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FOREWORD 

The lnternational lnstitute for Applied Systems Analysis i s  a nongovernmental, multi- 
disciplinary, international research institution whose goal i s  to bring together scientists 
from around the world to work on problems of common interest. 

IlASA pursues this goal, not only by pursuing a research program at the lnstitute in col- 
laboration with many other institutions, but also by holding a wide variety of scientific 
and technical meetings. Often the interest in these meetings extends beyond the concerns 
of the participants, and proceedings are issued. Carefully edited and reviewed proceedings 
occasionally appear in the International Series on Applied Systems Analysis (published by 
John Wiley and Sons Limited, Chichester, England); edited proceedings appear in the 
IIASA Proceedings Series (published by Pergamon Press Limited, Oxford, England). 

When relatively quick publication is desired, unedited and only lightly reviewed proceed- 
ings reproduced from manuscripts provided by the authors o f  the papers appear in this 
new IIASA Collaborative Proceedings Series. Volumes in this series are available from the 
lnstitute at moderate cost. 





PREFACE 

During the week of June 2-6, 1980, the System and Decision Sciences Area of the Inter- 
national Institute for Applied Systems Analysis organized a workshop on large-scale linear 
programming in collaboration with the Systems Optimization Laboratory (SOL) of Stan- 
ford University, and cosponsored by the Mathematical Programming Society (MPS). The 
participants in the meeting were invited from amongst those who actively contribute to 
research in large-scale linear programming methodology (including development of algo- 
rithms and software). Although primarily methodologically oriented scientists attended 
the workshop, i t s  theme was the improvement of the long range applicability of linear pro- 
gramming (LP) techniques. Besides the exchange of ideas and experience - and sugges- 
tions for future research directions and international cooperation - fostered by the meet- 
ing, it wasa general feeling of the participants that a proceedings would reflect the current 
state of large-scale linear programming in both East and West. 

To this end, it was considered important to produce the proceedings volumes in a lecture 
note format as quickly as possible, so as to secure a complete record of the papers presented 
at the workshop - including those destined for publication elsewhere - together with 
several papers solicited by the editors in order to  extend coverage. In some cases, papers 
presented at llASA have been revised by their authors in the two months following the 
meeting; in others, no revisions have been made. Although a standard title page format 
has been used, the papers have been largely reproduced from camera-ready copy supplied 
bytheirauthors.Most have not been refereed, edited or proofread for typographical errors. 
Papers are grouped together in chapters by topic and are listed in alphabetical order by 
author in each cha~ter. 

The first volume of these Proceedings contains five chapters. The first i s  an historical 
review by George 6. Dantzig of his own and related research in time-staged linear program- 
ming problems. Chapter 2 contains five papers which address various techniques for exploit- 
ing sparsity and degeneracy in the now standard LU decomposition of the basis used with 
the simplex algorithm for standard (unstructured) problems. The six papers of Chapter 3 
concern aspects of variants of the simplex method which take into account through basis 
factorization the specific block-angular structure of constraint matrices generated by 
dynamic and/or stochastic linear programs. By means of these techniques it i s  hoped to 
extend the size of solvable LP's beyond the range of current commercial codes for specific 
problems in the fields of energy, resource and macro/economic modeling (including eco- 
nomic planning models). In Chapter 4, five papers address extensions of the original 
Dantzig-Wolfe procedure for utilizing the structure of planning problems by decomposing 
the original LP into LP subproblems coordinated by a relatively simple LP master problem 
of a certain type. Two of these papers concern the recent idea of applying this approach re- 
cursively to the subproblems themselves. Chapter 5 contains four papers which constitute a 
mini-symposium on the now famous Shor-Khachian ellipsoidal method applied to both real 
and integer linear programs. This completes the description of the contents of Volume 1. 



The first chapter of  Volume 2 contains three papers on non-simplex methods for linear 
programming. This chapter concludes reports in the mainstream of current research on 
solution algorithms in large-scale linear programming. The remaining chapters of Volume 
2 concern more peripheral - but no less important -topics of present interest i n  the field. 
Techniques for exploiting network structure in LP problems are the topic of the three 
papers of Chapter 7. In the next chapter, the emphasis turns t o  the practically crucial and 
inter-related issues of automatic LP model generation and structure identification. The 
seven papers of this chapter discuss software both for model and matrix generation and 
for model reduction through detection of imbedded special constraint structure. The final 
chapter, 9, contains a number of applications of large-scale LP techniques to  practical 
problems in industrial and agricultural production and economic planning. Some of these 
involve multi-criteria optimization, and two of the eight papers deal explicitly with imple- 
mentations of new approaches to  the multi-criteria problem. A bibliography of large-scale 
linear programming research completes Volume 2. 

The editors wish to take this opportunity on behalf of the participants to  thank I IASA, 
SOL and MPS for their cooperation and to  thank IlASA as well as various Academies of 
Sciences and governmental agencies of several countries for making the resources available 
to  hold the Large-scale Linear Programming Workshop and to  publish these Proceedings, 
In particular, we are grateful to  the Communications Department at I IASA for their cheer- 
ful cooperation in expediting publication of this record of an important and memorable 
international meeting. 

George B. Dan tzig 
M.A. H. Dernpster 

Markku Kallio 

Stanford, California 
August 1980 
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TlhrlESTAGED METHODS IN LINEAR PROGRAMMING: COMMENTS 
AND EARLY HISTORY 

George B. Dantzig 

Department of Operations Research 
Stanford University 

The Workshop on Large-scale Linear Programming reflects the active research taking place 
in many parts of the world along a very broad front, namely on: 

the theory of solution, 
software development, 
experiments on representative problems, 
application to  real problems, 
matrix input generators, 
matrix analyzers, 
output report generators, 
alternative methods of formulation. 

This paper i s  a historical review of the author's interest in one important facet of this 
field - the solution of time-staged programs. Indeed it was dynamic LP that initiated the 
linear programming field back in 1947. Over the years, many good ideas have been pro- 
posed, some that still merit serious consideration. This Workshop may provide the answer 
to the question whether or not we have begun at last to achieve the efficiency of solution 
necessary for successful application. 



This paper is a more polished version of the talk which I 
delivered opening the International Institute for Applied Systems 
Analysis Workshop on Large-Scale Linear Programming at Laxenburg 
Austria, June 2-6, 1980. Except for a short review of large- 
scale methods also presented, but omitted here, my perspective is 
historical. 

TIME-STAGED STAIRCASE SYSTEMS 

The first formal papers about the new field of linear pro- 
gramming (that started in 19U7) appeared in Econometrica July - 
October 19U9. At the very beginning, the emphasis was on solving 
time-staged (dynamic) linear programs. That this is so, is clear 
from the following quote from [ I ] :  

T h i s  paper  is  concerned w i t h  improved t e c h n i q u e s  of  program 
p lanning ,  p a r t i c u l a r l y  a s  t h e y  a p p l y  t o  t h e  s c h e d u l i n g  of 
a c t i v i t i e s  over  t ime w i t h i n  a n  o r g a n i z a t i o n  o r  economy i n  
which t h e  a c t i v i t i e s  must s h a r e  i n  t h e  u s e  of l i m i t e d  amounts 
of v a r i o u s  c o m o d i t i e s .  The contemplated u s e  of  e l e c t r o n i c  
computers  f o r  r a p i d l y  computing programs and t h e  assumpt ions  
u n d e r l y i n g  t h e  mathemat ica l  model a r e  d i s c u s s e d .  The paper  
is conclu{ed by a n  i l l u s t r a t i v e  example, [ B e r l i n  A i r l i f t ,  -4 
Time-Staged Dynamic Linear  Program]. 

The Xathemat ica l  Xodel d i s c u s s e d  h e r e  i s  a  g e n e r a l i z a t i o n  
of t h e  Leont ie f  I n t e r - I n d u s t r y  Model. I t  i s  c l o s e l y  r e l a t r d  
t o  t h e  one  found i n  von Neumann's paper  "A Yodel of General  
Economic Equil ibrium".  I t s  c h i e f  p o i n t s  of d i f f e r e n c e  l :e  
i n  i t s  emphasis on dynamic, r a t h e r  than  e q u i l i b r i u m  o r  s t e a d y  
s t a t e s .  I ts  purpose is c l o s e  c o n t r o l  of a n  organ iza t ion- -  



hence i t  must be q u i t e  d e t a i l e d ;  i t  i s  des igned  t o  handle  
h i g h l y  dynamic problems--hence g r e a t e r  smphasis  on t ime 
l a g s  and c a p i t a l  equipment; i t  t a k e s  i n t o  c o n s i d e r a t i o n  t h e  
many d i f f e r e n t  ways of  do ing  things--hence i t  e x p l i c i t l y  
i n t r o d u c e s  a l t e r n a t i v e  a c t i v i t i e s ;  and i t  r e c o g n i z e s  t h a t  
any p a r t i c u l a r  c h o i c e  of  a  dynamic program depends on t h e  
" o b j e c t i v e s "  of t h e  "economy", --hence t h e  s e l e c t i o n  and 
t y p e s  of a c t i v i t i e s  a r e  made t o  depend on t h e  maximizat ion 
of a n  o b j e c t i v e  f u n c t i o n .  

In the companion paper [ 2 \ ,  the time staged staircase model 
is displayed and its relationship to Leontief Input-Output model 
and continuous-time models is discussed: 

where t h e  x ( ~ )  a r e  v e c t o r s  of nonnega t ive  e lements .  

. When t h e  m a t r i c e s  and 9 ( t )  ( t=1,2, . .  ,T) a r e  s q u a r e  
and n o n s i n g u l a r ,  a  d i r e c t  s o l u t i o n  is p o s s i b l e  t h a t  may l e a d ,  
however, t o  n e g a t i v e  and nonnega t ive  a c t i v i t y  l e v e l s  ( i n  
which c a s e  no f e a s i b l e  s o l u t i o n  e x i s t s ) .  

I t  s h o u l d  be  noted t h a t  t h e  g e n e r a l  mathemat ica l  problem 
reduces  i n  t h e  l i n e a r  programming c a s e  t o  c o n s i d e r a t i o n  of 
a  system of e q u a t i o n s  of nonnega t ive  v a r i a b l e s  vhose m a t r i x  
of c o e f f i c i e n t s  is composed mos t ly  of b locks  of z e r o s  excep t  
f o r  s u b m a t r i c e s  a long  and j u s t  o f f  t h e  "diagonal" .  Thus any 
good compucational  t echnique  f o r  s o l v i n g  programs would prob- 
a b l y  t a k e  advantage  of t h i s  f a c t .  

Having fomulated the time-staged model, it soon became clear 
that the techniques at hand at the time were inadequate. In a 
companion paper [ 3 1 ,  first presented in 1949 ,  appeared the follow- 
ing statement: 

Computing t e c h n i q u e s  a r e  nov a v a i l a b l e  f o r  s o l u t i o n  of s m a l l  
l i n e a r  programming problems. However, f o r  a c c u r a t e  o v e r - a l l  
A i r  Force  p lann ing ,  t h e  s i z e  of  t h e  r e q u i r e d  model i s  such  
t h a t  c o n v e n t i o n a l  punched c a r d  computing equipment, o r  even 
t h e  i n t e r i m  e l e c t r o n i c  computer be ing  b u i l t  f o r  t h e  A i r  Force 
by t h e  Nat iona l  Bureau of  S tandards ,  is not  s u f f i c i e n t l y  
powerful  t o  cope s a t i s f a c t o r i l y  v i t h  t h e  problem of choos ing  
t h e  optimum a c t i v i t i e s  and a c t i v i t y  l e v e l s  o v e r  t ime.  



I n  o r d e r  t o  o b t a i n  a  programming procedure  which would be 
immediately u s e f u l  wi th  p r e s e n t l y  a v a i l a b l e  computing equip-  
ment, we have been forced t o  use  a  d e t e r m i n a t e ,  and hence 
l e s s  g e n e r a l  f o r m u l a t i o n  of t h e  programming problem t h a t  
p a r a l l e l s  c l o s e l y  t h e  s c a f f  p rocedure .  

( ? j  
Exogenous r _(t) _(t) -(t) 

1 - 7 - 3 - 4 

t - l  
t=2  
c=3 
t 3 4  

I 

I n i t i a l  1 
I 
I 

We have c a l l e d  t h i s  a  zrianguZar ~ o d e i  because  i n  it t h e  
m a t r i x  of de tached  c o e f f i c i e n t s ,  when a r ragned  a s  i n  t h e  
Table.  and o m i t t i n g  t h e  " i n i t i a l "  p a r t ,  assumes a  t r i a n -  
g u l a r  form, w i t h  a l l  c o e f f i c i e n t s  above and t o  t h e  r i g h t  
of t h e  p r i n c i p a l  d i a g o n a l  be ing  ze ro .  Thus t h e  a c t i v i t i e s  
and i t e m s  a r e  s o  o rdered  t h a t  t h e  l e v e l s  of  any one a c t i v -  
i t y  over  t ime  depend o n l y  on  t h e  l e v e l s  of  t h e  a c t i v i t i e s  
which p r e c e d e  i t  i n  t h e  h i e r a r c h y .  T h i s  means t h a t  i n  t h e  
computa t ion  of t h e  program we s u c c e s s i v e l y  work down t h e  
h i e r a r c h y ,  a t  each  s t e p  s o l v i n g  comple te ly  f o r  t h e  l e v e l s  
of each  a c t i v i t y  i n  each  of t h e  t ime  p e r i o d s  b e f o r e  pro- 
ceed ing  t o  t h e  nex t  a c t i v i t y  ( s e e  f i g u r e  a b o v e ) .  

The triangular model technique is a powerful empirical method 
when there is a natural hierarchy of activities and output items. 
Certain energy models, for example, currently in vogue use such 
an approach. 



BLOCK TRIANGULARITY 

My pape r  [ 4 1 ,  i s  my f i r s t  on methods f o r  s o l v i n g  l a r g e  sys -  
tems : 

With t h e  growing awareness of t h e  p o t e n t i a l i t i e s  of t h e  
l i n e a r  programming approach t o  bo th  dynamic and s t a t i c  
problems of i n d u s t r y ,  of t h e  economy, and of t h e  m i l i t a r y ,  
t h e  main o b s t a c l e  toward f u l l  a p p l i c a t i o n  is t h e  i n a b i l i t y  
of c u r r e n t  computa t iona l  methods t o  cope w i t h  t h e  magnlt- 
ude of t h e  t e c h n o l o g i c a l  m a t r i c e s  f o r  even t h e  s i m p l e s t  
s i t u a t i o n s .  However, i n  c e r t a i n  c a s e s ,  such  a s  t h e  now 
c l a s s i c a l  Hitchcock-Koopmans t r a n s p o r t a t i o n  model, i t  has 
been p o s s i b l e  t o  s o l v e  t h e  l i n e a r  i n e q u a l i t y  system i n  
s p i t e  of s i z e  because of s imple  p r o p e r t i e s  of t h e  system. 
T h i s  s u g g e s t s  t h a t  c o n s i d e r a b l e  r e s e a r c h  be under taken  t o  
e x p l o i t  c e r t a i n  s p e c i a l  matrix s t r u c t u r e s  i n  o r d e r  t o  f a c -  
i l i t a t e  ready  s o l u t i o n  of l a r g e r  systems.  

Indeed,  r e c e n t  computa t iona l  e x p e r i e n c e  h a s  made i t  c l e a r  
t h a t  s t a n d a r d  techniques  such a s  t h e  s implex  a l g o r i t h m ,  
which have been used t o  s o l v e  s u c c e s s f u l l y  g e n e r a l  systems 
i n v o l v i n g  one hundred e q u a t i o n s  ( i n  any r e a s o n a b l e  number 
of nonnega t ive  unknowns), a r e  too  t e d i o u s  and l e n g t h y  t o  
be p r a c t i c a l  f o r  e x t e n s i o n s  much beyond t h i s  f i g u r e .  Our 
purpose h e r e  w i l l  be t o  deve lop  shor t -cu t  computa t iona l  
methods Eor s o l v i n g  an  impor tan t  c l a s s  of systems whose 
m a t r i c e s  may be g e n e r a l l y  d e s c r i b e d  a s  "b lock  t r i a n g u l a r " .  

By "block" t r i a n g u l a r  we mean t h a t  i f  one p a r t i t i o n s  t h e  
m a t r i x  of c o e f f i c i e n t s  of t h e  technology m a t r i x  i n t o  sub- 
m a t r i c e s ,  t h e  submat r ices  ( o r  b locks)  cons idered  a s  e l e -  
ments form a t r i m g u l a r  syscsm, 

7 9 

For example, von Neumann, i n  c o n s i d e r i n g  a c o n s t a n t l y  ex- 
panding economy, developed a l i n e a r  dynamic model whose 
m a t r i x  of c o e f f i c i e n t s  may be w r i t t e n  i n  t h e  form, 

where A i s  t h e  submat r ix  of c o e f f i c i e n t s  of a c t i v i t i e s  in -  
i t i a t e d  i n  per iod  t, and B is t h e  submat r ix  of output  co- 
e f f i c i e n t s  of t h e s e  a c t i v i t i e s  i n  t h e  f o l l o w i n g  per iod .  



Now the  main obs tac le  toward the f u l l  app l i ca t ion  of s t an -  
dard l i n e a r  programing techniques t o  dynamic systems i s  
the  magnitude of the  matrix f o r  even the  s imples t  s i t u a t i o n s .  
For example, a t r i v i a l  15-activity--7-item s t a t i c  model, 
when s e t  up a s  a 12-period dynamic model, would become a 
180-activity by 84-item system, which i s  considered a l a rge  
problem f o r  app l i ca t ion  of the  standard simplex method. A 
fancy model involving, say,  200 a c t i v i t i e s  and 100 items 
f o r  a s t a t i c  case  would become a 2000 x 1000 matrix i f  re-  
c a s t  a s  a 10-period model. I t  is c l e a r  t h a t  dynamic models 
must be t r ea t ed  with spec i a l  t oo l s  i f  any progress  is t o  be 
made toward s o l u t i o n s  of these  systems. 

From a computational point  of view, there  a r e  a number of 
observed c h a r a c t e r i s t i c s  of the  dynamic models which a r e  
o f t en  t r u e  f o r  s t a t i c  models a s  well .  
These a r e :  

(1) The matrix (or i ts  transpose) can be arranged i n  tri- 
angular form 

(2) Most submatrices A i j  a r e  e i t h e r  zero matr ices  o r  com- 
posed of elements, most of which a r e  zero. 

( 3 )  A bas i s  f o r  t he  simplex method i s  o f t en  block t r i an -  
gular  wi th  i t s  diagonal submatrices square and non- 
s ingu la r  ( r e f e r r ed  to  a s  a "square block t r i angu la r "  
b a s i s ) .  

(4)  For dynamic models s imi l a r  type a c t i v i t i e s  a r e  l i k e l y  
t o  p e r s i s t  i n  the  b a s i s  f o r  s eve ra l  periods.  

To i l l u s t r a t e ,  consider a dynamic vers ion of the  Leontief 
model i n  which ( a )  a l t e r n a t i v e  a c t i v i t i e s  a r e  permitted 
(a simple case  would be where s t e e l  can be obtained from 
d i r e c t  production o r  s t o r a g e ) ;  (b) inputs  t o  an a c t i v i t y  
f o r  production i n  t he  t t h  time period may occur i n  t he  same 
o r  e a r l i e r  time periods.  It can be shown i n  t h i s  model t h a t  
( a )  a bas i c  so lu t ion  w i l l  have exact ly  m a c t i v i t i e s  i n  each 
time period (where n - number of time dependent equat ions) .  
(b) each s h i f t  i n  bas i s  w i l l  bring i n  a s u b s t i t u t e  a c t i v i t y  
i n  t he  same time period,  and ( c )  optimization can be ca r r i ed  
out a s  a sequence of one-period opt imizat ion  problems; i . e . ,  
the  optimum choice of a c t i v i t i e s  (but not t h e i r  amounts) can 
be determined f o r  the  f i r s t  time period (independent of the  
l a t e r  per iods)  t h i s  permits a determination f o r  the  second 
time period (independent of the  l a t e r  per iods) ,  e t  ce t e r a .  

When flow models a r e  replaced with more complex models which 
inc lude  i n i t i a l  inventor ies ,  capac i t i e s ,  and the  bui ld ing 
of new c a p a c i t i e s ,  t he  i d e a l  s t r u c t u r e  of a b a s i s  ( s ee  t h i r d  
c h a r a c t e r i s t i c  above) no longer holds. However, t e s t s  (car-  
r i e d  on s i n c e  1950) on a number of cases  i n d i c a t e  t h a t  bases. 
while o f t en  not square btock t r C a p l a r  i n  the s m s e  above, 
could be nude so by changing r e l a t i ~ ~ e l y  few n o l m s  i n  the 
bcs i s  (e.g.. one o r  two a c t i v i t i e s  i n  small  models). This 
c h a r a c t e r i s t i c  of near-square tZoci  t r i a n g u l a r i t y  of the 
bas i s ,  i .e . .  with nonsingular square submatrices down the  
diagonal,  is, of course,  computationally convenient and t h i s  
paper w i l l  be concerned with ways t o  exp lo i t  i t .  



Towards the end of the above paper can be found the following: 

Fina l ly ,  may I make a  sho r t  plea tha t  l i n e a r  programmers 
pay g rea t e r  a t t e n t i o n  t o  spec i a l  methods t o r  so lv ing the  
l a r g e r  matr ices  t h a t  a r e  encountered i n  p rac t i ce .  The es- 
c e l l e n t  work of Jacobs on the  c a t e r e r  problem and the work 
of Jacobs,  Hoffman, Johnson on t h e  production smoothing 
problem a r e  examples of what may be done with c e r t a i n  dyn- 
amic models with a  simple r e p e t i t i v e  s t r u c t u r e .  Cooper and 
Charnes have employed i n  t h e i r  work a  number of sho r t  c u t s  
t h a t  have permitted r e so lu t ion  of c e r t a i n  l a r g e  s c a l e  sys- 
tems. A t  RAND we have found e f f i c i e n t  ways t o  hand compute 
genera l ized  t r anspor t a t i on  problems, and Markowicz has pro- 
posed a  genera l  procedure i n  t h i s  a r ea  t h a t  is promising. 
Many models exh ib i t  a  block t r i angu la r  s t r u c t u r e  and cer-  
t a i n  p a r t i t i o n i n g  methods have been proposed which take 
advantage of t h i s  type of s t ruc tu re .  There is need fo r  
those of you who a r e  fores ighted  t o  do se r ious  research  i n  
t h i s  area .  

A t  t he  present  time (1955), i t  i s  poss ib le  t o  so lve  r ap id ly  
problems i n  the  order of a  hundred equations.  The Orchard- 
Hays 701 Simplex Code has solved many problems of t h i s  s i z e  
wi th  a s  high a s  1,500 unknowns and machine times of f i v e  t o  
e igh t  hours a s  a  rule--all  with excel lent  s tandards  of ac- 
curacy. However, i t  is se l f -evident  t h a t  no matter how much 
the  genera l  purpose codes a r e  perfected they w i l l  be unable 
t o  cope with t he  next genera t ion  of problems which w i l l  be 
l a r g e r  i n  s i ze .  I t  i s  a l s o  evident t h a t  t he  models cu r r en t ly  
being run could have been handled more e f f e c t i v e l y  by the  
proposed s p e c i a l  methods. 

There a r e  c e r t a i n  c h a r a c t e r i s t i c s  common t o  many models 
which I bel ieve  should be emphasized: 

(1) Host f a c t o r s  i n  the c o e f f i c i e n t  matrix a r e  zero. 
( 2 )  In  dynamic s t r u c t u r e s  t he  c o e f f i c i e n t s  a r e  o f t en  

t h e  same from one time period t o  t he  next.  
(3) In dynamic so lu t ions  t he  a c t i v i t i e s  employed of ten  

p e r s i s t  from one period t o  the next. 
(O) Transpor ta t ion  type submatrices a r e  common. 
( 5 )  Block t r i angu la r  submatrices a r e  common. 

Pa r t  of t he  research  i n  t h i s  a r ea  should c e r t a i n l y  be de- 
voted t o  a  b e t t e r  understanding of the p o t e n t i a l i t i e s  of 
techniques o ther  than the  simplex method. 

UNCERTAINTY 

In a related paper [51, published in 1 9 5 6 ,  appears the following 

In  t he  pas t  few months t he re  have been important developments t h a t  
point  t o  t h e  sppi icat isn of l inear progruwning neshods xnder 
uncertainty. By way of background l e t  us r e c a l l  t h a t  t he re  
a r e  i n  connnon use two e s s e n t i a l l y  d i f f e r e n t  types of sched- 
u l ing  applications--one designed f o r  the  sho r t  run and those 



f o r  t h e  long run.  For t h e  l a t t e r  t h e  e f f e c t  of p r o b a b i l i s t i c  
o r  chance e v e n t s  i s  reduced t o  a  minimum, by t h e  u s u a l  tech-  
n i q u e  of p rov id ing  p l e n t y  of fat i n  t h e  system. For example, 
conswrrprion razes,  a t t r t z i o n  raies ,  wecrr-~ut rates  a r e  a l l  
planned on t h e  h i g h  s i d e .  7 h e s  t o  ship, time t o  travel ,  
tz;7les zo produce a r e  always made w e l l  above a c t u a l  needs. 
Indeed,  t h e  e n t i r e  system is pu t  t o g e t h e r  w i t h  p l e n t y  of 
slack and fat w i t h  t h e  hope t h a t  they  w i l l  be t h e  shock 
d s o r b e r s  which w i l l  pe rmi t  t h e  g e n e r a l  o b j e c t i v e s  and tim- 
i n g  of t h e  p l a n  t o  be executed i n  s p i t e  of unforeseen  e v e n t s .  
I n  t h e  g e n e r a l  c o u r s e  of t h i n g s ,  long-range p l a n s  a r e  re -  
v i s e d  f r e q u e n t l y  because t h e  s t o c h a s t i c s  e lements  of t h e  
problem have a  n a s t y  way of i n t r u d i n g .  For t h i s  r e a s o n  a l s o  
t h e  c h i e f  c o n t r i b u t i o n ,  i f  any,  of t h e  long-range p l a n ,  is 
t o  e f f e c t  an  inmedia te  decision-such a s  t h e  a p p r o p i a t i o n  
of funds  o r  t h e  i n i t i a t i o n  of a n  impor tan t  development con- 
t r a c t .  

For shor t - run  s c h e d u l i n g ,  many of t h e  s l u k  and fat tech-  
n iques  of its long-range b r o t h e r  a r e  employed. The p r i n c i -  
p l e  d i f f e r e n c e s  a r e  a t t e n t i o n  t o  d e t a i l  and t h e  s h o r t  time- 
hor izon .  As long  a s  capubi i i t i e s  a r e  w e l l  above require- 
ments ( o r  demands) o r  i f  t h e  demands can be  s h i f t e d  i n  t ime,  
t h i s  approach p r e s e n t s  no problems s i n c e  it is f e a s i b l e  t o  
implement t h e  s c h e d u l e  i n  d e t a i l .  However, where t h e r e  a r e  
s h o r t a g e s ,  t h e  p r o j e c t e d  p l a n  based on such t e c h n i q u e s  may 
l e a d  t o  a c t i o n s  f a r  from o p t i m a l ,  whereas t h e s e  new methods, 
where a p p l i c a b l e ,  may r e s u l t  i n  c o n s i d e r a b l e  s a v i n g s .  I 
s h a l l  s u b s t a n t i a t e  t h i s  l a t e r  by r e f e r e n c e  t o  a  problem of 
A. Ferguson on t h e  r o u t i n g  of a i r c r a f t .  

With regard  t o  t h e  p o s s i b i l i t i e s  of s o l v i n g  l a r g e  s c a l e  l i n -  
e a r  p r o g r a m i n g  problems, one c a n  sound bo th  a n  o p t i m i s c i c  
and a  p e s s i r n i a t i c ~ n o t e .  The p e s s i m i s t i c  n o t e  concerns  t h e  
a b i l i t y  of t h e  problem formulacor,  e i t h e r  amateur o r  p rofes -  
s i o n a l ,  t o  deve lop  models t h a t  a r e  l a r g e  s c a l e .  The p e s s i -  
m i s t i c  n o t e  a l s o  concerns  t h e  i n a b i l i t y  of t h e  problem s o v l e r  
t o  compute models by general t e c h i p e s  when they  a r e  l a r g e  
s c a l e .  I f  t h i s  i s  s o ,  i s  n o t  t h e  g r e a t  promise t h a t  t h e  l i n -  
e a r  programming approach  w i l l  s o l v e  s c h e d u l i n g  and long  range  
p lann ing  problems w i t h  s u b s t a n t i a l  s a v i n g s  t o  t h e  o r g a n i z a t i o n s  
adopt ing  t h e s e  methods bu t  a n  i l l u s i o n  and a  s n a r e ?  Are t h e  
b i g  problems go ing  t o  be so lved  a s  they have always been 
solved--by a  d e t a i l e d  system of on-the-spot somewhat n a t u r a l  
s e t  of p r i o r i t i e s  t h a t  r e s o l v e  e v e r y  p o s s i b l e  a l t e r n a t i v e  a s  
i t  a r i s e s ?  

The status of problems involving uncertainty as far as prac- 
tical solutions are concerned, has not changed much since 1956. 
The following, sums up the 1965 situation: 

When one c o n s i d e r s  i n s t e a d ,  a d i r e c t  a t t a c k  on u n c e r t a i n t y  
v i a  mathemat ica l  programming, it i n e v i t a b l y  l e a d s  t o  t h e  con- 
s i d e r a t i o n  of large-scale s y s t m s .  Problems w i t h  t h e i r  s t r u c -  
t u r e ,  have proven d i f f i c u l t  of s o l u t i o n  s o  f a r .  I b e l i e v e  
t h a t  t h e y  w i l l  be  t h e  s u b j e c t  of i n t e n s i v e  i n v e s t i g a t i o n  i n  
t h e  f u t u r e .  



DECOMPOSITION PRINCIPLE 

The Decomposition Principle [ 61 arose in 1958 in connection 
with a military tactical problem which was too large to handle by 
conventional linear programming problem. A good summary of the 
approach can be found in my 1965 survey article: 

Recently t h e  a u t h o r ,  j o i n t l y  wi th  P h i l i p  Wolfe, developed 
a  new procedure  t h a t  is p a r t i c u l a r l y  a p p l i c a b l e  t o  angular  
systems and m u l t i s t a g e  systems of t h e  s t a i r c a s e  type  
T h i s  i s  r e p o r t e d  i n  pre l iminary  form i n  RAND P-1544 (Nov.10, 
1958) under t h e  t i t l e ,  "A Decomposition P r i n c i p l e  f o r  L inear  
Programs?. The system c o n s i s t s  of c e r t a i n  goods shared i n  
common among s e v e r a l  p a r t s  and c e r t a i n  goods ( i n c l u d i n g  fac-  
i l i t i e s ,  raw m a t e r i a l s )  p e c u l i a r  t o  each p a r t .  I n  s h o r t  t h e  
system is  angular  i n  s t r u c t u r e .  

Although t h e  e n t i r e  procedure is  one intended t o  be c a r r i e d  
o u t  i n t e r n a l l y  i n  a n  e l e c t r o n i c  computer i t  may a l s o  be viewed 
a s  a  decentratized decision making process. Each indepen- 
d e n t  p a r t  i n i t i a l l y  o f f e r s  a  p o s s i b l e  b i l l  o f  goods (a  vec- 
t o r  o f  t h e  comon o u t p u t s  and suppor t ing  i n p u t s  i n c l u d i n g  
o u t s i d e  c o s t s )  t o  a  c e n t r a l  c o o r d i n a t i n g  agency. A s  a  s e t  
t h e s e  a r e  mutually f e a s i b l e  v i t h  each o t h e r  and t h e  g iven  
common r e s o u r c e s  and demands from o u t s i d e  t h e  system. The 
c o o r d i n a t o r  works o u t  a  system of "pr ices"  f o r  paying f o r  
each component of t h e  v e c t o r  p l u s  a  s p e c i a l  subs idy  f o r  
each p a r t  t h a t  j u s t  ba lances  t h e  c o s t .  

The management of each p a r t  then  o f f e r s ,  based on t h e s e  
p r i c e s ,  a  nev f e a s i b l e  program f o r  h i s  p a r t  w i t h  lower c o s t  
' r ) i~hout  regard t o  w;zetner it i s  ;^easibZe for the  sgszem as  
a w k t e .  The c o o r d i n a t o r ,  however, combines t h e s e  new o f f e r s  
v i t h  t h e  s e t  of e a r l i e r  o f f e r s  s o  a s  t o  p r e s e r v e  mutual  fea-  
s i b i l i t y  and c o n s i s t e n c y  v i t h  exogeneous demand and supply  
and t o  minimize c o s t .  Using t h e  improved over -a l l  s o l u t i o n  
he g e n e r a t e s  a  r e v i s e d  s e t  of p r i c e s ,  s u b s i d i e s ,  and r e c e i v e s  
new o f f e r s .  The e s s e n t i a l  i d e a  is t h a t  o l d  o f f e r s  a r e  never 
f o r g o t t e n  by t h e  c e n t r a l  agency ( u n l e s s  u s i n g  " c u r r e n t "  
p r i c e s  they  a r e  u n p r o f i t a b l e ) ;  t h e  f o w e r  a r e  mixed w i t h  t h e  
new o f f e r s  t o  form new p r i c e s .  

In the original paper [61 appears this abstract: 

A technique  is  presen ted  f o r  t h e  decomposit ion of a  l i n e a r  
program t h a t  permi ts  t h e  problem t o  be so lved  by a l t e r n a t e  
s o l u t i o n s  of l i n e a r  sub-programs r e p r e s e n t i n g  i t s  s e v e r a l  
p a r t s  and a  c o o r d i n a t i n g  program t h a t  i s  obta ined  from t h e  
p a r t s  by l i n e a r  t ransformat ions .  The c o o r d i n a t i n g  program 
g e n e r a t e s  a t  each c y c l e  new o b j e c t i v e  forms f o r  each p a r t ,  
and each p a r t  g e n e r a t e s  i n  t u r n  (from its o p t i m a l  b a s i c  fea-  
s i b l e  s o l u t i o n s )  new a c t i v i t i e s  (columns) f o r  t h e  in te rcon-  
n e c t i n g  program. Viewed a s  a n  i n s t a n c e  of a  ' g e n e r a l i z e d  
programming problem' whose columns a r e  drawn f r e e l y  from 
given convex s e t s .  such a  problem can be s t u d i e d  by a n  ap- 
p r o p r i a t e  g e n e r a l i z a t i o n  of t h e  duaLi ty  theorem f o r  l i n e a r  



p r o g r a m i n g ,  which permi ts  a  sharp d i s t i n c t i o n  t o  be made 
betveen t h o s e  c o n s t r a i n t s  t h a t  p e r t a i n  on ly  t o  a p a r t  of t h e  
problem and those  t h a t  connect  i t s  p a r t s .  T h i s  l e a d s  t o  a 
g e n e r a l i z a t i o n  of t h e  Simplex Algorithm, f o r  vh ich  t h e  de- 
composit ion procedure becomes a s p e c i a l  c a s e .  

