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16 Abstract

17 Migration manifests an important response and adaptation measure to changes in the environment and 

18 socioeconomic conditions. In a time when environmental stressors and risks are unprecedentedly 

19 increasing, understanding the interplay between the underlying factors driving migration is of high 

20 importance. While the relationships between environmental and socioeconomic drivers have been 

21 identified conceptually, the comprehensive global-scale spatial quantification of their interactions is in 

22 its infancy.  Here, we performed a geospatial analysis of gridded global net migration from 1990 to 

23 2000 using a novel machine learning approach which analyzes the interplay between a set of societal 

24 and environmental factors simultaneously at the place of origins (areas of net-negative migration) and 

25 destinations (areas of net-positive migration). We diagnosed the importance of eight environmental 

26 and societal factors in explaining migration for each country, globally. Nearly half of global in- and 

27 out-migration took place in the areas characterized by low adaptive capacity and high environmental 

28 stress. Regardless of the income level, income was the key factor in explaining net-migration in half 

29 of the countries. Slow-onset environmental factors, drought and water risk, were found to be the 

30 dominant environmental variables globally. Our study highlights that factors representing human 

31 capacity need to be incorporated into the quantitative diagnosis of environmental migration more 

32 rigorously. 
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33 1 Introduction

34

35 Recent events such as migrant caravans from Central America to the United States in 2019, the 

36 Venezuelan migrant and refugee crisis in 2019-20 and the 2015 crisis of large refugee flows from the 

37 Middle East and North Africa to Europe have been frequently linked with preceding severe drought 

38 episodes in the country of origin (Chemnick 2019, Gustin and Henninger 2019, Markham 2019, 

39 Podesta 2019). Indeed, a stereotypical view that environmental change would induce mass-migration 

40 fluxes towards the “Global North” has been repeated in both research and policy-making for decades 

41 (Boas et al 2019). The empirical evidence supporting such claims however is inconsistent (Abel et al 

42 2019, Selby et al 2017). Accordingly, investigating the fundamental, manifold role of environmental 

43 stress as a trigger and driver of migration has substantially gained both scholarly and public attention. 

44 Not only do various environmental factors influence migration in different directions and magnitudes 

45 (see e.g. Gray and Mueller 2012, Cattaneo and Peri 2016, Kubik and Maurel 2016), other societal 

46 factors and their interactions also play an important role. The understanding of human migration 

47 therefore needs to account for complex interactions between different drivers of migration at the 

48 micro, meso and macro levels (Boas et al 2019, Abel et al 2019, Borderon et al 2019, Hoffmann et al 

49 2021).

50

51 A traditional gravity-based ‘push-pull’ model has often been used to identify the macro-level factors 

52 underlying migration decisions by analyzing spatial disparities between the place of origin (as 

53 pushing factors) and destination (presumably more attractive conditions, i.e. pulling factors) (de Haas 

54 2011, Lee 1966). Despite their conceptual clarity, the push-pull model has been criticized for its 

55 simple assumption on the linear relationship between environmental change and migration dynamics 

56 (Jónsson 2010). The literature is dominated by the assumptions that environmental changes are the 

57 primary pushing factors that linearly lead to migration whereas in reality individuals and households 

58 employ diverse responses to environmental shocks based on their social, economic, demographic and 

59 political capital (Nelson et al 2007). Environmental stress thus may influence migration through 

60 affecting other migration drivers such as through exacerbating conflict, reducing agricultural 

61 production and income change (Abel et al 2019, Beine and Parsons 2015). On the other hand, 

62 migration is a costly process and people with little social and economic resources generally have 

63 lower capacity to move, thus the majority of migration is internal or between low- and middle-income 

64 countries (Hoffmann et al 2020). This non-linear pattern follows the prediction of the migration hump 

65 theory which holds that migration has an inverted U-shaped relationship with socioeconomic 

66 development (Martin and Taylor 1996). International migration hence is low in low income and the 

67 least developed countries because their populations cannot afford to emigrate.
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68

69 Establishing the relationship between environmental change and migration response requires a 

70 comprehensive account of all other factors and contextual effects which could determine the 

71 migration-environment association (Borderon et al 2019). One commonly used approach for coupling 

72 the societal and environmental dimensions in studying migration on a conceptual level is introduced 

73 by Black et al. (2011b) and the Foresight report on Migration and Global Environmental Change 

74 (2011). Their approach depicts migration through a relationship between dimensions of human 

75 capacity and vulnerability to environmental change (Figure 1) and thus combines objective 

76 circumstances with subjective perceptions influencing migration. In addition to addressing 

77 vulnerability to environmental change, their widely used conceptual framework incorporates a 

78 diversity of psychosocial and socioeconomic factors (e.g. education, income, individual’s intentions 

79 and cultural identity) that influence people’s mobility-decisions and capacities to move.  Failing to 

80 account for socioeconomic drivers and their interplay with other factors in influencing migration can 

81 provide a biased estimate of the role of environmental change and stressors.

