is stored as individual geopackage files having 1/8 
degree FN grid cell resolution with value representing the aggregated gross rooftop area inside the 
FN grid cell for further analysis, Figure 7.  

 
Although, the trained M1 model in conjunction with SSP derived drivers can aid in generation 

of final BFX,Y layer, but we could did not implement this as RL20 layer data is only available for base 
year of 2020 and multivariate regression would be required to estimate its value beyond 2020 which 
would add an extra layer of uncertainty in our results. Additionally, selection of BUS,OSM20 and merger 
of this layer with BF20 layer provided us with additional global data points to retrain a new model 
M2 which would be more compliant with global trends rather than just the countries/region covered 
by BF20 dataset. Extended details of the attributes of the input datasets are documented in Table 3. 

 
 
Table 3 | Data attributes for input building footprint datasets for M2 Model 

Sample Areas Input Rooftop Area (km2) # Individual Polygons FN Grid Cell Covered 

Australia 2,418 ~10 million 

~100,000 
UK 3,450 ~33 million 

USA 29,930 ~ 144 million 

Canada 2,500 ~19 million 

AFRICA 17,166 ~300 million 

BFOSM20 21,000 ~140 million ~2,500 

 
 



 

 
11 

 
Figure 7 | Visual depiction of BFX,Y layer for selected global regions. 
The image panels depict the pixelwise output of BFX,Y layer classified by a graduated colour ramp. Each pixel in the panel 
represents the aggregated gross rooftop area per FN grid cell. Growth in rooftop area per FN grid cell can be observed for East 
China, West Africa, and Central European areas. 
 

2.4 Open Street Map gap detection tool 
Open Street Map derived data is being used in many studies as a source of ground truth mapping and 
for calibration of big data models. Additionally raw OSM data in the form of building polygons, road 
mapping is being used extensively in resource accessibility studies and vulnerability mapping29. 
Primary reason for uptake of OSM data can be attributed to its free accessibility and presence of more 
than a million active users who are updating the digital planet files on an hourly basis. Although the 
quantity of data that is present inside the OSM database is vast, studies using them often must do 
significant pre-processing to extract data that is suitable for their use case. Additionally, users of the 
OSM dataset struggle with lack of validation studies done on OSM datasets.  
 For data attributes dealing with global roads, one study30 highlights that’s the OSM global 
road dataset is 80% complete. Similar studies for global building footprint datasets are currently 
limited to either country level studies31 or regional studies (https://github.com/hotosm/osm-
analytics). As a by-product of the output of our M1 model, we have created a tool that can overlay our 
predicted rooftop area mapped to the FN grid on top of the raw building polygon dataset and hence 
estimate the completeness of the base OSM dataset. We have created a layer that is derived from M1 
models output that represents percentage completeness of the OSM building polygon dataset by 
providing values between 0-6. The base dataset for OSM comparison was procured in August 2021.  
 

A value of 0 represents that either OSM data is missing, or data cannot exist at that FN grid 
cell. A value of 1 represents that OSM dataset coverage is 100% in that FN grid cell. Any value between 
0.9-1.5 can be considered as representing 100% completeness of the OSM dataset as our M1 model 
does have under or over prediction characteristics in some regions based on driver metrics. A value 
greater than 1.5 should be representative of regions in OSM that may not have population presence 
but have OSM building polygon tags e.g., greenhouses, industrial complexes around major shipping 
ports etc. Since our M1 model relies on population as an important metric, in FN grid cells having 
completeness value greater than 1.5, our model gives lower value than OSM dataset value. Another 
reason for this can be attributed to wrong tag being assigned to building polygons or misclassification 
of non-building built-up structure as building polygon inside OSM dataset. An example of 

SSP3 - 2050
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Base 2020 SSP4 - 2050 SSP5 - 2050
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a
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completeness value dataset is shown for Europea in Figure 8a, with example cases of completeness 
value greater than 1 shown in Figure 8b, Figure 8c and Figure 8d. 
 
 

 
Figure 8 | Output visualisation of OSM gap detection tool. 
Output of the gap detection tool dataset with each individual FN grid cells classified by the completeness index, a. b, zoomed 
in view of the ROI bound by white bounding box in figure 8a. The values inside the FN grid cell represent the completeness 
index value for that FN grid cell. c, image displaying a sample of area marked inaccurately in OSM dataset inside the FN grid 
cell with completeness index of 1.32. d, overlay of OSM polygon on incorrectly identified buildings in figure 8c where 
greenhouse installations have been marked as buildings leading to the FN representing value greater than 1. 

 
2.5 Technical potential assessment 
For converting the estimated rooftop area to electricity generation potential per month, we utilised 
the PVOUT factor from World Bank’s PV potential dataset32 for locations between 600N and 450S, 
covering over 99% of the world’s population. This dataset is provided as a griddled raster dataset 
representing kWh produced by each kWp installed capacity per month. The locations outside the 
latitudes were assigned a constant PVOUT value of 3.5 kWh/kWp/day (peak).  
 

We first start by calculating the kWh/day of solar PV derived electricity from a 1kWp panel 
for each of the global FN grid cell by taking the mean of the raster cell values from PVOUT dataset. 
The PVOUT dataset is presented at a 1km raster cell resolution. Next, we assume that for each FN grid 
cell the estimated rooftop area is the total available rooftop area for rooftop solar panel installation. 

a

b c d
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Additionally, we assume that the rooftops are flat, the orientation is east-west, slope of the building 
is non-existent, the panels fully cover the available rooftop area and are placed at the optimal angle 
for the given latitude. These assumptions represent the ideal case for installation of rooftop solar PV 
technology and represent the highest possible potential that can be generated from a given rooftop 
area. We have included details in Usage Notes section for tailoring the datasets generated using these 
assumptions for different use cases.  