The reported experience with solving structured linear pro- 
grams by means of the decomposition principle varies from very 
good to poor, In general it appears that if the decomposition 
between master and sub is a "naturaln one, it can perform very 
well. Like the simplex method, there is rapid improvement for the 
early iterations followed by a long tail except here the tail is 
much longer. 

COMPACT BASIS INVERSES 

From 1962  onwards there has been growing interest in schemes 
for compactly representing the inverse of the basis for the simplex 
method. This effort goes under various names: compact basis tri- 
angularization, LU basis factorization. One must worry not only 
about the compactness but also about the stability of the solution 
to small changes in the original data. My 1 9 6 2  paper [ 7 1  was dir- 
ected to finding a compact representation of a basis for staircase 
systems. 

Alex Orden was t h e  f i r s t  t o  p o i n t  o u t  t h a t  t h e  i n v e r s e  of 
t h e  b a s i s  i n  t h e  simplex method s e r v e s  no f u n c t i o n  except  
a s  a  means f o r  o b t a i n i n g  t h e  r e p r e s e n t a t i o n  of t h e  v e c t o r  
e r t e r i n g  t h e b a s i s  and f o r  determining t h e  new p r i c e  v e c t o r .  
For t h i s  purpose one of t h e  many forms of " s u b s t i t u t e  in -  
verses"  (such a s  t h e  w e l l  known product  form of t h e  i n v e r s e )  
vould do j u s t  a s  w e l l  and i n  f a c t  may have c e r t a i n  advan- 
t a g e s  i n  computat ion.  

Harry Xarkowitz was i n t e r e s t e d  i n  developing,  f o r  a  s p a r s e  
mat r ix ,  a  s u b s t i t u t e  i n v e r s e  wi th  a s  few nonzero e n t r i e s  a s  
p o s s i b l e .  He suggested s e v e r a l  ways t o  do t h i s  approximately.  
For example, t h e  b a s i s  could be reduced t o  t r i a n g u l a r  form 
by s u c c e s s i v e l y  s e l e c t i n g  f o r  p i v o t  p o s i t i o n  t h a t  row and 
column whose product  of nonzero e n t r i e s  (exc luding  t h e  p i v o t )  
is minimum. He a l s o  pointed o u t  t h a t ,  f o r  bases  whose non- 
zeros  appear  i n  a  band on a s t a i r c a s e  about  t h e  d iagnonal .  
proper s e l e c t i o n  of p i v o t s  could r e s u l t  i n  a  compact sub- 
s t i t u t e  w i t h  no more nonzeros than  t h e  o r i g i n a l  b a s i s .  

We s h a l l  adopt  M a r k m i t z ' s  sugges t ion .  However, i n s t e a d  of 
record ing  t h e  s u c c e s s i v e  t r a n s f o r m a t i o n s  of one b a s i s  t o  t h e  
next  i n  product  form. we s h a l l  show t h a t  it is e f f i c i e n t  t o  
g e n e r a t e  each s u b s t i t u t e  i n v e r s e  i n  t u r n  from i ts  predeces- 
s o r .  The s u b s t i t u t e  i n v e r s e  remains compact. of f i x e d  s i z e .  
Thus " r e i n v e r s i o n s "  a r e  unnecessary (except  i n  s o  f a r  a s  
t h e y  a r e  needed t o  r e s t o r e  l o s s  of accuracy due t o  cumula- 
t i v e  round-off e r r o r ) .  

The procedure which we s h a l l  g i v e  can be a p p l i e d  t o  a gen- 
e r a l  s x m b a s i s  wi thout  s p e c i a l  s t r u c t u r e .  A s  such ,  i t  is  



probably  c o m p e t i t i v e  w i t h  t h e  s t a n d a r d  produc t  form, f o r  i t  
may have a l l  of i t s  advantages  and none of i t s  d i sadvantages .  
With c e r t a i n  m a t r i x  s t r u c t u r e s ,  moreover, it a p p e a r s  t o  be  
p a r t i c u l a r l y  a t t r a c t i v e .  

We s h a l l  f o c u s  o u r  remarks on szaircase strucedes. The 
r e a d e r  w i l l  f i n d  no d i f f i c u l t y  i n  f i n d i n g  a n  e q u a l l y  e f f i -  
c i e n t  way t o  compact block-angular  s t r u c t u r e s .  

STATUS AS OF 1967 

A s u m m a r y  o f  t h e  s t a t u s  o f  so lv ing  l a r g e - a c a l e  p r o b l e m s  can  
be f o u n d  i n  my 1967 p a p e r  [ 8 ]  . 

From its v e r y  i n c e p t i o n ,  i t  was env is ioned  t h a t  l i n e a r  pro- 
gramming would b e  a p p l i e d  t o  v e r y  l a r g e .  d e t a i l e d  models of 
economic and m i l i t a r y  systems.  K a n t o r o v i t c h ' s  1939 propos- 
a l s ,  which were b e f o r e  t h e  advent  o f  t h e  e l e c t r o n i c  computer, 
mentioned such  p o s s i b i l i t i e s .  L inear  programming evolved o u t  
of t h e  U.S. Air  Force i n t e r e s t  i n  1947 i n  f i n d i n g  o p t i m a l  
t ime-staged deployment p l a n s  i n  c a s e  of  war; a  problem whose 
mathemat ica l  s t r u c t u r e  is s i m i l a r  t o  t h a t  of  f i n d i n g  a n  op- 
timal growth p a t t e r n  of  a  deve lop ing  economy and s i m i l a r  t o  
o t h e r  c o n t r o l  problems. S t r u c t u r a l l y  t h e  dynamic problems 
a r e  c h a r a c t e r i z e d  i n  d i s c r e t e  form by s t a i r c a s e  m a t r i c e s  
r e p r e s e n t i n g  t h e  i c p u t s  and o u t p u t s  from one t i m e  p e r i o d  t o  
t h e  nex t .  T r e a t e d  a s  a n  o r d i n a r y  l i n e a r  program, t h e  number 
of rows and columns grows i n  p r o p o r t i o n  t o  t h e  number of 
t i m e  p e r i o d s  T and t h e  computa t iona l  e f f o r t  grows by T~ and 
p o s s i b l y  h i g h e r .  T h i s  f a c t  has  l i m i t e d  t h e  u s e  of l i n e a r  
programming a s  a  t o o l  f o r  p lann ing  over  many t i m e  p e r i o d s .  

At t h e  p r e s e n t  1967 s t a g e  of t h e  computer r e v o l u t i o n ,  t h e r e  
is growing i n t e r e s t  on t h e  p a r t  of p r a c t i c a l  u s e r s  of  l i n e a r  
programming models t o  s o l v e  l a r g e r  and l a r g e r  systems.  Such 
a p p l i c a t i o n s  imply t h a t  e v e n t u a l l y  automated sys tems  w i l l  
o b t a i n  information from c o u n t e r s  and s e n s i n g  d e v i c e s ,  pro- 
c e s s  d a t a  i n t o  t h e  p roper  form f o r  o p t i m i z a t i o n  and f i n a l l y  
implement t h e  r e s u l t s  by c o n t r o l  d e v i c e s .  There has  been 
s t e a d y  p r o g r e s s  i n  t h i s  mechaniza t ion  of f low t o  and from 
t h e  computer. H i t h e r t o ,  t h i s  has been one of t h e  o b s t a c l e s  
encounte red  i n  s e t t i n g - u p  and s o l v i n g  l a r g e - s c a l e  systems.  
The second o b s t a c l e  has  been t h e  c o s t  and t h e  t i m e  r e q u i r e d  
t o  s u c c e s s f u l l y  s o l v e  l a r g e  problems. 

It is d i f f i c u l t  t o  measure t h e  p o t e n t i a l  of  l a r g e - s c a l e  
p lann ing .  C e r t a i n  deve lop ing  c o u n t r i e s  a p p e a r ,  accord ing  
t o  o p t i m a l  c a l c u l a t i o n s  on s i m p l i f i e d  models t o  be a b l e  t o  
grow a t  t h e  r a t e  of  15% p e r  y e a r  implying a  d o u b l i n g  of 
t h e i r  i n d u s t r i a l  base  i n  f i v e  y e a r s .  But a d m i n i s t r a t o r s  
a p p a r e n t l y  i g n o r e  p l a n s  and make d e c i s i o n s  based on p o l i t -  
i c a l  expediency which r e s t r i c t  growth t o  2  o r  3% o r  some- 
t imes  -2%. It is t h e  b e l i e f  of  t h e  a u t h o r  t h a t  t h e  mech- 
a n i z a t i o n  of d a t a  f low ( a t  l e a s t  i n  advanced c o u n t r i e s )  i n  
t h e  n e x t  decade w i l l  p rov ide  pathways f o r  c o n s t r u c t i n g  



l a r g e  models and the  e f f e c t i v e  implementation of t h e  r e s u l t s  
of opt imiza t ion .  This a p p l i c a t i o n  of mathematics t o  d e c i s i o n  
processes  w i l l  e ven tua l l y  become a s  important  a s  t h e  c l a s s i c a l  
a p p l i c a t i o n s  t o  phys ics  and w i l l ,  i n  time, change t h e  emph- 
a s i s  i n  pure mathematics. 

In this paper the following unsolved problem was posed: 

I t  has  been d iscovered  r e c e n t l y  t h a t  t he  s i z e  of t h e  i nve r se  
r ep r e sen t a t i on  of t he  b a s i s  i n  t he  simplex method could have 
an  important  e f f e c t  on running time. Therefore,  compact- 
i nve r s e  schemes a long t h e  l i n e s  f i r s t  proposed by Harry 
Markovitz of RAND have become inc r ea s ing ly  impor tan t .  Re- 
c en t l y ,  two groups working independently,  developed t h i s  
approach wi th  astounding r e s u l t s .  For example, t he  Standard 
O i l  Company of Ca l i f o rn i a  group r e p o r t s  r u n n i n g - t h e  on some 
of t h e i r  t y p i c a l  l a r g e  problems c u t  t o  114. 

How t o  f i n d  t he  most compact i nve r se  r e p r e s e n t a t i o n  of a 
spa r s e  ma t r i x  is  s t i l l  an unsolved problem: 

CONJECTURE: I f  a non-singuLzr ,mtri.z has K non-zero zLe.rrmts, 
it i s  always possible t o  represent them as G pro- 
&cC of eZz .~mtarg  ma$rices such chat she fcral  
nunber of non-zero ensrizs  ;ezcLuding t h e f r  ii- 
aooral un i t  elements) i s  as  mosr i(. [Inc*Lden~ally,  
-he -ml;ir.:zni schemes just mentioned o f f e n  have 
no more than K+IC"ii  non-zeros in the  %verse rs- 
presentation. 1 

STATUS TO THE PRESENT ( 1  980 )  

From 1967 onwards there has been an increasing interest in 
techniques for solving large-scale linear programs. A number of 
conferences have been exclusively concerned with the topic. Most 
general operations research and management science meetings have 
at least one session devoted to it. A selected reference list 
which I use in my seminars (mostly published during the period 
1970-78)  contain 237 titles which I have arranged by sub area. 

General Books 
(10 exc lu s ive ly  l a r g e  s c a l e ,  2 s p a r s e  methods, 8 o t h e r )  
Survey articles 
GUB, G-GUB and the decompositioh principle 
Variants of above 
Block Triangularity 
Linear optimal control and dynamic systems 
Nested decomposition 
Column generation, convex and nonlinear programs 
Sparse matrix techniques 
Large networks and related problems 
Applications 
Software 

Total 



Some i d e a  o f  t h e  r e c e n t  r e s e a r c h  o f  t h e  Sys tems  O p t i m i z a t i o n  
L a b o r a t o r y  o f  t h e  O p e r a t i o n s  Research  Department  a t  S t a n f o r d  c a n  
b e  g l e a n e d  from t h e  t i t l e s  t h a t  f o l l o w :  

Andre P e r o l d :  "Fundamenta l s  o f  a  C o n t i n u o u s  Time 
S implex  Method". 

Andre P e r o l d  a n d  George B. D a n t z i g :  "A B a s i s  F a c t o r -  
i z a t i o n  Method f o r  Block T r i a n g u l a r  L i n e a r  Programs".  

Bob F o u r e r :  " S o l v i n g  S t a i r c a s e - s t r u c t u r e d  L i n e a r  
Programs by A d a p t a t i o n  o f  t h e  S implex  Method". 

Ron Davis :  "New Jump C o n d i t i o n s  f o r  S t a t e  C o n s t r a i n e d  
O p t i m a l  C o n t r o l  Problems".  

P h i l i p  Abrahamson and George B. D a n t z i g :  "Imbedded 
Dual Decompos i t ion  Approach t o  S t a i r c a s e  Sys tems" .  

J o h n  B i r g e :  " S o l v i n g  S t a i r c a s e  Sys tems  u n d e r  U n c e r t a i n t y " .  

T h i s  Workshop may w e l l  mark t h e  p o i n t  i n  t i m e  when e f f i c i e n t  
methods f o r  s o l v i n g  l a r g e  dynamic s y s t e m s  may be  more t h a n  j u s t  a 
promise .  T h i r t y  t h r e e  y e a r s  from t h e  t i m e  t h e  hope  was f i r s t  ex-  
p r e s s e d  t h a t  s u c h  methods  be  found ,  t h e y  may s o o n  become a  r e a l i t y :  
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THE SIMPLEX METHOD FOR 
NONSTRUCTURED LINEAR PROGRAMS 





SOLVING LARGE SCALE LINEAR PROGRAMS WITHOUT STRUCTURE 

P. Huard 

Direction des Etudes et Recherches 
Electricite de France 

A variant of the simplex method is adapted for the solution of large-size linear program- 
ming problems with a very sparse constraint matrix. Instead of using the inverse of the 
basis, three sparse linear systems are directly solved at each step, using a suitable pivoting 
method. Two advantages of this variant compared to standard procedure are: 

Memory volume requirements are proportional to the number of constraints (and 

not to i t s  square). 
Calculation may be faster; the appropriate numerical tests are described in the 
paper. 



1 .  - IBTRODUCTION 

With regard to the resolution of large linear programs, the basis 

of a variant of the Simplex method, using only a snall amount of memory, 

has already been briefly described C31. 

The aim of the present paper is to give a detailed study of this 

method and of the numerical experiments that validate it. 

In its classiral form, the Simplex method uses a square matrix, the 

inverse of the basic matrix. whose value is updated at each iteration. 

The number of nonzero elements of this matrix increases rapidly as the 

iterations go along and it is necessary in practice, when using the 

explicit form of the inverse, to have on hand a number of memories equal 

to the square of its dimension, say m2 for a linear program with m 

constraints. Thus it becomes difficult to handle problems having several 

hundred constraints, without using disks or tapes; then the overhead 

time may becomes prohibitive, because of their repetitive use and the 

large number of iterations. 

Some special structures of the matrix of the linear program - like 
for example the block-angular one - allow for various interesting 
decompositions of the inverse of the basic matrix, which is similar to 

the solving of smaller linear programming problems. Then the amount of 

ncccssary mr.mory varies only lincari;. with t!ie size of the program, if 

the dirnensic>n of t h e  biocks is a co:i-,~snt. Fortuaately, such a block- 



angular structure is rather often encountered (dynamic problems, 

regionalization problems) anti various decomposition methods have been 

proposed (see for example [5 ] ) .  

However, many linear programs do not have any structures suitable 

for decomposition. This is the case for problems related to a graph - 
e.g. flow-problems - which contain the problem of electrical dispatching, 
as far as its structure is concerned. 

Large linear programs, issued from "real life", have a very sparse matrix : 

only a few percent of the elements are nonzero. Of course, this sparsity appears 

in each basic matrix, but it disappears from the inverse matrix. The variant 

of the Simplex method, which follows, uses the basic matrix itself, instead 

of its irmerse, and then eliminates the need for mL memory positions. However, 

in the calculations, products of a matrix by a vector are replaced by 

resolutions of linear systems of the same dimensionality. The complexity of 

these two operations would be of m2 and m3 order respectively, if the matrices 

were full, which would rule out the proposed variant. But, as will be seen 

below, two factors may make it competitive. One is the difference in 

sparsity betveen the basic matrix and its inverse. The other is the fact 

that generally, the basic aatrix is almost triangular, or more precisely 

"triangular-band-wise". In other words : after having performed a suitable 

permutation of rows and col,mns, nonzero elements lie bclow an extra- 

diagonal line, located at a small distance p above the diagonal. Such a 

linear system is easily solved through a specialized pivoting method that 

we call below the method of parameters. The amount of calculations is 

proportional to p  p m2, where p is the proportion of nonzero elements, 

p the width of the band located above the diagonal, and m the dimension 

of the matrix-(a large number, by hypothesis). In large problems, of real 

origin, that we have known of, p is often between p m and 2 p m. If p '  

is the proportion of nonzero elements (density) of the inverse matrix 

is normally much larger than p), the respective amounts of computatjon 
2 

for one iteration of the Simplex method are roughly in the ratio 4(p/p') m. 

For p '  - 60 p and m = l o3 ,  this is practically 1. In actual fact, numerical 

comparisons of Section 7, involving linear programs of up to 900 constraints, 

exhibit a very good speed for the proposed variant. In Section 8 the detailed 

costs for one iteration of the Simplex method are given with a comparison 

between the two variants. 
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2. - TIE RREQUIRED CALCULATIONS D U R I N G  ONE ITERATION OF THE SIW'LEX METHOD 

The l i n e a r  program t o  be  solved i s  g iven i n  s t anda rd  form 

- 
Maximise f  x  s u b j e c t  t o  

A x P a  

X ' P  

where A i s  a  fu l l - r ank  m a t r i x ;  i t s  rows a r e  indexed by M = ( I ,  2, . . ., rn] 
and i t s  columns by N = ( 1 ,  2, ..., n l .  

A t  each i t e r a t i o n ,  a  b a s i s  I i s  cons ide red ,  i . e .  a  s u b s e t  I such t h a t  : 

I c N 

Ill = 

A' i n v e r t i b l e  

where A', t h e  b a s i c  ma t r ix  r e l a t i v e  t o  I ,  i s  composed of t h e  columns 

A', j c I. 

To the  b a s i s  I i s  a s s o c i a t e d  t h e  so -ca l l ed  b a s i c  s o l u t i o n  of t h e  

b a s i s  I ,  d e f i n e d  by 

x- = 0 
I 

where 7 i s  t h e  complement o f  I i n  N .  

The s l ~ c c e s s i v e  bases  gene ra t ed  by the  Simplex method, a r e  such t h a t  

xI Z 0 ;  hence ,  t h e  cons ide red  b a s i c  s o l u t i o n s  a r e  a l l  f e a s i b l e  ( t h e y  

s a t i s f y  c o n d i t i o n s  ( I )  and ( 2 ) ) .  



An iteration consists of changing the basis I inco a neighboring 

basis 1', that is a basis obtained by exchanging an index r € I with an 

index s E i : 

To determine r and s, one can compute, in order : 

- 
I 

where u, fl, d are row-vectors. This allows the candidate s E y,  to be 

chosen with the condition dS > 0. Then : 

where xI, a, TS and AS are column vectors. This gives r c I by the 

condition 

Once r and s are determined, it remains to update the inverse of the 

basic matrix, i.e. to compute (A'')-'. This is clasiicaly done from 

(A1)-' through the relation : 

where E is an elementary matrix, explicitly known (see figure 1) 



Figure 1 

Thus the  necessa ry  c a l c u l a t i o n s  a r e  r ep resen ted  by r e l a t i o n s  ( 4 )  

t o  (9). and t h e  i n v e r s e  of the  b a s i c  matr ix  i s  used i n  ( 4 ) .  (6 ) .  ( 7 ) .  

These l a s t  r e l a t i o n s  can be r ep laced  by 

i . e .  t h r e e  l i n e a r  systems t o  so lve .  I n  the  f i r s t  one, t he  m a t r i x  i s  t he  

t ranspose  of the  b a s i c  ma t r ix ,  i n  t h e  l a s t  two, i t  i s  t he  b a s i c  ma t r ix  

i t s e l f  : t hese  systems enjoy the  s p a r s i t y  of  t he  A mat r ix ,  and s o l v i n g  

them can be done wi thout  s t o r i n g  and us ing  the  inve r se .  



3. - DIRECT RESOLUTION OF THE LINEAR SYSTEM 

The systems (4'), (6'). (7') have long been successfully solved 

directly in the case of classical transportation problems. These very 

special linear programs can be stated : 

. . 
Minimize Z cLJ xij subject to 

i j 

Z x.. = b. , i = 1.2, ..., q . 1 1 
J 

x 2 0  , Vij 
i j 

Here the A matrix has no more than 2 nonzero elements per column. 

which are equal to I ,  and the basic matrices are triangular. Thus solving 

the three linear systems is particularly easy and fast (it is not even 

necessary, here, to solve (7')). 

An extension to problems of flow with gains was proposed by MAURR4S [4] 

in 1972. In this type of linear programs, the A matrix still has no more 

than 2 nonzero elements per column, but of any real value. Systems (4'). 

(6') or (7') are almost as simple as a triangular system. The method of 

solution consists of particularizing one unknown as a parameter, and in 

expressing one after the other the (ml) remaining unknowns as functions 

of this parameter, using (wl) equations. Eliminating these (m-I)  unknowns 

from the last equation - not yet used - gives the value of the parameter. 
Plugging this value in the expression of the (m-I) unknowns completes the 

solution. The choice of the particularized unknown is guided by an 

interpretation of the structure of the A matrix, as incidence matrix of 

a graph. Of course, it is not possible to extend this theory to matrices 

with more than 2 nonzero elements per column. However, a study of many 

square matrices, very large and very sparse, issued from real problems. 

shows that they often have a triangular-band-wise structure (after 

suitable permutations of rows and columns); their band-width has the 

samc order of magnitude as the average number of nonzero elements per 

column or pcr row. Elorc .precisely, these square matrices are such that 



vhere p is the vidth of the band located above the diagonal. These matrices, 

of small thickness, correspond to linear systems that are easily solved by 

the pivoting method, called method of parameters, described in the next 

section. This method, which can be considered as an extension of that 

used by MAURRAS, uses a number of parameters equal to p. In practice, it 

reduces to solving a triangular system of dimension (m-p) vith p right-hand 

sides, and solving a p x p system. In problems of flows with gains, one 

alvays has p 5 1. 

4. - THE METHOD OF PARAMETERS 

Let the system to solve be 

vhere B is an invertible (m x m) matrix, such that 

We call p the band-vidth of the triangular-band-wise matrix B. 

The row i = 1 has at most p + I nonzero elements. We may suppose 

Bp+' + 0 ,  possibly after having exchanged column p + 1 vith some other. I 
Therefore ve can express x as a function of the variables x j = 1,2, ...,p 

P+I j '  
considered as parameters : 

vhere E is an affine function. 
P+I 

If B;'~ 0 we can express from rhr row i = 2, xpr2 as a function of 

x and of the parameters xl . . . . , x . Eliminating x vith (12) we 
P+ I  P P + I  
obtain 



and s o  on. I f ,  a t  each s t e p  k ,  corresponding t o  t he  use  of t he  row k ,  we 

have f p  # 0, we o b t a i n  a f t e r  (m-p) s t e p s ,  t h e  a f f i n e  f u n c t i o n s  

S t o r i n g  t h e  c o e f f i c i e n t s  of t hese  f u n c t i o n s  ( i n c l u d i n g  t h e  a f f i n e  

terms) r e q u i r e s  a n  a r r a y  (m-p) > ( p + l ) .  

Only t h e  f i r s t  (n-p) e q u a t i o n s  have been used. Using (14) we can  

e l i m i n a t e  t h e  v a r i a b l e s  x  i = 1.2, ..., m-p from the  p  r e m a i n i n g  
p+ i 

e q u a t i o n s ,  and we o b t a i n  a  system of p  e q u a t i o n s ,  where t he  p  unknowns 

a r e  t he  parameters  x l ,  ..., x . So lv ing  t h i s  (p  x p) sys tem g ives  t h e  
P  

v a l u e s  of t h e  pa rame te r s ,  and then  (14) g i v e s ' t h e  o t h e r  unknowns. 

The hypo thes i s  ~ e f  i 0 imp l i e s  t h a t  a  new unknown rk does  appear  

a t  s t e p  k .  I f  t h i s  hypo thes i s  i s  n o t  s a t i s f i e d ,  t hen  tllc unkr~own 5' 
does not  appear  y e t  (nor any o t h e r ,  because of ( 1 1 ) ) ;  one parameter  can 

be e l i m i n a t e d  between e q u a t i o n s  k  and k-I,  whicii no longe r  c o n t a i n  t he  

unknowns x  i = 1.2, ..., (k-I) ,  a f t e r  use  of (14 ) .  From then on, t h i s  
p+i ' 

e l i m i n a t e d  parameter  w i l l  become a n  unknown, expressed a s  a  f u n c t i o n  of 

t he  remaining parameters .  But l a t e r  on, more than one unknown may appear  

a t  some s t e p  k '  > k. It i s  t hen  neces sa ry  t o  i n t roduce  new pa rame te r s ,  

c o n s i s t i n g  o f  t he  exces s  unknowns. 

Thus t h e  s e t  o f  parameters  may f l u c t u a t e  a long  the  s t e p s ,  i n  i t s  

d imens iona l i t y  a s  w e l l  a s  i n  i t s  c o n t e n t  - s e e  F igu re  2. But i t  i s  s u r e ,  

from ( I I ) ,  t h a t  i t  has  neve r  more than p  e lements .  

I n  a d d i t i o n  t o  t he  m a t r i x  B and the  r ight -hand s i d e  b,  t he  c o r e  

requirement  i s  a t  most m x ( p + l )  : (m-p) x ( p + l )  memories f o r  t he  

exp res s ions  (14) .  and p  x (p+ l )  f o r  t h e  (p  x p )  sys tem.  Hence, i n  o rde r  

t o  reduce the  r e q u i r e d  s t o r a g e ,  i t  i s  convenient  t o  reduce t h e  band- 

width p  dovn t o  a  va lue  a s  sma l l  a s  p o s s i b l e ,  by means of s u i t a b l e  
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rearrangements of the matrix B. Various techniques, systematically 

tested by D. FAYXRD and G. PLATEAU [I], and Y. HAUW C21, have led 

to a simple technique, described in the next section; it gives a 

band-width which, if not optimal, is a quite satisfactory approximation. 

For the sake of theoretical curiosity, as has been pointed out in 

i21, when applied to (10) with a full matrix B, the method of parameters 

leads to a pivoting method of the diagonalization type, as with the 

Jordan method. But the operations are not the same, and a precise 

inventory of the calculations shows that the respective numbers of 

multiplications, divisions and additions, are exactly the same as in 

Gauss method (which is a triangularization method, cheaper than Jordan's). 

In section 9 a detailed comparison of these operations vill be given. 

Finally, it should be noted that for the steps not including 

eliminations the pivots used are original elements of the B matrix. 

for at step k, rcvs k+l to m have not yet been modified. This fact is 

important for the stability of the computations. 

5 .  - OBTAIKING IN PRACTICE THE YINIMAL BLYD-WIDTH 

To permute rows and columns of the B-matrix reduces to choose two 

permutation functions g and h, defined on the domain M = { 1 , 2 ,  ..., m). 
The optimal permutations, which give minimal band-width, solve the 

problem 

min {max {(h(j) - g(i)) Bij I i, j r MI1 
l3.h 

where Bij = I if B: 0, Bij = 0 otherwise. 

No exact solution is known to this combinatorial problem, except 

through exhaustive enumeration - too expensive. Various heuristic 



approaches have been proposed. to solve this problem or similar ones. 

In the case of band-matrices of minimal band-width, we mention the process 

of Tewarson [ 7 1 ,  which requires the resolution of an integer programming 

problem, without even guaranteeing an optimal solution. 

In fact, concerning large and very sparse matrices, issued from real 

problems, some simple heuristics, based on intuitive considerations, have 

proved very efficient in a large number of cases. Rule 5.2 below is one 

of them. 

5.1. - The full-rectangles rule 

The nonzero elements of the B-matrix are squared into a string 

of rectangles, which touch one another by their diagonal corners, and 

whose upper-right elements are nonzero (see Figure 3). 

Figure 3 

Any one of these which is not full can always be decomposed 

into smaller full rectangles, and this is only done by permutations which 

concern only rows and columns in that rectangle. Then the new band-width 

is not greater than the old band-width. 



Thi s  p roces s  can be a p p l i e d  independent ly  t o  every  i n i t i a l  

r e c t a n g l e  t h a t  i s  not  f u l l .  But, a s  F igu re  4 shows, i t  does no t  gua ran tee  

an opt imal  s o l u t i o n .  

5.2. - Row of s m a l l e s t  r e l a t i v e  degree  

Le t  T .  be t he  s e t  of i n d i c e s  corresponding t o  nonzero 

e lements  i n  t he  rov i. Having f i x e d  the  f i r s t  k rows of B ,  t h e  number 

d  j - 1 ~ ~ 1 - I  
k 

where P = r .  1 r .  n ( u r i )  
j J I il, 

is c a l l e d  the  degree  of t h e  rov j, r e l a t i v e  t o  t h e  f i r s t  k rovs .  P .  
J 

r e p r c s e n t s  t h e  s e t  i ndex ing  t h e  e lements  t h a t  a r e  nonzero i n  t h e  rov j. 

bu t  a r e  z e r o  i n  t hc  f i r s t  k rows. Thus, adding a  row of 0  degree  a f t e r  

t h e  f i r s t  k rovs  does  no t  i n c r e a s e  t h e  number of parameters .  A nega t ive  

degree  v i l l  dec rease  by I t h e  number o f  parameters  ( through e l i m i n a t i o n ) .  

A p o s i t i v e  degree  i n c r e a s e s  t h a t  number by d  
j 

There fo re  a  s imple  p roces s  c o n s i s t s  of s o r t i n g  the  rows 

dovnvards : a t  each s t a g e ,  one chooses a  row cha t  has  t h e  s m a l l e s t  

r e l a t i v e  dcgree  among t h e  remaining ones ,  and t h e  new columns a r e  moved 

s o  t h a t  t he  nonzero  e n t r i e s  i n  t h e  p r e s e n t  nev rov  a r e  regrouped on t h e  

l e f t .  

It is t h i s  s imple  p roces s  t h a t  has  f i n a l l y  been implemented 

i n  the  code w r i t t e n  by IWUW C21, a f t e r  a  number of e x t e n s i v e  t e s t s  v i t h  

m a t r i c e s  (20 x 20) and (100 x 100) have been performed. It seems t h a t ,  

v i t h  (100 x 100) m a t r i c e s ,  t h e  band-width has  always been opt imized 

v i t h i n  2 o r  3. 

When s e v e r a l  rovs  have the  same r e l a t i v e  degree  a t  t h e  same 

s t a g e ,  i t  i s  a t t r a c t i v e  t o  use  a secondary c r i t e r i o n  t o  choose from among 

them. For example, t h e i r  i n f l u e n c e  on the  remaining rows may be cons ide red .  

A f t c r  having t r i e d  more t h a n  a dozen such c r i t e r i a ,  none has proved 
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significant. Finally, the policy is to take the last encountered of 

the candidate rows (which leads to the easiest implementation). 

It can be checked that this process automatically satisfies 

the rule 5 .1  of full rectangles. 

5.3. - Taking into account of special structures 

Obvious permutatio* can be suggested by certain special 

structures. This is the case for example when slack variables are 

present (or, more generally, when the matrix A contains a diagonal 

submatrix). 

It is straight forward to obtain a basic matrix A' that has 

the pattern indicated on Figure 5  (where U is.a unit matrix, corresponding 

to the slack variables in the basis). In practice, the slack-r3ws are 

placed in the bottom. Then only the B-matrix is processed, and its colum 

permutations are also applied to C. It is the new triangular-band-wise 

matrix B' that imposes the number of parameters. 

Note also that, when the basis is changed, the triangular 

band-wise pattern of the basic matrix is only slightly affected. It can 

easily be seen that, through a very simple column permutation. the 

band-widrh is changed by 1 ,  0 or - 1 .  Thus. a complete reordering may be 

applied only from time to time. 

6. - AVEPAGE THICKNESS OF A MATRIX 

An important question, before using the method of parameters, is 

to know what band-width is to be expected after reordering. 

Or course, this question has no general answer, but one can try to 

have an idea by studying first the probability distribution of this 

band-width, for matriccs whose.eleme~~ts are randomly generated. This is 

done in 6 . 1 .  Structurcd matrices are studied in the following scctions : 



Natural variables 

Slack variables 
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in 6.2, pathological cases - fortunately artificial and rare - that 
give maximum band-width; in 6.3, highly structured matrices, issued from 

problems of electrical dispatching, always giving small band-widthes. 

6.1. - Sparse matrices randomly generated 

Three samples, of 100 matrices each, have been generated. 

These matrices are (100 x 100) and their elements. 0 or I. are 

realizations of independent random variables with a probability p to 

get a 1. The samples correspond respectively to p = 0.05, 0.06, 0.03. 

Each matrix thus obtained is processed as described in 5.2, so as to 

obtain a band-width as small as possible. 

Figure 6 indicates the frequency of the minimal band-width p. 

Note the dispersion of p, and its very quick variation, as a function 

of 0: for p = 5%, the average p is between I8 and 19, but reduces to 

8-9 for 0 = 4 2 ,  and practically vanishes for p = 3%. 

However, the density is not the only influential factor for 

the thickness of the matrix. From a remark of W. DE LA VEGA and 

J.F. MAURRAS [ 9 ]  a randomly generated (1,000 x 1,000) matrix of exactly 

10 nonzero elements per row (and hence with a density of 0.01) may have 

a null (333 x 333) submatrix with a probability almost equal to zero. (*!  

The "absolute" value of' Ir'. I seems to play an important role. 

Lastly, notice the numerical experiments of 1.  DENEL [ B ]  

concerning random matrices with, for each row i, a randomly generated 

value of the degree IT. I between 1 and d, and randomly generated ranks 

for the nonzero elements. The sizes of these matrices vary between 50 

and 1,000, with d = 6, 10 and 20. The mean value of the degrees is 

thus d/2. Notice that almost all these matrices are structuraly singular. 

In the table below are given the mean values of p and p for each couple 

(d, m), corresponding to samples of 10 matrices (m < 1,000) or 20 

matrices (m = 1,000). 



It is not really possible to draw practical conclusions 

from these experiments, because basic matrices of usual linear programs 

substantially deviate from these random matrices. 

6.2. - Pathological cases 

It is possible to construct =trices in which any pair of 

r w s  (and of col- as vell) have only one nonzero element at the same 

place, i.e. : 

( r )  This t h e o r i c a l  r e s u l t  was confirmed by numerical exneriments : amonn twenty such random 
(1.000 X 1.COC) matrices.  t h e  minimum va lue  of p was 431 (tee C81 ). 



Such (m x rn) m a t r i c e s ,  w i th  k  nonzero e lements  p e r  row end pe r  

column, can be found by r e p r e s e n t i n g  c o n f i g u r a t i o n s  o r  f i n i t e  p r o j e c t i v e  

p l anes .  A s tudy  i s  g iven  i n  L61. 