82

83

84 Figure 1. A typology characterizing (a) the interplay between adaptive capacity and vulnerability to 

85 environmental change underlying ability to migrate from the area of origin, and (b) to adapt to the 

86 destination. The dashed line illustrates how the vulnerability to environmental change depends on the 

87 level of social, economic and political capital; i.e. when the capacity is high, the vulnerability to 

88 environmental change and thus the ability or desire to move/adapt are low. Adapted from Foresight 

89 report on Migration and Global Environmental Change (2011) and Black et al (2011b).

90 There are, however, only few studies that provide quantitative global assessments of the interplay 

91 between societal and environmental factors underlying human migration. Marotzke et al (2020) and 
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92 Lilleør and Van den Broeck (2011) explored the poverty-climate-migration nexus in a laboratory 

93 setting considering only economic factors in less developed countries. De Sherbinin et al  (2012) and 

94 Neumann et al (2015) studied global spatial patterns of environmentally induced migration but 

95 excluded socio-economic drivers from their analysis. Studies which include both environmental 

96 change and socioeconomic factors are mainly regional ones (see e.g. Wiederkehr et al (2018) on Sub-

97 Saharan Africa and Kluger et al (2020) for Peru). Furthermore, studies on environmentally induced 

98 migration typically focus on the place of origin and their characteristics while much less attention is 

99 paid to conditions in the destination areas (Ayeb-Karlsson et al 2020, Findlay 2011), despite the fact 

100 that societal and environmental factors also reflect  the ability of the destination area to absorb (or 

101 attract) migrants (Niva et al 2019). For policy planning, it is highly relevant to identify where 

102 environmentally induced migrants may move to, as well as to understand the characteristics of both 

103 the origins and destinations in order to assess migrants’ vulnerability at both ends of migration. 

104 Moreover, quantitative global assessments of migration can be directly incorporated into other 

105 modelling frameworks such as the Integrated Assessment Models (IAMs) which are designed to 

106 describe key interactions between physical and social systems. Changes in drivers of migration would 

107 influence migration patterns and consequently population size, income distribution and emissions 

108 (Liang et al 2020, Benveniste et al 2021). The quantitative assessment of environmental and 

109 socioeconomic drivers of global migration thus can substantially improves our understanding of 

110 future socioeconomic development which can have considerable implications on the global climate 

111 system.  

112

113 We address these gaps by providing a global quantitative assessment of 1) the interplay of 

114 environmental-societal characteristics in both sending (negative net-migration) and receiving (positive 

115 net-migration) areas globally, and 2)  the importance of different environmental and socio-economic 

116 indicators underlying net-negative and net-positive migration by utilizing a machine learning method 

117 (random forests). This paper thus contributes to the current migration research by studying both out- 

118 and in-migration locations simultaneously by utilizing spatially explicit global data sets covering a 

119 range of relevant environmental, socio-economic and demographic indicators (see Table 1) as well as 

120 gridded net-migration data (de Sherbinin et al 2012). Furthermore, the use of random forests to 

121 quantitatively define the nexus between environmental change, socioeconomic factors and migration 

122 on a global scale is novel in the field. The number of international and internal migrants is constantly 

123 growing with rapidly changing environment around the globe (Xu et al 2020). It is thus of prime 

124 scholarly and policy importance to understand the characteristics and interplay of both environmental 

125 and societal factors behind human migration. 
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126 2 Materials and Methods

127 All analyses were conducted globally on 5 arc-minute resolution grid cell level (Figure 2, Table 1). 

128 For the random forest analysis, individual models for net-negative and net-positive were created for 

129 178 countries in total, i.e., each model is based on the grid cells of the country in question (n varies 

130 from 1, in very small countries such as Vatican City or Gibraltar, to 3435160 cells in Russia, global 

131 median 4447 cells). Models were used to study the importance of each variable in explaining net-

132 positive and net-negative migration, i.e. which variable had the highest explanatory power on the 

133 response variable. Feature importance distributions of each variable are illustrated for 12 groups based 

134 on the United Nations (UN) geoscheme (Statistics Division of the United Nations Secretariat 2021). 

135 Country classification is presented in Supplementary materials (Table S2).

136
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137

138 Figure 2. Overview of the workflow illustrating the general structure of the analysis. For more 

139 detailed information regarding the data and workflow, see Section 2, Table 1 and the Supplements. 

140 AC = adaptive capacity; GNI = Gross National Income; EDU = education; GOV = governance; ES 

141 = environmental stress; NH = natural hazards; WR = water risk (ws = water stress, udw = 
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142 unimproved drinking water, usa = unimproved sanitation); FPS = food production scarcity; DR = 

143 drought risk; NM = net migration; POP = population, RelvIMP = Relative variable importance, 

144 vIMP = variable importance.

145 Table 1. Description of data and their sources. See more detail explanation in Table S1.

Data Abbreviation Description 
(year, resolution)

Source

Adaptive capacity

Income level GNI 1990-2000; 5 arcmin res. Values 
downscaled from sub-national to grid 
level (see SI for more details). Gross 
National Income.

Based on Smits and Permanyer (2019), 
missing values interpolated and 
extrapolated using method from Kummu et 
al (2018). Downscaled to grid level based 
on night lights and agricultural land use, 
using linear multiple regression model.