 
 Next, we assume that all the installed panels have a 10% efficiency and require 10m2 

area for 1kWp installation capacity. This assumption aids in direct conversion of estimated rooftop 
area into installed capacity. The installed capacity is then converted into monthly potentials using 
the FN aggregated PVOUT dataset. Additionally, the PVOUT layer was converted into annual capacity 
factors for the FN grid cell they lie in. Conversion from estimated rooftop area to technical potential 
is achieved using following equations 

 

IC!,# =
+3!,#
10  

 
POT!,#,+ = IC!,# ∗ !9:,;,-,+ ∗ <+ 

 
Where,  
ICX,Y is the installed capacity in kWp per FN for SSP narrative X and year Y 
BFX,Y is the aggregated gross rooftop area per FN for SSP narrative X and year Y  
POTX,Y,M is the monthly potential in kWh for M month per FN for SSP narrative X and year Y  
PVOUTFN,M is the aggregated PVOUT value for M month per FN for SSP narrative X and year Y  
DM is the days in the respective month M  
 
 
 
 
 
 
 
 
 

  

(6) 

(7) 
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3. Data records 
The datasets generated in this study can be categorised into  

1) OSM gap detection dataset. 
2) High spatial resolution global estimated rooftop area datasets for SSP narratives for years 

2020-2050. 
3) Monthly temporal resolution global RTSPV technical potential assessment datasets for SSP 

narratives for years 2020-2050. 
 

The details of the datasets are documented in Table 4. The OSM gap detection tool dataset is 
provided as a geopackage file. In this file, individual FN grid cells are represented by a polygon 
enclosed by the FN boundary with percentage completeness values being stored for each polygon. 
The dataset is provided in an EPSG:4326 format and is valid for base OSM building dataset accessed 
on 1st August 2021. We plan to update this dataset on a biannual basis as the processing time for the 
entire globe is approximately 4 days on a server cluster comprising of 24 cores.   

 
 The global estimated rooftop area per FN grid cell dataset for each SSP narratives is provided 
as a csv file with one column containing FN_ID representing the FN grid cell ID, one column 
containing the respective metrics and finally one column documenting average yearly capacity 
factors for the FN grid cell. Similar structure is used for the monthly global technical potential dataset 
for SSP narratives. To enable conversion of csv files to a format compatible with GIS environment, 
we have provided a FN_Poly dataset as geopackage file along with a csv file with WKT formatted FN 
polygon geometries. The FN_Poly file in conjunction with other datasets can be used to convert csv-
based datasets into GIS compatible layers for spatial analysis. For this we have provided an ipython 
notebook file for python-based dataset conversions. 
 
Table 4 | Dataset Attributes for output datasets 

 
 
 

Name Usage Type Platform 
# FN 

polygons 
OSM_GDT 

OSM Gap Detection Tool 
Geopackage Github 3.5 mil 

SSP_X_RA_Y Global rooftop area for 
SSP narrative X and year Y 

CSV figshare 3.5 mil 

SSP_X_POT_Y_M Global technical potential 
for SSP narrative X, year Y 
and month M 

CSV figshare 3.5 mil 

FN_Poly 
Fishnet grid cell polygon 
boundaries 

Geopackage and 
CSV with WKT 

geometry 

figshare 3.5 mil 

Python script Combining Datasets with 
FN_poly to visualise in GIS 
environment 

.ipynb file figshare 3.5 mil 
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4. Technical validation 
The datasets presented in this study have undergone end to end technical validation for the base year 
of 2020. The validation is performed for M1 and M2 model inputs, performance of M1 and M2 models, 
estimation validity of outputs of M1 and M2 models and finally verification of estimations generated 
by the M1 model. For datasets covering years 2030-2050, we unfortunately could not provide a true 
verification of validity of the results as the drivers used to estimate these values represent values in 
future which are difficult put an accuracy value on.  
 
 The input validation of the base year datasets and SSP derived drivers are presented in Table 
5 as link to the validation reports generated by either the data providers or the peer reviewed 
publication which form the basis of the data. Due to the scale of the dataset, assumptions and the 
limitation of methods used, the big datasets used in this study are expected to have errors at a higher 
resolution when verifying at a per building level, but at an aggregated country/ regional spatial 
resolution these datasets have shown acceptable performance. 
 
Table 5 | Validation studies and articles for input datasets 

Dataset  Format Validation study link 
Building Footprints Vector  Heris, M.P., Foks, N.L., Bagstad, K.J. et al. A rasterized building footprint 

dataset for the United States. Sci Data 7, 207 (2020).  
https://doi.org/10.1038/s41597-020-0542-3 
  

Population Raster Lloyd, C., Sorichetta, A. & Tatem, A. High resolution global gridded data for 
use in population studies. Sci Data 4, 170001 (2017). 
https://doi.org/10.1038/sdata.2017.1 
  

Road Vector Barrington-Leigh, C., & Millard-Ball, A. (2017). The world's user-generated 
road map is more than 80% complete. PloS one, 12(8), e0180698.  
https://doi.org/10.1371/journal.pone.0180698 
  

PVOUT 
 
 
Built-up area 2020 

Raster 
 
 
Raster 
 

ESMAP. 2019. Validation Report: Global Solar Atlas 2.0 Validation Report.  
Washington, DC: World Bank. 
 