These m a t r i c e s  a r e  c h a r a c t e r i z e d  by the  numbers m and k 

r e l a t e d  by 

where q i s  a prime number, o r  a  power of a  prime number. One s e e s  t h a t  

t he  d e n s i t y  p  = k/m becomes smal l  when the  s i z e  of t he  ma t r ix  i n c r e a s e s  

Examples of such m a t r i c e s  a r e  g iven i n  F igu re  7 f o r  q = 1 ,  2 ,  3, 2  
2  

We l eave  t o  t h e  r e a d e r  t he  p l easu re  t o  c o n s t r u c t  t h e  c a s e  q = 5 (m = 31, 

k  = 6) .  He w i l l  t hen  see  t h a t  c o n s t r u c t i n g  such m a t r i c e s  i s  not  a  t r i v i a l  

t a s k .  I t  i s  f o r t m a t e  t h a t  t h e s e  m a t r i c e s  a r e  somewhat  " r a re" ,  because  i t  

i s  ea sy  t o  check t h a t  t h e i r  minimal band-width i s  a t  l e a s t  k  (k-1) /2 ,  o r  

( a r 1 ) / 2 ,  i . c .  t h e  same o r d e r  of magnitude a s  m. 

6.3. - Pia t r i ce s  of r e a l  mo t iva t ion  

Contrary  t o  random m a t r i c e s ,  m a t r i c e s  co r r e spoad ing  t o  l i n e a r  

programs coming from r e a l  problems, a r e  h igh ly  s t r u c t u r e d .  As a  r e s u l t .  

f o r  t he  same p r o p o r t i o n  of nonzero e lements ,  they have narrower bands. 

Experiments w i t h  problems of e l e c t r i c a l  d i s p a t c h i n g ,  have 

been conducted by FAYARD, HAUW and PLATEAU [ I ] ,  [21. X f i r s t  s e r i e s  of 

12 (20 x 20) m a t r i c e s  - i s s u e d  from l i n e a r  programs r e p r e s e n t i n g  the  CIGRE 

model of e l e c t r i c a l  network wi th  10 nodes - having many nonzero e lements  

(20% t o  35%) have g iven band-widthes ranking from I t o  5,  a s  i n d i c a t e d  i n  

the  t a b l e  below. The i n d i c a t e d  p-values a r e  t h e  s m a l l e s t  ones o b t a i n e d  

a f t e r  va r ious  t r i a l s  of pe rmuta t ions .  But r e s u l t s  were g e n e r a l l y  ob ta ined  

wi th  Procedure 5 .2 .  
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Note that p generally increases with p ,  but with fluctuations. 

of course due to differences in the structures. 

A second series of experiments has been conducted with 10 

(100 x 130) matrices A of the following form : 

where B' is obtained from the given matrix B by removing one column. This 

general pattern is ty~ical in problems of electrical dispatching, having 

similar constraints on rcactivc and active powers. 

The chosen B matrices had structures frequently encountered 

in this type of problems, with p-values ranking from 6% to 10%. As 

indicated in the table below. the corresponding p-values vary from 5 to 20; 

they are the smallest values obtained after various trials of permutations. 

Here again the rough increase of p with p is patent, despite 

the variety of the chosen R-structures. Just for comparison with the 

random (100 x 100) matrices of Section 6 . 1 ,  a smoothed extrapolation of 

the above results give approximately p = 3 for p = 57. ( conpare with F i g u r e b )  



7. - NL.T?IERICAL EXPERIblENTATIOh' OF THE METHOD OF PAWTTERS [2] 

The method of parameters has been experimented with some linear 

programs, the dimension of which ranking from 60 to 922 constraints. The 

results, displayed in the table below, show that the maximum number of 

parameters used during each resolution is always considerably smaller than 

the number of constraints; this established the interest of the method of 

parameters with respect to explicit use of the inverse of the basic matrix, 

as far as storage is concerned. 

The very simple experimental code used in the tests was written by 

Y .  H A W  [2]. It contains a switch for the computation d, T' and xI (see 

Section 2) either by "Explicit inverse" or by "Parameters". The two variants 

for a same problem normally give the same sequence of bases, except possibly 

by the end, in the case of very small values for dS and of roundoff errors 

different in either nethod. This code is written in Fortran IV, H compiler. 

The computation times indicated in the "Parameters" column arc those 

obtained with this code on a CII IRIS 80 computer. Likewise for the 

"Explicit inverse" cslumn for problems 1.2.3. For problem 4, It is the 

time obtained with the IPSL Code on IBM 3033 Ccnputer, multiplied by 

19.5 in order to compare with IRIS 80'~). 

For problem 5, it is the time obtained with the APEX IPI code on 
CDC 7,700 (although this code factorizes the basic inverse) multiplied 

by 60. It may be remarked that the parameter's variant is quite 

competitive for the first four problems. For problem 5, the analysis of 

the computation time has shown that the re-ordering of the matrix needed 

almost all of the 1 1  seconds. The sorting routine used in the experimental 

code of Y .  HAW was a m2 sequential sorting routine, which becomes prohibitive 

for large values of m. A new version of J. DENEL [a], based on an adaptation 

of the binary-tree HEAP-SORT procedure, has a cost of only N log m, N being 2 
the number of nonzero elements of the matrix. The time for ordering a 

(1,000 x 1,000) matrix is then divided by about 10, which for problem 5 

should give a time per iteration similar to the one of the APEX I11 code. 

(*) The nuc~bcr 19.5 is obtained by comparing the times needed to invert 
a matrix in double precision (CDLVILLC standard program). These times 
are respectively 2.51 aiid 69.1 secondc. 



Notice  f i n a l l y  t h a t  t he  p o s s i b i l i t i e s  of s av ing  permuta t ions  

when the  change of b a s i s  t a k e s  p l a c e ,  i n d i c a t e d  a t  t h e  end of s e c t i o n  

5 .3 . ,  have no t  y e t  been used i n  t h e  code.  

Some n o t e s  about  t he  o r i g i n s  of t h e  problems cons ide red  

The dimensions a r e  t hose  of t h e  s t a n d a r d  form ( e q u a l i t y  c o n s t r a i n t s ,  

non n e g a t i v e  v a r i a b l e s ,  s l a c k s  i nc luded ,  a r t i f i c i a l  v a r i a b l e s  exc luded) .  

Problem 

No 

I 

b 

2  

3  

4  

5  

No I : A program w i t h  28 i n e q u a l i t y  c ~ n s t r a i n t s  and 32 n a t u r a l  v a r i a b l e s ,  

non n e g a t i v e  and upper-bdunded. The bounds a r e  t aken  a s  o r d i n a r y  

c o n s t r a i n t s ,  hence 28 + 32 = 60 s l a c k  v a r i a b l e s ,  and 28 + 32 = 60 

c o n s t r a i n t s .  

n  

92 

120 

218 
I 

487 

1763 

m 

60 

100 

170 

249 

922 

No 2  : A s y n t h e t i c  problem, t h e  m a t r i x  being ob ta ined  by doubl ing a  random 

(99 x 60) m a t r i x  - having l i n e a r l y  independent columns - and adding 

a  bo rde r ing  l i n e ,  a s  desc r ibed  i n  CHARNES, M I K E ,  STUTZ and WALTERS 

(ACM volume 17 number 10 (1974) 583-586). 

K0 3  : Management of a  r e s e r v o i r .  122 i n e q u a l i t y  c o n s t r a i n t s  and 48 n a t u r a l  

v a r i a b l e s ,  non n e g a t i v e  acd bounded. The Sounds a r e  t r e a t e d  a s  

o r d i n a r y  c o n s t r a i n t s ,  hence 122 + 48 = 170 s l a c k  v a r i a b l e s ,  and 

122 + 48 = 170 c o n s t r a i n t s .  

Nonzero e lements  p  

maxi 

6  

8  

6  

4  

3 

T o t a l  

328 

600 

793 

954 

3738 

I 

6  

5  

2  

0 ~ 8  

0.23 

Mean t i m e / i t e r a t i o n  i n  s e c .  

E x p l i c i t  i n v e r s e  

0.13 

0.45 

1.36 

4.60 

I 

Parameters  

0.17 

0.41 

0.75 

1.14 

1 1  



N o  4 : Energy program, with two periods, 236 inequalities and 13 equalitiss, 

25i natural positive variables. Hence 236 + 13 = 249 constraints 

and 236 slack variables. 

N o  5 : Energy program over 8 periods, with 922 inequalities and 841 natural 

positive variables, hence 922 slack variables. 



8 .  - ANNEX I 

COMPARISON OF THE REQUIRED CALCUI.ATION, DURING ONE ITERATION OF 

THE SIMPI.FX PETHOD, BETWEEN TllE EXPLICIT USE OF THE INVERSE. AND THE 

DIRECT RESOLUTION WITH PARAMETERS 

In one iteration of the Simplex method, the matrix calculations 

that differ in the two variants are : ( 4 ) ,  ( 6 ) ,  (7). ( 9 )  for the explicit 

use of the inverse, and ( 4 ' ) ,  ( b ' ) ,  ( 7 ' )  for the solving of the linear 

systems with the method of parameters. 

In the first variant, it is of course possible to avoid ( 4 )  

by using the classical relation 

where the values of u, d, T are those relative to the basis I, and hence 

are known. One can also ccmpure directly 

Also, in either variant, it is possible to avoid ( 6 )  or ( 6 ' ) ,  using 

the classical relation : 

where 8 is given in ( 8 ) .  

However, in large problems, with many iterations.roundoff errors 

may become important in these recursive calculations. In what follows, 

therefore, we suppose that both variants actually use ( 4 ) ,  ( 6 ) .  (7) and 

( 9 ) .  on t h ~  one hand. and ( 4 ' ) ,  ( 6 ' ) .  ( 7 ' )  on the other. 



The second variant (direct resolution) requires in addition re- 

arranging rows and columns (actually : rearrangement of pointers), i.e. 

operations that can hardly be compared with arithmetic operations. 

Nevertheless, these operations being fast, we will disregard them in the 

analysis below. 

Some more comments before going on : operations ( 6 )  and (7) cost 

the same. Operations (4'), (6') and (7') as well, but (6') and (7') 

concern the resolution of the satne linear system with two different 

right-hand sides, which is little more expensive than just one resolution. 

Solving (4') corresponds to the transpose matrix, which enjoys the same 

reordering as the basic matrix (rows are just used in reverse order). 

Therefore it suffices to detail the calculations for (6) on the 

one hand and for (6') with one and two right-hand sides. These calculations 

mainly consist of scalar products between rows and columns, so we take 

into account the zero-elements of these vectors to avoid corresponding 

multiplications : the amount of calculation is the expec:ation of the 

actual number of multiplications. The value of this number in a scalar 

product exploiting sparsity, is recalled in Sectlon 8.1. Also. operations 

vhose result is a value known in advance (0 or I) will not be counted. 

We recall that these schematic balances count only the arithmetic 

operations : multiplication, addition, division, that they analyse only 

parts that differ in the two variants and that Lhey do not take into 

account possible computer adaptations, characteristic of each variant. 

8.1. - Scalar product of two sparse vectors 

Let u and v be two m-vectors, the components of which are 

independcnt random variables. Let p (resp. p') be the probability that 

a component of u (resp. v) is zero. We set q = 1 - p, q' = I - p'. 
Consider the scalar product 



If x is the number of multiplications with one zero at least, 

this number equals the total number of zeroes in u and v, minus the 

number of corncidences u. = V. = 0. Hence : 
1 1  

E(x) = m(l - qq') ( 8 . 4 )  

If y is the number df actual multiplications(ui and v # O), i 
one has y = m - x, hence 

E(y) = m qq' (A.5) 

8.2. - Detailed calculations in the variant "explicit inverse" 

8.2 .1 .  - l&~a~jng-~h_e-~n~e_~~g 

I - 1  The new inverse is obtained by premultiplying (A ) 

by an elementary aatrix E. Thus, an elcment (i,j) of the new inverse 

(A")-' is calculated through the following scheme (see Figure 8). 

Figure 8 



If i f s, i.e. m(m-1) occurences : I addition and 1 multiplication. 

If i = s, i.e. m occurences : only 1 multiplication. 

The addition is done only if the element (i,j) of the old 

inverse is nonzero. The multiplication is done only if the element(i,r) 

of E and the element (r,j) of the old inverse are both nonzero. 

If p '  is the density of the basic inverse, and of the 

r-column of E (which is obtained, from the candidate column T ~ ,  through 

m divisions), we finally obtain the following account : 

8 . 2 . 2 .  - Producl-of the basic inverse by a vector 

I 
If p is the density of vectors f , a or A' (supposed 

to be equal to- that of A) we obtain 

8 . 2 . 3 .  - Total account 

Summing up operations 8 .2 .1  and 8 . 2 . 2  (the latter 

being done three times) gives a total account : 



8.3. - Detailed calculations in the variant "Parameters" 

Ye study here the direct resolution of a linear system. 

m large 

2 
m (39 + P')P' 

2 
m ( 1  + 30)~' 

m p' 

x 

+ 

t 

considering simultaneously h right-hand sides. We have h = 1 when solving 

( 4 ' ) ,  and h = 2 when solving simultaneously (6') and (7'). 

m(n(3o + p') + I - p')p' 

m(m(l + 3p) - I)p' 

(m - I)p' + I 

The (m x m) matrix of the system is supposed triangular-band- 

vise, having a band of width p (above the diagonal, diagonal excluded). 

Therefore thc number of parameters to be used when solving this system 

is at most p. We will further suppose that this number is constantly 

equal to p (no temporary elimination of parameters). 

There are four distinctphases in the calculation : 

- Successive transformations of the first (m - p) lines, to express (m - p) 
unknowns as functions of the parameters. 

- Construction of the (p x p) system to compute the parameters. 

- Solving this system. 

- Calculating the (m - p) other unknowns 

It is reasonable on the long run to take for the basic matrix 

the same proportion p as for the matrix A. However we cannot take the same 

value for the row-sections that lie below the null-triangle. We have to 

modify p according to the ratio of surfaccs of the null-triangle and the 

matrix, and to take 



If m is large with respect to p. one has approximately p" = 2 . 

8.3.1. - Trrn_sfonnin_g line (k I, 2 ,  ..., r p )  

The first (k-I) rows (including the right-hand 

side(s)) have already been tra&formed by pivoting, and look like the 

sketch on the left of Figure 9 (where only one right-hand side is shown). 

We suppose in this figure that the p parameters 

correspond to the p first columns, and that no parameter has been 

eliminated. We suppose that, from the previous operations, the first 

p columns are full, as well as right-hand sides. The other elements in 

the first (k-I) first rows are : I in (i, p + i) and 0 elsewhere. 

The operations that transform the row k are : 

. p"(p + k + h - 1 )  divisions by the pivot (divisions of ;ha non-zero 

elements, excluding the pivot but including the right-hand sides). 

. p"(p + h)(k - I) multiplications (multiplying each row k' < k, by the 

same element, to obtain aftcr addition a zero at the location (k, p + k')). 

Only the elements of the first p columns, as well as right-hand sides. 

are actually multiplied. 

. p"(p + h)(k - I) additions (to cach multiplication above, corresponds one 

addition to some element in the row k). 

Summing up from k = 1 to k = m - p, we obtain : 

(A.  10) 
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Once the  above o p e r a t i o n s  have reached the  row 

k  = m - p, we have a  m a t r i x  looking l i k e  t h e  ske t ch  on t h e  l e f t  of 

Figure  10. Combining wi th  t h e  f i r s t  (m - p)  rows, we e l i m i n a t e  t h e  e n t r i e s  

of t h e  l a s t p r o w s ,  columns p  + I t o  m. I f  some e n t r y  i s  a l r e a d y  0 ,  t h e  

o p e r a t i o n  i s  sk ipped .  

We suppose; tha t  t h e  submatr ix  ( i . j )  i = 1 ,  2; ... (m-p), 

j - 1 ,  2 ,  ..., p  i s  f u l l .  but  only  t h e  p r o p o r t i o n p "  i s  t o  be cons ide red  i n  

t he  submatr ix  ( i , j ) ,  i = (m - p  + I ) ,  ..., m, j = ( p + l ) ,  ..., m because 

the  t r ans fo rma t ions  8 .3 .1 .  have no t  a f f e c t e d  t h e  l a s t  p  rows. Moreover, 

e l i m i n a t i n g  an  e n t r y  of t h i s  submatr ix  does no t  change i t s  o t h e r  e n t r i e s  

( y e t  i t  mod i f i e s  t he  co r r e spond ing  row of t he  ( p  x p)  submatr ix  of t he  

pa rame te r s ) .  

We f i n a l l y  o b t a i n  a f t e r  enlimeration : 

(A. 1 1 ) 

Its m a t r i x  i s  normal ly  f u l l .  A c l a s s i c a l  p i v o t i n g  

method such a s  GAUSS'S method r e q u i r e s  : 

(A. 12) 

which amounts t o  p3 o r d e r ,  and i s  n e g l i g i b l e  i f  p  i s  smal l  w i th  r e s p e c t  

t o  m .  



8.3 .4 .  - h i c u l a t i p g  the  o t h e r - ~ " c g ~ ~  

To o b t a i n  t h e  k-th unknown (k  = 1.2, ..., m-p) 

one has  t o  m u l t i p l y  t h e  p  f i r s t  e n t r i e s  of t h e  k-th row (ma t r ix  on t h e  

r i g h t  i n  F igu re  10) by t h e  corresponding parameter  va lue  and t o  s u b s t r a c t  

t he  r e s u l t s  from each r ight -hand s i d e .  Hence, f o r  t h e  whole of (m-p) 

unknowns and h  r ight -hand s i d e s  : 

(A .  13) 

8 .3 .5 .  - T o t a l  account  

I n  summary, s o l v i n g  ( 4 ' ) .  (6'). ( 7 ' )  a s  a  r e s u l t  of 

adding (A.10) t o  (A.13) f o r  h  = 1 and h = 2, r e q u i r e s  t n e  fo l lowing  

o p e r a t i o n s  : 

( A .  1 5 )  

x 

+ 

t 

I f  m i s  l a r g e  i n  f r o n t  of p ,  p" % 2p and t h e  o r d e r s  

of magnitude a r e  : 

( m  - p)(m + p  - 1) (2  p  + 3, + 2 ( m -  p ) p  + P(P - 1) (4  p + 13) 
2  6 

( m -  p ) ( m +  p  - 1 ) ( 2  p  + 3)  p,, + 3 ( n -  + *P(P - I ) ( p  + 4) 
2  3 

( m -  p)(m - p  + 2) + p(p + 2 )  

(A. 15) 



COMPARISON BETWEEN THE PIVOTING METHODS OF GAUSS, JORDAN AND PARMETERS 

We suppose here that the considered matrix is full. This leads, in the 
method of parameters, to use m parameters (which of course presents no 

interest from a practical point of view). In this special situation, the 

method of parameters is a pivotylg method with diagonalization, as JORDILU's 

method. However, its cost is exactly that of GAUSS'E method, which is a 

pivoting method with triangularization. 

In Figure 1 1 ,  are given the details for the k-th stage for each 

method, cogether with the comparative account of the calculations. 

GAUSS JORDAN PARAMETERS 

T ~ i ~ l ~ l a r i z a t ~ o n  Diopolloli=atla D ~ q o n d i z o t i o ~  

Figure I I 
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1. INTRODUCTION 

A linear programming basic feasible solution is said to be degenerate when it 

contains zero valued basic variables. Call these degenerate variables. A degen- 

erate iteration in the simplex method is a (feasible) change of basis with no 

improvement in the objective value. 

The presence of degenerate solutions in linear programming is troublesome 

both theoretically and computationally. In the former, the possibility of 

cycling (an infinite number of iterations) cannot be ruled out without special 

pivot selection tiebreaking rules (e.g. [I],  [2]). In the latter most problems 

encountered in practice exhibit some degree of degeneracy, and even though 

the simplex method almost never cycles on such problems, it nevertheless 

usually performs a high proportion of degenerate iterations [7]. (Our own 

experience indicates that a problem with on the average 20% of its variables 

degenerate usually results in approximately 50% of its iterations being degener- 

ate.) 

In this paper we study degeneracy from the point of view of reducing the 

computational effort per degenerate iteration. We begin by viewing the simplex 

method as performing a sequence of nondegenerate iterations, with the direc- 

tion of movement at each such iteration being determined by an auxilbary linear 

program having as many rows as there are degenerate basic variables in the 

current solution. Then we show that the computations in this setting can be 

conveniently performed by means of a basis factorization method which 

achieves its savings by being able to perform degenerate iterations with only 

partial information. We indicate that this method should be best suited for use 

with multiple pricing [4], a technique that considers several candidates at once 

for introduction into the basis. 



- 5 7 -  

2. RESOLVING DEGENERACY: A SUBPROBLEM 

Let the given problem be 

minimize cTx 

subject to Ax = b; x 2 0. 

Denote a basic feasible solution generically by x = (u,v.y), where u, v and y 

are respectively the basic variables at positive level (nondegenerate variables), 

basic variables at zero level (degenerate variables), and nonbasic variables. Let 

B denote the generic basis submatrix of A. 

For a given feasible basis B, we may express the basic variables in terms of 

the nonbasic variables to obtain an equivalent problem 

minimize P ~ Y  

subject to u + Cy = q (q>O) 

v + D y = O  

(u,v,y) 2 0 

(We ignore the constant term difference between the objective values of (1) 

and (2)) .  The form of (2) will be considered generically, being equivalent to 

the usual canonical simplex tableau [2]. 

Suppose we now perform the simplex method (under a given pivoting rule) 

and that k ( 2  0)  iterations occur before either a strict improvement in the 

objective value or a proof of optimality is obtained. Two observations are 

immediate: 

1. Iterations l,..,k will consist of exchanges of nonbasic variables (y) with 

degenerate basic variables (v). 



2. If iteration k + l  yields a strict decrease in the objective value, this can only 

occur if DS 5 0, where yS is chosen as the entering variable. 

From this it is clear that in order to move from one basic solution to another 

with a strict improvement in the objective value, the simplex method is indeed 

solving the subproblem 

minimize P ~ Y  

subject to v + Dy = 0 

This is a linear program whose variables all remain at  zero level until an un- 

bounded solution is detected, at  which point it is terminated. Once (3) has 

been solved. a change in the degeneracy structure occurs with a simultaneous 

exchange of degenerate (v) and nondegenerate (u) variables. 

We wish to regard (3) as being distinct from the original problem for the 

following reasons: 

1. Being generally much smaller in size, it may prove worthwhile to solve it on 

the side in some sense. If the simplex method performs many degenerate 

iterations or if the degeneracy structure does not vary greatly from one 

nondegenerate step to the next, then (3) represents that part of the tableau 

changing most rapidly. Exploiting this is the subject of the next section. 



2. Totally degenerate linear programs such as (3)t are in a way very different 

from their nondegenerate counterparts, and may (at least a priori) be better 

solved by methods other than the usual pivoting rules. Firstly, feasibilty is 

always assured: every nonsingular submatrix of columns. of (1.D) is a 

feasible basis for (3).  Secondly, (3) can be solved by inspection if there is a 

column satisfying 

Thus if we had the updated tableau at our disposal, this should be the first 

criterion for an incoming column rather than, say, p, = min {pi]. Further, 

if no such column exists, we wish to perform an exchange of columns with 

the hope that there will be such a column at the next step: to this end, 

there seems little justification for selecting an incoming column with 

pS < 0,  or restricting the pivotal element to be positive. In the revised 

simplex method [2] where for reasons of cost the full updated tableau is 

not available, choosing the incoming column with p, < 0 may therefore be 

viewed as maximizing the probability that, in addition, D, 5 0. With the 

added use of multiple pricing, however, a few columns of the updated 

tableau are kept at hand. In particular, this can be used to advantage in 

seeking a column satisfying (4). and is well suited for use with the method 

presented next. 

Every linear program (1) may be stated in a totally degenerate 
form: maximize t subject to Ax = bt, ATw 5 ct, cTx 5 bTw, 
x 2 0 [2, p.2901. 



3. A DEGENERACY EXPLOITING BASIS FACTORIZATION METHOD 

The heart of most implementations of the simplex method is the manner in 

which the basis is represented. Usually one chooses a factorization that can be 

used efficiently and stably in solving for the prices and the representation of the 

incoming column - as required in the revised simplex method, and can be easily 

updated from one iteration to the next. 

The method proposed here is, like a great many others, based on partition- 

ing and tearing (see [3]). Consider first the following general factorization 

scheme: 

Partition 

arbitrarily but so that T is nonsingular. Then B may be factorized as the prod- 

uct 

for appropriate and H. In order to solve equations with respect to B and BT, 

it suffices to have T and G in factorized form. Typically, T is chosen to have a 

convenient form, e.g. triangular. so that most of the work centers around 
- 
G and IT, F already being part of B. T o  save on storage, the requisite equations 

may also be solved without knowledge of H, an approach we favor here (see 

e.g. [5] ). For example, to  determine the representation of the incoming 

column, a, the system 



may be solved as follows: 

where w = (w', w2) and z = (z', z2) are partitioned appropriately. 

in the context of degeneracy, let B be partitioned so that B' and B2 are the 

columns corresponding to nondegenerate and degenerate variables respectivelyt. 

Observe that 5 and fi are then simply parts of the tableau updated relative to 

the basis L. In addition, 5 is the starting basis for the subproblem (3). 

Suppose next that the simplex method applied to (1)  with starting basis B 

performs some degenerate iterations followed by one that is nondegenerate. 

Since degenerate iterations involve replacements only of degenerate variables, 

the change in our factorization of B in ( 6 )  is localized to  an  exchange of 

columns in G alone (assuming we discard H). Further, in solving for the 

representation of the incoming column we would only partially solve (7 )  in 

order to  obtain z2, which is all that is needed to perform a degenerate iteration. 

(z2 here is D, in the previous section). 

z2 5 0 indicates that the current iteration is nondegenerate. We would 

then solve the third system in (7 )  for zl, and determine the leaving column by 

means of the usual minimum ratio test. At this point the update of the factori- 

For the moment we require only that T be nonsingular. 



zation ( 6 )  is more cumbersome because a change in the degeneracy structure 

occurs. Restoring ( 6 )  in conformance with the new partition into degenerate 

and nondegenerate columns will most likely be too costly, and an easier method 

(both conceptually and computationally) may be to border G appropriately, 

leaving the factor L untouched. 

More specifically, if the entering column, a, replaces a nondegenerate 

column of B, and moreover a subset a of the nondegenerate variables become 

degenerate, we would enlarge to obtain 

where r is the pivot row and w is determined in (7).  The work here is then to 

generate the required rows of H followed by an update of whatever factori- 

zation is employed for G. Note that G now represents the degenerate varia- 

bles together with the nondegenerate variables that were initially degenerate. 

Periodically we would begin the process from scratch by reinwrsion, indi- 

cated either by G requiring excessive storage or by loss of numerical accuracy. 

In the event that a large number of nondegenerate variables become degenerate 

at any one iteration, finding the rows of H for the bordering process may 

become prohibitive, and it may be profitable simply to treat these new degener- 

ate variables as being nondegenerate, then performing reinversion earlier than 

otherwise. 

Finding a row of H requires the solution of a system with respect to L and the 
inner product of this solution and B2. 



Several existing factorization algorithms (e.g. [3], [S]) attempt to reduce 

storage requirements by permuting B to bordered triangular or block triangular 

form: 

This corresponds in ( 5 )  to choosing T as large a (block) triangular matrix as 

possible, and can be adapted easily to our case by letting G initially represent 

both the degenerate variables and the bordered nondegenerate variables (called 

xpikex). L, too, is then a (block) triangular matrix which between reinversions 

remains fixed in this desirable form. 

In cases where a very sparse (or otherwise desirable) factorization of B is 

available that is not of this near (block) triangular form, the method still 

applies: Let L bg all of B (in this desirable factorized form) and begin with G 
being the identity corresponding to the degenerate variables. 



3. SUMMARY AND CONCLUSIONS 

We have proposed a basis factorization algorithm intended to exploit the 

degeneracy that has been observed to occur in linear programs encountered in 

practice. A typical simplex iteration begins with the basis represented by two 

systems (see (6)): the first, L, is of a desirable form, e.g. triangular, remains 

fixed between iterations, and is associated largely with nondegenerate variables; 

the second, G, represents most of the degenerate variables together with the 

remaining nondegenerate variables. The iteration proceeds as follows: 

1. Select an incoming column, a, by a suitable pricing mechanism or  otherwise. 

If there is none, the solution is optimal: stop. 

2. Solve the equations 

3. If the degenerate part of z2 has any positive components select the largest 

one as the pivotal element (or any other depending on the pivot rule), and 

go to  step 4. Else go to step 5. 

4. This is a degenerate iteration: exchange the column w2 with the column 

leaving 5 as selected in step 3. Return to  step 1. 

5. This is a nondegenerate iteration: solve the system 

6. Select the pivot row by performing the usual minimum ratio test on  z and 

the updated right hand side. If none can be selected, the solution is un- 

bounded: stop. 

7. Update the right hand side and determine the new degeneracy structure. 



8. Update G by bordering it with the appropriate rows and columns deter- 

mined by this column exchange and also by the occurrence of any new 

degenerate variables (if desired). Go to step 1. 

This method should significantly reduce the time spent on degenerate 

iterations since it localizes the area of most rapid change in the basis factoriza- 

tion and allows one to execute these iterations with only partial information. 

Nevertheless the advantage gained could be offset by potentially large changes 

in the degeneracy structure of the basic variables. However, investigative test 

runs on a variety of problems have shown that the average change in the 

degeneracy structure from one nondegenerate step to the next is indeed very 

slight. Experimentation is currently under way with an adaptation of these 

ideas to the LU factorization, and will be reported in [ 6 ] .  

We remark, finally, that the advantages of this method should be sigificant- 

ly enhanced with the use of multiple pricing. This is so for two reasons: Firstly, 

the effects of being able to perform exchanges of columns cheaply are even 

more pronounced when pricing is carried out only, say, every 5 iterations. (In 

our experience it has been common to spend 50% of the iteration time comput- 

ing the prices and pricing out the nonbasic variables). Secondly, as indicated in 

section 2, having part of the updated tableau at our disposal can result in fewer 

degenerate iterations because of increased flexibility in choosing the entering 

column. Only the degenerate part of the updated tableau is required in this 

case, being precisely what this method was intended to find efficiently. 
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1. INTRODUCTION 

Implementations of the simplex method usually comprise two often inde- 

pendent aspects. The first is the manner in which the columns entering and 

leaving the basis are selected, the primary aim being a reduction in the overall 

number of iterations (e.g. Harris [7] and Goldfarb and Reid [5]). The second 

is the means of maintaining the basis in factorized form so that the requisite 

equations can solved efficiently, and therefore reduce the computational effort 

per iteration. One's choice of factorization method is usually guided by numeri- 

cal stability, the structure of the problem, and the particulars of the computer. 

For general large sparse linear programs two of the most efficient factoriza- 

tion and updating methods are due to Reid [15], [16], and Saunders [18], [19]. 

Both are implementations of the the LU factorization with Bartels-Golub 

updating [I] :  Reid computes the factors using a Markowitz strategy [ l o ]  with 

threshold pivoting, and performs the updating with the use of row and column 

permutations on U so as to effectively minimize the growth of nonzeros. This 

method favors having a greater proportion of nonzeros in U, and requires that 

all of U be kept in core. Saunders' method, on the other hand, is aimed at 

keeping as much as possible in secondary storage. and is ideal for problems that 

are very large or that will otherwise require excessive paging. Here the LU 

factors are determined by the "bump and spike" structure of the basis. By 

collecting the spikes after Gaussian elimination has been performed most of the 

nonzeros go into L. All that is kept in core is the small upper triangular subma- 

trix F of U which remains after deletion of the rows and columns of U corre- 

sponding to triangle pivots. Sparsity is well preserved during updating since the 

growth of nonzeros is confined to F. Recently, Gay [4] has experimented with 

an improvement over Saunders' implementation by updating F with Reid's 

method. 



This paper describes an alternative implementation of the LU factorization 

that is more intimately connected with the iteration path of the simplex method. 

The main features of this approach are: 

1. Degenerate simplex method iterations can be performed with far  less 

computational effort; 

2. It can be used profitably with multiple pricing to  allow increased flexibility 

in choosing the entering column and so reduce the overall number of 

degenerate iterations; 

3 .  It is similar to the method of Saunders in that primary storage need be 

allocated only for its analogous F matrix. This likewise facilitates the 

efficient use of Bartels-Golub updating, particularly as implemented by 

Reid. 

Most of the underlying ideas here stem from a more theoretical discussion in 

Perold [14], although it is intended that this presentation be self contained. 



2. PRELIMINARY FACTS AND OBSERVATIONS 

The method discussed here exploits two empirically observed phenomena of 

the bases of sparse practical linear programs: a moderate number of degenerate 

columns', perhaps between ten and thirty percent of the total number of basic 

columns, and a small number of spikes', somewhere between 1 and 100. We 

shall later indicate how it can be modified so  as not to be adversely affected on 

problems having a large number of degenerate columns. However, its perform- 

ance will deteriorate markedly as the numlier of spikes gets large. 

2.1 Degeneracy 

We call a column of a given feasible basis degenerare if its corresponding 

basic variable is at zero level. The presence of degeneracy is theoretically 

troublesome since the simplex method may cycle (an infinite repetition of a 

basis) without the use of special rules for selecting the entering and leaving 

columns (e.g. Dantzig [3], Bland [2]). On practical problems, however, cycling 

is rare. Nevertheless, degeneracy usually results in a great many degenerate 

iterations, these being feasible basis changes with no improvement in the objec- 

tive value. Indeed, it is typical for a problem with an average of 20% of its 

basic columns degenerate to result in 50% of its iterations being degenerate. 

Figure 1 illustrates the difference between degenerate and nondegenerate 

iterations. hX is the updated right hand side and y is the representation of the 

entering column. 



Nondeg 
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a) Degenerate b) Nondegenerate 

iteration iteration 

Figure 1 

Iteration (a)  is degenerate because of the presence of a positive entry in the 

degenerate part of y. The points of note are the following: 

1. Degenerate iterations can be carried out without any knowledge of the 

nondegenerate part of y. Only if the degenerate part of y has no positive 

elements is it necessary to consider the remainder of y in order to select the 

leaving variable by means of the usual minimum ratio test. 

2. Degenerate iterations consist of replacements of degenerate columns only. 

Only during a nondegenerate iteration can (and usually does) the degenera- 

cy structure change. 

These facts lie at  the heart of the method of this paper. 



2.2 Near triangularity 

Spikes are columns having nonzeros above the diagonal. These were consid- 

ered first in the context of linear programming by Hellerman and Rarick [8] 

who observed that the bases of sparse practical linear programs could usually 

be permuted to a form that is near lower triangular in the sense of having very 

few spikes. They proposed a heuristic' P3 to  accomplish this, and then im- 

proved on it [9] by first determining the maximal block triangular structure of 

the basisZ (this is unique) and then applying P3 to the irreducible diagonal 

blocks, called bumps. 

Figure 2: Bump and spike structure of B 

The problem of finding the minimal number of spikes is NP-complete [17]. 
There are now very efficient algorithms to  determine the block triangular struc- 
ture, e.g. Gustavson [6]. 