Education EDU 1990-2000; 5 arcmin res. Gridded 
subnational data. Combined Mean 
years of schooling and Expected 
years of schooling. 

Based on Smits and Permanyer (2019), 
missing values interpolated and 
extrapolated using method from Kummu et 
al (2018).

Health Health 1990-2000; 5 arcmin res. Gridded 
subnational data. Measured as life 
expectancy at birth. 

Based on Smits and Permanyer (2019), 
missing values interpolated and 
extrapolated using method from Kummu et 
al (2018).

Governance GOV 1990-2000; National data resampled 
to 5 arcmin res. World Governance 
Index for government effectiveness. 

Varis et al (2019a) adapted from WGI 
(2018)

Environmental stress

Natural hazards NH 1990-2000; 2.5 arc-min gridded data 
resampled to 5 arc-min res. Multiple 
hazard index. 

Varis et al (2019a) adapted from Dilley et al 
(2005)

Drought risk DR 1990-2000; 1° gridded data resampled 
to 5 arc-min res. Measured as 
Standardized Precipitation-
Evapotranspiration Index, SPEI.

Calculated from (Vicente-Serrano et al 
2010)

Food production 
scarcity 

FPS 2000; 5arcmin res. Food production 
per capita per day (kcal/capita/day).

Annual food production data (kcal) from 
(Mueller et al 2012) and population data 
from Klein Goldewijk et al (2010).

Water risk WR Compiled from ws and udw & usa (see 
below). WR was calculated so that it 
combines quantitative risk (water 
stress) and qualitative risk (drinking 
water and sanitation coverage) as 
follows: 1) two components of 
qualitative risk are first combined by 
taking a root of their summed squares, 
2) qualitative risk is combined to 
quantitative risk by taking a root of 
their summed squares.

Baseline water 
stress 

ws 1990-2000; 5 arc-min res. Gridded 
Hydrological sub-basin (HydroBASINS 
6) data. Use to availability ratio 

(Hofste et al 2019)
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reported as risk levels between 1-5 (1: 
low, 5: extremely high) 

Unimproved/No 
Drinking water & 
Unimproved/No 

Sanitation

udw, usa 2015; 5 arc-min res. Gridded 
Hydrological sub-basin (HydroBASINS 
6) data. Level of drinking water & 
sanitation coverage reported as risk 
levels between 1-5 (1: low, 5: 
extremely high).

(Hofste et al 2019)

Population

Net-migration NM 1990-2000; 30 arc-sec gridded data 
aggregated to 5 arc-min. 

de Sherbinin et al (2015)

Population POP 1990, 2000; Gridded population count 
with 5 arc-min res.

Klein Goldewijk et al (2010), HYDE 3.1

146 2.1 Indicators of environmental stress and societal factors 

147 Our indicator approach for analyzing the interplay of environmental and societal characteristics 

148 behind human migration has been extended from Varis et al. (2019b) who studied the resilience of 

149 human-natural systems through considering both adaptive capacity and environmental vulnerability. 

150 This approach allows a geospatial analysis of environmental stress factors in parallel with factors 

151 indicating societal adaptive capacity to cope with environmental and other stress factors. For the 

152 purposes of this study, some of the indicators were modified. We defined four societal factors: 

153 governance effectiveness, level of income, health and education as components of adaptive capacity, 

154 of which the last three are also the components of the Human Development Index used as a composite 

155 index in Varis et al. (2019b). Income was downscaled to grid level based on night lights and 

156 agricultural land use, using linear multiple regression model from Kummu et al (2018).

157

158 For environmental stress, we selected four variables representing diversity of environmental risks and 

159 stressors: drought and water risk were considered to be proxies for slow onset environmental change 

160 while natural hazards represent a more sudden change or shift in the environment. Food production 

161 scarcity was selected as a proxy of local food insecurity (see complete list of all indicator sources and 

162 their measurement in Table 1 and Table S1 in the Supplements). Spatial distributions of the indicators 

163 used are illustrated in Figures S2, S3 and S4.

164

165 Temporal average over 1990-2000 was used for all indicators which are available for the whole time 

166 period (except for food production which was measured in 2000 and drinking water and sanitation 

167 coverage measured in 2015 due to data availability). Drought risk (DR) was composed from the 

168 Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano et al 2010) by 

169 computing a cumulative sum of negative index values (drier years than average) over the study 

170 period. Water risk (WR) was calculated based on quantitative risk factor, baseline water stress, and 

171 qualitative risk factor, the level of improved sanitation and drinking water, from Aqueduct Water Risk 
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172 data (Hofste et al 2019). Food production scarcity (FPS) is the ratio between crop production and 

173 population (kcal per capita per day) and scaled between 0-1 based on kcal per capita level (FPS ≤ 500 

174 kcal: high scarcity = 1; FPS ≥ 5000 kcal: no scarcity = 0). Finally, all indicators (except for FPS) were 

175 scaled between 0-1 with min-max normalization where the smallest and highest 5% were assigned 

176 values 0 and 1, respectively. Societal and environmental factors were then combined into two 

177 composite indices of adaptive capacity (AC) and environmental stress (ES), as the mean over their 

178 four components. The data were tested for cross-correlations: variables within AC index had strong 

179 correlation, while correlation between adaptive capacity and environmental stress variables was weak 

180 (see Figure S1).