Tsendbazar, N.E., Tarko, A., Linlin, L., Herold, M., Lesiv, M., Fritz, S., 
Maus. V; (2020): Copernicus Global Land Service: Land Cover 100m: 
Version 3 Globe 2015-2019: Validation Report; Zenodo, Geneve, 
Switzerland, September 2020; doi: 10.5281/zenodo.3938974 
 

SSP derived Built-up area 2020-2050 Raster Gao, J., O’Neill, B.C. Mapping global urban land for the 21st century with 
data-driven simulations and Shared Socioeconomic Pathways. Nat 
Commun 11, 2302 (2020). https://doi.org/10.1038/s41467-020-15788-7 

 
SSP derived Population 2020-2050 Raster Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios 

consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 
084003 (2016). https://doi.org/10.1088/1748-9326/11/8/084003 

 
SSP derived GDP 2020-2050 Dataset Crespo Cuaresma, J. (2017). Income projections for climate change 

research: A framework based on human capital dynamics. Global 
Environmental Change, 42, 226–236. 
https://doi.org/10.1016/j.gloenvcha.2015.02.012 
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Learning accuracy of the M1 and M2 models are determined by the significance of the 
correlation between dependent and independent variables used to train the model. Further, a 10-
fold cross validation strategy to expose the models to various combinations of input data to reduce 
model overfitting was used. Finally, the distribution of model output with respect to the dependent 
variables and spread of the errors were evaluated to choose the best model. Figure 9 documents the 
results of these checks.  
 

 
Figure 9 | Performance metrics of M1 and M2 models. 
a, Correlation heatmap representing Pearson’s correlation between pairs of independent and dependent variables of M1 
model. High correlation can be observed for the depend variable (BF20) and independent variables (PD20, RL20, and BU20). 
b, graph representing relationship between M1 model’s dependent variable and predicted values. High fidelity can be observed 
between dependent variable and predicted values. c, spread of absolute difference between dependent variable value and 
predicted value from M1 model at a per FN grid cell basis. Majority absolute error of ±0.25 km2 can be observed for a 1/8 degree 
FN grid cell. d, Correlation heatmap representing Pearson’s correlation between pairs of independent and dependent 
variables of M2 model. High correlation can be observed for the depend variable (BFS,OSM20) and independent variables 
(PDS,OSM20, GDPS,OSM2,202020, and BUS,OSM20). e, graph representing relationship between M2 model’s dependent variable and 
predicted values. High fidelity can be observed between dependent variable and predicted values. f, spread of absolute 
difference between dependent variable value and predicted value from M2 model at a per FN grid cell basis. Majority absolute 
error of ±0.05 km2 can be observed for a 1/8 degree FN grid cell with slight left skewness in the error distribution leading to 
model prediction showing slight underestimation of ground truth at FN grid cell level.  
  

 The final output of the M2 model (BFX,Y) was further evaluated for discrepancies 
between aggregated country-wise input base year big data derived BF20 values and aggregated 
country-wise M2 models estimated outputs for SSP2 narrative in year 2020 (BF2,2020). These evaluates 
were conducted by aggregating the FN grid cell values for those FN grid cell that fall within the 
geographic boundaries of the country being evaluated. Overall, we observed high fidelity between 
the ground truth and estimated values at a country level. On a higher spatial resolution, we also 
compared the sub country level estimations for USA based on ASHRAE climatic regions. Here also 
high fidelity was observed between ground truth and predicted values. This way, we could validate 
our results to a high degree of certainty by comparing results at sub country level and country level. 

M1 Model M2 Model

a b

c

d e

f
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Table 6 documents the results for sub country level comparison and Table 7 documents the 
comparison at country level. 
 
Table 6 | Result comparison of M2 Model’s output at sub country level for USA 

Climatic Zone Ground Truth (km2) M2 Model's output (km2) Absolute percentage error 
3 734.2 632.5 13.8 
4 76.2 108.4 42.3 
6 4,102.5 3,788.5 7.7 
7 700.5 706.3 0.8 
9 5,530.6 5,532.2 0.0 
10 1,028.1 1,073.5 4.4 
11 1,426.3 1,267.3 11.1 
12 5,666.1 5,818.6 2.7 
13 215.9 218.4 1.1 
14 950.7 832.1 12.5 
15 6,632.4 6,669.0 0.6 
16 68.3 77.3 13.2 
17 410.8 406.8 1.0 
18 1,892.0 1,900.9 0.5 
19 24.9 25.9 4.2 
20 12.1 16.4 35.2 
21 199.6 227.1 13.8 
22 1.6 1.5 9.5 
24 7.9 144.5 1,736.0 
Total 29,680.5 29,447.1 0.8 

 
 
Table 7 | Result comparison of M2 Model’s output at country level 
Country Ground Truth (BF20) km2 M2 Model's Predicted value (km2) Note 
Australia 2,418 2,527 Seen data by model 
UK 3,450 3,492 Seen data by model 
USA 29,930 30,025 Seen data by model 
Canada 2,500 2,753 Seen data by model 
Ireland 456 424 Unseen data by model 
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5. Usage notes 
The aggregated rooftop area datasets are generated with an assumption of full one to one mapping 
between building footprint and rooftop area. Although it is common to have larger rooftop area than 
building footprint due to presence of rooftop superstructures, we have not considered this due to 
the scale of the analysis which looks at global region of interest rather than per building. Similarly in 
higher latitudes due to slope of the rooftops, total building rooftop area will be higher than the 
building footprint area. Hence, it is advised to use region specific conversion values when using these 
datasets for city level analysis. Additionally due to the nature of the ML model used for estimation of 
rooftop area, we recommend an error margin of ±0.1 km2 per FN grid cell.  
 