Observe that by moving the spikes to the end of B in a principal rearrange- 

ment, we obtain a bordered triangular form (Figure 3) .  A recent efficient 

heuristic to  permute a sparse matrix to this form with minimal border is due to 

Sangiovanni-Vincentelli and Bickart [17]. At the present time there are no 

comparative results with P3. 

border 

Figure 3: Bordered triangular form of B 

The advantage of preprocessing the basis in either of the above ways is that 

the growth of nonzeros during Gaussian elimination is confined to the few spike 

(border) columns. Although the row and column order given by the bump and 

spike structure usually yields sparser LU factors than the order given by the 

bordered triangular form', the latter will nevertheless be more suitable for our 

purposes since it yields a much sparser L factor. 

' The extent to which this is true is worthy of investigation. 



3. THE LU FACTORS O F  B 

From the previous section we assume that B has the bordered triangular 

form depicted in Figure 3. Performing Gaussian elimination in this preassigned 

order yields L and U of the form in Figure 4, where T is the triangular part of 

B and remains unchanged in L, and R, F,  and E represent the spike columns S 

transformed by pivoting first on the diagonal of T. 

Figure 4 

Remarks 

1. Fill-in occurs in all three of R,. F and E. 

2. It can be easily seen that F here would be the same as that obtained by 

Saunders when all the spikes appear at the ends of their bumps. Since this 

is usually the case for most spikes, we can expect the two F's to be very 

similar. 



The next step is the further partitioning of U according to  the degeneracy 

structure of B. The degenerate columns of B bear no relation to its bordered 

form although they will be made up mostly of triangle columns since there are 

usually so few spikes. Perform the principal permutation on U that collects all 

the rows D (say) of R corresponding to degenerate triangle columns and places 

them adjacent to F. This gives U the form depicted in Figure 5. 

where 

Figure 5 

With L and U now determined in this way, we consider performing a basis 

change. In the remainder of this paper we shall identify the columns of U and - - 
F with their corresponding columns in B. Thus we call a column of F degen- 

erate if its corresponding column in B is degenerate. 



4. PERFORMING A BASIS CHANGE 

A substantial part of the computational effort in each iteration of the 

simplex method consists of selecting the column to leave the basis - for a 

given entering column a - and then updating the current to reflect this ex- 

change. 

In order to determine the leaving column we need to solve the system 

This we do by solving the systems 

By partitioning w = (w' ,  w') and y = (yl, y2) according to the above partition 

of U (Figure 51, it is clear that y can be obtained from w in a two step proce- 

dure: 

Following our discussion on degeneracy in section 2.1, we see that it 

suffices to have yZ in order to perform a degenerate iteration since it contains 

all the degenerate components of y. Only if all of these are nonpositive is the 

computation of y' required. Further, since a degenerate iteration is the ex- 

change of the entering column and a degenerate column, no new degenerate 

columns are created. Thus the factorization may be updated simply by an - 
exchange of wZ for the leaving column of F (e.g. by Bartels-Golub updating). 



The update during a nondegenerate iteration needs to be performed in two 

stages: 

1. Perform the update corresponding to the exchange of columns. Unless the - 
leaving column is a nondegenerate column of F,  this will result in the 

formation of an additional spike which can be handled precisely as in 
N 

Saunders' case with his F replaced by F. 

2. Update the degeneracy structure. In principle several degenerate variables 

can become nondegenerate, and several nondegenerate variables can be- 

come degenerate. In practice, it is common for no more than 2 nondegener- - 
ate variables to become degenerate, and it is easiest to border F appropri- 

ately to accommodate them (in the same way as F was bordered to obtain 
N 

the initial F),  leaving untouched any degenerate columns that may have 

become nondegenerate. 

- 
Schematically the new F has the following form: 

- 
F (new) = 

.., - 
( 1 )  The rows of R corresponding to new degenerate columns not in F. - 
(2)  The row of R corresponding to the leaving column of B. 

( 3 )  Subvector of w = new spike to be eliminated by Banels-Golub. 



5. DISCUSSION 

- 
5.1 Discarding R 

- 
Observe that R is required only during nondegenerate iterations: it is used - 

in the solution of y' and for the bordering of F with a few of its rows. During 

degenerate iterations it is accessed only to save the subvector wl. The above - 
steps can all be performed without knowledge of R. By looking at  the rows of 

B corresponding to y1 as depicted in Figure 3, it is clear that there is a triangu- - - 
lar submatrix T of T and a submatrix S of S so that y1 satisfies 

where a = (a1 ,  a:) is partitioned accordingly. Thus y' may be determined by - 
solving a triangular subsystem of L. Likewise, the pth row of R may be ob- 

tained by solving the system 

- 
TTz = ep (pth unit vector) 

- 
and forming the inner product zTS. This can be used to save substantially on - - 
storage since L, T and S can be embedded as part of the constraint matrix. - 
Additional storage would then be required only for E and F. 

In an out-of-core implementation the storage aspect is not all that impor- - w 

tant, however, and we would probably store L, T and S separately so as to be - - 
more easily accessible. Nevertheless, since T and S are generally much less - 
dense than R ,  it may still pay to  perform the calculations with them instead. 



5.2 Excessively many degenerate columns 

The success of this method hinges on its ability to confine most of the work - - 
to the small triangular submatrix F which is to be kept in core. The order of F 

is determined primarily by the number of degenerate columns, and may become 

too large for two reasons: 

- 
1. If, say, 70% of the columns are degenerate then F constitutes most of U, 

and the savings during degenerate iterations will probably be slight. - 
2. Even if F is a proportionately small part of U, it may nevertheless require 

too much core, as may happen with extremely large problems. 

In either case, this method can still be made viable by treating sufficiently 

many degenerate columns as being nondegenerate (for the purposes of this - 
factorization only) so as to keep the core requirements of F manageable. Thus 

even though yZ no longer contains all the degenerate components of y, we still 

require y1 only if there are no positive degenerate components in yZ. A good - 
strategy would seem to be to keep F as large as possible subject to core availa- 

bility and/or to there still being some benefit over a method that keeps all of U 

in core (with perhaps sparser L and U factors) 

5.3 Large changes in the degeneracy structure 

In the rare event that a large number k of nondegenerate columns not - 
currently in F become degenerate (only possible during a nondegenerate itera- - - 
tion), updating F by bordering it with the corresponding k rows of R can 

become expensive. This would be especially so if we need to generate these - 
rows because R is not maintained. In such a case it may be better to temporari- 

ly treat these added degenerate columns as nondegenerate columns - in a 



fashion similar to the approach in section 5.2 - and then perform refactoriza- 

tion earlier than usual. 

5.4 Summary 

The procedure for performing a basis change may now be summarized 

below. We assume that the entering column a has been selected. As before, xh 
is the current updated right hand side. 

1. Solve Lw = a - 
Fy2 = w. 

2. If the degenerate part of y2 has no positive components go to step 4. Else 

select one of them as the pivot element. 

Degenerate iteration - - - 
3. Exchange w2 for the leaving column in F, and add w' to R if R is being - 

maintained. Restore F to upper triangularity (by Bartels-Golub updating). 

End of iteration. 

Nondegenerate iteration - - 
4. Solve one of Ty '  = a '  - (0, Sly2 - 

y' = W' - (0, R)y2. 

5.  Determine the leaving column by means of the usual minimum ratio test on 

hX and y. 
- - 

6 .  If the leaving column is not in F generate row p (say) of R corresponding - 
to the pivot row, either by retrieval from secondary storage, or, if R is not - - - 
being maintained, by solving TTz = ep  and forming zTS. Augment F with 

this row. 

7. Proceed as in step 3. 



8 .  Update the right hand side. 

9. Determine the new degneracy structure, and generate (as in step 6) the - - 
rows of R corresponding to new degenerate columns not already in F. - 

10. Augment F with these rows and appropriate unit columns, maintaining 

upper triangularity. (This step requires no arithmetic). End of iteration. 

Remark 

Note that each iteration requires the solution of systems with respect to L - - 
and F, and the elimination of a single spike to restore F to upper triangularity. - 
As such, it is important to have L and F in as compact a form possible: permut- 

ing the spikes to  the end before performing Gaussian elimination brings us 

much closer to this goal. An alternative may be to find the best bordered form 

from amongst only the nondegenerate columns (i.e. a rectangular matrix). This 

should yield a "thinner" border, but may result in much more fill-in in the 

degenerate columns. While not considered here, this approach seems worthy of 

investigation. 

5.5 Use with multiple pricing 

Computing the prices and determining the incoming column can often cost 

as much as 50% of the iteration time. Multiple pricing [12] is intended to save 

on most of this by selecting several columns at  once for introduction into the 

basis. Typically between 5 and 10 columns are selected and introduced one at  

a time subject to  remaining profitable. Their representations are kept in core 

and are updated as if in a tableau. In addition to the savings in pricing, one can 

reduce the overall number of iterations by choosing from amongst these, for 

example, the column yielding the greatest decrease in the objective value. 



With this factorization the savings during degenerate iterations will be even 

more pronounced when pricing is not performed at every iteration. For each of 

the 5 to 10 columns we would compute and store their w2 and y2 subvectors as 

usual and then try to select from these a column whose degenerate part is 

nonpositive. From one of these "minor" iterations to the next the w2's can be - 
updated by the transformations used to update F. During nondegenerate minor 

iterations the y2's gain additional components. These can be easily found by - - 
using the rows of R being added to F. Then the tableau updating formulae 

apply as usual. 



6. IMPLEMENTATION 

In order to investigate the behavior of this factorization algorithm, particu- 

larly with respect to the distribution of nonzeros and the relative times spent on 

degenerate and nondegenerate iterations, we implemented the foregoing propos- 

als in an experimental code DELUX (Degeneracy Exploiting LU simplex). 

DELUX was written in FORTRAN IV and run on an IBM 370/168 under VM 

(FORTHX compiler, OPT = 2).  The important aspects are the following: 

1. The constraint matrix is stored column wise with row pointers. Upper and 

lower bounds on the variables are kept in two separate arrays'. 

2. The maximal bump finding algorithm and P3 were implemented as by 

Saunders in the code MINOS [ l  1 1, [19]. - 
3. T o  save on storage R is discarded. 

4. All triangle columns of B are represented by pointers into the constraint 

matrix. They are pivoted on first before any spikes are considered. Any of 

these with unacceptably small pivot elements (relative to the elements in 

the rest of the column) are rejected for pivoting at this stage and treated as 

spikes. 

5. The square "remaining matrix" of the transformed spike columns is fed to 

Reid's routine LAOSA [16] to be factorized into the product E F  (see 

Figure 4 and the remark below). LAOSA stores F row wise with column 

pointers, together with an additional set of row pointers used only to 

indicate the nonzeros column wise. - 
6. F is formed by augmenting F with the rows D (Figure 5).  This involves the 

insertion of these additional nonzeros row wise at  the end of the file for F, 

In this case a basic column is degenerate if its variable is at its upper or lower 
bound. 



- 
followed by an update of the column structure and a permutation array. ( F  

and F are permuted upper triangular matrices) - 
7 .  During nondegenerate iterations, L is used in place of T for the solution of - 

y' and the generation of the required rows of R. Advantage is taken of the 

fact that many of the columns of L can be skipped during these transforma- 

tions. - 
8.  During updating, augmentation of F takes place first (when necessary) as - 

mentioned in 6. Then the column swap is performed on F by Reid's 

routine LAOSC [16]. 

Remark 

Factorizing the remaining matrix in the already determined bump and spike 

pivot order may be a more efficient means of computing the initial E and F. 

However it was much easier implementationally to call on LAOSA. This also - 
has the added long run benefit of placing more weight into F: L can only grow - 
in size while F can actually shrink if a dense column is replaced by a sparse 

one; a sparser L yields a sparser transformed column w, which in turn yields a 

slower growth of nonzeros. 



7. EXPERIMENTAL RESULTS 

As our test problems we used 3 small- to medium-scale LP models. 

Table 1 : Problem statistics 

Problem 

PILOT8 

SCSD8 

L84 MAV 

The first two are time period models: PILOT8 has an 8 period staircase struc- 

ture with a few nonzeros in the lower block triangle; SCSD8 has a 39  period 

staircase structure. Earlier experience with these models on MINOS and 

LPBLK (an LP code employing a block triangular factorization of the basis) is 

reported in Perold and Dantzig [13]. L84MAV is a set covering problem and 

was chosen because such linear programs are known to be highly degenerate. 

All runs had the refactorization frequency set to 100 and were started from 

advanced feasible bases. These were the same starting bases for PILOT8 and 

SCSD8 as reported in [13]. Only PILOT8 was terminated short of optimality. 

Rows Columns Nonzeros % Density Iterations 

626 1376 6026 0.7 500 

398 2750 11334 1 .O 45 6 

114 1994 11120 4.9 1043 

7.1 The initial LU 

Two tolerances are used in determining the initial factorization: 

1. uT is the minimum acceptable ratio of the pivot element of a triangle 

column (of B) to the largest element beneath it. Triangle columns unac- 

ceptable in this way are moved to the end of B and treated as spikes. 

2. u, is the threshold used by LAOSA in conjunction with the Markowitz 

strategy. 



Refer Figures 4 and 5 in section 3. 

Embedded in the constraint matrix. 

These were not stored. 

Rows 

Nonzeros 

Density (%) 

Slacks 

Initial spikes 

Triangle rejects 

Dimension of F 

Degenerate cols 

Degenerate spikes - 
Dimension of F 

Nonzeros' 

T' 

E 

L = T + E  

F 

D - 
F = F + D  

5 

R3 

Total: L + + 

Table 2: Statistics for the initial LU 

PILOT8 SCSD8 L84MAV 

626 398 114 

3388 1552 585 

.86 .98 4.5 

3 7 1 10 

120 4 8 12 

24 0 0 

144 48 12 

5 2 117 2 1 

6 18 1 

190 147 3 2 

2076 1311 503 

2559 8 8 5 6 

4635 1399 559 

1473 203 75 

8 8 241 3 6 

1561 444 111 

3041 2575 3 42 

9237 4418 1012 . 



Problems SCSD8 and L84MAV were not very tolerance dependent. PILOT8 

on the other hand was very sensitive to the tolerance u,, having a large number 

of rejected triangle columns even with u, = .001. The best result was obtained 

with uT = .0001 and uM = . l ,  this being barely satisfactory numerically. These 

tolerances were also used for the figures reported here for SCSD8 and 

L84MAV. 

Table 2 summarizes the statistics for the initial LU. Of particular interest is - - 
the low proportion of nonzeros in F, even though the dimension of F in all 

cases is approximately one third that of B. Perhaps more remarkable, and 

indeed very surprising, is the fact that the number of nonzeros in D (i.e. what is - - 
added to F to get' F )  is far out of proportion to its size relative to R. On - 
PILOT8, for example, D has approximately 10% of the rows of R, yet less 

than 3% of its nonzeros. The only explanation for this is that the nonzeros in 

R are distibuted asymmetrically: very few at the top and a great many at  the 

bottom. 

Table 3 gives the initial LU statistics for MINOS on PILOT8 and SCSD8 

from runs recorded earlier for [13]. On PILOT8 the same tolerance uT = 

.0001 was used, resulting in the same number of triangle rejects. As expected, 

the factorization performed by DELUX has: 

1. A much sparser L 

2. A denser F (due mostly to the Markowitz strategy of LAOSA) although not 

much more so in terms of the total number of nonzeros 

3. A very much denser R. 

While the total number of nonzeros in the factorization is less important for - 
DELUX (since only L and F are used for a large part of the time) it is worth 

noting that MINOS produces 24% more nonzeros on PILOT8 and 48% fewer - 
nonzeros on SCSD8. The "almost catastrophic" fill-in in R produced by 



DELUX on SCSD8 is a result of the problem's staircase structure (39 stairs 

with approximately 10 rows in each). A staircase matrix with a high degree of 

partitioning is probably a worst case example for this type of behavior. 

E here consists of the subdiagonal parts of the filled-in spike columns. 

T 

El 

L = T + E  

F 

R 

Total: L + F + R 

Table 3: Nonzeros in the initial LU of MINOS 

PILOT8 SCSD8 L84MAV 

2076 1311 

6760 675 
Not 

8836 1986 
run 

1323 68 

1255 244 

11414 2298 

7.2 Some degeneracy statistics 

The method of the paper is based in part on the assumptions that a relative- 

ly small number of degenerate columns result in a relatively large number 

degenerate iterations, and that large changes in the degeneracy structure at any 

nondegenerate iteration are rare. From Table 4 we see that the first assumption 

holds for the three test problems. 



Table 4: Degenerate columns and degenerate iterations 

PILOT8 

SCSD8 

L84MAV 

Changes in the degeneracy structure are important only in so far as they - 
affect the size of F. The frequency diagrams below summarize the distribution - 
of the growth in dimension of F. This growth is made up of a new spike and/or - 
the number of new degenerate columns that are not already in F.  Note that the - 
growth will slow down as F gets larger (until the next refactorization) so that 

these figures should be interpreted as averages. From Figure 6 we see that for - 
by far the bulk of the nondegenerate iterations, the dimension of F either 

Degenerate columns 

Mean number Mean % 

52 8.3 

131 3 3 

36  3 2 

remains constant or  goes up in size by one. On SCSD8 some isolated large 

O/o Degenerate 

iterations 

40 

78 

70 

increases were reported, most notably one of size 22. 



207 

PILOT8 

89 
301 Nondegenerate iterations 

(out of 500) 

3 2 
k . I b . 4  

100 Nondegenerate iterations 
(out of 456) 

3 13 Nondegenerate iterations 
(out of 1043) 

- 
Figure 6: Frequency diagrams of the growth in dimension of F 

during nondegenerate iterations 



.., 
Table 5 indicates that the average growth in dimension of F is slow even 

for nondegenerate iterations. The (overall) average growth in dimension of 

MINOS's F was .39 on PILOT8 and .73 on SCSD8. These are expected to be 
.., 

higher than those of DELUX since F is smaller than F. 

- 
Table 5: Average increase in dimension of F 

Nondeg itns 

All iterations 

7.3 Growth of nonzeros during updating 

PILOT8 SCSD8 L84MAV 

.34 1.93 .77 

.20 .42 .23 

The figures in Table 6 show a remarkably slow growth of nonzeros in L and - 
F. This and the high proportion of iterations during which no growth took place 

in L are due both to Reid's updating method and the initial low density of L. 

With MINOS the growth rates for L were almost twice these: 18.8 for PILOT8 

and 5.8 for SCSD8; SCSD8 had no growth in L 25% of the time. (This figure 

for PILOT8 and the growth of nonzeros in F were not available). 



Table 6: Average growth of nonzeros 

PILOT8 

SCSD 8 

L84MAV 

7.4 CPU times 

% itns with no Average Average - 
growth in L growth in L growth in F 

44 9.9 16.3 

46 3.3 11.9 

5 0  5.4 7.6 

Table 7: Average CPU time per iteration (seconds x 10') 

Solve for prices 

Select incoming col 

1. Solve: y2 

2. Solve: y' 

3. Update: LAOSC - 
4. Augmenting F 

Degenerate basis 

change: 1 +3 

I The incoming column was selected by partial pricing, i.e. cyclic scanning of 
partitions of the constraint matrix. 3 equal partitions were used for PILOT8 
and 1 0  for SCSD8 and L84MAV. 

PILOT8 SCSD8 L84MAv 

334 162 72 

108 8 1 62 

255 9 1 5 1 

130 66 3 4 

113 4 2 4 2 

204 299 6 0 

368 133 9 3 

Nondeg basis 

change: 1 + 2 + 3 + 4  702 498 187 
d 



Table 7 shows nondegenerate basis changes taking twice as long as degener- 

ate ones on PILOT8 and L84MAV, and much longer on SCSD8. Note, howev- 

er, that much of the time for nondegenerate iterations went into generating the - - 
rows of R to  be added to F (especially true on SCSD8). This can be improved 

upon by a more careful implementation in several ways: 

- - 
I .  Store T and S row wise (in secondary storage) instead of using all of L and 

S (stored column wise) as was the case here. 

- 
2. Do not discard R, and obtain the required rows directly from it. In addi- - 

tion, depending on the densi~y of R, use whichever method is most econom- 

ical to  solve for y'.  

- 
Even with a sharp reduction in the time spent on augmenting F, the large 

savings during degenerate basis changes is nevertheless clear. With the added 

use of multiple pricing (see section 5.5) the high proportion of the iteration 

time spent in selecting the incoming column should diminish to about 10%. 

This would make the total time for degenerate iterations about 35% faster than 

that for nondegenerate iterations. 

8.  CONCLUSIONS 

We have presented a new implementation of the LU factorization that 

achieves fast execution times for degenerate simplex method iterations, espe- 

cially when used in conjunction with multiple pricing. The scheme possesses a - 
major benefit of Saunders' method, viz. requiring only part of U (i-e. F) in 

core. This greatly reduces primary storage requirements while simultaneously 

facilitating the efficient use of Bartels-Golub updating, particularly as handled 

by Reid. 



Preliminary experimental runs indicate that the method might typically 

achieve a 35% savings in the run time for degenerate iterations. In so far as 

the available data allow for a comparison with Saunders' method, we conclude - 
that while this method initially requires more storage for F than his F,  this is 

still only a fraction of the total number of nonzeros. This difference is in any 

event offset by a growth of nonzeros about half that of his, aside from the 

savings in time during degenerate iterations. Further testing is warranted in 

order to bring these tentative results into sharper focus. 
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CONTROLLING THE SIZE OF MINIKERNELS 

Richard D. McBride 

Finance and Business Economics Department 
University of Southern California 

In the bump triangular dynamic factorization algorithm the basis is  partitioned in such a 
manner that the simplex method can be executed from a series of small inverses, called 
minikernels, and the basis itself. Methods are presented which can help control the size 
of the minikernels. One particular problem solved concerns the potential existence of 
bumps with a large number of spikes obtained from Hellerman and Rarick's p4 procedure. 
Artificial inverses are used to keep the minikernels small in dimension. 



INTRODUCTION 

R e c e n t l y ,  a  method was p u b l i s h e d  [ 5 ]  which p e r m i t s  t h e  s implex  method 

t o  be execu ted  from a  s e r i e s  of m i n i k e r n e l s  o r  m i n i - i n v e r s e s .  The 

e f f i c i e n c y  of t h e  method l lepe~tds  on c o n t r o l l i n g  t h e  s i z e  of t h e s e  

m i n i k e r n e l s .  The method u t i l i z e s  d i r e c t l y  t h e  b lock  t r i a n g u l a r  s t r u c t u r e  

4  
of t h e  b a s i s  induced by t le l lerman and R a r i c k ' s  [ 4 ]  P p r o c e d u r e .  The 

s p i k e s  w i t h i n  each  bump on t h e  d i a g o n a l  a r e  moved t o  t h e  r i g h t  of t h e  bump 

t h e r e b y  i n d u c i n g  a  t r i a n g u l a r  submat r ix  and an i n v e r s e  ( e q u a l  i n  dimension 

t o  t h e  number of s p i k e s  w i t h i n  t h e  bump) f o r  e a c h  bump. I n  [ 5 ]  procedures  

a r e  p r e s e n t e d  which p e r m i t  t h i s  p a r t i t i o n  t o  be ma in ta ined  from one p i v o t  

t o  t h e  n e x t .  D i f f i c u l t y  i s  encoun te red  i n  t h i s  method i n  s o l v i n g  t h o s e  

few problems t h a t  have bumps c o n t a i n i n g  a l a r g e  number of s p i k e s .  

P a r t i t i o n i n g  p r o c e d u r e s  a r e  p r e s e n t e d  i n  t h i s  paper  which can be used t o  

r educe  t h e  s i z e  of t h e  m i r i  l k t . r ~ i e l s  which r e s u l t  from bumps hav ing  a  l a r g e  

number o f  s p i k e s .  

S e c t i o n  2 deve lops  t h e  b a s i c  p a r t i t i o n e d  i n v e r s e  and S e c t i o n  3 

p r e s e n t s  t h e  p r o c e d u r e s  t h a t  can be used t o  r educe  t h e  s i z e  o f  t h e  

m i n i k e r n e l s .  



2 .  DEVELOPNk.N'I' O F  I'r\K'i-Il IONED INVERSE WITH f l INIKERNELS 

Consider the partitiirr~ed simplex basis after possible row and colun~n 

interchanges 

where the a-type columns correspond to the basic structural variables. 

The basis inverse corresponding to the partitioned basis (1) is 

-1 . - 1 
A1 1 

1s the essential part of B and is called the kernel [Z]. The 

kernel can be used as the working inverse in the simplex method. Althougll 

the dimension of All may be considerably smaller than that of B, a further 

significant reduction can be made by taking advantage of the block 

triangularity of All (after possible run and column interchanges) for 

large sparse L P  problems. 

4 
After the application of the P procedure [ 4 ] ,  we get the following 

partition of A . 11' 



where T  i s  l ower  b lock  t r i . t r t ~ 1 1 1 ~ ~ .  The p a r t i t i o n e d  i n v e r s e  ( 3 )  i s :  

= A', - Ag T  - 1 
where Ho .A2. H ~ - ~  i s  c a l l e d  e i t h e r  a  r u b k e r n e l  [ 3 ]  o r  a  

- 1 
m i n i k e r n e l .  The d i m e n s ~ o n  o f  Ho w i l l  u s u a l l y  be  much s m a l l e r  t h a n  t h e  

- 1  
d imens ion  o f  A l l - ' .  Immedia t e ly  a f t e r  r e i n v e r s i o n  t h e  d imens ion  o f  H o  

- 1  
is  t y p i c a l l y  z e r o .  The s rmplex  method can  b e  e x e c u t e d  u s i n g  H,, and T-l .  

- 1  
Due t o  t h e  bump t r i a n g u l a r i t y  o f  T  a l l  o p e r a t i o n s  r e q u i r i n g  t h e  u s e  o f  T  

c a n  be  r e p l a c e d  by s o l v i n g  bump t r i a n g u l a r  sys t ems  o f  l i n e a r  e q u a t i o n s  

w i t h  T  a s  t h e  c o e f f i c i e n t  m a t r i x .  

The s u b m a t r i x  T  c a n  be p a r t i t i o n e d  

The s o l u t i o n s  o f  t h e  L r i  a n g u l a r  sys t ems  

i -i -i T  
r e q u i r e  t h a t  t h e  subsys tems  D.x = a and ( x i )  D = ( a  ) be  s o l v e d .  

These  subsys tems  c a n  e a s i l y  be s o l v e d  i f  D. i s  t r i a n g u l a r .  I f  Di is  n o t  



4  
t r i a n g u l a r  t h e n  i t  i s  r l l l r d  , I  blimp. I f  t h e  P p r o c e d u r e  i s  r e p e a t e d l y  

a p p l i e d  t o  t h e  bump D .  .afLcr re1ncva.1 o f  s p i k e s ,  t h e n  Dl t y p i c a l l y  t a k e s  

t h e  f o l l o w i n g  form a t  t e r  rl:x ,and column i n t e r c h a n g e s :  

The s t r u c t u r e  o f  D .  i n  ( 5 )  i s  t h e  same a s  T  i n  ( 3 ) .  I f  a l l  o f  t h e  s p i k e s  

o f  D ,  a r e  moved t o  t h e  r i g h t  o f  D .  t h e n  D .  t a k e s  t h e  f o l l o w i n g  form:  

E x p e r i e n c e  i n d i c a t e s  t h a t  L l~e  number o f  s p i k e s  i n  D .  i s  u s u a l l y  q u i t e  

s m a l l .  The p a r t i t i o n e d  i n v e r s e  o f  e a c h  bump D .  h a s  t h e  same s t r u c t u r e  a s  

- 1 
( 4 )  and y i e l d s  t h e  m i n i k e r n e l  H .  . The s t r u c t u r e  o f  D .  g i v e n  i n  ( 6 )  i s  

t h e  s t r u c t u r e  o f  D .  implemented i n  [ S ] .  As men t ioned  above ,  e x p e r i e n c e  

i n d i c a t e s  t h a t  t h e  number of s p i k e s  i n  D .  i s  u s u a l l y  s m a l l  3rd t h e r e i o r e  

- 1  . 
t h e  d imens ion  o f  H. i s  s m a l l .  I t  i s  v e r y  common f o r  t h e  d imens ion  o f  

- 1 
H i  

t o  r a n g e  f rom one  t o  e i g h t .  
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I - 1  To s o l v e  t h e  subsys l  rrl I!. ic - a one must  compute 

where 

-1 . i 
klien H i  i s  a v a i l a b l e ,  we compute x by s o l v i n g  two t r i a n g u l a r  s y s t e m s  o f  

e q u a t i o n s  r n v o l v i n g  T .  and p e r f o r m i n g  some m a t r i x  a r i t h m e t i c .  The 

i T subsys t em (r ) Di = ( i i l T  i s  s o l v e d  i n  a  s i m i l a r  manner .  

Computa t iona l  e x p e r i e n c e  i s  g i v e n  i n  [ 5 ]  which i l l u s t r a t e s  t h e  

e f f e c t i v e n e s s  o f  t h e  u s e  o f  m i n i k e r n e l s  i n  r e p r e s e n t i n g  t h e  b a s r s  i n v e r s e .  

- 1 
One m i n i k e r n e l  i s  r e q u i r e d  f o r  e a c h  bump i n  T i n  a d d i t i o n  t o  H  0 .  

E x p e r i e n c e  i n d i c a t e s  a t  l e a s t  a r e d u c t i o n  o f  one  t h i r d  i n  t h e  number o f  

nonze ro  e l e m e n t s  needed t o  r e p r e s e n t  t h e  b a s i s  i n v e r s e  when compared t o  

Re id  [ 6 ,  71  a t  t h e  expense  o f  a  s l i g h t  i n c r e a s e  i n  c o m p u t a t i o n a l  t i m e .  

The above t e c h n i q u e s  w i t h  D. p a r t i t i o n e d  a s  i n  ( 6 )  works w e l l  f o r  most  

p rob lems .  111 t h e  n e x t  s e c t i o n  we d i s c u s s  t h e  p a r t i t i o n  t h a t  car1 he  usell 

when t h a t  occc l s iona l  problem is  e n c o u n t e r e d  t h a t  c o n t a i n s  a  bump w i t h  3 

l a r g e  number o f  s p i k e s .  



3.  PARTITION1 'I(: I:I :lrS WITH LARGE h7J'UEIBERS OF SPIKES 

When a  bump i s  ~ I I C ~ ) ! I ! I L C ~ P , I  w i t h  a  l a r g e  number o f  s p i k e s  t h e  

partition g i v e n  i n  ( 6 )  t . 1  i l ~ r o l l ~ ~ c e  a  m i n i k e r n e l  l a r g e  i n  d imens ion .  I n  

t h e  PILOT1 e n e r g y  mo~lel  [ I ]  i t  i s  :-ommon f o r  a  bump t o  be  e n c o u n t e r e d  w i t h  

more t h a n  100 s p i k e s .  A n ~ ~ n i k r r r l e l  o f  d imension of  more t h a n  100 i s  n o t  

d e s i r a b l e .  I n  t h i s  c a s r  p a r l i t l o n  ( 5 )  i s  p r e f e r r e d  o v e r  ( 6 ) .  When u s i n g  

( 5 )  one would s o l v e  bump t r i a n g u l a r  sys t ems  o f  l i n e a r  e q u a t i o n  i n  ( 7 )  

r a t h e r  t h a n  s o l v i n g  pure1 t r i a n g u l a r  s y s t e m s .  

I n  a  p a r t i c u l a r  PILOT1 b a s i s  s t u d i e d  a  bump was e n c o u n t e r e d  w i t h  

d imension 424 and 117 s p t k e s .  When t h e  21 t a l l e s t  s p i k e s  a r e  moved t o  t h e  

r i g h t  o f  t h e  bump, t h e  bump ~ i e c o ~ n p o s e s  i n t o :  

The bump decomposes i n t o  38 subbumps w i t h  m i n i k e r n e l s  r ang ing  i r l  d i l n e n s ~ o n  

from 1  t o  24. I n  t h i s  c a s e  t h e  s p a c e  r e q u i r e d  t o  r e p r e s e n t  t h e  bump ( c a r r y  

t h e  m i n i k e r n e l s )  reduced from 13,689 t o  1 , 5 6 6 .  



- 1  0 4 -  

I t  i s  p o s s i b l e  L o  : I ! ; , ,  ,311 i l i . u . j t e d  form o f  ( 5 ) :  

Here we have 

C a r r y i n g  t h e  p a r t i t i o n  i n  ( 8 )  t o  i t s  ex t r eme  would p e r m i t  

r e p r e s e n t i n g  D. by a  s e r i e s  of  one  by one  m i n i k e r n e l s  e q u a l  i n  number t o  

t h e  number of  s p i k e s  i n  D . .  However, t h i s  would r e q u i r e  t o o  much 

c o m p u t a t i o n a l  work t o  e x e c u t e  t h e  s implex  method. 

i -i 
The subsys tem D.x  = a  would b e  s o l v e d  u s i n g  ( 8 )  and t h e  i n v e r s e s  o f  

( 9 )  a s  f o l l o w s :  



where 

and 

and 

I n  comput ing 2 and i n o t i c e  t h a t  z1 and z 2  can  b o t h  be  computed i n  t h e  

same p h a s e  t h r o u g h  t h e  c o l l ~ m a s  o f  T . .  The same is  a l s o  t r u e  f o r  l 1  and 1 
2 '  

Note t h a t  t h e  n e t  e f f e c t  o f  p a r t i t i o n i n g  t h e  s p i k e s  on t h e  r i g h t  i n  D .  

r e q u i r e s  no a d d i t i o n a l  p a s s e s  t h r o u g h  t h e  columns o f  t h e  bump t r i a n g u l a r  

s u b m a t r i x  T . .  Using t h i s  i t e r a t e d  s t r a t e g y  i t  is  p o s s i b l e  t o  r e p l a c e  a  2n 

x 2n by two n  x n  m i n i k e r n e l s  w i t h  a  r e s u l t a n t  50% r e d u c t i o n  i n  memory 

r e q u i r e m e n t s .  