181

182 2.2 Net-migration and population data

183 In the acquired dataset, decadal net-migration was defined as NM = total population change – (births 

184 – deaths), in each grid cell (de Sherbinin et al 2015). Net-negative migration illustrates areas with 

185 more emigrants than immigrants, and net-positive migration areas with more immigrants than 

186 emigrants over the time period. The NM data were aggregated from 30 arc-sec to 5 arc-min resolution 

187 to match other datasets, which were not available at higher resolution. Furthermore, de Sherbinin et 

188 al. (2015) data were not modelled with the 30 arc-sec resolution original input data. It is thus justified 

189 to aggregate the data to 5 arc-minute resolution without losing much information (see Figure S4 for 

190 the coefficient of variation in the aggregated data). The data were aggregated by summing over a 

191 10x10 window by using the aggregate-tool in Raster-package in R (Hijmans 2019). For random forest 

192 analysis, the net-migration data were then normalized with the respective population count in the 

193 initial timestep (1990) in each grid cell in order to address the effect of population to net-migration 

194 count. Here it is important to note that net-migration accounts for all types of mobility and does not 

195 distinguish between voluntary and forced migration, for instance. 

196

197 2.3 Interplay and importance of environmental and societal factors

198 We extend the conceptual typology introduced in Figure 1 to a quantitative tool by using the 

199 composite indicators of adaptive capacity (AC) and environmental stress (ES) (Varis et al (2019b); 

200 see above) to describe the relationship of environmental and societal factors driving migration (Figure 

201 1). Accordingly, we created a four-by-four classification matrix representing the interplay at net-

202 negative and net-positive migration locations (Figure 3) with four thresholds for low, medium-low, 

203 medium-high and high AC and ES as per the following breaks [0, 0.25, 0.5, 0.75, 1]. This framework 

204 was employed to both origins (net-negative migration) and destinations (net-positive migration) in 

205 order to define the interplay between AC and ES as the underlying conditions of migration at both 

206 ends. The matrix was used to calculate the sum of net-negative and net-positive migration in each 
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207 class (e.g. total net-negative migration in class 1 would be the sum over-all net-negative grid cells 

208 within that class). Then the share of each class was calculated as the ratio to the total (global) net-

209 negative/positive migration (sum of all net-negative/positive grid cells globally). Calculations were 

210 done by using the zonal-tool in the Raster package in R (Hijmans 2019).

211

212

213

214 Figure 3. (a)., (b).: Classification matrix and its spatial representation. Thresholds in the matrix are 

215 defined with four thresholds for low, medium-low, medium-high and high adaptive capacity (AC) and 

216 environmental stress (ES) as per the following breaks [0, 0.25, 0.5, 0.75, 1]. The classes are named 

217 c1-c16. (c)., (d).: Geographic distribution of the composed AC and ES indices.

218 Random forest regression was utilized to quantitate the independent importance of each variable (Table 

219 1) in explaining both net-negative and net-positive migration. Random forest regression is a machine 

220 learning algorithm that uses an ensemble of multiple bootstrap sample predictions (decision trees) to 

221 produce a consensus regression fit (Breiman 2001). This technique is suitable for identifying and 

222 ranking endogenous explanatory factors underlying migration decisions (Schutte et al 2021). It is also 

223 applicable to data with collinear explanatory variables and unique probability distributions as the 

224 method randomly splits or bags the data into multiple samples (and out-of-bag samples, i.e. the data left 

225 out of each sample) each containing only a subset of variables, i.e. potentially correlated variables are 
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226 not represented in all decision trees (Cutler et al 2007). The importance of each variable describes the 

227 increase in prediction error (MSE from the out-of-bag sample) when the values of that variable are 

228 randomly permuted. High importance denotes high explanatory power in that specific model while 

229 negative importance indicates that the variable weakens the model’s prediction power. Ultimately, 

230 relative feature importance (RI) is used to illustrate and rank how well a given feature predicts migration 

231 in relation to the best feature with RI = 1. 

232

233 Country-specific regression models were created for relative net-negative (per population; 178 

234 countries) and net-positive migration (per population; 178 countries) observations (response 

235 variables) and respective individual variables of adaptive capacity and environmental stress 

236 (explanatory variables) with the Ranger -package in R (Wright and Ziegler 2017). Regression was 

237 conducted for each country individually, as it represents a highly relevant scale for policy making. 

238 Grid cell values for both response and explanatory variables within each country were extracted and 

239 then used as individual observations for each model. 

240 3 Results

241 3.1 Interplay of AC and EV

242 Our analysis shows that in 1990-2000, the majority of net-negative and net-positive migration 

243 occurred in areas characterized by high environmental stress (ES). Globally, 58% of the total net-

244 negative migration took places in areas with medium-low to medium-high adaptive capacity (AC) and 

245 ES. Further, 32% of global net-negative migration originated in just one class (c6), with medium-high 

246 to high ES but medium-low AC (Figure 4a) while neighboring class c7 (with higher AC) and c10 

247 (with lower ES) together accounted for 27% of global net-negative migration. 