 For the technical potential assessment, we assumed that rooftops are flat with solar panels 
being placed at the latitude specific optimal angle. We also assumed that the entire estimated rooftop 
area will be fully covered by solar panels and the panels will be devoid of shadows. This assumption 
culminates as our dataset representing the best-case scenario for technical potential generation. In 
wider literature, a rooftop availability factor of 0.3 is used to convert gross rooftop area to net rooftop 
area to account for unsuitable rooftops due to orientation and slope attributes of building stocks. For 
the users of this dataset, we recommend using region specific rooftop availability factors if known 
else use 0.3 as the factor for more practical results.  
 
 Our technical potential dataset is generated with an assumption of 10% panel efficiency or 
10m2 or rooftop area per 1kWp panel requirement. To re-estimate the potential for higher panel 
efficiency, we recommend dividing the potential dataset by 10 and multiplying with area required 
for the new panels of 1kWp capacity. For example, a 20% efficient panel will require 5m2 area for a 
1kWp panel thereby doubling the potentials represented in our datasets. This flexibility of after the 
fact analysis aids in generating datasets that meets user specifications without redoing the entire 
analysis from scratch.   
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6. Implementation of data in the MESSAGEix model 
Global energy system (GEM) models and Integrated Assessment models are used to inform on the 
policy and scenarios that are at the intersection of climate change mitigation and energy access 
research focus. Due to lack of global datasets and studies analysing the RTSPV technology as a 
separate technology from Utility scale counter parts, the GEMs and IAMs sometimes have limited 
insights for RTSPV focussed studies33. 
 

MESSAGEix modelling platform34 is a current state of art global energy system model 
developed by IIASA. Over the years, the solar PV technology has been represented as a single 
technology that represent both Utility scale and RTSPV scale technology. Naturally, updating the 
global energy system model of MESSAGEix-GLOBIOM1 will be the best testing grounds for the updated 
RTSPV potential datasets generated in the first work package of this study. For this, we first start by 
calibrating the global model with the new datasets and with updated costs for RTSPV and UTSPV. 
Then we recalculate the UTSPV potentials based on the FN grid used in first work package. Then we 
undertake scenario analysis to analyse the effects of updating the potentials and costs. Finally, we 
discuss the scenario results and demonstrate the measurable impact of conducting the assessment at 
a new high spatiotemporal resolution. 
 

The Global MESSAGEix-GLOBIOM model comprises of 12 regions covering 195 countries. The 
regions are created by grouping countries that are linked by common trade mechanisms and 
geographic affinity. The global model can project the future energy systems by optimising the supply 
and demand streams within the energy system along with constraints on emission and land use 
change. The model is technology rich and represents renewable technologies in the form of step 
curve of generation potential based on capacity factor bins. Additionally, investment costs, 
operational costs and historical technology capacity can be implemented for each capacity factor bin. 
We implemented the task of calibration of base global MESSAGEix-GLOBIOM model by updating 1) 
technology potentials and capacity factor bins, 2) investment cost of the technology 3) historical 
installed capacity. These tasks were performed for both RTSPV technology and UTSPV for all the 12 
world regions.  
 
 The first step in model calibration is to reassess the UTSPV potentials for all the countries 
covered by 12 world regions. For this, we utilised a global landcover mask (L2 mask) from World 
Bank’s solar potential by country report35. The L2 mask combines all the global land area which is 
suitable for installing UTSPV. This mask accounts for suitable distance from urban areas, terrain 
topology, croplands, and protected areas where UTSPV deployment is not preferred either due to 
international conservation treaties or due to unsuitable land use. Next, we mapped the L2 mask to 
our FN grid cells that we used for RTSPV assessment. This mapping provides the advantage of having 
both UTSPV and RTSPV technology assessments being done on a common spatial resolution. Further 
we assumed that the entire land area covered by L2 mask inside the FN grid cell has the potential to 
house solar panel arrays, the panels will have 10% efficiency or 10m2 of area will be required to install 
a 1kWp panel and the panels are placed at an optimal angle suitable for the latitude where FN grid 
cell is present. Next, we multiplied the installed capacity per FN grid cell with the POTX,Y,M layer to 
generate monthly UTSPV technical potential layers for five SSP narratives. Here it is important to 

 
 
1 https://docs.messageix.org/projects/global/en/latest/ 
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highlight that unlike RTSPV potentials which change year on year based on drivers, UTSPV have been 
kept constant across the years. 
  
 The second step in model calibration is to combine the monthly assessed potentials for 
RTSPV and UTSPV into a yearly value. This is done to align the potentials with the annual time 
resolution of current global MESSAGEix-GLOBIOM model. The yearly aggregated potential values 
were then further grouped by yearly average capacity factor bins for 12 world regions. This step 
enables the representation of two separate technologies i.e., RTSPV and UTSPV in a structure that is 
complaint with the current global MESSAGEix-GLOBIOM model.  
 