' 4 .  1 ONCLUSION 

Bumps w i t h  a  l a r q e  aurnl.-r c i  s p i k e s  can be efficiently handled by a  

r e p e a t e d  a p p l i c a t i o n  o f  t-lle b a s i c  p a r t i t i o n i n g  s t r a t e g y .  I t  i s  p o s s i b l e  

t o  f u r t h e r  r educe  t h e  s i z e  u f  l n i r ~ j k e r n e l s  by an r t e r a t e d  a p p l i c a t i o n  o f  

t h e  b a s i c  p a r t i t l o n i n g  S(.IIC'IIIP w l ~ i c h  y i e l d s  a  f u r t h e r  50% r e d u c t i o n  i n  

memory r e q u i r e m e n t s .  C l e a r l y .  t h e  s p a c e  r e q u i r e d  t o  r e p r e s e n t  t h e  b a s r s  

i n v e r s e  ( i n  a d d i t i o n  t o  t t :e b a s i s  i t s e l f )  can  be  reduced t o  e q u a l  t h e  

number of  s p i k e s  i n  t h e  k e r n e l .  The p r a c t i t i o n e r  must choose  t h a t  l e v e l  

o f  p a r t i t i o n i n g  t o  o b t a i n  t h e  f i n e  b a l a n c e  between h i s  p a r t i c u l a r  memory 

and e x e c u t i o n  t ime  r e q u i r e m e n t s .  
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ALGORITHMS FOR BLOCK TRIANGULARIZATION OF BASIS 
MATRICES AND EXPLOITATION OF DUAL DEGENERACY IN THE 
DUAL SIMPLEX METHOD 

Eugeniusz Toczytowski 

Institute of Automatic Control 
Technical University of Warn w 

This paper studies two topics essential to largescale linear programming. First, algorithms 
used in restructuring a basis matrix to create a sparse representation of the inverse are con- 
sidered. We will show that the best strategy for block triangularization of a basis matrix i s  
in general not the execution in sequence of a maximum matching algorithm and an algo- 
rithm for finding the strong components of the directed graph associated with the basis 
matrix, but rather the multiple execution of an algorithm for finding the strongcompo- 
nents of appropriate directed graphs as a subroutine in an algorithm for finding a maxi- 
mum matching. We also present a new algorithm for finding a maximum matching based 
on the Hopcroft and Karp approach. In the second part of the paper we present a modifi- 
cation of the dual simplex algorithm efficient in the case of the dual degeneracy typically 
found with integer programming algorithms. 



1. NOTATION 

The LP p r~b lem is  
max xl 

(1 i h = b  
l & x < u  

where x=(xl ,... ,xn1* A =[a, .a2 ,. . . ,d is  m - n matrix 

wi thco lumnsa  and - a g l < l i $ u f \ ( + a O  , i =  l , . . . , ~ .  
j ' 

Let JY be the index s e t  f o r  the n ~ b a s i s  variables,  and 

(5 = { , .. . , (3 be the index s e t  f o r  the basis  variables. 

The system Ax = b  can be writ ten i n  the form 



( 2  1 ax p + a,r = b  Jw j 

where B = [a 6 . . . . , a 7 is the bas is  matrix and xp Om- 
t h e v e c t o r  of basic va r i ab le s ,  3r i n  the form 

I f  a  bas is  matr ix B is re inver ted ,  permutation matrices P 
and Q a r e  required such t h a t  PBQ is in block t r i a n g u l a r  

form w i t h  diagonal blocks having bordered band lower 

t r i a n g u l a r  e t ruc t ure. 

Let ua denste by pi(qi) r o w  (column) index s f  the i - th  

r o w  $calm) of the  matrix PBQ. Permutation matr ix P w i t h  
elements P ( i ,  j  ) is equivalent  t o  the  vextor  p=(pl ,. . . .p  ' 

m '  
by tne  equivalence r e l a t l s n s h i p  P W p  i f f  ? ( p i , i ) = l .  

Analogously Q-q i f f  G(i,qi 1 = 1. 

We as soc ia t e  w i t h  an m-square matrix B = [bij] a d i rec t ed  

graph E(B) whicn c a n s i s t s  of a  s e t  s f  m v e r t i c e s  {l ,2, .  . . ,a) 
and a s e t  of a rc s  { ( i , j  1: bji $ 0 4  . 

913ck t r i a n g u l a r i z i n g  of a  basis  matrix B can be done i n  t w o  
stages. The f i r s t  s t age  is  f ind ing  a maximum matching ( o r  

maximum t r a n s v e r s a l ) ,  the  s e c ~ n d  s tage  i s  f ind ing  the  s t rong  

components s f  t he  d i r ec t ed  graph a s s sc i a t ed  w i t h  the 

matrix B. 

2.1. A n  algorithm f o r  m a x i m u m  natchicg. 

X o s t  algorithms f s r  f ind ing  a maxinun natching are  baaed 

3n one devised by Hall  C4J. These algorithms are  of 

Complexity O(m.t) where m is the  n w b e r  32 r o w s  and t is the 

number of nsn-zeros i n  the  matrix. The Hapcraft and K a n  

a l g ~ r i t h m  [5] a l l ~ w s  t 3  simultaneously s t r e t c h  an assignment 

w i t h  s eve ra l  paths of minimal lenght , and thus is of csmplexi- 

t y  ~(ml".t  1. 



Since t n i s  c o ~ p l e x i t y  orders a,* 2btained f r m  a  

warst-case ana lys i s  , there  is n3 e - r i i e ~ c g  which a l g o r i t  h~ 

i s  noye e f f i c i e n t  in the t y p i c a l  p e r f ~ m ~ c e .  There i s ,  

however, very l i t t l e  published work 3n conparing these 

algorithms. I n  suck analys is  rand3mly genersted matr ices  

have often been used, th3ugh basis  matr ices  from r e a l  l i f e  

LP problems a re  not random i n  s t ruc tu re .  In a  recent  paper 

of Darby - Dowman and Mitra C61 an i n t e r e s t i n g  comparison 

3f t w o  vereions of each of the a l g ~ r i t h r n s  have been done 

based 3n the  ana lya is  of a  s e t  of medium-size p r z c t i c a l  

problems with the  number of r o w s  i n  the  bumps ranging fr3m 

75 t o  435 and with a  com?arable spa r s i ty .  Their  conc lus im 

was t h a t  Hopcroft and Karp alg3ritpan f 3 r  f ind ing  a  maximum 

matching compares unf avourably w i t h  the  algorithms based 

3n ~ a 1 l . s  method . We nave s tudied ,  however, sone cnaracte- 

r i s t i c s  t h a t  a r e  i n p o r t a t  i n  t h i s  alg3ri t ;ms.  The m z s t  
inpor tan t  i nd ica to r s  of e f f ic iency  of the  a l g o r i t  hms i n  

addi t ion  t o  the  overal  CP time a r e :  

( i  ) the number of i t e r a t i m a  i n  funct ian  of tne  number 3f 

rows .  By :ne i t e r a t i o n  we mean i n  :%ll algorithrc a  nont r i -  

v i a l  assignment w i t h  reasignments i n  an augmenting path,  

wnile i n  H o p c r ~ f t  and Karp algorithm - f o m i n g  a  graph cm-  

t a in ing  the  s e t  3f a l l  augmenting paths 3f s h 2 r t e s ~  lenght 

and performing a  s e t  s f  r e a s s i ~ ~ m e n t s  r e s u l t i n g  frgm tne  

s e t  of s h o r t e s t  augmenting pathe. 

( i i )  the average CP time per  i t e r a t i o n  in funct ion af the  
number 3f rows .  
Cornparism of t h i s  c h a r a c t e r i s t i c s  a re  given i n  Pig.1 and 

Pig.2. Figure l a  i nd ica t e s  t h a t  i n  Hall  algorithm the  num- 

ber  3f n o n t r i v i a l  assignments, though d r a s t i c a l l y  smal le r  than 

the  number of r o w s ,  increases  l ineary  w i t h  the  number of 

rows.  Figure I b  sh3ws t h a t  the  analogous c h a r a c t e r i s t i c  f o r  

Hopcroft and Karp algorithm is a  sl3wer growing funct ion 

(approximately a  square-r3o t fqmc t ian) .  

Figure 2a and 2b i n d i c a t e ,  t h a t  t he  average CP time per  

it e ra t ion  increases  approxinat ely l ineary  a s  the n m b e r  of 

r o w s  i n c s a s e s .  Thus, the H3pcroff and Karp algorithm tends,  



100 200 300 +O" number of n u s L  

Fig. 1. Number o f  i t e r a t i o n s  i n  a) Hall, 

b ) H3pcraI't and Karp a l g o r i t  h ? .  
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Fig.2. The average CP time per i t e r a t i o n  

i n  a )  Hall, b ) Hopcroft and Kazp 

a lgor i t  hme. 



t o  be favorable w i t h  the Hall algorithm i f  the s i z e  of ma- 

trix increases. 

The minimal s i z e  of matrices f o r  which the H-K alg3- 

rithm is mDre e f f i c i e n t  than the Hall algorithm depends on 

the spars i ty  o f  the matrix. It probably tends t o  decrease 

as the average number of n3nzeros per one r o w  decreases. 

In t h i s  paper we present an improvement of H-K algorithm. 

We use an obeervation that  an appropriate modification of gra- 

phs formed by H-K algorithm can considerably increase the 

number of assignments found per graph and thus reduce the 

number of H-K i t e ra t ions .  The idea of the algorithm i s  t o  
form a graph containing l a rge r  ee t  of augmenting paths, not 

only of shor tee t  lenght. This can be d ~ n e  as f ~ ~ l l o w s  

( the notat ion and de f in i t ions  used here may be found i n  153)  
L e t  X = 1 1  ,. . . , m i  be the s e t  of r o w s ,  and Y ={I ,. .. , mi 
be the s e t  of columns 3f the square matrix B =[b. . l . ~ h e n  

1 J 
we f3rm the b i p a r t i t e  graph G = ( V . 3 )  with vertex s e t  V 

containing X and Y ,  and the edge s e t  E such tha t  each edge 

of G joins a vertex coresponding t o  r o w  i in X w i t h  a vertex 

corresponding t o  c~ lumn j i n  Y i f  and only i f  b f 0 . 
i 3 

A s e t  blS E is a matching i f  there is no vertex u G V 

incident with more than one edge in M. A matcning of maximum 

cardinal i ty  i s  ca l l ed  a maximum matchiig. A vertex Vfi V 

is f r e e  i f  i t  is incident  w i t h  no edge i n  M. 

A path (without repeated v e r t i c e s )  

( Y 1 9  v 2 ) S  ( U 2 9  u3)9'**9( u2k-l, w2k)  

is cal led  an  augmenting path i f  i t s  endpoints trl a n d v z k  

are  both f r e e  and i ts  edges are a l t e rna t ive ly  i n  E-M and 

i n  M. It i s  easy t o  verify [5J , tha t  i f  B! is a matching 

and PI,  ..., Pt are  vertex d i s j ~ i n t  augmenting pazhs re la t ive  

t o  Bb, then - 
M = I Y I O P ~ @ P ~ @ .  ..@Pt ,(where @ denotes the symmetric 

difference) is  a matching, and 1 1 = I M  I+ t . 
Now we discuss how t o  f ind  a maximal vertex-disjont 

s e t  E J ~  augmenting paths P1,...,Pt r e l a t i v e  t o  M. 
F i m t  we assign di rec t ions  t o  the edges of G i n  such a way 
tha t  augmenting paths re la t ive  t o  M becone directed paths. 



This is done by d i rec t ing  each edge i n  Id s o  tha t  it runs 
from a r o w  t o  a column and each edge i n  E-Id s s  tha t  it r u e  

from a column t o  a row. The resul t ing  di rec ted  graph is  denoted - 
by G = (v,;). Now assume, tha t  the graph a contains stron- 

gly connected components Ei =(vi ,El 1, 1.1,. . . ,K.Then the  

edges of < f a l l  i n t o  2 classes.  

( i )  some a re  edges joining ver t ioes  of the sane component 

( i i )  other join ve r t i ces  of d i f fe ren t  components. Theee 

are ca l led  cross-links. 

Theorem [lo] . I f  B C E is a maximum matching in G, then N 

does not contain cross-links of 5. 
Since the f inding of the strongly connected components o f  G 

can be done by the depth - f i r s t  search algorithm of Tarjan 

i n  0dEb space and time, the elimination of croes-links from 

consideration may increase the eff iciency of the matching 

algorithm i n  the case of very large and sparse matrices. 
Assume, tha t  i n  block triangularizixlg of a basis  matrix the 

Tarjan algorithm f a r  f inding the strong components of the 

directed graph associated with the basis  matrix is used 

repeatedly with the maximum matching algorithm a f t e r  perfor- 
ming, s a y ,  k i t e r a t i o n s  of the matching algorithm. The 

eff iciency of the block t r i a n g u l a r i z h g  algorithm evidently 

depends on k. The optimal value of k depends on such paramete- 

rs of the basis  matrices as the number of r o w s  and the 

average number of nonzeros per one r o w .  The m o s t  desired s t ra -  

tegy must be obt ained empirically. 

In the remaining par t  of t h i s  paragraph we w i l l  present a 

modyfication of Hopcroft and Karp algorithm f o r  maximum 

matching. In one i t e r a t i o n  of the modified algorithm the 
A C 

graph C = (V,E) containing l a r g e r  s e t  of augmenting paths - 
PI,  ..., Pt f a  formulated and then the new rnatching M is 

defined by M = MePl@ P2 ..e Pt. 

bt ~ o : = { ( g , ~ ) : ( y , x ) ~  E~ f o r  some i f  . r\ 

Uow we ex t rac t  fro. graph (v,$ )Aa  subgraph G n i t h  

the properTy tha t  the  directed path of G running from a 

f ree  column t o  a f r ee  r o w  correspond one-to-one t o  an augmen- 

t i n g  path in G r e l a t i v e  t o  Id. This is done as follows. 



Let L3 be the s e t  sf  f r e e  r3~13, and l e t  
3 

L = L 4 f r e e  c~lumns 1 
Li = Li I; - 1 Ei = { ( u , v )  : ( u , v )  E E D ,  v 6  Li , u & % V  Ll ... .Lit 

L ~ + ~  = f  u : f ~ r  some v , (u ,v )  E ~ ~ l j  
f o r  i = 0,1r2,... 

Then we define the graph G = ( V , E ) ,  where 
A 

V = Lo V L1 C/ ... VL u LO* 
iH-1 i 

A 4 A 

The graph G = (V,E) i n  oomparison t 3  the graph formed by the 

~ r i g i n a l  Hopcroft and Karp algorithm ([5], p. 229 ) has the 

fc~llowing propert ies : 

(i ) the graph formed by 2-K algorithm conta in ts  only the 

shor tes t  augmenting paths r e l a t i v e  t o  M and is a subgraph 

of c 
A 

(ii) G,contains a lso  augmenting paths re la t ive  t a  M of 

g rea te r  lenght . 
An alg3rithm f o r  f lnding a maximal vertex-disjaint  s e t  of 

paths is  given i n  [5]. For our purp3se we shsuld order the 

s e t  3f f r e e  columns i n  such a wag tha t  the a l g ~ r i t h m  w i l l  f ind  

f i r s t  the shor tes t  augmenting paths and then the augmenting 

pat he with increasing length. 

There are  three charac te r i s t i c s  3f the presented 

algorithm f s r  maximum rnatching,important f a r  large-scale 

graphs: ( a )  s torage requirements, ( b )  CP time per one 

i t e r a t i o n ,  ( c )  number of i t e ra t ions .  In the absence of 

ac tual  implementation, the f a l l w i n g  analysis  w i l l  be same- 

what super f i c ia l .  
A 

( a  ) Storage requirements. Since G contains a t  m o s t  a l l  

ve r t i ces  of G,  storage requirements in a l l  s t eps  of the 

alg3rithm are  l i n e a r  i n  number 3f ve r t i ces  and edges. 
A 

From numesical experience, the subgraph of G f ~ m e d  by 



H-K algorithm contains typ ica l ly  f r m  60 t 3  80 percenta- 
ges of v e r t i c e s  3f C and t h i s  percentage i s  vertex-size 

A 

independent. Thus G ney contain typ ica l ly  a t  m o s t  10 t 3  

40 percent more v e r t i c e s  of G t hac  H-K graph. 
( b )  CP time per  one i t e r a t i s n .  Complexity is  l i n e a r  i n  num- 

ber  of v e r t i c e s  and edges. Time is increased i n  compari- 
son t o  H-K algorithm by a f a c t o r  s i m i l a r  t o  ( a )  

( c )  Number of i t e r a t i o n s  i n  comparison t 3  H-K algorithm may 

be considerably decreased. This supposi t ion fo l l lows  
from handy-made analys is  of small  problems and from 
ana lys i s  of the c h a r a c t e r i s t i c  of H-K algorithm 
presented i n  Pig.3. 

I - 
0 - 

400 200 300 wo number of rows 

Pig.3. The pa r t  of t he  graph v e r t i c e s  
belonging t o  ve r t ex  d i s j o i n t  
augmenting paths . 

The f igu re  shows the s i z e  of subgraph ~f which contains 
a l l  sho r t e s t  ver tex  d i s j o i n t  augmenting paths. This - 

subgraph of 5 conta ias  onJy small f r a c t i ~ n  of v e r t i c e s  3f G 



and moreover, t h i s  f r ac t ion  i s  decreasing w i t h  the s i z e  of 

problems. Thus, a f t e r  removing from a l l  shor tes t  vertex 

d i s jo in t  augmenting paths there remains a considerable part  
A 

of G containing augmenting paths ~f g rea te r  lenght. 

We conjecture tha t  the number of i t e r a t i o n s  3f the 

presented algorithm is a slower growing function of the 

s i z e  of the problem i n  comparison t o  H-K algorithm. 

2.2. An algorithm f o r  refinding lower block t r i angu la r  

s t ruc tu re  of an updated basis  matrix. 

It is now accepted that  the most e f f i c i e n t  algorithm f o r  f in -  

ding strongly connected components of a  directed graph is 
due t o  Tarjan [9]. However, i f  the basis  matrix is updated, 

the algorithm can be modified t o  enable performing the 

search i n  a r e s t r i c t e d  par t  of the graph of the updased 

basis. The need f o r  such an algorithm r e s u l t s  from the 

poss ib i l i ty  of using an addit ional  ru le  i n  multiple pr ic ing 

which w i l l  r e s u l t  in producing a t  each i t e r a t i o n  basis n a t r i -  

ces with the simplest "bumb and spike" structure.  

Let us assume t h a t  the r-th column of the basis  matrix 

B is replaced by a column ak, k€S/, The bump s t ruc tu re  of 

the updated basie matrix may be created by the following mo- 
d i f i ca t ion  of Tarjan algorithm, i n  which the depth-first  se- 

arch is r e s t r i c t e d  t o  a  part  of the updated basis. From the 

prgvious s t e p  we w i l l  use the following information: f ~ r  
each row i them i s  known i t s  bumb number S ( i ) ,  where 

S ( i )  = m i n i  p ( t  1 : t and 1 l i e  i n  the same bump 1 
t 

Algorithm 

1' Compute pk = min{S(i)  : aik f 0 1  and 4 = S ( r )  
i 

I f  ark 0 go t o  2'. otherwise denominate ay as the "free" 

column and row rk as the "f reen r o w ,  and f i n d  an augmen- 

t i n g  path i n  the graph of the basis  matrix leading from 

the f ree  column t o  the f ree  r D w  using the depth-first  

search r e s t r i c t e d  t o  the r o w s  with p ( i )  such that  

pk 6 p ( i )  < Mk- Make the reasigmnent of the rows and 
columns belonging t o  the augmenting path .GO t o  2' 



z3 In t h e  subgraph 2f t h e  b a s i s  m a t r i x ,  c 2 n t a i c i n g  v e r t i c e s  
w i t h  r 3 w  i n d i c e s  p ( i )  such t h a t  pk 6 ? ( i )  SK;, p e r f ~ r m  
t h e  a l g o r i t h m  ~f T a r j a n  t h a t  f i n d s  t h e  s t r a n g k j  c ~ n n e c r e d  

components z~f t h e  subgraph. 

The complexity z~f t h e  above 
a l g ~ r i t h m  is O ( t )  , where t is  t h e  number of nonzero 
e lements  q i j  of t h e  updated b a s i s  m a t r i x  w i t h  r 3 w  and 
column i n d i c e s  l y i n g  between rk and Mk. 

Suppose t h a t  i n  m u l t i p l e  p r i c i n g  we have a s e t  of c ~ l u m n s  

' J E K and we want t o  chz~ose t h e  c ~ l u m n  ak g i v i n g  t h e  

s i m p l e s t  bump s t r u c t u r e  of t h e  updated b a s i s  matr ix .  If t h e  

p r e c i s e  a l g o r i t h m  f o r  upda t ing  t h e  bunp s t r u c t u r e  is  t o o  

expensive ,  t h e  f ~ l l o w i n g  subop t imiz ing  c r i t e r i ~ n  mag be 

used: 

From t h e  s e t  of c o l u m s  a  , j  E K s e l e c t  a  column ak  
j 

such t h a t  
= min 

j 6 K  
A j  

where s ( r j  1 - min i f s ( i ) : a i j  + 
and r is t h e  i 3 d e x  z~f t h e  c3lumn,leaving t h e  b a s i s  3 

j  
a f t e r  e n t e r i n g  a  t o  t h e  b a s i s .  

j 

3. E X P L O I T I N G  DUAL DEGENZRACY I N  TYE DUAL SIMPUX A L G O R I T m .  

I n  some i n t e g e r  programming a lgor i thms  t h e  "power" 9 f  t h e  

succeeding i t e r a t i m e  is  u s u a l l y  hampered by t h e  massive 

degeneracy and /o r  t h e  s e v e r e  r3und-off e r n r e .  This  ~ c c u r s  i n  
t h e  c u t t i n g  p lane  a l g 3 r i t h m  3f Fn teger  forms as w e l l  a s  

i n  t h e  c o m p ~ s i t e  i n t e g e r  a l g o r i t h m  having c u t e  i n c 3 r p o r a t e d  

i n t o  t h e  branch-and-bound scheme. In t h i s  s e c t i o n  we d i s c u s s  

a t echn ique  p r e s e n t e d  i n  [11] t h a t  a l l e w i a t e s  t h i s  d i f f i c u l t y .  

3.1. A modif ied  d u a l  LP a l g o r i t h m  

Though c y c l i n g  r e s u l t i n g  from degeneracy is n3 t  S D  s e r i o u s  

a problem in p r a c t i c e  ( i t  may be p reven ted  b3 t h e  use 3f a 
p e r t u r b a t i o n  scheme such a s  l e x i c o g r a p h i c  ~ d e r i n g  of r 3 w  

3r ca lunn  v e c t 3 r s  3r by c h a ~ s i x g  t h e  s m a l l e s t  index  o r  any 

s t h e r  handy r u l e  p r e v e n t i n g  c y c l i n g  a t  l e a s t  f r g m  e n p i r i c a l  



evidence) t h e m  remains the re la ted  prablem of s l o w  csnver- 
gence caused by many i t e ra t i an8  w i t h  zer3 changes 3f the 
objective functisn. The difference between degenerate and 
nondegenerate i t e r a t i o n s  i n  the LP algarithms r e s u l t s  f r ~ m  
the f a c t ,  tha t  i n  the absence of degeneracy the simplex 
algorithm has the s t epes t  descent property, while i n  the 
presence of degeneracy the lexicographic 3rdering assures on- 
l y  f i n i t n e s s  of the i t e ra t ions .  

To reduce the number of degenerate simplex i t e r a t i o n s  
we have incorporated in to  the dual simplex algorithm a me- 
chanizm which aesures the s t epes t  descent property of the 
algorithm also  i n  the case of severe degeneracy. 

Let ua c onsider the LP problem (1,2 ) and assume , tha t  
the basis  is: 

T -1 (i) dual f eas ib le ,  i.e. d := elB a j  3 0 , j b x  . 
1 j 

(ii) primal infeaaible ,  i.e. there i e  nonempty s e t  T of 
negative basic variables x pi, i E T ( f o r  s implici ty 
we assume, tha t  li = 0,  ui =+& ). 

We also  assume, tha t  the basis is dual degenerate, i.e. the 
s e t  No ={j: dl = 0 $ of degenerate nonbasic variables 
is nonenpty. I.. the dual simplex method moving fr3m one 
degenerate basic solut ion t o  another is indeed solving the  
t o t a l l y  degenerate subproblem 

x, 9 x j  a 0 
which has primal infeaeible  basis  B. I n  order t o  solve t h i s  
subproblem we can maximize an auxil iary function 

v 
w = Zd x ~ i  which measures the primal i n f e a s i b i l i t y  

i C T  
of ( 4 )  as  i n  the f i r s t  phase of the Orchard-Hays composite 
simplex algorithm [a] . After solving ( 4 )  the new basis  i s  
updated according t o  the ordinary ru les  of the dual LP algo- 
r i t h m .  Our experience s h o w s  tha t  t h i s  modification s igni f ica-  
n t ly  imprwes the performance of the dual LP algorithm i n  



the case when the number 3f nonfeasible basic variables is 
equal m e ,  as i t  occurs i n  the GomsryOs cu t t ing  plane algo- 
r i t h m  a f t e r  adding a  new cut o r  i n  the branch-and-bound algs- 
r i t h m  a f t e r  branching t o  a  new vertex. It foll3wa from the 
f a c t  tha t  i n  t h i s  case, once (4 1 has been sglved, a  change 
i n  the baeis occurs w i t h  a  aimultanesus exchange of dual 
degenerate and nondegenerate variables. 
Now we w i l l  present one i t e r a t i o n  of the  algorithm under 
assumption t h a t  the dual LP algorithm uses the same data  
f 3 m a t  ae the primal algorithm. 
In*ally s e t  8 : = -00 , k:=O and se lec t  r e T. 

Algorithm ( m e  i t e r a t i o n )  
1  Execute backward tranef onnation routine,  csmpute the 

pricing forme 
T -1 7rl = elB 

A- L- 

7, a dTg-l, where d  = C ei 
i t 2  T 

Go t o  2O 
2 O I f  t h e r e e x i s t a  anonbaaic  columnaj,  jeN not conei- 
dered y e t ,  compute 

j 
: = nl -a  and go t o  3'; otherwise 3 

s e t  j:= k and go t o  5  . 
3' If d l j >  0  then go t o  4'. Otherwise csmpute 

d 
wj 

: = a  I f  d u j >  0  go t~ 4'. Otherwise s e l e c t  
j  ' 

the baaic variable x  (jt reaching f i r s t  i t s  bound a f t e r  
entering x j  t o  the b a s i s  ( t h i s  i a  pivot se lec t ion ru le  of 
the primal simplex algsri thm);  r: = t , Go t o  5' 

4' Compute a rj : 
= hr. a ~ f  r j  < o and e < 

j ' @ r j  

then s e t  8: = O c a  and k: = j. ( t h i s  is pivot ae lec t i3n 
gL 

of the dual algo$dthm). Go t o  2'. 
0  5 If j = O ,  LP is not feasible.  Otherwise update the basis 

w i t h  the piv3t p a i r  (r ,  j ). T h i s  involves creat ion new ? 
and solution columns. 



3.2. Computat ional  r e s u l t s .  

The modif ied  d u a l  a l g r ~ r i t h m  has been t e s t e d  by s o l v i n g  t h e  

s e t  of t e s t  I n t e g e r  p r o g r a m i n g  problems, r e l a t i v e l y  d i f f i -  

c u l t  t 3  s ~ l v e  by c u t t i n g  p lane  method. The p r o b l e m  have 

been choosen f r 3 m  [2 ]  and from [ 7 ]  . 
The f o l l o w i n g  a l g o r i t h m s  have been compared. 

LIP1 - a v e r s i 3 n  o f  t h e  methad of i n t e g e r  forms developed 

by Ha ld i  and I s a a c s o n  [3] known as LIP 1 

KAL - a v e r s i ~ n  of t h e  method of i n t e g e r  f 3 m  developed 

by Kaliszews k i  C7 1 
TO - t h e  method o f  i n t e g e r  forms f o r  ILP w i t h  bounded 

v a r i a b l e s  in t h e  a l l - i n t e g e r  f l o a t i n g - p o i n t  r ep resen-  

t a t i on ,  w i t h  t h e  b a s i c  d u a l  s implex  a lg3r i thm.  and a  

s o u r c e  r 3 w  s e l e c t i o n  t h a t  y i e l d s  t h e  l a r g e s t  d e c r e a s e  

i n  t h e  o b j e c t i v e  f u n c t i o n  

T O 4  - t h e  method TO w i t h  two m o d i f i c a t i o n s :  d u a l  s implex  

a l g o r i t h m  is r e p l a c e d  by ' t h e  modif ied  d u a l  a l g o r i t h m  

desc r ibed  in s e c t i ~ n  3.1 and an a d d i t i o n a l  source  row 

s e l e c t i o n  ( c r i t e r i o n  3 i n  [27 p. 1 6 5 )  which breaks  

t h e  t i e s  i n  t h e  source  row s e l e c t i o n  io t h e  a l g o r i t h m  

TO 

The r e s u l t s  of t h e  a lgor i thms  LIP1 and KAL were 

r e p o r t e d  i n  [2], p.380 and i n  [77  . Computations 3f t h e  

a lgor i thms  TO azd TO-M were performed on t h e  computer Odra 

1325. The r e s u l t s  a r e  i n  Table  1  



Table 1 

The comparison 3f the algorithms indicate t h a t :  
(i) the choise of the c u t e l e a d i n g t o t h e e e v e r e d u a l  

degeneracy i n  the algorithm TO-M is advantageous 
from the eff iciency point of view. 

(ii) the uee of the modified dual simplex algorithm redu- 
ces the average number of simplex i t e r a t i m s  per 3ne 
cut. 

TO-20 

TA-20 

0-1 9 

0-17 

U L  
T 0 
TO-M 

IWL 
TO 
T O 4  

KAL 
T O 4  

KAL 
TO-M 

40 
15 

1 

4 
1 
1 

>I 60 
17 

> 190 
47 

146 
69 

7 

18 
7 
7 

>613 
39 

> 518 
80  

3 - 5  
4.1 
1 

3 
1 
1 

3.8 
1.8 

2.7 
1.6 



References 

Bisschop, J. Levy ,Y.and Meeraus ,A. "Programs f s r  s t r u c t u r e  
ana lys is  of sparse  matrices" Development Research Center,  

World Bank, Washington, 1979. 
Garfinkel ,R.S. ,Nemhauser,G. L. , In teger  Programming" 

John Wiley Som , 1972 . 
Haldi,  J. , and L.M. Isaacs3n ,Opns ,Res. 13, 964-959,1965 
Hall,M."An algori thm f o r  d i s t i n c t  representat ions".  

Amer.Math.Monthly , Vol 63 pp. 71 6-71 7, 1956 . 
Hopcroft ,J.S. and Karp, R.M. "An n5I2 algorithm f o r  
maximum matchings in  b i p a r t i t e  graphs SLW J. Comput, 
Vo1.2,No 4.pp.225-231, 1973. 
Darby-Dowman,K. and Mitra,  G. " A n  i nves t  i ga t ion  of algo- 

rit hms used i n  the  r e s t ruc tu r ing  of l i n e a r  programing 
bas is  matr ices  p r i o r  t o  inversion" Brunel Univ. 

STR/33 Report, 1979. 
Kaliszewski.I., "Efficiency of the c u t t i n g  plane method 
i n  i n t e g e r  programming" Thesis,  IBS PAN, Warsaw, 1978 

( in Pol i s  h ) . 
Orchard-Hays,W."Advanced l i n e a r  programming corcputing 
techniquesn MCGraw-Hill, 1968. 

Tarjan,R.E."Depth f i r s t  search and l i n e a r  graph algo- 
r i t h m s "  SIAL J. Comput.Vo1 l.pp. 146-160, 1972. 
Taha H.A. " In teger  Programming", Academic Press ,  1975 , 
Toczy?owaki, E. "On algorithms f o r  maximum matchingn 
submitted t o  Disorete Applied Mathematics. 
Toczy?owski,E "A aomposite i n t e g e r  l i n e a r  programing 

a l g o r i t  hm" X Sgmp. on &th.Progranming,Idontreal, 1979. 





THE SIMPLEX METHOD FOR DYNAMIC AND 
BLOCK-ANGULAR LINEAR PROGRAMS 





A RESOURCE-DIRECTIVE BASIS DECOMPOSITION ALGORITHM FOR 
WEAKLY COUPLED DYNAMIC LINEAR PROGRAMS* 

Tatsuo Aonuma 

Kobe University of Commerce 

This paper presents a decomposition algorithm for dual angular linear programs, which also 
can be extended to a wider class of structured linear programs. The method i s  closely re- 
lated to the algorithm by Martin Beale on the parameterization of the linking variables. In 
the algorithm, the linking variables are first fixed at  given values to partition the problem 
into several subproblems. Secondly an optimal setting of the linking variables is  deter- 
mined, given that the bases for the subproblems are fixed. Then, the bases for the subprob- 
lems are changed so as to improve the entire problem. The computational experience indi- 
cates that the number of cycles to adjust the linking variables required for optiinality i s  
nearly equal to,or less than the number of the subproblems, and is  smaller than the earlier 
computational results in the column-generation scheme, and that the computing time is 
much faster than in the direct simplex approach. 

*This is a revised version of the paper presented at the XX lV  International Meeting of the Institute of 
Management Sciences, June 18-22. 1979, in Hawaii. 



Introduct ion.  A two-level algorithm fo r  two-stage l i n e a r  programs has 

been presented in Aonuma [2]. The algorithm was developed with an i n t en t i on  

of solving the  two-stage l i n e a r  programs a r i s i ng  from a nested approach t o  

multi-period planning 111, in a manner of i n t e r ac t i ve  preference optimizat ion 

f o r  considering uncertainty i n  the future.  In  the present  paper w e  extend the  

same decomposition approach t o  a v ide r  c l a s s  of s t ruc tured  l i n e a r  programs, 

e spec i a l l y  t o  dual  angular l i n e a r  programs and a l so  repor t  computational expe- 

r i ence  in using i t  f o r  weakly coupled dynamic l i n e a r  programs. 

The dual  angular l i n e a r  program we address is wr i t t en  a s  fol lovs:  
K 

mx r cisi + 5 y  (0.1) 
i-1 

9.t .  + y = bi (0.2) 

i 
x , Y 2 0 ( 1 , ,K) (0-3)  

We c a l l  y the l ink ing  var iab les  and 4 the l ink ing  matr ix f o r  the  i - t h  block. 

In  a dynamic l i n e a r  program we get  together  all of the l ink ing  va r i ab l e s  

between NO consecutive periods i n t o  one block. 

Our decomposition method is c lose ly  r e l a t ed  t o  Beale 's  approach [ 6 ]  on 

the parametr izat ion of t he  l i nk ing  var iab les  and is not  of column-generation 

scheme. We begin by choosing i n i t i a l  values f o r  the  l i nk ing  var iab les ,  and 

then the  problem is decomposed i n t o  eeveral  subproblems when the  y-variables 

are f ixed.  Af te r  optimizing these  subproblems, the optimal s e t t i n g  of the  

l i nk ing  var iab les  a r e  determined, given t h a t  the  bases f o r  the  subproblems 

a r e  f ixed.  For t h i s  purpose, we solve a coordination problem. Subsequently, 

a direct ion-f inding problem f o r  every non-optimal subproblem is solved fo r  

the purpose of exchanging the ba s i s  so  as t o  improve the  e n t i r e  problem. We 

c a l l  the  process "coordination" of the y-variables. The coordination process 

terminates when t he r e  is no improving the bases f o r  the  subproblems. I n  a 

sense of planning process [12], t h i s  type of coordinat ion i s  considered t o  be 



resource-direct ive [8] and of two-level. 