248

249 Despite the majority of global net-negative migration being concentrated in intensively populated 

250 areas (35% of world’s population lived in c6, c7 and c10 in 1990) migration-to-population ratio shows 

251 a slightly different pattern. For instance, the net-negative migration-to-population ratio (total net-

252 negative migration per population per class) in the abovementioned c6 was very low, around 69 

253 emigrants per 1000 inhabitants, compared to the highest net-negative ratio of 5860 emigrants per 

254 1000 inhabitants in c13 with globally lowest ES and AC (Figure 4b); however, the populated areas in 

255 c13 represent a very small share of global land and population as they include only a handful of cells 

256 e.g. in rural Kenya and Afghanistan (see Figure 3). 

257

258 The clusters accommodating the majority of global net-positive and net-negative migration were 

259 characterized by similar profiles (Figure 4). A total of 80% of global net-positive migration took place 
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260 in five classes of which c7 alone accommodated 22% of global net-positive migration (Figure 4c). 

261 Yet, the median net-positive migration-to-population ratio across all observations in c7 was only 96 

262 immigrants per 1000 inhabitants. The highest net-positive migration-to-population ratio was found in 

263 c3 with 147 immigrants per 1000 inhabitants (Figure 4d).

264

265

266 Figure 4. Heatmaps representing the share of each class in terms of corresponding variable. Share of 

267 (a) net-negative and (b) net-positive migration out of total global net-migration in each class in 1990-

268 2000; (c) net-negative and (d) net-positive migration per 1000 inhabitants in each class in 1990-

269 2000.
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270 3.2 Relative importance of explanatory variables

271 The analysis of the variables’ importance and explanatory power highlights the following three points. 

272 Firstly, Ethiopia, Georgia, Jordan, Bangladesh, Demographic Republic of Congo and Papua New 

273 Guinea stood out with the strongest explanatory power for net-negative migration (R2= 0.63, 0.61, 

274 0.58, 0.52, 0.51 and 0.5 respectively), compared to moderate global predictions (global median of R2 

275 = 0.17) (Figure 5). In terms of net-positive migration, explanatory power was moderately strong (R2  > 

276 0.50) in 10 countries (e.g. R2 = 0.72 in Tanzania; 0.67 in Eritrea, 0.66 in Guyana, 0.58 in Mali), while 

277 global median remained very low (global median R2 = 0.14). Noteworthy, the selected variables could 

278 not explain any of net-negative migration in 14% of all countries, or any of the net-positive migration 

279 28% of the countries (R2 = 0). See Figure S5 for the overall out-of-bag prediction error for each 

280 model.

281

282 Figure 5. Proportion of the variance (R2, from the out-of-bag sample) of a) net-negative and (b) net-

283 positive migration, explained by all the studied explanatory variables together within each country.

284 Secondly, income level was the key determinant for both net-negative (Error! Reference source not 

285 found.a) and positive migration (Error! Reference source not found.a), illustrating a globally 

286 mutual feature importance even when other societal and environmental factors were included in the 

287 models. Given that the income data were downscaled with night-lights data, this also indicates a 

288 strong effect of urbanization. In other words, income was the best variable in describing the internal 

289 variation of both net-positive and net-negative migration across the low to high income gradients in 

290 around half of the countries (58 and 60% of the countries for net-positive and negative migration, 

291 respectively). 

292 Notably, education and health were the second most important societal features, by ranking highest in 

293 8% and 6% of the countries in terms of net-negative migration, respectively (Figure 6b-c). 

294 Importantly, the global median relative importance (RI) of education (global median RI = 0.41) and 
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295 health (global median RI = 0.39) in explaining net-negative migration were a third of the most 

296 important factor income level (global median RI = 1.00), being higher than the global median RI of 

297 any of the environmental variables (Figure 8a, Figure S6). To mention a few, education was the most 

298 important feature in Kyrgyz Republic (absolute feature importance AFI = 736; R2 = 0.33; mean 

299 square error MSE = 555), Syria (AFI= 290; R2 = 0.19; MSE = 188) and Colombia (AFI= 283; R2 = 

300 0.32; MSE = 67) for net-negative migration (Figure S8).

301 In terms of net-positive migration, health was the most important determinant after income, by 

302 ranking the highest in 8% of the countries, while education ranked the highest in only 4% of the 

303 countries (Figure 7b-c). Yet, the global median RI of education and health were around a third (RI = 

304 0.34; 0.32, respectively) of income level (RI = 1.00) (Figure 8b, Figure S7). To mention a few, health 

305 was the best variable in Madagascar, (AFI = 67; R2 = 0.28; MSE = 47), India (AFI = 16; R2 = 0.39; 

306 MSE = 1.7) and Lao (AFI = 12; R2 = 0.36; MSE = 4.9) for net-positive migration. Expectedly, 

307 governance ranked the lowest in explaining both net-negative and positive migration; data for 

308 governance were on a country level and thus do not explain well variation within a country. See 