The capital cost and operational expenditure attribution of installing the RTSPV and UTSPV 
was derived from the renewable cost of generation 2020 report of IRENA36. For each of the 12 regions 
inside the MESSAGEix-GLOBIOM Model, we chose representative country(s) from IRENA report and 
took average of the values. Similar exercise was conducted for historical installed RTSPV capacity per 
region using the historical net capacity addition data from IEA’s renewables 2020 report37. The 
updated costs and potentials for 12 world regions in global MESSAGEix-GLOBIOM model are 
documented in Table 8. The updated potentials, costs and historical capacity were then added to the 
base MESSAGEix-GLOBIOM model using custom python scripts that divide potentials into capacity 
factor bins and ingests the data into the base global model.  
 
Table 8 | Cost and potential of RTSPV and UTSPV, calibrated for 12 Region Global MESSAGEix-
GLOBIOM Model 

MESSAGEix-
GLOBIOM 
Region 

Current  
cost  
($2005/KW)a 

New Cost  
RSTPV  
($2005/ 
KW)b 

New Cost  
UTPV 
($2005/ 
KW)b 

Current 
Potential  
(GWa)c 

New 
RTSPV  
Potential 
(GWa)d 

New 
UTSPV  
Potential 
(GWa)d 

AFR 1,238 1,166 866 28,780 469 312,691 
CPA 671 909 770 22,672 105 25,921 
CHN 671 563 491 22,672 1,134 76,597 
EEU 839 1,446 601 35 172 8,174 
FSU 983 1,104 827 7,550 378 90,990 
LAM 1,178 741 857 21,399 556 219,156 
MEA 1,025 1,104 770 52,620 377 140,746 
NAM 1,189 2,927 897 21,384 869 123,404 
PAO 1,187 1,287 1,091 23,766 251 37,844 
PAS 910 1,104 827 1,969 439 25,000 
SAS 606 530 470 7,136 716 45,331 
WEU 839 1,446 601 4,546 685 28,731 

a current 2020 cost deflated to year 2005 which is common for UTSPV and RTSPV  
b new 2020 cost delated to 2005  
c Combined potential for UTSPV and RTSPV 
d Potential at 15% panel efficiency and 100% rooftop availability 
where UTSPV is Utility Scale Solar PV, and RTSPV is Rooftop Solar PV 
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7. Results  
7.1 Spatiotemporal assessment  
 
The global aggregated rooftop area for year 2020 is assessed to be 0.25 million km2 for a global 
aggregated Built-up area of 1.46 million km2. Amongst the 0.25 million km2 of assessed global rooftop 
area, 0.12 million km2 is in Asia and 0.047 million km2 is in Europe. African continent occupies 0.02 
million km2 of aggregated rooftop area in 2020 with North America occupying 0.039 million km2 of 
aggregated rooftop area.  
 

Under SSP1 narrative, the global aggregated rooftop area increases to 0.3 million km2 in 2050 
with Asia representing the highest aggregated rooftop area of 0.15 million km2. Under SSP2 narrative, 
the global aggregated rooftop area increases to 0.34 million km2 in 2050 which is an increase of 0.04 
million km2 over SSP1. In SSP2 Asia represents 0.17 million km2 of aggregated roof area. For SSP3 
narrative the global aggregated rooftop area reduces to 0.31 million km2 in 2050, registering a 
reduction in global aggregated rooftop area by 0.03 million km2 over SSP2. This can be attributed to 
the trends in BUX,Y layers. For SSP4 the global aggregated rooftop area again increases to 0.33 million 
km2 in 2050 representing an increase of 0.02 million km2 of global aggregated rooftop area over SSP3. 
SSP5 narrative increases the gross aggregated global rooftop area to 0.38 million km2 in 2050 which 
is an increase of 0.08 million km2 over 2020 values. From this we can observe that from a base value 
of 0.3 million km2, the range of global aggregated gross rooftop area in 2050 will lie in the range of 
0.31-0.38 million km2 for worlds envisioned under SSPs which represents a percentage increase of 
between 3-26% compared to 2020 values. 

 
At a global scale the highest growth rate of aggregated gross rooftop is observed for African 

continent across all the SSP narratives with around 2 times increase in aggregated rooftop area 
between years 2020-2050. The highest growth in aggregated gross rooftop area across the continents 
is observed for SSP5 narrative, with lowest growth being observed for SSP3 narrative. For African 
continent and Asian continent SSP1 narrative registers the lowest growth in rooftop area between 
2020-2050. For European continent and North American continent SSP3 narrative registers the 
lowest growth in rooftop area between 2020-2050. In general, between SSP narratives a growth of 7-
200% can be observed for different continents highlighting the importance of policy formulation with 
consideration to variation in growth rates between regions. Table 9 documents the percentage of 
global gross rooftop area across SSPs for world continents. Table 10 documents the growth rate of 
the gross rooftop area across the SSPs for world continents.  