The time-consuming jobs throughout the whole computation i n  the  algori thm 

a r e  solving the  subproblems a t  t h e  i n i t i a l  s tage  and solving the coordinat ion 

problems during the  coordinat ion process. We c a l l  t h e  number of times of solv- 

i n g  the  coordinat ion problem t h  mmrbsr of coordination cycles. A b u i l t - i n  

l i n e a r  programming subrout ine is required f o r  solving both the subproblems and 

the coordinat ion problems. As the number of rows of the coordinat ion problem 

is equal  t o  t h a t  of t h e  l i n k i n g  v a r i a b l e s ,  the  l a r g e s t  problem t o  be solved by 

the subrout ine can be the  coordinat ion problem in such a case t h a t  the  number 

of per iods,  K, in a dynamic case i s  very l a rge .  That is one of the reasons 

why weakly coupled dynamic models a r e  computationally p re fe rab le  and 

e f f e c t i v e  f o r  our  algori thm f o r  t h e  purpose of so lv ing  much la rger - sca le  models, 

where "weakly coupled" implies  t h a t  the number of t h e  l i n k i n g  v a r i a b l e s  between 

two consecutive periods is r e l a t i v e l y  small. The second reason is t h a t  it is 

possible  f o r  w t o  es t imate  "good" i n i t i a l  values f o r  the  l ink ing  v a r i a b l e s  i n  

weakly coupled cases .  The computational experience i n d i c a t e s  t h a t  a good s e t t i n g  

of the y-variables makes the  algori thm work e f f e c t i v e l y  . 
An experimental code, named MLTLPS, has  been v r i t t e n  in FORTRAN f o r  HITAC 

8250 i n  o rder  t o  so lve  dynamic l i n e a r  programs having up t o  180 rows and 6 

periods. The SEXDP developed by R.E.Marsten [15] is used i n  the  MJLPS as an 

LP subrout ine f o r  so lv ing  the l i n e a r  programs. 

I n  the  p resen t  experiments we mainly focus on t h e  number of coordinat ion 

cycles. From our experiments the  number of the cycles  seems t o  be  n e a r l y  equal 

to ,  o r  l e e s  than the  number of periods, and seems t o  be very small  i n  comparison 

with t h a t  i n  the  e a r l l e r  algorithms of coluum-generation scheme. For comparison . . 

with a d i r e c t  simplex approach we t e n t a t i v e l y  convert the  Mm9S t o  a new l a r g e  

computer, FACOM M-160S(camparable t o  IBM 3701148) , which has v i r t u a l  s to rage  



i n  its o p e r a t i n g  sys tem,  a r d  we use  a v e r s i o n  of  t h e  o r i g i n a l  SEXOP [15] a s  

t h e  FORTRAN l i n e a r  programming code f o r  t h e  d i r e c t  method. We observe  t h a t ,  

f o r  two t e s t  problems of  6 p e r i o d s ,  t h e  CPU computing t ime by t h e  MULPS is  

about  a q u a r t e r  of  t h o s e  by t h e  d i r e c t  method, and t h a t  on ly  a h a l f  of  s t o r a g e  

in t h e  d i r e c t  method is r e q u i r e d  i n  t h e  MULPS. 

It h a s  been l a t e l y  suggested by s e v e r a l  r e s e a r c h e r s  t h a t  o u r  method is 

c l o s e l y  r e l a t e d  t o  Gass' d u a l p l e x  method [ l a ]  and Wink le r ' s  uethod [ 1 9 ] .  We 

s h a l l  d e s c r i b e  in [20]  t h a t  t h e r e  a r e  t h r e e  computa t iona l ly  d i f f e r e n t  p o i n t s  

from Gass'  method. W e  happened t o  r e p o r t  b e f o r e  i n  [2]  t h a t  t h e  number o f  

c y c l e s  r e q u i r e d  f o r  o p t i m a l i t y  i n  o u r  a l g o r i t h m  was less than  t h a t  when employ- 

i n g  a s e l e c t i o n  rule of  Gass' type  t o  o b t a i n  an improved b a s i s  of  t h e  subproblem 

in t h e  2-stage c a s e ,  where we compared wi th  t h e  B e a l e ' s  rule [6 ]  which is a l s o  

t h e  same a s  t h e  Gass '  rule. And a l s o ,  we can unders tand t h a t  o u r  a l g o r i t h m  

g i v e s  a c o n c r e t e  op t ima l  s t r a t e g y  t o  Winkler ' s  framework. However, o u r  a l g o r i t h m  

w i l l  b e  r ega rded  as a c o o r d i n a t i o n  method r a t h e r  than  as a s implex method f o r  

l a r g e - s c a l e  problems. 

S e c t i o n  1 p r e s e n t s  some methods on p a r a m e t r i z a t i o n  and t r ans fo rma t ion  i n  

l i n e a r  programs, which w i l l  b a s i c a l l y  g i v e  a s o l u t i o n  method t o  t h e  c o o r d i n a t i o n  

problem. I n  S e c t i o n  2 t h e  decomposi t ion a l g o r i t h m  i s  p resen ted  f o r  a s i m p l i f i e d  

form of our  problem above. The j u s t i f i c a t i o n  of t h e  a l g o r i t h m  is shown i n  a 

c o n s t r u c t i v e  manner w i t h  s e v e r a l  theorems and i ts f i n i t e  convergence is a l s o  

proved. At t h e  end of  t h e  s e c t i o n  t h e  computat ional  procedure  is summarized. 

S e c t i o n  3 c o n t a i n s  t h e  computat ional  exper ience .  



1 . Parametrization and Transformation in Linear Programs 

Consider the  l i n e a r  program 

LP[B:yl max cp(B)y 

9 . t .  1% + \(B)Y - b(B) 

% , Y  2 0 

*ere I i a  a su i t ab l e  iden t iy ,  \(B) is an n x n and the  o ther  vec tors  a r e  
Y'  

of conformable dimensions. LP[B:y] represents  the  cannonical form of a l i n e a r  

program with respect  t o  a given ba s i s  B and is the analogus no ta t ion  adopted 

i n  Marsten and Shepardson 1161 fo r  expressing conveniently a l i n e a r  program 

updated with respec t  t o  a given bas i s .  

For the purpose of formulating the resource-direct ive coordinat ion process 

i n  our two-level algorithm we consider a transformed l i n e a r  program derived 

from LP[B:y]. Suppose t h a t ,  a t  f i r s t ,  the  y-variables a r e  f ixed a t  given values,  

0 0 y , and then they a r e  adjusted through "new parameters", X ,  around y . We 

have the fo l lov ing  transformed problem: 

0 
LPX[B:y=y + I X  I max cp(B)X + cp(B)y 0 (1.1) 

9. t .  
0 5 + \(B)X - %(Y (1.2) 

- I X +  I y - y  
0 

(1.3) 

% # Y  2 0  

0 where - b(B) - %(B)y . The 5 and y play the  r o l e  of s l a ck  va r i ab l e s  

f o r  t he  cons t r a in t s  (1.2) and (1.3) respect ively.  Let the  dual  form of LP 
X 

denote as follows: 

0 0 
D P ~ [ I : ~ = - ~  + IX 1 min -(yo) + vy + c p ( ~ ) y  o 

9 . t .  - Iv  - cp(B) 

u , v  2 0 

where u and v a r e  t he  dual  va r i ab l e s  associated with (1.2) and (1.3) respec t ive ly .  



Let D be a dual feasible basis for DP and let p and JI denote the cor- 
B D 

responding primal basic solution of DP and the dual one respectively; i.e., 
B 

ptl D-l cy(B). We update DPB with respect to D to obtain the following form: 

0 0 0 
DP~[D:FI + Iai lin u{rS(yO) - \(B)$I + V{Y + + cp(B)(y + 

s.t. u %(B) (D-')' - v (0-l)' = 

u , v ; o  . 
Again, let us consider the dual of DP [Dl: 

B 

DDPB[D:A] n~ P A  + cp(B)iy 0 + 

s.t. \(B) (D-')'A %(yo) - %(~)t~ (1.4) 

0 D y + $ I ~  (1.5) 

Let the slack variables for (1.4) and (1.5) be xg and y respectively. Then, 

DDP [D:X] can be regarded as a transformed form of LPL[B]. We have- the follow- 
B 

ing obvious and useful result. 

0 
TEEOREM 1. Let D be a dual feasilbe basis for DP~[I:FY + IX] and let JID 

0 
denote the corresponding dual solution. If y is a feasible solution to 

LP[B:y], then 

1 
(1) yl- yo + tD is also a feasible solution to LP[B:y], and y becomes 

an optimal solution if D is an optimal basis. 

1 
(ii) DDPBID:l] - LPA[B:py + (D-')~A], 

1 
(iii) there are at least n zero components among the ~ ( y  ), yl, where 

Y 

n is the dimension of y and also the number of rows in DPB. The number of 
Y 

1 1  
zeros among the %(y ). y is equal to n under the non-degeneracy assumption, 

Y 

which we shall assume hereafter in the coordination problems that will be 

defined later. 

Let us define T1= TO(D-l) where To= I (identity). Then, we have the 

new relationship between the y and the parameters X 



1 1  
y - y  + T A  (1.6) 

through which t h e  y -va r i ab le s  w i l l  b e  ad jus t ed  around t h e  y1 again .  L P X [ B : y  

1 1  
y + T A] is t h e  problem updated wi th  r e s p e c t  t o  t h e  new r e l a t i o n s h i p  (1.6) 

1 and' s o  is t h e  DDP [D:A]. We c a l l  T t h e  Pa ramet r i c  Transformat ion Matrix (P B 

TI! h e r e a f t e r )  . 

2. The Decomposition Algorithm 

We u s e  t h e  same n o t a l t o n  a s  i n  [16] f o r  e x p r e s s i n g  a l i n e a r  program w i t h  

r e s p e c t  t o  a g iven  b a s i s .  For  s i m p l i c i t y  in terminology,  we r e p r e s e n t  

t h e  linear program (0.1)-(0.3) as fol lows:  

LP[I:y] max cx 

9 . t .  k + % y  = b  

X , Y L O  

where A is an m x n m a t r i x  having K b locks ,  each of  which c o n t a i n s  m rows 
K K i 

and ni columns, i . e . ,  m = Z m and n = Z ni, % is m x n and t h e  o t h e r  
i- 1 i i=1 Y'  

v e c t o r s  a r e  o f  conformable dimensions.  We a l s o  assume v i t h o u t  l o s s  of  g e n e r a l i t y  

cy= 0 Fn (0 .1) ,  because  we can  always a l t e r  t h e  o r i g i n a l  problem t o  t h e  above 

+ - 
t ype  of  problem, by add ing  a c o n s t r a i n t  %y - z+ + ; - 0 ,  z , z 2 0 t o  t h e  

x-block. 

For t h e  purpose o f  proving t h e  f i n i t e n e s s  of  t h e  a lgo r i thm we s h a l l  

assume some o r d i n a r y  non-degeneracy assumpt ions  l i k e  in Theorem 1 ( i i i )  when 

necessa ry .  And a l s o  we assume, f o r  s i m p l i c i t y ,  t h e  boundedness of  t h e  problem. 

INITIALIZATION STAGE 

0 Tho Subproblem. F i r s t l y ,  v e  choose i n i t i a l  v a l u e s ,  y , f o r  t h e  y -va r i ab le s ,  

and when y=yO is f i x e d  we have t h e  subproblem 



0 
SP[I:y=y I max cx 

s.t. Ax = b - 
x ; o  . 

Notice t h a t  the  subproblem a c t u a l l y  c o n s i s t s  of K smaller  subproblems of t h e  

same type, each of which is of an m x ni dimension. We assume. f o r  s impl ic i ty .  
1 

t h a t  t h e  subproblem has a f i n i t e  optimal so lu t ion .  

Now, l e t  B. be an optimal b a s i s  and l e t  n denote the  corresponding 
Bo 

d var iab les ;  n - c B-' where cB is the  components of c corresponding 
0 Bo O 0 

t o  the b a s i c  v a r i a b l e s  5 . Then, t h e  subproblem updated with respec t  t o  B 
0 

becomes 

5 3 %  z 0  
where 5 denote the  non-basicOvariables, and we have - < 0 and ~ ~ ~ ( b - ~ y O )  

=N = 

> 0 because of op t imal i ty .  Likewise, the  LP[I:y] is updated with r e s p e c t  t o  

B a s  follows: 

LP[B~:YI max ;N 'N - n ~ o %  y 

9. t. 5 + %(Bo) 'N + jiy(Bo) y = 
0 

5 ,  3, Y 2 0  

h e r e  $ ( B ~ )  - B-' d b t ~ ~ )  - B:\. 

Ths First Coordination ProbZem. We def ine  t h e  coordinat ion problem f o r  t h e  

purpose of determining an optimal s e t t i n g  of t h e  y-variables ,  given t h a t  the  

Bo f o r  t h e  subproblem is f ixed .  Assume t h a t  t h e  y-variables  a r e  ad jus ted  

through t h e  parameters, A ,  around yo according t o  t h e  l i n e a r  r e l a t i o n s h i p s  

0 0 
y = y + T A , TO = I ( i d e n t i t y ) .  (2.1) 

Then, LP[B :y] can be equ iva len t ly  w r i t t e n  a s  t h e  fol lowing transformed form, 

i n  the  same way a s  f o r  LPA i n  Sect ion 1: 



0 0 
LPaIB0:yry+T A 1  max e N %  - rB-*l~O~ dua l  v a r .  

r , S % , Y L O  

0 O o  0 0 0 
vhere  r, y - B b - y ) = B - ( B  y . Let DPB [ I : y y  + T a1 

0 0 

denote  t h e  correeponding dua l  problem. 

I n  t h e  above problem, a d j u s t i n g  through t h e  invo lves  both a d j u s t i n g  

t h e  y-var iables  and t h e  b a s i c  v a r i a b l e s ,  r, , b u t  t h e  non-basic v a r i a b l e s  % 
0 

remain locked a t  zero.  Th i s  mechaniem w i l l  be  formulated a s  a coord ina t ion  

problem. Now, t h e  coord ina t ion  problem i e  de f ined  in a primal form as 

0 0 
CP, [ I :  y-y + T X] 0 max - nB 5 T  X d u a l  va r .  

0 2 0 
s t .  r, + ~ ( B ~ ) T O ~  = % ( I )  : u 

0 
0 

- T i +  y = y  
o0 

: v 

5 . 9 .  2 0 .  
0 

Not ice  t h a t  t h e  problem is obtained by dropping all of t h e  non-basic x-var iables ,  

0 0 5, from LP [B :y-y + T A]. I n  our  a lgor i thm t h e  d u a l  form of t h e  coord ina t ion  a 0 

problem is  a c t u a l l y  solved,  and simply t h e  coord ina t ion  problem s h a l l  imply 

its dua l  problem in t h e  f u t u r e  d e s c r i p t i o n  o f  t h e  computational procedure. 

0 0 Let DCPB [ I : y l p  + T X ]  deno te  t h e  corresponding d u a l  problem. 
0 

We aeeume that CP, is bounded. I f  it is unbounded, s o  is  LP[I:y].  Let D 
" 
0 

0 0 denote  an opt imal  b a s i s  f o r  DCPB [I:y=y + T X I  and le t  JI denote  t h e  cor res -  D 
0 ponding d u a l  s o l u t i o n .  From m e o K  1 we have y1 = y + J I ~  a s  an opt imal  s e t t i n g  

f o r  t h e  y-var iables ,  g iven t h a t  t h e  b a s i s  B f o r  LP[I:y] is f ixed .  And a l s o ,  0 

ve  have 

0 0 1 1  t h e  d u a l  o f  DCPB [D:yy  + T A] = CPB [ I : y y  + T A] 

1 0 0 

vhere  T denotes  t h e  PTM, and 

9 - TO ( ~ - 5  = ( D - ~ )  t .  



0 0 Let uD and v be  t h e  b a s i c  v a r i a b l e s  of DCPB [I:y=y + T A] f o r  t h e  d u a l  D 
0 

v a r i a b l e s ,  u and v ,  r e s p e c t i v e l y .  For s i m p l i c i t y ,  we assume t h a t  t h o s e  b a s i c  

v a r i a b l e s  a r e  placed in t h e  b a s i s ,  D ,  i n  such a n  o r d e r  a s  (vD,u,,); t h i s  means 

t h a t  i f  we pu t  

-1 t - nB $(D = o = (oV,oU),  
0 

then  t h e  corresponding b a s i c  s o l u t i o n  is 

vD P, and \ P, . 
0 0 

LP[B :y=y + T A] can be  updated wi th  r e s p e c t  t o  y1 and t h e  new PTM, l'l : 

1 1  
19,[Bo:y=y + T A] max $ ( B ~ ) ~  + O X  d u a l  v a r .  

x, , " N , y : O .  
0 1 W e  a l s o  have t h e  updated subproblem, SPIBo:py ] ,corresponding t o  t h e  above. 

I n  view of our  non-degeneracy assumption desc r ibed  i n  Theorem 1 ( i i i ) ,  

1 t h e r e  a r e  e x a c t l y  n ze ros  among t h e  16 (y  ), yl. The corresponding p o s i t i o n s  
Y 0 

a r e  a s s o c i a t e d  w i t h  t h e  uD and vD. Let  t h e  set of t h e  rows i n  which t h e  

1 
corresponding components of (y  ) a r e  equa l  t o  ze ro  denote  r .  I n  t h e  c a s e  

1 1  
%o 

of LP[B :yly + T A], we s a y  s imply t h a t  t h e  rows belong t o  t h e  r-set, o r , i n  

0 1 t h e  c a s e  of DCP [D:y=y + T X I ,  t h a t  t h e  corresponding columns belong t o  t h e  
Bo 

r-set. The b a s i c  v a r i a b l e s ,  among t h e  5 , uh ich  a r e  i n  t h e  rows belonging 
0 

t o  t h e  r-set correspond t o  t h e  v a r i a b l e s  c a l l e d  "pseudo-basic" i n  Beale  161. 

1 1  
A l l  of t h e  rows o f  $(Bo) in LP [B :py + T A] a r e  ~ l a s s i f i e d  i n t o  e i t h e r  

t h e  r-set :or  o the rwise .  W e  assume, f o r  s i m p l i c i t y ,  t h a t  a l l  of t h e  r-rows 

a r e  placed a t  t h e  bottom of %(Bo), and le t  &(Bo) deno te  t h e  corresponding 

p a r t  of ;d(Bo) .  The assumption above means, t o g e t h e r  w i t h  t h e  assumed o r d e r  

of (vD,u,,), t h a t  t h e  updated l i n k i n g  ma t r ix ,  $ ( l o )  TI, h a s  t h e  fo l lowing  

s t r u c t u r e :  



where E is a square matrix composed of the unit row-vectors, which correspond 

0 0 to the c o l m s  associated with the uD in DCP [D:yy + T XI; R is a kind of 
Bo 

permutation matrix and we have 8-l= Bt. 

Similarly, if we assume that all. of the zero components among the y1 are 

1 
placed at the top, the updated linLing matrix, - T . can be vritten as follovs: 

where H denotes the collection of the unit rw-vectors, which correspond to 

0 0 the columns associated with the vD in DCPB [D:yy + T XI. Bo is also a 
0 

permutation matrix and 811 - Ifo . 
OPTlMAtITY TEST 

THEOREM 2. If we have 

t - 
pu If - $Bo) 2 0, (2.6) 

1 1 1 1  then the basic solution, xg - xg (y ), y - y , in LPXIBo:y + T XI is optimal 
0 0 

for LP[I:y]. 

1 1  
Proof. Notice that if the basic solution is optimal for LPAIBo:y + T XI, 

it is also optimal for LP[I:~~. put u* = ( O , ~ ~ R ~ )  2 o a d  v* - (pVnE, 0) 0. 

The condition (2.6) means that the u = u*, v = v* is a feasible solution to 

1 1  DP [I:yy + T X] because of (2.3). (2.4) and (2.5). We have clearly comple- 
Bo 

mentary slackness, and the solution is optimal. I I 
CBBNGING THE BASIS OF THE SUBPROBLEM 

The Direction-finding Problem. Now suppose that - <(B~) 1 0, 
so that we are not finished. Therefore, we try to change the present basis 

B to an attractive one. Put 



We def ine  t h e  direct ion-f inding problem: 

% 3 %  : O  

denotes t h e  components of xg i n  t h e  r-set and p lays  t h e  r o l e  of 
0 

s l a c k  var iab les .  

1 It is very important f o r  ue t o  n o t i c e  t h a t  so lv ing  F [I:y-y ] means 
Bo 

changing the  presen t  basis,Bo, of SP[B :y-yL] t o  an improved b a s i s  by 

r e s t r i c t i n g  t h e  candidates  of p i v o t a l  rows t o  t h e  r-set and by using t h e  

1 
modified o b j e c t i v e  funct ion.  We assume t h a t  t h e  degenerate program FB [I:y-y ] 

0 

is solved by t h e  per tu rba t ion  method. Notice t h a t  the  d i rec t ion- f ind ing  problem 

has e i t h e r  a bounded n u l l  s o l u t i o n  o r  unbounded so lu t ions .  

1 
I f  F L1:y-y ] has  an bounded optimal so lu t ion ,  t h e  assoc ia ted  bas i s -  

Bo 
change a l s o  induces t h e  basis-change f o r  t h e  subproblem, S P [ B ~ : ~ = ~ ' ] .  Let B1 

denote t h e  induced b a s i s  f o r  the  subproblem: t h e  subproblem has been updated 

1 
v i t h  respec t  t o  t h e  B and we have SP[B :y=y 1. 1 1 

1 
I f  F [ I : y y  ] is unbounded, we need an extra-operat ion f o r  the  purpose 

Bo 
of ob ta in ing  such a b a s i s  that,among the  corresponding bas ic  v a r i a b l e s ,  t h e r e  

is a t  l e a s t  one b a s i c  v a r i a b l e ,  t h e  ob jec t ive  c o e f f i c i e n t  of which is exac t ly  

pos i t ive .  

The lktm-operation i n  the Unbacnded Case. Let xs denote such a v a r i a b l e  

t h a t  its simplex c r i t e r i o n  is nega t ive  and a l l  t h e  components of its updated 

column a r e  non-positive. 

I f  xw is not a component of t h e  % ,.,that is, not  a s l a c k  v a r i a b l e ,  then 
0 

we perform a p ivo t ing  operat ion f o r  br inging xw i n t o  t h e  b a s i s  ins tead  of a 



basic  v a r i a b l e  which is a component of the . t h a t  is, a s lack  v a r i a b l e  

in the  bas i s .  
X ~ o r  

I f  xm i t s e l f  IE a component of the  %or. there  is a t  l e a s t  one b a s i c  

var iab le  in t h e  presen t  b a s i s  , t h e  ob jec t ive  c o e f f i c i e n t  of which is p o s i t i v e .  

Because t h e  corresponding o b j e c t i v e  value tends t o  i n f i n i t y  by l e t t i n g  t h e  xm 

increase.  I n  t h i s  case  we do n o t  need t h e  extra-operat ion f o r  our  purpose. 

1 Thus, in t h e  unbounded case  we a l s o  have had a new b a s i s  f o r  FB r1:y-y 1. 
0 

Let B1 denote t h e  induced b a s i s  f o r  t h e  subproblem a s  w e l l  a s  in t h e  bounded 

1 ase. We have t h e  updated subproblem, SP[B :y-y 1, a s  well.  The p o s s i b i l i t y  
1 

of performing t h e  extra-operat ion IE insured by t h e  following lemma. 

1 LEMMA 1. When F [I:- ] is unbounded, v e  can claim t h e  fol lowing f a c t s :  
Bo 

( i )  There has  to  be at l e a s t  one v a r i a b l e  chosen among the  5 r-variables  
0 

in the presen t  b a s i s ,  o r  e l s e  t h e  xm i t s e l f  is a component of t h e  x 
BoI" 

( i i )  Unless t h e  xm is a component of t h e  xg r-variables ,  t h e r e  has t o  
0 

be a t  l e a s t  one non-zero component in the  updated column of t h e  xm. The non- 

zero component appears  on some of t h e  rows of t h e  b a s i c  xg r-variables  i n  t h e  
0 

present  b a s i s .  

1 Proof. (1) From (2.7) ,F [I:y=y ] can be equiva len t ly  w r i t t e n  as 

t 
Bo 

puQ Xr + 5 (2.8) 

s.t. I xB + ;iNr(Bo) 5 - 0 (2.9) 
0 

X B r 9 %  2 O .  

bs ve have %(Bo) : 0,  t h e  problem does n o t  show t h e  unboundedness i f  a l l  of 

the b a s i c  v a r i a b l e s  and x- a r e  t h e  components of t h e  xN-variables. 

( i i )  I f  t h e  xm ie a component of t h e  %-variables, a t  l e a s t  one of the  

bas ic  % ,.-variables i n  t h e  b a s i s  has t o  become p o s i t i v e  by l e t t i n g  t h e  xm 
0 

increase,  because of % ( B ~ )  2 0. This means t h a t  t h e  claim (11) is t r u e .  1 1 



Concerning t h e  new b a s i s ,  B1, f o r  the  subproblem, which is induced from 

solving t h e  d i rec t ion- f ind ing  problem, we have the  following r e s u l t :  

1 LEMMA 2. Let 0 denote t h e  b a s i s  matr ix f o r  FB 1I:y-y 1,  which is asso- 
0 

c i a t e d  with t h e  B1-basis f o r  t h e  subproblem, and l e t  8 and p denote the  
0 0 

corresponding b a s i c  v a r i a b l e s  and the  corresponding ob jec t ive  c o e f f i c i e n t s  

reepec t ive ly .  Then, the re  is  a t  least one p o s i t i v e  ccopponent, p >O, among the  p 

1 
0 j 0' 

&of. In t h e  unbounded case  of P 11:- 1 ,  i t  is c l e a r  owing t o  t h e  
Bo 

extra-operat ion above. So, we shall prove it in t h e  bounded case.  Let 8 ( E )  > 
0 

0 be  t h e  va lues  of t h e  optimal b a s i c  v a r i a b l e s  f o r  t h e  perturbed problem of 

1 
PB 1I:y-y ] f o r  s u f f i c i e n t  small E > 0 ,  and l i m  x ~ ( E )  = 0. Suppose t h a t  p < 0.  

0 E + O  
0 = 

A case pg - 0 causes dua l  i n f e a s i b i l i t y ,  because t h e r e  is  a t  l e a s t  one p o s i t i v e  

component among t h e  pN(Bo): This  is impossible. I f  p + 0 ,  we have p x ( E )  < 0.  
0 0 0 

This  c o n t r a d i c t s  t h e  op t imal i ty  of x ( E ) ,  because a n u l l  s o l u t i o n  becomes an 
0 

f e a s i b l e  one t o  t h e  perturbed problem. ( I 
Ezpzwssing ths BI by the 6 and tho Bo. Let f(Bo) denote an enlarged matr ix 

of t h e  bas i s ,B , for  LPIBo:y], i .e . ,  under t h e  assumptions f o r  s i m p l i c i t y ,  we 

have 

where a denotes t h e  componnents o u t s i d e  the  r-set of LP[B :y] in t h e  same 

columns a s  0. Notice t h a t  i f  some v a r i a b l e s  i n  the  0 a r e  chosen from t h e  73 r p  
t h e  corresponding components of a a r e  n u l l .  Then, we have 

B i l  - i+(B0) Bil , (2.11) 

which is c a l l e d  Dantzig 's  Fac tor iza t ion  i n  Marsten and Shepardson [16]. 



Likewise. 

; ( so )  - E ( B ~ )  F-'(B~) (2.12) 
B1 B1 

h e r e  c (Bo) denote  t h e  o b j e c t i v e  c o e f f i c i e n t s  of t h e  b a s i c  v a r i a b l e s  cor- 
B, 
A 1 responding t o  t h e  b a s i s  F ( B ~ )  in SPIBo:y=y 1.  From (2.10) we have 

where c (B ) deno te  t h e  component of 
0 0 

<(Bo) corresponding t o  t h e  0. 

1 
Let  r deno te  t h e  d u a l  v a r i a b l e s  a s s o c i a t e d  wi th  t h e  B1 f o r  S P I B o : m  1. 

B1 
Then, from (2.111, (2.12) and (2.13) we have 

which was a l s o  shown in [16] .  I n  a d d i t i o n ,  

$(B1) a r1 (B0)  $(B0) (2.15) 

Thus, we have ob ta ined  t h e  updated LP[B :y], a s  w e l l  as t h e  subproblem. 1 
1 

SPIB1:yy I .  

THE SUBSEQUENT COORDINATION PROBLEMS 

Now, we would l ike t o  d e f i n e  t h e  subsequent c o o r d i n a t i o n  problem f o r  t h e  

1 
updated subproblem SPIB1:yly 1 .  As w e l l  a s  t h e  f i r s t  problem, t h e  purpose is 

t o  determine an op t ima l  s e t t i n g  of t h e  y-var iables ,  g iven  t h a t  t h e  new b a s i s .  

B1, f o r  t h e  subproblem is f ixed .  

F i r s t  of a l l ,  we s h a l l  d e f i n e  a new r e l a t i o n s h i p  between t h e  y -va r i ab les  

and t h e  A-parameters f o r  t h e  purpose of reducing t h e  amount of work r e q u i r e d  f o r  

updat ing t h e  l i n k i n g  m a t r i c e s  wi th  r e s p e c t  t o  B 
1' - 

1 The 0-transfornation. Let  u s  d e f i n e  t h e  i n t e r m e d i a t e  PTM, T *, as 

and we cons ide r  t h e  fo l lowing  new r e l a t i o n s h i p  : 



The linking matrices in LP [B :y=yL + TL*X] are obtained as follows: 
X 1 

by (2.4) and (2.10) , 

1 - 
0 

, (2.20) 

and by (2.3) and (2.13) 

t 
I (pV,puH 6) - (0,GB(B0)) S(Bl) TI* 

- (IY,.IY~H~B) - (o,;~(B~) , by(2.181, 
t - 

(pV,pUH B - cB(Bo)) . (2.21) 

t - We should pay attention to the component of p H B-c (B ) . Then, we:note that 
u B o  

these components associated with the slack variables fn the basis.8, are not 

1 1  
changed from the corresponding components fn LP [B :yly + T XI, because the X 0 

corresponding components of c (B ) are null. Furthermore, the other components 
B 0 

associated vith the basic variables chosen from the % are simply replaced by 
1 the corresponding components of - p (B ) in FB [I:y=y 1. 

B 0 
0 

In conclusion, the linking part can be easily updated with the new relation- 

ship between the y and the X as (2.18). (2.19) and (2.211, only by using the 

basic matrix, B, for the direction-finding problem. We call simply those trans- 

forming operations the B-transformation hereafter. 



The Second Coordination ProbZem. Now, we can def ine  the coordinat ion problem 

1 1  
derived from LP [B : y y  + T * X I  a s  wel l  a s  before. 

X 1 

1 -1 
Simi la r ly ,  DCP [I:y + T~*X]  denotes i ts dual  f o m .  

B. 
I 

THEOREM 3. Under t h e  non-degeneracy assumption i n  Theorem 1 ( i i i )  , 

LP[I:y] is s t r i c t l y  improved a f t e r  solving t h e  CPB [l:g-gl+ Tl*X]. 
1 

Proof. It is s u f f i c i e n t  f o r  us t o  show t h a t  t h e  ob jec t ive  func t ion  

1 
f o r  13 [I:- + T'*A] has  a p o s i t i v e  value. From Lemma 2 and (2.21), t h e r e  

B, 
A 1 1  

is a t  l e a s t  one negat ive d b j e c t i v e  c o e f f i c i e n t  i n  CP [I :yly + T *A]. And 
B. 
I 

t h a t ,  t h e  corresponding component of the  X belongs t o  t h e  r-set.  This shovs 

1 1  t h a t  s t r i c t  improvement in CPB [ I : y y  + T * X I  i s  insured under t h e  non- 

degeneracy assumption. I l1 
1 1  

As w e l l  a s  i n  t h e  f i r s t  coordinat ion problem, ve so lve  DCP [I:y=y +T *X] 

2 2 B1 
t o  ob ta in  t h e  new y-values, y , and the  nev PTM, T , and then perform t h e  

op t imal i ty  t e s t .  This completes one major i t e r a t i o n  of t h e  algorithm. 

Notice t h a t  t h e  bases f o r  the  subproblem, B1, B2. ..., a r e  genera l ly  not  

dual f e a s i b l e  in t h e  subproblem except B a t  t h e  i n i t i a l i z a t i o n  s tage .  The 

p o s s i b i l i t y  of performing t h e  e x t r a  operat ion in F [l:y=yk+'] is  insured 
Bk 

only under t h e  op t imal i ty  of t h e  subproblem by Lemma 1. Accordingly, 

we may, on r a r e  occasions,  f a i l  t o  f ind  the  nega t ive  p i v o t a l  element i n  

the unbounded column. Only when such a case happens, we need re-optimize t h e  

k+l subproblem f o r  y - y . 



THE ALGORITHM 

Our algori thm may nov be sunmrarized a s  fo l lovs :  

0 
Step 0. Choose y and s e t  To-. I a s  t h e  s t a r t i n g  PRI, and k = 0. 

k Step 1. Solve t h e  subproblem, SP[I:y-y 1 ,  t o  ob ta in  t h e  optimal b a s i s  %. 
k k  Step 2. Solve t h e  f i r s t  coordinat ion problem DCP [I:y-y + T X] t o  ob ta in  the  

Bk 
optimal s e t t i n g  of y ,  yH1, and t h e  nev PTM, Tk+l= Tk(g-l), vhere D 

k is t h e  opt imal  b a s i s  of DCP and t h e  corresponding s o l u t i o n ,  p . 
Step 3. I d e n t i f y  the  r-set .  

%' 

k t  Step 4. If pN(Bk) I pU 6 G r ( ~ k )  - <(B,) 

optimal f o r  LP[I:y]. 

k+l Step 5. I f  t h e  r-set is not  void, solve the  d i rec t ion- f ind ing  problem F [I:y 1 .  
Bk 

I f  F 1 0 : y ~ + ~ ]  is bounded, then l e t  t h e  induced b a s i s  f o r  t h e  subproblem 
Bk .. 

be BHl, and then go t o  Step 7. I f  it is unbounded, then go t o  Step 6 

f o r  t h e  extra-operation. 

I f  t h e  r-set  is void, then s e t  k - k+l, and go So Step 1 by f i x i n g  y = 

Step 6. Check t h e  ex i s tence  of a negat ive element in t h e  unbounded column. 

k+l  I f  t h e r e  is not ,  then s e t  k - k+l, and go t o  Step 1 by f i x i n g  y = y . 
Otherwise, perform t h e  ex t ra -opera t ion  f o r  F [l:yk+'] t o  ob ta in  the  

Bk 
b a s i s ,  B ,  and l e t  Bk+l be t h e  induced b a s i s  f o r  t h e  subproblem. 

Step 7. Perform t h e  B-traneformation f o r  t h e  matr ices  and t h e  RBS vec tor  in 

k k  DCP [D:- + T X I  t o  ob ta in  t h e  intermediate  PTM, Tk+'*, and the  

second coordinat ion problem DCP [l:y-yk+l+ Tkfl*X]. 
%+1 

Step 8. Solve DCP [l:y=yk+'+ Tk+'*X] t o  ob ta in  t h e  nev y-values, yk+2, and 

%+I k+2 t h e  new PTM, T . Set  k = k+l and go t o  Step 3. 



Finite Convergence. The f i n i t ene s s . o f  t he  algorithm is  insured by the  follow- 

ing theorem. 