309 Figure S9 for country specific results regarding absolute feature importance. 
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310

311 Figure 6. Feature importance ranking in each country (N=178). Importance of each feature on net-

312 negative migration is ranked so that the most and least important variables in each country’s model 

313 are assigned values 1 and 8, respectively. The higher the importance, the better the variable is in 

314 explaining net-negative migration in each country.
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315

316 Figure 7. Feature importance ranking in each country (N=178). Importance of each feature on net-

317 negative migration is ranked so that the most and least important variables in each country’s model 

318 are assigned values 1 and 8, respectively. The higher the importance, the better the variable is in 

319 explaining net-negative migration in each country.
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320 Thirdly, another collective feature is shown by slow-onset environmental stressors and natural 

321 hazards which were globally the dominant environmental variables in explaining net-negative and 

322 net-positive migration in almost all country groups (Error! Reference source not found.b; Error! 

323 Reference source not found.b: Figure 8). Drought risk and natural hazards ranked the highest in 

324 explaining net-negative migration in 7% of the countries each (Figure 6g-h). Drought risk was the 

325 best feature in Iraq (AFI = 6278, R2 = 0.33, MSE = 3977) and Libya (AFI = 0.008, R2 = 0.37, MSE = 

326 0.01) while natural hazards ranked the highest in Georgia (AFI =248, R2 = 0.61, MSE = 111) and 

327 Mali (AFI = 15, R2 = 0.30, MSE = 11), to mention few (See Figure S8 for country specific results). 

328 Yet, the global median RI of drought risk and natural hazards were less than 30% (global median RI = 

329 0.28; 0.21, respectively) of the most important variable income (RI = 1.0) (Figure 8a), indicating that 

330 their importance in relation to the most important variable was relatively low in the countries where 

331 the variables did not rank the highest (Figure 6g-h). The importance of water risk and food production 

332 was lower, by being the best variable in only 6% and 4% of the countries, respectively. 

333 In terms of net-positive migration, water risk was the best variable in 9% of the countries, the global 

334 median RI being one third (RI = 0.3) of income (RI = 1.0). Notably, the global median relative 

335 importance of drought risk was higher, 37% of the best feature, indicating it had a moderate 

336 importance even when not ranking as the best feature (Figure 7e, Figure 8b). Natural hazards ranked 

337 highest in 8% of the countries, including Libya (AFI = 36, R2 = 0.20, MSE = 53), Kenya (AFI = 1.2, 

338 R2 = 0.22, MSE = 2.6) and Lesotho (AFI = 0.36, R2 = 0.41, MSE = 0.28) but also Norway (AFI = 7.3, 

339 R2 = 0.19, MSE = 5.3), where the conditions regarding the risk to natural hazards as well as adaptive 

340 capacity range from low to high (See Figure S9 for country specific results). Food production scarcity 

341 ranked highest in 5% of the countries, with the global median RI being 0.1.

342
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343
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344 Figure 8. Relative importance (0-1) of each examined variable by country groups for a. net-negative 

345 (178 models) and b. net-positive migration (178 models). Minimum and maximum of each variable are 

346 shown with whiskers, while the box represents first and third quartiles over median. Values above and 

347 below those, i.e. outliers are shown as points. Relative importance tells the importance of each feature 

348 in explaining migration in relation to the most important feature.

349 4 Discussion

350 4.1 Importance of societal factors on environmental migration 

351 The majority of global migration in our study period occurred in areas with a risky combination of 

352 high environmental stress (ES) and low to medium adaptive capacity (AC). Income level was the key 

353 factor in explaining net-migration, interestingly across the global income groups from low to high. 

354 Slow-onset environmental variables, drought and water risk, had the highest importance amongst 

355 environmental stress for both net-positive and net-negative migration especially in dry regions like 

356 South and East-Asia and North-Africa. Here net-positive refers to situations where in-migration 

357 exceeds out-migration while net-negative refers to situations where out-migration exceeds in-

358 migration.  Our global synthesis with sixteen classes successfully illustrated the spatial heterogeneity 

359 of the different factors underlying migration and their interplay. While the global prediction power 

360 with the selected factors was moderate, we were able to identify geographical heterogeneities of 

361 migration patterns. 

362

363 A clear majority of global net-negative migration originates from environmentally stressed and 

364 hazardous areas (in agreement with de Sherbinin et al 2012) with medium-low to medium-high 

365 environmental stress and medium level of adaptive capacity.  This aligns the previous literature 

366 showing that environmental migration is more common among the middle-level income countries, not 

367 among the poorest nor the richest (Cattaneo and Peri 2016, Hoffmann et al 2020). Our results indicate 

368 that income level, followed by drought risk and education have a primary importance in explaining 

369 net-negative migration in areas with high environmental stress (Figure 6; Figure 8a). In fact, aligned 

370 with our finding, Neumann and Hermans (2017) observed economic and social aspects to be the 

371 predominant reasons for out-migration whereas environmental factors, such as droughts, were found 

372 to drive migration indirectly through “economic deterioration” in areas like the Sahel. Our results 

373 suggest that environmental pressures alone are unlikely to cause migration through simple linear 

374 linkages, despite the fact that the presence of environmental pressures in the sending areas of 

375 migration is evident (Black et al 2011b, 2011a, de Sherbinin et al 2012, Neumann et al 2015, Abel et 

376 al 2019). The role of the environment in driving migration should thus be investigated critically (Boas 
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377 et al 2019, Murphy 2015, Betts and Pilath 2017), and socioeconomic variables should be factored in 

378 in the attempts to quantify environmental migration.