 
The assessed technical potential of RTSPV at a global yearly aggregated level for the year 

2020 is observed at 16.1 PWh yr-1 at 30% net rooftop availability and 10% panel efficiency. In line with 
the growth in gross rooftop area across the SSPs, the technical potential for RTSPV also scales up. 
The largest technical potential in the year 2050 is observed for SSP5 narrative with a value of 24.7 
PWh yr-1 and the lowest technical potential in the year 2050 is observed for SSP1 narrative with a 
value of 19.8 PWh yr-1. As a result, in the year 2050 the technical potential of global RTSPV is estimated 
to be between 20-25 PWh yr-1 representing an increase of between 25-50%, Figure 10.  
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Table 9 | Percentage distribution of global gross rooftop area across SSPs and continents  
Continents 2020 SSP1_2050 SSP2_2050 SSP3_2050 SSP4_2050 SSP5_2050 
Africa 8.76 12.30 12.34 12.56 12.12 11.83 
Asia 50.39 49.54 49.60 51.09 48.99 47.89 
Australia 1.00 0.98 0.92 0.85 0.95 1.06 
Europe 18.90 17.16 17.13 16.29 17.58 18.06 
North America 15.50 14.99 14.97 13.90 15.39 16.34 
Oceania 0.20 0.20 0.19 0.18 0.20 0.20 
South America 5.26 4.84 4.84 5.12 4.78 4.63 

 
Table 10 | Absolute Growth of global gross rooftop area across SSPs and continents (2020-2050) 
Continents SSP1 SSP2 SSP3 SSP4 SSP5 
Africa 1.71X 1.92X 1.79X 1.80X 2.06X 
Asia 1.19X 1.34X 1.27X 1.27X 1.44X 
Australia 1.19X 1.26X 1.07X 1.24X 1.60X 
Europe 1.10X 1.23X 1.08X 1.21X 1.45X 
North America 1.17X 1.31X 1.13X 1.29X 1.60X 
Oceania 1.24X 1.31X 1.16X 1.28X 1.52X 
South America 1.12X 1.25X 1.22X 1.18X 1.34X 
Where X is the absolute increase in 2050 values over 2020 values 

 

 
Figure 10 | Growth in yearly aggregated global RTSPV potential at 30% net rooftop area and 10% panel efficiency. 
The chart is displaying the growth in aggregated yearly technical potential for RTSPV across the SSP narratives. Using a 
conservative panel efficiency of 10% and 30% net rooftop availability, we can observe that under SSP5 scenario the assessed 
technical potential between years 2040-2050 will be sufficient to meet the yearly aggregated global electricity demand in 2018. 
Conversely, under the same assumptions 70% of the current global yearly aggregated electricity demand can be met with the 
current building stock. 

15

16

17

18

19

20

21

22

23

24

25

2020 2030 2040 2050

PW
h 

yr
-1

SSP1 SSP2
SSP3 SSP4
SSP5 World Electricity Comsumption in 2018



 

 
23 

7.2 Scenario runs 
The spatiotemporal assessment of RTSPV technology at a global scale has demonstrated that the 
technology has the capacity to exceed the current global electricity demand. However, due to 
practical constraints like rooftop availability due to roof superstructures, chimney, orientation, and 
slope etc. the practical potential of the technology varies from region to region. The regions located 
near equator or in desert biomes have roof structures that can accommodate 100% solar panel 
deployment. Similarly, regions that occupy higher latitudes have slopes on their roofs to reduce snow 
accumulation and are sometime signify the cultural effects on the building archetypes. Here, 100% 
rooftop availability for installing solar panels is seldom possible. However, with drive towards net 
zero energy buildings and due to the need for retrofitting the buildings to meet the new energy 
efficiency standards, a considerable building stock in northern latitudes are transforming rooftops to 
accommodate larger number of solar panels.  
  
 The uptake of RTSPV technology in global energy systems is also affected by the interplay 
between costs of electricity generation by other energy technologies. Energy system models run 
based on optimising the supply and demand while keeping the total system costs at the lowest level 
and maintaining the emissions within the constraints described by the scenario. Additionally, spatial 
variability of the resource plays a critical role. There can be a mismatch between resource dense 
regions and quality of resource that can be extracted from these regions. A case in point can be China, 
where on a country level the potential for RTSPV is high, but on a sub national level the clustering of 
Built-up area is present in the east and southeast regions of China where the capacity factor of solar 
is the lowest. Conversely, the regions having the highest capacity factor for solar have the lowest 
clustering of Built-up area, Figure 11. Here, the biggest advantage of conducting the assessment at a 
high spatiotemporal resolution is evident where spatial variation of resource within a country can be 
analysed accurately. 
 
 To analyse the interplay of factors highlighted in the last paragraphs, we constructed 
scenarios that systematically analyse the effect of updating potentials and costs. Additionally, we ran 
sensitivity scenarios to analyse the effect of rooftop availability, panel efficiency and emission budget 
on uptake of RTSPV technology. Table 11 documents the scenario names and their narratives. Due to 
the time limitation of Young Scientist Summer Program 2021, we could only analyse the results for 
SSP2 narrative. Additional set of analysis is documented in Future Work section.  
 
Table 11 | Scenario Narratives 

Scenario Name Scenario 
Abbreviation 

Narrative 

Base B Base Global 12 Region MESSAGEix-GLOBIOM model 
Old Cost New Potential OCNP Keeping Base cost constant, split and update the 

potentials for RTSPV and UTSPV 
New Cost New Potential NCNP Update cost, split and update the potentials for 

RTSPV and UTSPV 
Sensitivity SR Rooftop availability 30%, 50%, 100% 
Sensitivity SP Panel Efficiency 15%, 20% 
Sensitivity SE Emission bound of 800 million tonnes of carbon 

equivalent 
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Figure 11| Visualisation of spatial distribution of Capacity Factors of RTSPV in China 
The higher capacity factor regions shown here by blue colour are spatially located in the regions having low built-up area and 
consequently having low rooftop area. The lower capacity regions shown here by red are spatially located in the regions having 
high built-up area and consequently having high rooftop area. This mismatch between resource geolocation, presence of built-
up area and energy demand centres exemplifies the need for a high-resolution spatiotemporal assessment of RTSPV 
technology.   
  