TKEOREM 4 .  The proposed algorithm terminates  i n  a f i n i t e  number of the  

major i t e r a t i o n s  under t he  non-degeneracy assumption. 

Proof. It ie seen by Theorem 3 t ha t  the  problem LP[I:y] is s t r i c t l y  

improved through t he  coordinat ion of the  y-values and t he  subsequent basis-  

change under the  non-degeneracy assumption. The y-values a r e  opt imally s e t  

with respec t  t o  t he  given bas i s , \ ,  i n  the  coordination problem. This  implies  

a f i n i t e  terminat ion of t he  algorithm, because t he r e  a r e  only a f i n i t e  number 

k of poss ib le  bases \ 's f o r  t he  subproblem in a course of s e l ec t i ng  y in the  

algorithm. ( I 
Implementation. I n  order  t o  implement t he  algorithm f o r  t he  dynamic l i n e a r  

programs, we have t o  solve K subproblems separa te ly ,  and ve  need t o  br ing  out  

K permutation matr ices l i k e  H from the  coordinat ion problem, which a r e  used 

f o r  the  0-transformation of K blocks. The dimension of t he  dual  coordination 
K 

problem t o  be solved a t  every cycle becomes n x ( E mi + n  ) ,  which shows 
y 1-1 Y 

t h a t  the l i n e a r  program has extremely many columns a s  compared t o  t he  number 

of r m .  See [3] f o r  the  de ta i led  procedure t o  implement the  algorithm. 



3. Computational Experience 

MULPS. An experimental code, named MULPS (Multi-period Linear Programming 

System), f o r  the veakly coupled l i n e a r  programs was v r i t t e n  i n  FORTRAN using 

the SEXOP[15] f o r  HITAC 8250 Computer. The computer has 160 KB main s torage  

and d i s c  s torage  devices. Its operat ing system does no t  have v i r t u a l  memory. 

The SEXOP is used f o r  so lv ing  a l l  l i n e a r  programs i n  the  Mm9S. A version of 

t he  SEXOP f o r  t he  HITAC 8250[5] rune by overlay between the main s torage  and 

the d i s c  s torage.  The MULPS can solve dynamic l i n e a r  programs having up t o  30 

l ink ing  va r i ab l e s  and 6 periods,  each having up t o  30 rows and 50 columns. 

The Au.po8e of tha Rzpemhmts. The present  experiment primari ly focuses on 

the number of cycles  required f o r  op t imal i ty  by the algorithm, and a l s o  ve  

observe t he  degrees of opt imali ty throughout the  whole coordination process. 

The computing time ia secondari ly observed, because the  number of cycles  v i l l  

have a grea t  inf luence on the  computing time, and the MULPS has not  been designed 

and coded with the  i n t en t i on  of inves t iga t ing  s t r i c t l y  the computing time. 

For the  purpose of comparing the algorithm with t he  d i r e c t  simplex approach, 

we t en t a t i ve ly  convert the MULPS t o  a l a rge  computer, FACOM M-160S(comparable t o  

I B M  370-148) having 768 main storage and v i r t u a l  memory. We use the  SEXOP fo r  

the  d i r e c t  simplex method. 

The Test Probtem. Our t e s t  problems vere  mainly derived from ( i )  a version of 

Gilmore and Gomory's model of cu t t i ng  s tock  problems[9], ( i i )  Manne's model of 

multi-period economic planning[7] ,  and ( i i i )  f i c t i t i o u s  r e f i ne ry  production 

planning models. These problems a r e  l i s t e d  i n  Table 1. 

Generally speaking, in a case of multi-period models i t  is r e l a t i v e l y  

easy t o  es t imate  the  "good" initial values f o r  the  l i nk ing  var iab les ,  so  t ha t  

these make e a s i l y  the  problem feas ib le .  Hovever, in the present  experiment, 

the  i n i t i a l  values a r e  s e t  a t  zero except f o r  R 1 B .  For R l B ,  t h e  optimal values 

of y f o r  R1.A a r e  used. 



The Results. The number of cycles  required f o r  op t imal i ty  and the CPU comput- 

ing t ime a r e  summarized i n  Table 2.  Table 3 i l l u s t r a t e s  t h e  degree of op t imal i ty  

a t  every cycle. In  Table 4 t h e  CPU computing time up t o  every cyc le  throughout 

the opt imizat ion is described in d e t a i l  f o r  Problem MAl. I n  Figure 1 t h e  t o t a l  

CPU computing time and t h a t  per  cycle  a r e  p l o t t e d  f o r  t h e  corresponding number of 

per iods f o r  the  s i x  problems G3A - G6B. Notice t h a t  those problems have sub- 

problems of t h e  same dimension, bu t  a d i f f e r e n t  number of per iods.  

I n  Table 5 we compare both t h e  CPU computing time and the  amount of s to rage  

required in the  system with those by t h e  d i r e c t  simplex method(SEX0P) f o r  MAl. 

l'he ConcZusia. Prom Table 2 we note t h a t  the '  number of cyc les  required f o r  

op t imal i ty  is almost equa l  t o ,  o r  l e s s  than t h e  number of periods. For the  

purpose of comparing it with t h a t  by the  algorithms of column-generation scheme, 

we s h a l l  r e f e r  t o  t h e  e a r l i e r  r e s u l t s  of Glassey's a lgori thm [ l o ]  and of Ro 

and Manne's one [14]. 

I n  Glassey [ l o ]  t h e  computational r e s u l t  f o r  almost the  same model a s  MAL 

derived from [7] was presented. The number of cyc les  was reported t o  be 31, 

which s h w s  t o  be  f i v e  times l a r g e r  than t h a t  f o r  W. In  Ho and Manne [14] t h e  

two t e s t  problems coded SCSOA and SC50B have 6 periods and the  dimensions a r e  

r a t h e r  smal le r  than R1 and R2 among our problems. The number of cyc les  was 

reported t o  be between 25 and 35, vhcih s h w s  t o  be s i x  o r  e i g h t  times l a r g e r  

than ours .  However, i t  is reported in the  recen t  comparative s tudy of  t h e i r  

method, Ho and Loute [13], t h a t  the  number of cyc les  is g r e a t l y  reduced. We 

could n o t  t r a c e  the  same problems in the  presen t  experiment. 

From Table 3 we note  t h a t  the process of convergence is f a i r l y  f i n e  and 

the "long t a i l "  of convergence scarce ly  occurs. The degree of op t imal i ty  



a t t a i n s  a very high p o s i t i o n  a t  a r e l a t i v e l y  e a r l y  coordinat ion cycle .  The 

degree a t  t h e  f i r s t  coordinat ion is beyond 70% i n  almost all cases  such t h a t  

the initial values f o r  t h e  y-variables make t h e  problem f e a s i b l e  a t  t h e  i n i t i a l  

s tage.  This  f e a t u r e  s e e m  t o  be  s i g n i f i c a n t  in a p r a c t i c a l  use,  and a near- 

optimal s t r a t e g y  may work e f f e c t i v e l y .  

From Table 4 we note t h a t  t h e  CPU computing time per  cyc le  tends t o  

decrease s l i g h t l y .  A l l  subproblems a r e  optimized before  so lv ing  the  f i r s t  coor- 

d ina t ion  problem. Therefore, much more time is  consumed a t  t h e  f i r s t  cycle. 

Kxcept some s p e c i a l  occasions,  so lv ing  the  subproblem a r e  skipped and the  

direct ion-f inding prob lem a r e  solved only f o r  the  non-optimal blocks. We have 

obsermd s o  f a r  t h a t  t h e  number of non-optimal blocka gradual ly decreases 

according a s  t h e  coordinat ion proceeds. 

Table 5 shovs t h a t  the  MULPS is  four  times f a s t e r  than the  d i r e c t  method 

concerning t h e  computing t i m e ,  and requi res  only a h a l f  of memory f o r  the  d i r e c t  

simplex method in the  case of M(U. 
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Problem Period -- 
Gilmore-Gomory 

G3A 3 

G3B 3 

G4A 4 

G5A 5 

G6A 6 

G6B 6 

TABLE 1 

Dimensions of Test Problems 

Ent i re  Problem 

Rova Col.'a* %Density %** - 

Subproblem 

Rovs Col.'s %Density -- 

m e ' s  Model 

MAl 6 116 266 1.8 26 19-20 37-43 9.7-11.0 

Refinery Prod. 

RlA 6 60 186 2.7 30 10 26 20.0 

RZB 6 Only the  l ink ing  matrix is d i f f e r en t  from R l A  above. 

R2A 6 90 198 2.5 30 15 28 15.0 

* Includea s lack  var iab lea .  

** L.V. denotes the  number of l ink ing  variables .  



TABLE 2 

Number of Cycles and CPU Computing Time 

Problem Periods Number of Cycles CPU Computing Time -- 
min. sec. 

G3A 3 4 (o)* 5 40 

* A parenthesized figure denotes the number of times returned to Step 1 in 

Step 6. In Step 1 the subproblem is reopthized. 

TABLE 3 

Degree of Optimality and Number of Cycles 

N d e r  of Coordination Cycle 

Problem 0 1 2 3 4 5 6 7 8 

G3A 2 94.7 96.2 98.0 m.2 
G3B 2 0 18.5 71.5 71.5 E Z  

C4A 2 89.6 93.1 97.3 97.5 E Z  
G5A 2 87.7 88.6 100- 100- - 100% 

G6A 2 89.7 95.5 98.6 99.0 99.5 99.5 99.8 E X  

G6B 2 76.6 87.6 96.6 97.3 99.3 E Z  

M A l  * - 0 32.6 71.9 87.2 96.8 X.2 

glA * * * - 0 E Z  
ElB * - 0 97.1 -% 
R2A * * - 0 69.2 84.0 =I 

Note: An asterisk denotes that a feasible solutiol is not found yet. 2 denotes 
feasibility attained for the first time. 100 denotes a near 100. 



TABLE 4 

CPU Computing Time up t o  Every Cycle f o r  MA1 

Up t o  Optimization Number 'of Cycle 

of S u b p r o b . ' ~  1 2 3 4 5 6 

min. sec .  
Computing 

Time 2 37 4 49 8 30 11 27 1 4  17 17 07 20 00 

Per  Cycle - 4 49 3 41 2 57 2 50 2 50 2 53 

TABLE 5 

Conzparison of  MUUS with Direct Simplex f i t h o d  

CODE MULPS SEXOP SEXOP /MULPS 

PROBLXM CYCLES TIME ITER- TPIE RATIO I N  

No. Pe r iods  S i z e  ATIONS TPIE 

M4IN 
STORAGE USED 

1 )  The t imes repor ted  are in CPU seconds on a FACOM M-160 (comparable t o  

IBM 370/148). 

i i )  The FACOM M-160 h a s  768 KB real memory and 16 MB v i r t u a l  memory, which is 

under OS IV/X8 (comparable t o  IBM OS/VSZ ). The FORTRAN IV HE compiler 

with OPTIMIZE(2) is used throughout (comparable t o  IBM FORTX compiler v i t h  

OPT = 2) .  



r: Per Cycle / 

Per Cycle 
min. 

3 1 5 6 7  

Number of Periods 

P ig .1  CPU Computing Time and Number of 

Periods f o r  Problems G3A-G6B. 



ASPECTS OF BASIS FACTORIZATION FOR BLOCK-ANGULAR 
SYSTEMS WITH COUPLING ROWS 

Michael Bastian 

Rheinisch 4estfaIische Technische Hochschule 
Aachen 

In the class of decomposition and factorization algorithms characterized by Winkler [9] , 
certain subinverses have to be updated by elementary column- and row-matrices. It i s  
shown how to keep a Forrest-Tomlin representation of these subinvenes in spite of the 
row transformations. 

For the case of staircase systems - viewed as nested blockangular systems - problems of 
data handling are addressed. 



1. INTRODUCTION 

Many algor i thms have been proposed over the years t o  take advantage 

o f  not iceab le  block s t ruc tures  i n  the c o e f f i c i e n t  matrices of L inear 

Programing problems. We are concerned here w i t h  riiodif i ca t i ons  of 

the  Simplex Method which are general ly  based on a f a c t o r i z a t i o n  o f  

the basis inverse t h a t  preserves the block structure.  

The general judgement of whether special LP-algorithms are useful  

o r  not  has changed dur ing the past  25 years several times. 

I n  1955. DANTZIG [ 3 I wrote: 

'Now the mzin obstacle taxmi the f i l l  application of stundard 

tinear programing techniques to dynamic systems i s  the magnitude 

of the m a t r i x  for even the simplest situation. For eccmnple, a tri- 

vial IS-activity-7item stat ic  model, wou M become a l8Odctivi ty  

by 84i tem system, which i s  considered a large problem for applica- 

t ia of the standard simplex method.. I t  i s  clear that dymn& 

models must be treated with special toots if any progress i s  to be 

made tomxi solutions of these systems'. 



With every next  generation of computers and improvements o f  general 

LP-systems people tended t o  disregard b l  ock-structures. On the 

o ther  hand, t he  s i ze  of the  problems t h a t  had t o  be solved also 

increased enormous1 y, and special  methods were reconsidered. 

Right now, i t  seems t o  me t h a t  we a re  i n  a per iod where a l o t  o f  

a t t e n t i o n  i s  paid t o  the e f f i c i e n t  so lu t i on  of b lock-structured 

Linear Programs, one of the  main reasons probably beinp the development 

of r e a l l y  huge mu1 t i - pe r iod  mult i-area energy models a t  many places 

i n  the world. 

But there a re  o ther  reasons t o  apply special  a lgor i thms also t o  

block-structured problems o f  medium size: 

- I n  many s i t u a t i o n s  one knows i n  advance t h a t  f o r  c e r t a i n  compu- 

t a t i o n s  on l y  a small number o f  ' p a r t s '  o f  the  fac to r i zed  inverse 

as wel l  as of the o r i g i n a l  data i s  used. 

By an e f f i c i e n t  b u f f e r i n g  system one might be able t o  have most 

o f  the  re levant  data i n  core dur ing these computations. 

- I n  the near f u t u r e  i t  may become q u i t e  standard t o  use programing 

languages t h a t  a1 low f o r  t he  implementation of paral  l e l  a lgor i thms. 

'There are  more poss ib i  1 i t i e s  t o  make use o f  paral  l e l  computations 

i f  block-structures a re  maintained. 

I f  t h a t  i s  so, why d o n ' t  people use f a c t o r i z a t i o n  methods f o r  so l v ing  

block-structured models today? The main reason, I think,  i s  t h a t  so 

f a r  most special  LP-algorithms were developed i n  an academic environ- 

ment, where implementations - i f  there  were any - served as a stand- 

alone t e s t  veh ic le  f o r  the  f a c t o r i z a t i o n a l  and decornpositional p a r t  

o f  the  problem. What should be done i s  t o  make sure t h a t  the h i g h l y  

e f f i c i e n t  procedures developed f o r  general 1 arge scale LP remain 

p a r t  o f  the system whereever t h i s  i s  possible: Fac to r i za t i on  f o r  

s t ruc tured LP should be an opt ion  no t  a separate system. To be more 

spec i f i c :  A system should have several options f o r  d i f f e r e n t  block- 

s t ruc tures  which share as many rout ines as poss ib le  and ex tens ive ly  

use standard LP-procedures . 



Af ter  g i v i n g  a b r i e f  summary on block-structures and f a c t o r i z a t i o n  

methods, I s h a l l  show how subinverses o f  a bas is - fac tor iza t ion  may 

be updated by the Forrest-Tomlin Method, even though some o f  the  

updating transformations are elementary row matr ices.  

This s i t u a t i o n  occurs f o r  example i n  the  c lass o f  a lgor i thms de- 

r i v a b l e  from Carlos Wink ler 's  u n i f i e d  theory o f  p a r t i t i o n i n g  and 

decomposition (WINKLE!? [91) .  

One of the b lock-s t ruc tures  which are most of ten encountered i n  

p r a c t i c a l  app l i ca t i ons  and hard t o  solve are s ta i rcase-s t ruc tures .  

Problems of data hand1 i n g  when us ing Wink ler 's  nested f a c t o r i z a t i o n  

approach f o r  so l v i ng  s ta i r case  s t ruc tured LP's are addressed. 

2. Block-Structured Systems 

L e t  A be an m x n-matrix w i t h  r e a l  c o e f f i c i e n t s ,  

M t he  s e t  of nonempty subsets of {1,2 ,..., m), 

N the  s e t  o f  nonempty subsets o f  {1,2,. . . ,n) , 
l< k<m and K : = {1,2, ..., k) 

Def . : 
A (row-oriented) b lock-s t ruc ture  o f  A i s  a se t  BS(A):=[(ai , y i )  l i E Kl 
o f  p a i r s  ( a i  , y i )  E M x N such t h a t  

(1) {a i  l i E k) i s  a p a r t i t i o n  of {l,..,m) ; 

( 2 )  every nonzero element Ah. * 0 of A i s  contained i n  one o f  t he  
J 

sub-matri ces 

biSyi (i E K). 

The matr ices ki ,yi ( i  E K) are c a l l e d  blocks. 

A b lock  o f  a b locks t ruc tured ma t r i x  i s  thus given by a s e t  a of 
rows and a t  l e a s t  those columns t h a t  have a nonzero element i n  

any p o s i t i v e  number of rows i n  a. 



The factorization methods under consideration keep representations 

of the basis-inverses which retain (to a large extent) the block- 

structure of the corresponding bases. The idea is that the FTRAN- 

and BTRAN-operations of the Simplex Method are simpler to perform 

if nonzeroes only appear in certain blocks, the position of which 

is apriori known. 

3. Basisfactorization for Blocktriangular Matrices 

Def. : - 
A real m x n-matrix A is called blocktriangular, if it has the 

following block-structure: 

BS(A) :={(ai syi ) E M x N I i E K, yi $ U. Ti v l<i<k) . 
j>i 

The classof blocktriangular matrices is quite large and contains 

the majority of block-structured coefficient matrices of 'real world' 

Linear Programs. Well-known substructures are: 

a) the blockangular structure (with coupling rows and coupling 
variables) : 

BS:=((aj,~i)li E K, y,=(l, ..., n), yi I yk V i + k, 
yinyj = yk V 1 + i + j + 1) ; 

b) the staircase structure: 

BS:=((ai ,Ti) l i E K, yinyi+l + 0 V i + k, yinyj = 0 V li-j l >I) 



I t  i s t  now twenty-f ive years ago t h a t  George Dantzig [ 3 I 
suggested t o  modify the simplex a lgor i thm when app l ied  t o  problems 

w i t h  b lock- t r iangu lar  coe f f i c i en t  matrices. The main idea o f  t h a t  

e a r l y  paper, i .e. the fac to r i za t i on  o f  b lock- t r iangu lar  bases i n t o  

a  b lock t r i angu la r  and a  very sparse fac tor ,  remains the same i n  

most o f  today's approaches. 

L e t  be a  b lock t r i angu la r  basis. By column exchanges i t  i s  possible 

t o  y i e l d  a  mat r ix  B  from w i t h  the fo l l ow ing  propert ies:  

a)  B  i s  b lock t r i angu la r  up t o  a  few 'sp ikes '  

b )  B  can be fac to r i zed  i n t o  two i n v e r t i b l e  matrices 

F  and L  such t h a t  0 - I  = L-l rl, 
where i s  b lock t r i angu la r  and L'l i s  very sparse. 

c )  The submatrices on the main diagonal o f  B  are  square. 

This s t ruc tu re  g r e a t l y  s i m p l i f i e s  the operations BTRAN and 

FTRAN o f  the  simplex method. 

The mu1 t i p l i c a t i o n  by F-1 i s  simple because o f  the s t ruc tu re  

and the m u l t i p l i c a t i o n  by L-1 i s  f a s t  because o f  the  small 

number o f  nonzeroes. 



'The main challenge i s  t o  provide an e f f i c i e n t  method f o r  maintain ing 

t h i s  s t ruc tu re  of the  inverse dur ing the i t e r a t i o n s  of the  simplex 

method. 

KALLIO and PORTEUS [ 6 I published a so lu t i on  t o  t h i s  

problem i n  1977. A d i f f e r e n t  approach was taken by PEROLD and 

DANTZIG [ 4 1. 

I n  the case of p a r t i c u l a r  b lock t r iangu lar  s t ruc tures  t h e  mat r ix  F-1 

i s  f u r t h e r  f ac to r i zed .  We sha l l  consider here Winkler 's  f a c t o r i z a t i o n  

for  blockangular s t ruc tures  w i t h  coup1 i n g  rows. 

4. Blockangular Systems With Coup1 ing  Rows 

Def. : - 
A rea l  m x n-matrix A i s  ca l l ed  blockangular (w i th  coupl ing rows), 

i f  i t  has the fo l l ow ing  block-structure:  

BS(A):=l(ai,yi) E M  x N l i  E K, y,=(l,.., n) ,y i  n y j  = B V  1 $ i * j * 11 

I n  t h i s  paragraph we sha l l  consider c o e f f i c i e n t  matr ices of the  

s t ruc tu re  j u s t  defined. 

4.1 Wink ler 's  Fac to r i za t i on  

L e t  if be a basis o f  A and 13 c11,2,.:,n), IS[ = m, i t s  se t  o f  column 

indices. 

It fo l l ows  from being i n v e r t i b l e  t h a t  there e x i s t s  a p a r t i t i o n  

@i' i E K of 13 such t h a t  

( a ) b i c y i  and l I 3 i l = l a i I  ( i  = 1,2,.. ,k) 

(b)EailDi i s i n v e r t i b l e  (i = 2,..,k) 



A rearrangement o f  the  columns o f  8 ( t o  the order B,,..,Bk) 

y ie lds :  

where the Bi are square and i n v e r t i b l e  and the f i r s t  I@, l columns 

o f  B are very sparse. 

- 1 
Le t  C i  : = -Ai - B i  fo r  i = 2,3,..,k. Then there  e x i s t s  a  

decomposition o f  B i n t o  three i n v e r t i b l e  factors BN, W and L  such 

t h a t  0 - I  = L-l W-l B i l  has the form: 

Here 
. v2 

v := [ ;, 1 
i s  very sparse and [BW] = B i l  iOB, . v 

Not ice t h a t  i n  order t o  maintain B - ~  i t  i s  s u f f i c i e n t  t o  s to re  

( i n  add i t i on  t o  the coe f f i c i en t  mat r ix  A) a  sparse mat r ix  V as we l l  
-1 -1 -1 as k 'subinverses' B, , B2 , . ,Bk . 



The s i m p l i f i c a t i o n s  dur ing FTRAN and BTRAN are tremendous, 

because on ly  very few o f  the subinverses are needed. 

A s i m i l a r  statement i s  t r u e  f o r  the  ac tua l i za t i on  o f  the  inverse- 

representat ion dur ing the i t e r a t i o n s  o f  the  simplex method (META). 

There are three d i f f e r e n t  update s i t ua t i ons  depending on the  p i v o t  

row p and the e n t r i e s  o f  the  ma t r i x  V. 

Disregarding the changes performed on elements o f  the  V-matr ix 

( d e t a i l s  are explained i n  WINKLER [ 9 ]  o r  BASTIAN [ 1 1 )  an update 

consists o f :  

case 1: adding a column e ta  t o  the f i l e  o f  ql. 
case 2: adding a column e ta  t o  one of the  su6inverses By1 (1 C {2,. . ,k) ) . 
case 3: adding a column e ta  t o  one o f  the  subinverses (i C {2,..,k)), 

adding a row e ta  - and a column e ta  (which p i v o t  i n  the same row) 
-1 t o  B, . 

There are p i v o t  se lec t i on  s t ra teg ies  t h a t  tend t o  reduce the number 

of occurrences o f  case 3 and completely avoid t h i s  s i t u a t i o n  dur ing 

the f i r s t  p a r t  o f  phase 1. 

Our explanat ion o f  t he  update cases has t a c i t l y  assumed t h a t  the  

product-form o f  the  inverse (PFI) i s  used f o r  a1 1 subinverses. The 

B T ~ ,  (i = 2,3,. . ,k), could as we1 1 be kept i n  EFI using the For res t -  

Tomlin method. I n fac t ,  t h i s  should be done i n  view o f  the  advantages 

o f  t he  EFI and our aim t o  incorporate l a t e s t  LP-technology i n t o  

special  rout ines fo r  b lock-structured problems. 

For the s i t u a t i o n  i s  more complicated, as case 3 does no t  correspond 

t o  a simple column-exchange i n  Bw. For t h i s  matr ix,  however, an updat ing 

procedure which reduces the growth o f  the  e t a - f i l e  would be extremely 

desirable,  because ( i n  con t ras t  t o  the o ther  subinverses) B;~ i s  i n -  

volved i n  each BTRAN- and i n  each FTRAN-operation. Moreover, the  

columns o f  B, a re  n o t  contained i n  the c o e f f i c i e n t  ma t r i x  A and have 

to  be computed p r i o r  t o  each reinversion.  



I n  the next  sec t ion  i t  i s  shorn t h a t  a lso Eii l  can be stored and 

maintained i n  the E l im ina t i on  Form o f  the  Inverse. The mu l t i -  

p l  i c a t i o n  by two elementary matr ices i n  update-case 3 i s  replaced 

by a modi f ied Forrest-Tom1 i n  procedure which y i e l d s  a growth of 

the  e t a - f i l e  comparable t o  the PFI ( a t  most three new eta-vectors 

have t o  be stored; one row i s  erased i n  the U- f i l e ) .  

I n  case 1, however, one enjoys a l l  bene f i t s  o f  the  c lass i ca l  

Forrest-Tomlin method which should y i e l d  considerable savings 

i n  t o t a l  computation time. 

4.2 Using the Forrest-Tomlin Method f o r  Updating B; 1 

I n  the update-s i tuat ion under considerat ion (case 3) one i s  g iven 

an m, x m,-inverse 8;' and an m,-row-vector v r 0, from which a 

nonzero component vz i s  chosen. 

Le t  EZ be obtained from the i d e n t i t i y  mat r ix  by rep lac ing i t s  

z - th  row by the vector v and def ine  

A 

L e t  8, be an i n v e r t i b l e  ma t r i x  obtained from Bw by rep lac ing 

i t s  z-th column by an m,-column d. Then there e x i s t s  an elementary 

column mat r i x  ES such t h a t  

A-l is I n  the fo l l ow ing  sections a d i f f e ren t  representat ion f o r  Bw 

der ived . 

4.2.1 Assumption 

i s  g iven by two factors U-l and L - ~  which are  stored i n  

product form 

U-1 = u 3 U p  . . . Urn, and ~'l = Ln, . Ln,-i . . . L, 



on d i f f e r e n t  f i l e s  ( t he  U - f i l e  and the L - f i l e )  i n  order  t o  

a1 low for  the  i n s e r t i o n  o f  new elementary matr ices between 

U,, and Ln,. There are no f u r t h e r  assumptions on L-1, b u t  

the existence o f  a  permutation mat r ix  P  i s  pos tu la ted such 

t h a t  P  U . i s  upper t r i angu la r .  Because o f  t h i s  

s t ruc ture ,  the  e ta  vec tor  o f  U i  may be obtained d i r e c t l y  
from the  i - t h  column o f  U.. P-1 ( i  = 1,2 ,.., m,) 

Not ice  t h a t  t he  s i t u a t i o n  d i sc r i bed  i s  f o r  example given 

r i g h t  a f t e r  an i nve rs ion  us ing  LU-decomposition. 

4.2.2 Theorem 

Le t  q1 s a t i s f y  assumption 3.2.1 and vz * 0. There e x i s t  an 

elementary column ma t r i x  T, elementary row matr ices R, and Rp, 

an e ta  column y as we l l  as a  representa t ion  

A-l - o f  the ma t r i x  Bw - ES . EZ . B,,, , such t h a t  ti1 r a t i f i e s  assumption 

3.2.1. 

The product forms of 0'' and are  e a s i l y  der ived from the re- 

presenta t ion  o f  Bil by t he  f o l  lowing mod i f i ca t i on  o f  t he  For res t -  

Tomlin method: 

(1 )  add the  e ta  vectors o f  R,, T, R, t o  the  L -F i l e  ( i n  t h a t  order) ;  

(2)  mark the  e ta  vec tor  o f  t he  U- f i le  which p i v o t s  i n  row z as 

being deleted; 

(3 )  de le te  a l l  elements of the  U-File having row index z; 

(4 )  add y t o  the  U- f i le .  



4.2.3 Out l ine  o f  the Proof 

As & and i, = L - U . Eil d i f f e r  by j u s t  one column, the same 

A 
i s  t r u e  f o r  := L ' ~  - Bw and U . E;' . 
We have: 

From P . U . P-1 being upper t r i angu la r  we conclude 

- 
Our i n t e n t i o n  i s  now t o  transform U back t o  a permuted t r i angu la r  

mat r ix  which d i f f e r s  from U j u s t  by one column and one row: 

A 

A-1 = 6 - I  L - l  i s  l a t e r  obtained from t h a t  The product form o f  Bw 

representat ion completely analogous t o  the Forrest-Tom1 i n  method. 

The ro les  o f  t he  elementary transformations R,. T and Rz may be 

described using the shape o f  P . - P ' ~  sketched above: 



R, eliminates row s o f  the f i r s t  term (up t o  the diagonal 

element) ; 

T el iminates rows 1 t o  s-1 of the second term; 

Ra el iminates row s o f  the second t e n .  

We sha l l  now determine the e ta  vectors of R,, T, Ra. 

4.2.4 The Eta Vectors o f  R, , T and Ra 

R, d i f f e r s  from the u n i t  mat r ix  j u s t  by i t s  z-th row w, which 

i s  supposed t o  have the property w . U,j = 0 v j * z. Choosing 

y i e l d s  ones on the main diagonal o f  R,. 

(The nota t ion  u;! i s  used instead o f  (u-l),, i n  t h i s  sect ion).  

The e ta  column o f  T i s  a l ready ava i l ab le  i n  the U- f i le ;  i t  i s  

the e ta  vector c t h a t  p i vo ts  i n  r o w  z: 

The transformations already app l ied  t o  u lead t o  the ma t r i x  

the  elements o f  which are e a s i l y  determined (using (1),(2),(3)) 

t o  be 



The row eta  Ij + 0 o f  Ra has t o  s a t i s f y  the - 
cond i t ion  ti . Uoj  = 0 V j + z. 

We def ine q := v . U-1 

and choose ii := q - qz . w + IZ, 

- 
As wZ = 1, we have ones on the main diagonal f o  Ra. 

4.2.5 The Representation o f  k1 = bl . t-1 

- 
Ra . i s  now a permuted upper t r i angu la r  matrix, which can be 

fac to r i zed  (as i n  the  Forrest-Tom1 i n  method) i n t o  

where G i s  obtained from U by rep lac ing the z - t h  r o w  as we1 1 as 

the z - th  column by u n i t  vectors, and Cz i s  an elementary ma t r i x  - - 
w i t h  x := Ra - U,, as i t s  z- th column. 

We have 

Iden t i f y i ng  y as the  e ta  vector o f  CI~ (obtainable from x by a 

p i v o t  on x,) t he  claims o f  theorem 3.2.2 are  proved. 

What i s  r e a l l y  stored i n  the U-File i s  yz  = l / x z  as we l l  as the 

nonzero components x i  ( i  + z )  o f  x ( c f .  FORREST-TOMLIN [51). 

It can be shown ( c f .  BASTIAN [21) t h a t  

where g,, fz and h i  ( i= l , .  ..m,) are data ava i l ab le  i n  N i n k l e r ' s  

a1 g o r i  thmic approach. 



Sumnarizing the computations necessary t o  update 41 i n  case 3 

o f  Winkler's algorithm we have 

two BTRAN-operations to compute w and q (as compared t o  

one BTRAN-operation i n  case 1, i f  the Forrest-Tom1 i n  

method i s  applied); 

two mu l t i p l i ca t i on  o f  a vector by a scalar and two 

vector addit ions to  compute ii and x. 

Update case 3 occurs i f  the sparse matr ix V has nonzero elements 

i n  the p ivo t  row p. I f  t h i s  row o f  V contains exact ly one nonzero 

element, then the whole procedure simp1 i f i e s  t o  what i s  bas ica l ly  

a standard Forrest Tomlin update: Ra i s  a u n i t  matr ix  and T i s t  not  

added to the L - f i l e  but  ra ther  used t o  modify the eta-vector o f  cil: 

A - 
6;' = (u-1 . ( ~ i 1  . T)) . (R, . L-1) 

Although the modification o f  the Forrest-Tomlin method j u s t  des- 

cr ibed was i l l u s t r a t e d  i n  the context o f  Winkler's class o f  algorithms, 

i t  may have other appl icat ions i n  s i tuat ions where an inverse i s  

frequent1 y updated by elementary column matrices and sometimes by 

elementary row matrices. 

5 .  Staircase Systems Viewed As Nested Blockangular Systems 

Any block-structured matr ix may be viewed as a permuted matr ix 

w i th  nested blockangular structure, as we know f o r  example from 

ZVIAGINA [ I01 and LOUTE [71. 

Staircase structures are a pa r t i cu l a r l y  n ice example. Let  

k = 2h - 1, h E IN ; f o r  h = 3 we have 



(The numbers i nd i ca te  the p o s i t i o n  o f  a  block i n  the o r i g i n a l  

s ta i rcase s t ruc tu re ) .  

Winkler showed t h a t  h i s  f ac to r i za t i on  a lso  extends t o  t h i s  

nested s i t ua t i on ,  where the inverse i s  g iven by k  'subinverses' 

( f o r  each i E K there  i s  one o f  dimension l a i l x l a i l )  and (k-1)/2 

V-matrices. 

A l l  data t h a t  i s  used for  a  BTRAN o r  FTRAN operat ion w i t h  the  

basis inverse i s  shown i n  the fo l l ow ing  matr ix:  

Here 
ind ica tes  a  subinverse, 
a  V-matrix and 

o r i g i n a l  data 

The fo l l ow ing  ' b ina ry  search t r e e '  i s  the  key f o r  understanding 

operations w i t h  t h i s  structure:  



With each l e a f  i we associate the inverse o f  a mat r ix  B i  whose 

columns are  drawn from block hi ,Ti o f  the o r i g i n a l  sta i rcase 

c o e f f i c i e n t  matr ix.  

Le.t i beanon-leaf-node having the two sons f and g. With i we 

associate three matrices: the  inverse o f  a mat r ix  Bwi and a 

V-matr ix V i  which may be obtained from Bi1, B j l  and o r i g i n a l  

data (as explained e a r l i e r  f o r  block-angular matr ices),  and a 

l a rge r  inverse By1 which i s  given i n  the form o f  Wink ler8s  

f a c t o r i z a t i o n  by B;! and B-l, B7 l  and V i .  Candidates f o r  columns 
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i n  B;: and V j  are o r i g i n a l  columns which have nonzeroes i n  a t  l e a s t  

one row p E a j  where j i s t  a node i n  the subtree w i t h  r o o t  i. 

Fina l l y ,  Bil = 8". 

The main advantage o f  a 'divide-and conquer' - approach l i k e  t h i s  

i s  t h a t  dur ing FTRAN and WRETA a t  most h << k o f  the  subinverses 

and V-matrices (associated w i t h  a path i n  the t ree )  are needed; 

t he  same holds f o r  the  BTRAN-operation i f  the par t ia l -b lock-  

p r i c i n g  s t ra tegy i s  used. This compares t o  an average o f  k/2  i n  

many o ther  methods. 