379

380 We found that the majority of global net-positive migration was characterized by high environmental 

381 stress and medium level of adaptive capacity (Figure 4c). This finding is in line with the empirical 

382 evidence that both voluntary and forced migration tend to occur between neighboring countries or 

383 within the same region (Abel et al 2019, Abel and Sander 2014). African migrants, for instance, 

384 predominantly move within Africa so the high environmental stress observed in the destinations may 

385 reflect the fact that most migration is short-distance. The characteristics of the destination areas, on 

386 the other hand, have received less attention in the  environmental-migration nexus literature (Cattaneo 

387 and Peri 2016, Hoffmann et al 2020). A combination of high environmental stress and low-to-medium 

388 capacity potentially exposes migrants to a twofold risk at both origin and destination: firstly, they are 

389 also exposed to numerous social and ecological vulnerabilities  in the destination (de Sherbinin et al 

390 2012, Adri and Simon 2018), and secondly, such conditions might prevent people with low 

391 capabilities from moving to a more desired location or relocating back to their origin (Ayeb-Karlsson 

392 et al 2020). Environmental hazards combined with numerous inadequacies in terms of human 

393 development, economy and governance  may trap in-coming migrants with increasing vulnerabilities 

394 (Ayeb-Karlsson et al 2020) and thus hamper the positive gains from migration.  

395

396 Despite the fact that our global analysis does not distinguish between rural and urban areas in terms of 

397 origins and destinations of migration, our income data capture the importance of regional disparities 

398 in producing migration. These data were downscaled from sub-national income data to 5 arc-min (ca 

399 10 km in the equator) resolution by using night lights and agricultural land use data and thus illustrate 

400 the difference in income levels between rural and urban areas within a country. Considering the 

401 importance of income in explaining both net-negative and net-positive migration, it is likely that it is 

402 the difference between income-levels of the origin and destination areas that explains migration 

403 instead of income itself. This finding aligns well with the classic gravity-model theories of migration 

404 (de Haas 2011, Lee 1966). 

405

406 In the coming decades, African countries, in particular, are expected to experience fast urbanization 

407 resulting from a combination of natural population growth and in-migration driven by the disparities 

408 between rural and urban areas (Farrell 2018, Awumbila 2017). Rapidly expanding urban areas with 

409 low capacity in terms of income level, governance and basic services, in particular, tend to generate 

410 informal settlements that often function as “waiting rooms” for in-coming migrants with low 

411 capabilities (Tacoli et al 2015, Andrews 2020, Niva et al 2019). Meanwhile, the population living 

412 under water stress is expected to grow by half up to double in the coming decades due to climate 

413 change (Munia et al 2020). In fact, there is already some evidence showing that some urban 
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414 agglomerates are facing a dual-risk from both droughts and floods (Cai et al 2018). Notably, our 

415 results show drought and water risk had the highest or second highest importance in explaining net-

416 positive migration in numerous areas with low-to-medium adaptive capacity and high environmental 

417 stress, reflecting the evidence from other studies as well as showing further research needs; Future 

418 studies should pay elevated attention to the conditions of where people move to (Ayeb-Karlsson et al 

419 2020, Findlay 2011), especially in urban destination. 

420

421 4.2 Limitations of this study

422 This work has analysis and data -related limitations commonly faced in global analyses. Firstly, the 

423 results are prone to uncertainty, because the migration data obtained from de Sherbinin et al (2015) 

424 themselves are a product of modelling: the original migration dataset contained a minor built-in error 

425 of around (-) 400,000 migrants, (ca. 0.1% of global net-migration). The same issue applies to the 

426 environmental data of which many are originally modelled (water stress, SPEI index and natural 

427 hazards), and may thus contain and result in inaccuracies especially in remote locations. 

428

429 Secondly, while our global analysis was conducted at high resolution grid, it should be noted that the 

430 net-migration data used here represent the world in the past. Here, the dataset from de Sherbinin et al 

431 (2012) at 10 km spatial resolution were selected over a recent net-migration dataset by Alessandrini et 

432 al (2020). While Alessandrini et al (2020) data has a fine temporal resolution, they used only gridded 

433 national values on a coarse spatial resolution (25 km) instead of using downscaled sub-national 

434 values, as done in de Sherbinin (2015). Notably, despite we utilized the best available data for 

435 building our indicators, water stress and food production scarcity were comprised with data from 

436 varying years.

437

438 Thirdly, the explanatory variables could explain up to 60% of the variance in any of the models, and 

439 notably, income outperformed all other variables systematically across the globe. While this aligns 

440 with many studies highlighting the role of income as a primary driver of migration, the results may be 

441 biased. The data of income were downscaled to grid level by using a proxy for rural-urban division 

442 (see Supplement) thus potentially overriding other variables that were gridded from sub-national data. 