To capture the effects of updating just the potentials while keeping the investment costs same 
as the base MESSAGEix-GLOBIOM model, we ran the OCNP scenario. For this, we binned our RTSPV 
and UTSPV potentials into 11 bins with each bin representing the maximum extractable electricity in 
GWa per annum binned by increasing capacity factors. We kept the panel efficiency at 15% in line 
with the current market trends and assumed that 100% rooftop is available for installation of RTSPV 
globally. Additionally, there was no bound on the emissions by the energy system and the RTSPV 
delivered electricity at final level with UTSPV delivering electricity at secondary level. This gradation 
in levels at which different solar PV technologies deliver electricity aids in accurate representation of 
energy systems where rooftop solar PV delivers energy directly to the prosumers as opposed to 
UTSPV that is connected to transmission and distribution networks. Compared to the base scenario 
(B), OCNP scenario results showed a significant increase in uptake of solar PV technology over the 
2020–2050 time horizon. This can be gauged by the electricity extracted from solar PV technology, 
Figure 12. Additionally, we observed that RTSPV is the only technology being picked up by the model. 
This can be attributed to RTSPV being perceived as cheaper by the model compared to UTSPV due 
to grid losses in transmission and distribution networks and additional cost of traversing the grid 
infrastructure.  

 
 Next, we updated the Base scenario to capture the effects to updated costs and 

updated potentials (NCNP). In this scenario, we updated the investment costs for both RTSPV and 
UTSPV at a regional level. Assumptions and potentials from OCNP scenario were copied as is into the 
NCNP scenario. Here we again observed that RTSPV is the only technology being picked up by the 
model, but the amount of energy delivered by the technology is lower compared to OCNP scenario. 
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This can be attributed to higher costs of RTSPV technology represented in NCNP scenario whereas in 
OCNP scenario the costs are lower as we do not distinguish between RTSPV and UTSPV costs.  
 

 
Figure 12 | Electricity generation activity of solar PV technology for B, OCNP and NCNP scenarios  
Higher uptake of solar PV technology is seen when updated potentials over B scenario are used in OCNP scenario. Lower 
uptake of solar PV technology is seen in NCNP scenario when updating costs over OCNP scenario. 
 
 
 Uptake of RTSPV and its role in global energy transitions is also dependent on the rapid 
improvements in panel efficiencies leading to more electric eenrgy being generated from a given 
surface area. Another factor that will play a key role in uptake of RTSPV is the net availability of 
rooftop area for installation of roof mounted solar panels. This factor is sometimes the limiting 
constraint in the rollout of RTSPV in higher latitudes where rooftop surface can be constrained due 
to presence of chimneys and due to the slope and orientations of houses. Regional studies have 
agreed on a net rooftop availability of between 30-60%, but this percentage varies heavily between 
region to region and between building stock vintages. We devised a sensitivity scenario to capture 
the effects of rooftop availability and panel efficiencies on the uptake of RTSPV. For this, tested 
rooftop availability (SR) scenarios for 10%, 30%, 50% and 100% net available rooftop area and panel 
efficiency (SP) scenarios for 15% and 20% panel efficiency. The results of the scenarios are shown in 
Figure 13 where Figure 13a document the change in uptake of RTSPV and Figure 13b document the 
change in uptake of UTSPV for SA and SP scenarios. In all the SR and SP scenarios we kept our base 
model as NCNP and modified the rooftop availability and panel efficiency while keeping the UTSPV 
technology representation as constant. 100% rooftop availability at 15% panel efficiency sensitivity 
scenario is represented by NCEP scenario. 
  
 The key takeaway from the sensitivity scenarios is that a net global rooftop availability of 0.5 
or 50% is the maximum amount of rooftop area that is required for maximum uptake of RSTPV 
technology. Any availability of greater than 50% will lead to marginal improvement in uptake of 
RTSPV at a global level. The increase in uptake of RTSPV when increasing the rooftop availability 
from 30% to 50% is less than when moving from 10% to 30%. Panel efficiencies can have small effect 
on the uptake of RTSPV in short time horizon of 2020-2030, but significant increase in uptake will 
occur in medium time horizon 2030-2050 for increased roof mounted solar panel efficiencies. For 
UTSPV technology, we observed limited uptake in NCNP scenarios but in SA and SP scenarios the 
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uptake of UTSPV increases depending on the RTSPV’s rooftop availability. Significant uptake of 
UTSPV can occur for large constraint (10%-30%) on rooftop availability in medium time horizon. The 
uptake of UTSPV is slower in short time horizon but increases dramatically in successive time 
horizon.  
 

 

 
Figure 13 | Generation activity of solar PV technology for SR and SP scenarios  
a, uptake of RTSPV technology for SR and SP scenarios. b, uptake of RTSPV technology for SR and SP scenarios. Rooftop 
availability are critical factors for uptake of RTSPV and UTSPV technologies and play a larger role than panel efficiencies. Large 
constraints on rooftop availability will lead to lower RTSPV uptake and higher UTSPV uptake. A saturation point is present at 
50% rooftop availability, beyond which marginal increase in RTSPV will occur. Scenario nomenclature is NCNP_SR_X_SP_Y 
where X is the rooftop availability and Y is the panel efficiency and the base model is NCNP. 
 