443 Moreover, some of the indicators used here (NH, WR, FPS) comprise of multiple indices and thus do 

444 not provide information on the importance of their individual components on migration. 

445

446 It should also be noted that studying a complex phenomenon such as migration by using quantitative 

447 indices is prone to uncertainty as global indicators and the data cannot capture decision-making 

448 processes at an individual level, or in very small countries. Despite the population living in countries 

449 where the number of cells is 20 or less is only 0.1% of the global population, it can be presumed that 
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450 the data do not fully capture migration dynamics in micro-states, such as Liechtenstein or Andorra. 

451 Moreover, it should be noted that our data only illustrate net-migration and thus do not separate 

452 voluntary from forced migration. While it is not entirely possible to make a clear-cut distinction 

453 between forced and voluntary migration since in fact migration decisions do have a certain degree of 

454 volition (Erdal and Oeppen 2018), different types of migrants are protected by different bodies of 

455 international law as well as non-legally binding best practices and principles (Martin 2017). 

456 Therefore, in practice, migration policy and regulations need to distinguish between types of 

457 migration which unfortunately is not possible in the net-migration data used here.  

458

459 Nevertheless, our analysis does tap into various indicators such as governance, education and health 

460 that have previously been identified as being fundamental in reducing vulnerability and enhancing 

461 adaptive capacity (Andrijevic et al 2020, Lutz et al 2014). The novel machine learning approach 

462 which helps identify the importance of each variable in explaining migration thus allows for 

463 pinpointing which societal factor is highly relevant and can be used as an empirical ground in policy 

464 making processes. Furthermore, our analysis provides useful insights on the relationship between the 

465 used variables as well as variation of relative feature importance in terms of migration globally, by 

466 country groups, and by similarity classes.  That the variables featured very different level of 

467 explanation power between neighboring countries indicates that selecting variables for future studies 

468 is sensitive to location. 

469

470 4.3 Ways forward

471 Our results and limitations partly reflect the availability, accuracy and development needs of 

472 migration and socioeconomic indicator data. Demand for high-resolution spatiotemporal data on 

473 detailed subnational net-migration is urgent. To our knowledge there are altogether two gridded 

474 datasets of global net-migration of which both compromise with either temporal or spatial scale and 

475 the scale of input data (national vs. sub-national) (see section 4.2). This significantly hinders the 

476 production of accurate and comparable spatiotemporal estimates of migration. For instance, the 

477 simplistic narratives of mass-migration fluxes and portraying migration as a security hazard has been 

478 repeated in both research and policy-making for decades (Boas et al 2019), but data for investigating 

479 these recent developments lag behind. 

480

481 Noteworthy, identifying local characteristics underlying migration is equally difficult. Globally 

482 comparable fine-scale socio-economic data are scarce and typically sub-national scale data require 

483 downscaling if a more refined scale is desired. For instance, education, governance and health were 

484 outperformed by downscaled and spatially more detailed income data income in explaining net-
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485 negative and net-positive migration. We thus call for high-resolution spatiotemporal data for 

486 producing consistent and up-to-date predictions of human migration and its conditions globally. 

487

488 5 Conclusions

489 We provided a global assessment of the interplay of environmental and societal characteristics 

490 underlying migration in sending (negative net-migration) and receiving (positive net-migration) areas 

491 by creating a novel classification-matrix. Furthermore, we assessed the importance of eight 

492 environmental and socio-economic indicators on net-negative and net-positive migration at national 

493 scale using a machine learning method. Our findings extend the current knowledge on three fronts:

494

495 - Within the study period 1990-2000, the majority of global net-negative and net-positive 

496 migration was concentrated in areas with rather similar profiles; a combination of both low-

497 to-medium adaptive human capacity and medium-to-high environmental stress, and low 

498 migration-to-population ratio. 

499 - Income outperformed all other variables in circa half of both sending and receiving areas. 

500 Education and health were also significant local factors in explaining migration, especially 

501 net-negative, with global median importance being around 40% of the most important factor, 

502 income. Drought and water risk had the highest importance among environmental variables, 

503 globally. 

504 - The combination of the novel matrix approach, an ensemble of national-level models, and 

505 machine computational methods allowed us to identify new global patterns on both net-

506 positive and net-negative migration, thus significantly improving the knowledge on important 

507 drivers of in- and out-migration.

508

509 Finally, we highlight the urgency for adapting integrative approaches in the quantitative analysis of 

510 environment-migration nexus more rigorously. A phenomenon that is ultimately based on individual 

511 and human decision-making simply cannot and should not be studied without the inclusion of societal 

512 dimension: human capacity and agency. In order to study the complex causalities between migration 

513 and its underlying conditions further in both research and policy-making, it is of urgent importance to 

514 produce detailed and timely spatiotemporal data regarding migration and its drivers. In the time when 

515 environmental vulnerabilities are on the surge, it is indeed fundamental to understand how human 

516 populations respond and adapt to them. 

517
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