  Mitigation of climate change impacts forms an important narrative for rapid deployment of 
low carbon energy sources and with the highest annual year on year growth, RTSPV is one of the 
prime candidates to spearhead the uptake of low carbon variable renewable technology. To analyse 
how emission bounds on energy systems (which are set because of global governmental will to aid in 
mitigation of climate change) will amplify the role of RTSPV in global energy transitions, we ran an 
emission bound scenario (B_SE_800) by introducing an 800 million tonnes of carbon equivalent 

a 

b 
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emission bound on our base model (B). Further, to analyse the effects of updated potential and costs 
(NCNP_SE_800) we introduced emission bounds on NCNP scenario. Additionally, the effects of 
rooftop availability were analysed by updating the SA scenarios with the emission bounds. The 
results of the SE scenarios run show significant increase in uptake of RTSPV in both short and 
medium time horizons, Figure 14. We also observed that compared to SA scenarios which didn’t have 
emission bounds, the effects to rooftop availability are more pronounces where the threshold shifts 
to 30% rooftop availability compared to 50% in non-emission bound scenarios. This can be attributed 
to rapid saturation of rooftop area earlier on due to emission bounds and beyond 30% rooftop 
availability the increase in uptake of RTSPV is marginal ss the costs become larger.  
 

 
Figure 14 | Generation activity of solar PV technology for SE scenarios  
Introduction of emission bounds shows significant increase in uptake of RTSPV technology in global energy system. Effect of 
rooftop availability is more prominent here as even smaller rooftop availability percentages show significant gains in uptake 
of RTSPV. Scenario nomenclature is X_SE_800 where X represent the base scenario models from previous section. 
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8. Discussion and Conclusion 
In this study conducted during Young Scientist Summer Program of IIASA, we have attempted to 
highlight the role of RTSPV technologies in global energy transition. To understand how RTSPV will 
evolve spatially over the globe in medium term time horizon, we conducted a high-resolution 
spatiotemporal assessment of the technology by extending on a novel ML framework developed by 
the author of the report previously. As a result of this assessment, we have generated global datasets 
and tools which will be of importance to researchers working in the field of population mapping, 
climate change risk, energy systems, and energy-climate-land nexus policy formulation. We have 
documented and analysed how global rooftop area will evolve for SSP narratives in a spatially explicit 
way and used this analysis to understand the uptake of RSTPV technologies in global energy systems 
using the MESSAGEix modelling framework. Additionally, we have conducted a high-resolution 
spatial assessment of UTSPV technology that will aid in improved representation of solar PV 
technologies by providing potential and cost details for its sub technologies.   
  

This study draws important conclusions that can aid in understanding the role of prosumer 
driven RTSPV. First, we concluded that for the SSP narratives, the global rooftop area can grow 
between 3-26% by 2050 compared to 2020. The largest growth will be seen in the African continent 
which highlights the importance of RTSPV as a decentralised energy source for countries undergoing 
socioeconomic transitions. It is here that the biggest benefit of clean energy and prosumer driven 
climate change mitigation will be observed. Second, the current global 2020 building stock is 
sufficient to meet the current yearly aggregated global electricity demand. Combined with increased 
growth of rooftop area in regions abundant with good quality solar resource, the future change in 
RTSPV’s power generation potential can see a growth of between 25-50% which will be an important 
source of low carbon energy.  

 
Third, we showcased how presence of large RTSPV potential does not automatically amount 

to high grade power generation by analysing the example of China where there is mismatch between 
high grade solar resource and hotspots of rooftop area. This conclusion highlights the importance of 
high-resolution sub national assessment of renewable resources especially RTSPV for designing 
informed energy policies. Additionally, for renewable resources that have fixed spatial attributions 
e.g., RTSPV whose deployment locations are fixed and cannot be spatially traversed like that of wind 
turbine driven energy generation, the importance of assessment of spatial distribution of the 
resource is evident as it can help with prioritising the locations of technology deployment. 

  
Fourth, the result of scenario runs conducted using MESSAGEix platform have provided 

valuable insights on the dynamics of RTSPV deployment at a global scale. Here we analysed that 
rooftop availability is the largest limiting factor for the uptake of RTSPV technology. The rooftop 
availability has a threshold of 50% beyond which only marginal gain in uptake of RTSPV can be 
observed. Panel efficiencies play a lesser role in short term uptake, but in medium time horizon panel 
efficiencies will play a critical role. Fifth, RTSPV show important role for climate change mitigation 
policies. Introduction of emission bounds in energy systems have significant effect on the uptake of 
RTSPV where even presence of smaller rooftop availability will demonstrate significant uptake. Sixth, 
the OSM gap detection tool developed in this study has cross domain use cases and will aid in spatially 
explicit studies that utilise open source generated building polygons at a global level. 
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In this study we have demonstrated how a high-resolution spatiotemporal assessment of 
solar PV technology and its subcategories namely RTSPV and UTSPV can aid in improved 
representation of solar PV technology especially of RTSPV. However, additional research on 
transmission/distribution grid costs and losses is required to completely capture the dynamics of the 
role of RTSPV in future energy systems. Additionally, role of storage38 in mitigating the intra annual 
variation in solar resource along with new market mechanisms39 like utility owned rooftop40, 
microgeneration utility structure and feedback to the power grid needs to be analysed. Due to the 
time limitation of the study period, further analysis which is underway could not be completed for 
this report and will form part of future research outputs. In this study we have just touched the 
proverbial tip of the iceberg when analysing the datasets generated here. The true advancements 
enabled by this study and its datasets will form the basis of future work exploring the RTSPV 
technology from a city level to a global ROI. 
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