There are, however, two serious drawbacks : 

the data-hand1 ing, p a r t i c u l a r l y  w i t h  the V-matrices, i s  no t  

simple; 

i f  j 5 h subinverses are  involved i n  a WRETA-operation, then 

j - 1 o f  them have t o  be updated l i k e  B;' i n  case 3 d i  scussed 

e a r l i e r ;  t h i s  amounts t o  a comparatively rap id  growth o f  the  

e t a - f i  1 es . 

I sha l l  address i n  the next  sect ions some o f  the data-handling 

problems. 

5.1 S to r ing  the C o e f f i c i e n t  Ma t r i x  A 

We have K + 1 d i f f e r e n t  types o f  columns, type 1 having nonzeroes 

on l y  i n  rows p E a,, type i having nonzeroes i n  rows p E ad-1 u a i  

( i  = 2.3, ..,k), and type k + 1 having nonzeroes on l y  i n  row ak. 



The column header should contain the type o f  the column as 

well as the length o f  i t s  two parts. From tha t  information 

one can imnediately decide whether a column has nonzeroes i n  

a given set  o f  rows aj and one can read tha t  part .  I n  addit ion, 

one should store the s ta r t ing  address f o r  the f i r s t  column o f  

each type i n  order t o  have f as t  access i n  case o f  pa r t i a l  block 

pr ic ing.  

(For smaller problems i t  may be considered t o  take a l l  columns o f  a 

type i n t o  core simultaneously). 

5.2 Stor ing the V-Matrices 

As the columns t ha t  mu l t ip l y  a V-matrix i n  a BTRAN- o r  FTRAN- 

operation are expanded, there won't be any problems whether o r  

not the V-matrix may be accessed column- o r  row- wise and whether 

the ent r ies  o f  an accessed vector are sorted or  not. 

The s i tua t ion  i s  much moecomplicated during WRETA. Here, the 

fo l lowing operations may have t o  be performed: 

(a) replace a column o f  V; 

(b) determine whether a row P has a t  l eas t  one nonzero element; 

(c) update a l l  columns having a nonzero element i n  r o w  P; 

(d) get row P; 

(e) exchange two rows . 

Here (a) occurs i n  cases 1 and 3, 

(6) occurs i n  cases 2 and 3, 

(c) ,(d) and (e) occur i n  case 3 only. 

It i s  very hard t o  decide whether column- o r  row-oriented access 

i s  more frequent. But as operations t ha t  may a f f ec t  the length 

o f  a packed vector are confined t o  columns, I would suggest a 

column-oriented addressing scheme. 



The nonzero elements o f  each column should be kept sorted 

according t o  t h e i r  row indices.  This makes operations (b) ,  

(d )  and ( c )  considerably fas ter  as binary sewchcan be used. 

The on ly  disadvantage would be i n  operat ion (e)  , where several 

en t r i es  o f  a column have t o  be s h i f t e d  i f  t h a t  column has a 

nonzero element i n  exact ly  one o f  the  two rows t h a t  are ex- 

changed. 

What k ind o f  add i t i ona l  s t ruc tu re  could be introduced t o  support 

row access? 

'The s implest  one would be a b i t  vector whose e n t r i e s  correspond 

t o  the rows o f  V; b i t  i i s  set  t o  1 i f  row i may poss ib ly  con- 

t a i n  a nonzero element. Whenever a nonzero i s  encountered i n  

(a) .  ( c )  o r  (e)  t he  corresponding b i t  i s  s e t  t o  1; i t  i s . r e s e t  t o  

0. i f  no nonzeroes have been found i n  t h a t  row dur ing a(b)-operation. 

Another p o s s i b i l i t y  i s  a b i t  ma t r i x  which contains a 1 i n  pos i t i on  

( i , j )  if V i j  + 0. 

This would y i e l d  d i r e c t  access t o  the  columns re levan t  dur ing (c) .  

(d)  and (e) a t  the  cost  o f  more complicated update-operations 

(a) ,  (c) ,  (e )  t o  maintain the b i t  matr ix.  

One o f  these approaches I would consider t o  be appropriate. 

One could o f  course s to re  a column-oriented - and a row-oriented 

representat ion o f  the  V-matrix, b u t  t h a t  would be extremely 

c o s t l y  t o  main ta in  dur ing operations (a)  and (c ) .  

I n  t h i s  contest  i t  should be pointed ou t  t h a t  searching f o r  a 

p a r t i c u l a r  row index does (on the average) on l y  have t o  be appl ied t o  

h a l f  the number of columns o f  a V-matrix: - 1 -1 -1 If ~ j ' i s  an inverse given by Bwi. Vi. Bf and B , then no column 
9 

o f  V i  ever has nonzeroes i n  rows i n  af and i n  ag. Which block app l ies  

can be seen from the  type ( index) o f  t he  column. 



6. Conclusions 

It i s  shown t h a t  f o r  updat ing an inverse w i t h  elementary column 

and row transformations the Forrest-Tomlin method can be used. 

This seems t o  be advantageous t o  do i f  row transformat ions are  

n o t  l i k e l y  t o  occur too f requent ly.  

The c lass  o f  Wink ler 's  f a c t o r i z a t i o n  algor i thms f o r  blockangular 

systems i s  considered t o  be an area o f  app l ica t ion .  

When Wink ler 's  approach i s  app l ied  ( i n  a nested way) t o  s ta i rcase 

structures,  t h e  s i t u a t i o n  i s  more complicated: 

The 'unpleasant'  update-cases occur more f requen t l y  which 

makes the standard product  form more compet i t ive f o r  about 

ha1 f the number o f  subi nverses . 

Instead o f  one there  are  several sparse 'V-matrices' involved, 

f o r  which row column access i s  necessary. 

D i f f e r e n t  ways of storage have been discussed. 
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INTRODUCTION 

S ta i r ca se - s t r uc tu r ed  l i n e a r  programs (LPs) have been s t ud i ed  

about a s  long a s  l i n e a r  programming i t s e l f .  S t a i r c a s e  LPs a ro se  n a t u r a l l y  

from models of economic planning over  time: a c t i v i t i e s  were run i n  a 

s e r i e s  of per iods ,  and c o n s t r a i n t s  l i nked  a c t i v i t i e s  i n  ad jacent  per iods .  

The r e s u l t i n g  LPs, i n  t h e i r  s imp le s t  form, had a s t r u c t u r e  l i k e  t h i s :  

maximize clxl + c x + c x + -- 2 2  3 3  + Ct-lxt-l + c x  
t t  

s u b j e c t  t o  A x 
11 1 - bl 

A x + A 2 2 ~ 2  21 1 - b2 

A x +A33~3  32 2 = b  3 

I n  t he  infancy of  computers t h i s  s o r t  of s t r u c t u r e d  problem was 

a t t r a c t i v e  because i t  seemed t o  o f f e r  a hope of so lv ing  p r a c t i c a l  LPs 

in a reasonable  amount of time. Thus in  1949 Dantzig observed [ 5 ]  t h a t  

. . .while t he  gene ra l  mathematical problem is  concerned with 

maximization of a l i n e a r  form of nonnegative v a r i a b l e s  

s u b j e c t  t o  a system of  l i n e a r  e q u a l i t i e s ,  in the  l i n e a r  

programming case  one f i n d s  by observing t h e  above [ s t a i r c a s e ]  

system t h a t  the  grand mat r ix  of c o e f f i c i e n t s  is composed 

mostly of blocks of zeros except  f o r  submatr ices along and 

j u s t  of: t he  "diagonal". Thus any good computational 

technique f o r  so lv ing  programs would probably take  advan- 

tage of t h i s  f a c t .  



The simplex method was a s  y e t  impossibly slow f o r  l a r g e  general  problems, 

but  t he r e  was reason t o  th ink  t h a t  a much f a s t e r  vers ion  could be  devised 

f o r  s t a i r c a s e  LPs. 

S t a i r c a s e  l i n e a r  programs a r e  of no l e s s  i n t e r e s t t o d a y .  Along 

with economic planning, they have found app l i ca t i ons  in production 

scheduling,  inventory,  t r anspo r t a t i on ,  cont ro l .  and des ign  of multi- 

s t a g e  s t r u c t u r e s  [32]. Yet a r ecen t  survey [ l a ]  observes t h a t  

the  " s t a i r ca se"  model, in which s i m i l a r  s e t s  of va r i ab l e s  

and c o n s t r a i n t s  a r e  r e p l i c a t e d  many t imes,  seems no more 

t r a c t a b l e  today then vhen its importance was recognized 

over 20 yea r s  ago. Typical  of many "time-phased" economic 

problems, i t  i s  the  s tandard  model f o r  numerical ly so lv ing  

problems of optimal cont ro l .  Today we h o w  only hov t o  

so lve  i t  a s  we would any l i n e a r  programming problem; bu t  

t h i s  type of problem r equ i r e s  more work t o  so lve  than does 

t he  average problem of the  same s i z e .  However, there  

should be some vay t o  take advantage of t h e i r  s imple s t r u c t u r e .  

Thus t he  s i t u a t i o n  has been reversed.  The general  simplex method is now 

impressively f a s t  r a t h e r  than impossibly slow, while s t a i r c a s e  LPs a r e  

a troublesomely hard case  r a t h e r  than a promisingly easy one.  

Proposed methods f o r  s t a i r c a s e  LPs 

There has c e r t a i n l y  been no shortage of a t tempts  t o  so lve  s t a i r -  

case  LPs more e f f i c i e n t l y .  Although the  simplex method has usua l ly  been 

involved i n  some guise ,  i nd iv idua l  proposals  have va r i ed  considerably.  

The e s s e n t i a l  ideas  of these  proposals  may be c l a s s i f i e d  i n  four  broad 

a r ea s  : 



Compact b a s i s  methods employ a spec i a l  representa t ion  of the  bas i s  

o r  b a s i s  inverse  in conjunction with a more o r  l e s s  standard simplex 

method. This approach was f i r s t  suggested by Dantzig [6,81, and e a r l y  

v a r i a t i o n s  uere employed by Heesterman and Sandee [23] and Saiga l  [46] .  

More recent  compact-basis schemes have been worked out  by Dantzig 191, 

Wollmer [51] ,  Marsten and Shepardson 1351, Perold and Dantzig 1421, and 

Propoi and Krivonozhko 1431. 

Nested decomposition methods apply the  Dantzig-Wolfe decomposition 

p r inc ip l e  t o  generate a s e r i e s  of sub-problems a t  each period. This 

approach was suggested by Dantzig and Wolfe i n  t h e i r  o r i g i n a l  paper on 

decomposition [ l o ] ,  and has been extended o r  modified by Cobb and Cord 

[4] ,  Glassey [19,20] and Ho and Manne [29]. (Ho has reported favorable 

computational r e s u l t s  i n  two spec i a l  cases [26,27] .) 

Transformation methods s t a r t  with a simpler LP t h a t  can be solved 

e a s i l y ,  and work toward a so lu t ion  of the o r i g i n a l  s t a i r c a s e  LP. Varied 

proposals  i n  t h i s  c l a s s  a r e  from Grinold [ X I ,  Aonuma [ I ] ,  and Marsten 

and Shepardson [35 I .  

Continuous methods dea l  with a multi-period LP in continuous r a the r  

than d i s c r e t e  time. Fundamentals of a simplex method f o r  continuous-time 

LPs have been proposed by Perold [41]. 

Computational experience wi th  most of these proposals  is neg l ig ib l e .  

A t  p resent  no method has proved a s  e f f e c t i v e  a s  the  general  simplex 

method in handling a wide v a r i e t y  of s t a i r c a s e  problems. 



Adaptat ion of t h e  s implex method f o r  s t a i r c a s e  LPs 

Proposa l s  f o r  improving the  genera l  simplex method i t s e l f  have 

been, by c o n t r a s t ,  much = r e  s u c c e s s f u l .  As a r e s u l t  t h e  s implex method 

has become an amalgam of f a i r l y  s o p h i s t i c a t e d  a lgor i thms .  Many of  t h e s e  

a lgor i thms  a r e  o b j e c t s  o f  s t u d y  i n  t h e i r  own r i g h t ,  and a r e  n o t  normally 

thought of i n  connect ion with l i n e a r  programming. The s implex method has 

consequently become nore  and more a s p e c i a l i s t ' s  domain. 

I t  is t h e r e f o r e  n o t  s u r p r i s i n g  t h a t  siiudy of s t a i r c a s e  LPs has  

tended t o  d i v e r g e  from s tudy  of t h e  s implex method. S t a i r c a s e  l i n e a r  

programming, t y p i f i e d  by t h e  above- l i s ted  papers ,  h a s  become a s e a r c h  

f o r  methods t o  r e p l a c e  t h e  o l d  s implex method; i n  t h e  mean t i m e  a new, 

b e t t e r  s implex method has  emerged f o r  genera l  l i n e a r  p r o g r a m i n g  b u t  has  

n o t  been a p p l i e d  t o  s p e c i a l  s t r u c t u r e s  such a s  s t a i r c a s e s .  

This  and a companion paper  [16]  seek t o  r e v e r s e  t h e  t rend :  they 

a r e  concerned wi th  adap t ing  t h e  modern s implex method t o  s o l v e  s t a i r c a s e  

LPs = r e  e f f i c i e n t l y .  Each paper looks  a t  a s e t  of  a lgor i thms  w i t h i n  t h e  

s implex method: t h i s  one d e a l s  with " inversion" of t h e  basis--more 

a c c u r a t e l y ,  s o l u t i o n  of  l i n e a r  systems by Gaussian elimination--and t h e  

succeeding one c o n s i d e r s  p a r t i a l  p r i c i n g .  

Both papers  d e s c r i b e  e x t e n s i v e ,  a l though pre l iminary ,  computat ional  

experience.  The r e s u l t s  a r e  q u i t e  promising: a s ta i rcase-adapted  

sfmplex method sometimes perfonns cons iderab ly  b e t t e r  than t h e  g e n e r a l  

method, y e t  on a range o f  problems i t  is never  s i g n i f i c a n t l y  worse. 

Moreover, f u r t h e r  improvement appears  p o s s i b l e  in a number of r e s p e c t s .  



1. STAIRCASE LINEAR PROGRAMS 

S ta i r ca se  l i n e a r  programs share two simple c h a r a c t e r i s t i c s :  

t h e i r  va r i ab l e s  f a l l  i n t o  some sequence of d i s j o i n t  groups; and t h e i r  

cons t r a in t s  r e l a t e  only va r i ab l e s  within adjacent  groups. Usually the 

sequence of groups corresponds to  a sequence of times, so t h a t  v a r i a b l e s  

i n  a group represent  a c t i v i t i e s  during one time per iod .  Cons t ra in ts  

then ind i ca t e  how a c t i v i t i e s  i n  one period a r e  r e l a t e d  t o  a c t i v i t i e s  

in the next. S t a i r ca se  LPs thus a r i s e  e s p e c i a l l y  o f t en  from many kinds 

of economic planning models. 

A cons t r a in t  is s a i d  t o  be i n  period 1 i f  i t  conta ins  va r i ab l e s  

of period k but not  of l a t e r  periods.  Typically some cons t r a in t s  involve 

only va r i ab l e s  of period t ,  while o the r s  r e l a t e  va r i ab l e s  of per iods  P. 

and k-1; the l a t t e r  a r e  l i n k i n g  cons t r a in t s ,  whereas the former a r e  E- 

l i nk ing .  Analogously, l i nk ing  va r i ab l e s  appear i n  cons t r a in t s  of periods t 

and k+l, while non-linking va r i ab l e s  appear only in  cons t r a in t s  of 

period k . 
A s t a i r c a s e  LP i s  a l s o  n a t u r a l l y  viewed a s  a kind of l i n e a r  d i s c re t e -  

time optimal con t ro l  model. Typically such a model minimizes a l i n e a r  

funct ion  of nonnegative s t a t e  vec to r s  x, and con t ro l  vec to r s  u,, sub- 

j e c t  t o  dynamic equat ions ,  

and cont ro l  con t r a in t s ,  



This is r e a d i l y  seen t o  be a s t a i r c a s e  l i n e a r  program. The s t a t e  vec to r s  

a r e  t he  l i n k i n g  v a r i a b l e s ,  and the  con t ro l  vec to r s  a r e  the  non-linking 

va r i ab l e s ;  the dynamic equa t ions  a r e  the l i n k i n g  c o n s t r a i n t s ,  whi le  t he  

con t ro l  c o n t r a i n t s  a r e  non-linking . 

S t a i r c a s e  LPs of h ighe r  o r d e r s  

A more genera l  approach s ays  t h a t  a s t a i r c a s e  Linear  program i s  

of order  r i f  i t s  c o n s t r a i n t s  r e l a t e  va r i ab l e s  t h a t  a r e  a t  most r pe r i ods  

a p a r t .  The preceding subsec t i on  thus  cha r ac t e r i z ed  s t a i r c a s e  LPs of 

o rder  one. Higher-order s t a i r c a s e  LPs a r e  no t  uncommon in complex appl i -  

c a t i o n s  ( f o r  example, modeling energy systems ( 4 0 1 ) .  They a r e  analogous 

t o  l i n e a r  c o n t r o l  models t h a t  have r t h - o r d e r  dynamic equa t ions .  

This paper is predominantly concerned with f i r s t - o r d e r  s t a i r c a s e  

LPs: these  have t he  nwst spec i a l i z ed  s t r u c t u r e  and, consequently,  a r e  

most ameuable t o  s p e c i a l  techniques.  S t i l l ,  many techniques a r e  essen- 

t i a l l y  app l i c ab l e  t o  higher-order  s t a i r c a s e s  a s  we l l ,  with app rop r i a t e  

adap t a t i ons  t h a t  w i l l  b e  pointed o u t  a s  t h e  expos i t i on  proceeds. For 

b r e v i t y ,  however, the  a d j e c t i v e  " f i r s t -order ' '  w i l l  u sua l l y  be dropped. 

Higher-order s t a i r c a s e  LPs can a l s o  be made i n t o  f i r s t - o r d e r  ones,  

in e i t h e r  of two ways. F i r s t ,  r th -order  equa t ions  can be t ransformed t o  

equ iva l en t  f i r s t - o r d e r  ones by adding c e r t a i n  v a r i a b l e s  and c o n s t r a i n t s .  

This  y i e l d s  a l a r g e r  f i r s t - o r d e r  LP t h a t  ha s  t he  same number of periods.  

Second, every r per iods  of  the r th-order  LP nay simply be aggregated 

a s  one period.  The r e s u l t  is a f i r s t - o r d e r  s t a i r c a s e  LP of t he  same 

s i z e  bu t  having only  about t / r  per iods .  The f i r s t  method is  most 

p r a c t i c a l  when t h e  LP is n e a r l y  f i r s t - o r d e r  t o  begin  with,  while  t he  

second may be f e a s i b l e  when the  number of per iods  is l a r g e  r e l a t i v e  t o  r. 



Sta i r case  matrices 

The matrix of cons t r a in t  coe f f i c i en t s  of a s t a i r c a s e  l i n e a r  

program i s  a s t a i r c a s e  matrix. Its nonzero elements a re  confined t o  

ce r t a in  submatrices centered roughly on and ju s t  off  the  diagonal--as, 

f o r  example, 

~ o r m a l l y ,  one p a r t i t i o n s  the  rows of an m x n matrix A i n t o  t d i s j o i n t  

subsets ,  and the  colunms i n t o  t disjoint subsets ,  so t h a t  the  matrix is 

pa r t i t i oned  i n t o  t2 submatrices, o r  "blocks": 

A is lower s t a i r c a s e  (as  above) i f  A - 0 expcet f o r  i - j and 
il 

i - 1 .  A is upper s t a i r c a s e  i f  A - 0 except f o r  i = j and 
i j 

i = j-1. 

By analogy with s t a i r c a s e  models, rows i n  the i t h  p a r t i t i o n  of 

a s t a i r c a s e  matrix A a r e  ca l l ed  period-i rows, and columns in  the  j th 

p a r t i t i o n  a r e  ca l l ed  period-j columns. I f  a period-i row has nonzero 



e lements  i n  b locks  Ai, i-1 
and Aii, i t  i s a l i n k i n g  row; i f  i t  has  non- 

ze roes  only in Aii i t  is a non-linking row. S i m i l a r l y ,  a per iod-j  

column t h a t  h a s  nonzeroes in A and A 
j j j+ l J  

is a l i n k i n g  c o l u m ,  

whi le  one t h a t  has  nonzeroes in A only is a non-linking c o l u m .  
j j 

Any upper -s ta i rcase  m a t r i x  may be permuted t o  lower -s ta i rcase  

form by r e v e r s i n g  t h e  o r d e r  of  t h e  p e r i o d s  [15]. Moreover, i f  a per iod- i  

row is  e n t i r e l y  ze ro  w i t h i n  A t h a t  row may b e  moved back t o  p e r i o d  1-1 
ii 

wi thout  d i s r u p t i n g  t h e  s t a i r c a s e  s t r u c t u r e ;  analogously,  a per iod-j  column 

t h a t  is  a l l - z e r o  w i t h i n  A may be  moved t o  p e r i o d  j + l .  Nothing is  
j j 

l o s t ,  t h e r e f o r e ,  in assuming t h a t  A is l a v e r  s t a i r c a s e  and t h a t  i t s  

d iagona l  b locks  %L have no a l l - z e r o  rows o r  columns; A is then  s a i d  

t o  b e  in s t a n d a r d  s t a i r c a s e  form. Henceforth i t  w i l l  be  assumed t h a t  all 

s t a i r c a s e  LPs have a c o n s t r a i n t  m a t r i x  A i n  t h i s  s t a n d a r d  form. (The 

t r i v i a l  c a s e  in which A has  a n  a l l -ze ro  row o r  column is t h u s  r u l e d  

o u t .  

Following [15] ,  t h e  period-i  rows may be permuted t o  pu t  t h e  l i n k -  

i n g  rows f i r s t ,  and t h e  period-j  columns may be permuted t o  p u t  t h e  l i n k -  

i n g  columns l a s t .  Then A has t h e  fo l lowing  reduced form: 



The reduced block %,k-l is j u s t  t h e  i n t e r s e c t i o n  of  t h e  period-k l ink-  

i n g  rows and t h e  period-(k-1) l i n k i n g  colunms. 

I f  t h e  l i n k i n g  rws of every  per iod  i a r e  switched t o  per iod  1-1. 

then A g a i n s  an a l t e r n a t i v e  row-upper-staircase form: 

Switching t h e  l i n k i n g  colunms of per iod  j t o  per iod  j + l  g i v e s  a d i f f e r e n r ,  

colunm-upper-staircase form. Thus a s t a i r c a s e  A in reduced s tandard  form 

embodies t h r e e  s ta i rcases - lower ,  rw-upper ,  and column-upper--each corre- 

sponding t o  a d i f f e r e n t  cho ice  of where t h e  p e r i o d s  begin and end. 

S t a i r c a s e  bases  

Any b a s i s  B o f  a s t a i r c a s e  l i n e a r  program n e c e s s a r i l y  i n h e r i t s  a 

s t a i r c a s e  s t r u c t u r e  from t h e  c o n s t r a i n t  m a t r i x  A; B's s t a i r c a s e  b locks ,  

t-1 and BEE, may be taken t o  be t h e  sub-blocks of At,e-l and Apt 

t h a t  con ta in  o n l y  t h e  b a s i c  colunms. I f  A has  a reduced form, 8t,e-l 

may l i k e w i s e  be taken a s  t h e  b a s i c  p a r t  of  At,e-l. 

The i n h e r i t e d  s t a i r c a s e  of  B need n o t  be i n  s tandard  o r  reduced 

form, even though A is. S p e c i f i c a l l y ,  e i t h e r  
Or Bt ,t-1 may be  



zero a long  some l i n k i n g  row i--if i t  happens t h a t ,  i n  
Or At.t-l' 

a l l  t h e  nonzeroes a long  row i a r e  i n  non-basic columns. I n  t h i s  even t ,  

B may be r e t u r n e d  t o  reduced s t a n d a r d  form by r e a s s i g n i n g  c e r t a i n  rows 

and columns. Any l i n k i n g  row t h a t  is  z e r o  i n  Bet  becomes a non-linking 

row in per iod  P-1; i n  t h e  process ,  some l i n k i n g  c o l u m s  of p e r i o d  t-1 

may become non-linking. Any l i n k i n g  row t h a t  is  zero  in ,t-1 
becomes 

a non-linking row. 

It is g e n e r a l l y  more convenient  t o  d e a l  wi th  B in i t s  i n h e r i t e d  

s t a i r c a s e  form, whether s tandard ,  reduced o r  o therwise .  However, b e t t e r  

results a r e  o f t e n  achieved by us ing  B ' s  reduced s t a n d a r d  form i n s t e a d ,  

e s p e c i a l l y  a s  i t  has  fewer l i n k i n g  rows and columns and hence a t i g h t e r  

s t r u c t u r e .  This  i s s u e  is  cons idered  f u r t h e r  subsequently.  

Henceforth Bet and B t , ~ - l  B t , ~ - l  ) w f l l  r e p r e s e n t  t h e  

b locks  of  B ' s  chosen s t a i r c a s e  form, whether i n h e r i t e d  o r  reduced s tandard .  

The number of  rows in per iod  i w i l l  be denoted m and t h e  number of 
i * 

columns in per iod  j w i l l  be n j ;  t h e  r e s p e c t i v e  numbers of l i n k i n g  rows 

and columns w i l l  be ^mi and For the  row-upper-staircase f o m ,  t h e  
1' 

i number of  rows in per iod  i w i l l  be m , and f o r  the  column-upper-staircase 

1 form t h e  number of columns i n  period j w i l l  be  n . Necessar i ly  

Lmi - l m i  = I n j  - 1.' - m, and P 
mi, G j  n j .  

Balance c o n s t r a i n t s  and square  sub-s ta i rcases  

I f  t h e  s t a i r c a s e  LP has a s p e c i a l  dynamic Leont ie f  s t r u c t u r e  [ 2 ]  

then i n  each p e r i o d  t h e  number of b a s i c  columns must e x a c t l y  equa l  t h e  

number of rows: nt = me f o r  a l l  t ,  and a l l  b locks  Bet a r e  square .  



This is  n o t  t he  case  in gene ra l ,  however. A b a s i s  B of an a r b i t r a r y  

s t a i r c a s e  LP may have ne > me f o r  some per iods  e and ne < m a 
f o r  o thers .  

Since t he  b a s i s  is nons ingular ,  however, i t  must obey t h e  "balance 

cons t r a in t s "  developed i n  [15] .  In  summary, these  r e s t r i c t  t he  excess  of 

b a s i c  colunms over  rcws in each  period,  i nd iv idua l l y  and emulatively, 

a s  fol lows:  

I n  words, the  cumulat ive imbalance between rows and b a s i c  columns i n  

per iods  k through e is  bounded by the  smal le r  dimension of 
Bk,k-l 

and 

the  smal le r  dimension of Be+l,a. Hence these  c o n s t r a i n t s  a r e  q u i t e  

s t r i c t  when t h e r e  a r e  r e l a t i v e l y  few l i n k i n g  rows o r  columns. 

The f i r s t  cons t radnt  above may a l s o  be w r i t t e n  a s  t he  fo l lowing  

t h r e e  i n e q u a l i t i e s :  

These say t h a t  t he  f i r s t  t per iods  of t he  lower s t a i r c a s e  cannot have 

more rows than columns, whi le  the  f i r s t  e per iods  of t h e  a s soc i a t ed  row- 

upper o r  column-upper s t a i r c a s e  cannot  have more columns than  rows. 



Al l  t h r ee  of these r e l a t i o n s  a r e  e q u a l i t i e s  when L = t ,  s ince  

B is square. I t  can a l s o  happen t h a t  equa l i t y  is  achieved f o r  some 

a e 
e < t. For example, i f  ll mi - l1 ni, B must look something l i k e  t h i s :  

The rows and columns of per iods  1 through II form a square sub-staircase,  

a s  do the rows and columns of periods I1+1 through t; they a r e  l i nked  

only by nonzero elements i n  t he  off-diagonal block 
Ba+l,a. 

I n  a s i m i l a r  

e 
way an equa l i t y  ll ni - 1: mi implies a p a i r  of square sub-s ta i rcases  

within the row-upper s t a i r c a s e  form, and 1: ni 5 1: mi implies the  

same f o r  the  column-upper form. 

Generally B may exh ib i t  any o r  a l l  of these  three  kinds of 

e q u a l i t i e s ,  and each may hold f o r  severa l  values of L < t. I f  p d i f f e r -  

e n t  such e q u a l i t i e s  hold,  then B breaks i n t o  p+l d i s j o i n t  square sub- 

s t a i r c a s e s  of various kinds. The presence o r  absence of sub-staircases 

w i l l  be of importance t o  s eve ra l  of the  techniques described f u r t h e r  

on in t h i s  paper. 



2.  SOLVING LINEAR SYSTEMS I N  THE SIMPLEX METHOD 

I n  so lv ing  l i n e a r  programs by t h e  simplex method, a  g r ea t  d e a l  of 

computational e f f o r t  i s  devoted t o  " i nve r t i ng  t h e  bas i s" .  More p r e c i s e l y ,  

a t  each i t e r a t i o n  t he  s implex method so lve s  two l i n e a r  systems: 

B i s  t he  b a s i s ,  a n  m x m mat r ix  of b a s i c  columns of t h e  c o n s t r a i n t  mat r ix  

A; a  is a  non-basic column of A; and z i g  an app rop r i a t e ly  chosen 

"pr ic ing  form".* 

There a r e  many ways t o  so lve  such systems, bu t  no t  a l l  a r e  suit- 

a b l e  t o  p r a c t i c a l  l i n e a r  programing .  Typica l ly  m is  in the  range  of 

s eve ra l  hundred t o  s e v e r a l  thousand, and t he  simplex method genera tes  

roughly 2m d i f f e r e n t  bases  B .  Hence only very  e f f i c i e n t  s o l u t i o n  

techniques a r e  w e f u l .  Fur ther ,  B has  two very s p e c i a l  p r o p e r t i e s :  

Successive bases  a r e  s i m i l a r .  Only one column of B is 

changed a t  each i t e r a t i o n .  

Bases a r e  spa r s e .  For a  t yp i ca l  l a r g e  app l i c a t i on ,  l e s s  than 

1% of t h e  elements  of an average B a r e  nonzero. 

'Ihe b e s t  techniques can use t he se  p rope r t i e s  t o  advantage i n  va r i ous  ways 

t h a t  a r e  ou t l i ned  i n  t h i s  s ec t i on .  

* 
It is genera l  p r a c t i c e  t o  i nco rpo ra t e  t he  l i n e a r  o b j e c t i v e  func t i on  a s  a  
row of A.  Then, when t he  b a s i s  is f e a s i b l e ,  the  p r i c i n g  form z is a  
u n i t  vec to r ;  when the  b a s i s  is i n f e a s i b l e ,  z  has  one nonzero element-- 
e i t h e r  +1 o r  -1--corresponding t o  each i n f e a s i b l e  b a s i c  v a r i a b l e .  The 
exac t  choice of z  depends on d e t a i l s  of the implementation, a s  expla ined  
i n  (39,501. 



Permutation of the b a s i s  

The va r i ab l e s  and equations of a l i n e a r  system By = a o r  

T B n - z can be v r i t t e n  i n  any order .  Each order ing  of the va r i ab l e s  

corresponds t o  some permutation of the c o l m s  of B ,  while each ordering 

of the  equations corresponds t o  some permutation of the  rows of B.  

Any permutation of t he  rows and columns of B may be wr i t t en  

T 
PBQ , where P and Q~ a r e  s u i t a b l y  chosen permutation matr ices .  The 

system By = a is thus equivalent  t o  the permuted system ( P B ~ ~ ) ( Q ~ )  = (Pa).  

T T T B n = z is l ikewise  equiva lent  t o  (QB P ) (h) = (Qz) . 

LU f a c t o r i z a t i o n  

A t  the  h e a r t  of recent  simplex implementations is a technique based 

on Gaussian e l iminat ion .  The b a s i s  B is fac tored  a s  the  product of a 

lover- t r iangular  matrix L, and an upper-triangular matrix U. Once 

B = LU is  known, t h e  l i n e a r  systems of importance reduce to  

Then y o r  rr may be found through so lv ing  two t r i angu la r  systems by 

back-substi tut ion.  

In  p r a c t i c e  Gaussian e l iminat ion  is applied to  a chosen p e m t a -  

T 
t i on  PBQ . Choice of P and Q~ is a c r u c i a l  matter ,  a s  can be seen 

by considering the  computation involved i n  e l iminat ion .  Its e s s e n t i a l  

operat ions a r e  defined by the  following recursion:  



~ ( l )  = PBQ T 

of which L and U a r e  a  by-product: 

(k) The c r i t i c a l  va lue s  a r e  t he  "pivots"  Bkk : an LU f a c t o r i z a t i o n  e x i s t s  

i f  and only i f  a l l  p i vo t s  a r e  nonzero. Moreover, e l im ina t i on  is numeri- 

c a l l y  s t a b l e  on ly  i f  a l l  p i co t s  a r e  s u f f i c i e n t l y  l a r g e  i n  magnitude, both 

abso lu t e ly  and r e l a t i v e  t o  o t h e r  elements  of 0 (k)  

As a  consequence, p r a c t i c a l  Gaussian e l im ina t i on  l ooks  f o r  permu- 

t a t i o n s  P and QT such t h a t  P B ~ ~  has  an acceptab ly  l a r g e  s e r i e s  of 

p ivo t s .  Choosing P and QT is  thus  commonly c a l l e d  "p ivot  s e l e c t i o n " .  

Once L and U a r e  computed, so lv ing  t he  r e s u l t i n g  t r i a n g u l a r  

systems presen ts  no d i f f i c u l t y .  Back-subst i tut ion i n  t he se  systems is 

an i nhe ren t l y  f a s t  and s t a b l e  process.  

The jargon of LP computer codes r e f e r s  t o  s o l u t i o n  of  a  lover-  

t r i a n g u l a r  system a s  an  FTRAN ("forward t ransformat ion") ;  s o l u t i o n  of an 

upper- tr iangular  system is  a BTRAN ("backward transformation") .  Solving 

L(Uy) = a thus  r e q u i r e s  f i r s t  an FTRANL and then a BTRANU, while  so lv ing  

T T 
U (L n) = z r equ i r e s  an FTRANU and a BTRANL. 



Updating t he  LU f a c t o r i z a t i o n  

J u s t  a s  success ive  bases  a r e  s i m i l a r ,  t h e i r  LU f a c t o r i z a t i o n s  a r e  

s i m i l a r .  Consequently i t  is p r a c t i c a l  t o  merely update L and U a t  each 

b a s i s  change, r a t h e r  than compute the  f a c t o r i z a t i o n  from s c r a t c h  each time. 

The i dea  of  an LU update is a s  fol lows.  Suppose the  i n i t i a l  b a s i s ,  

B,, has  been f ac to r ed  a s  P ~ B ~ Q ~  = LOUO. Thus BO = ( P ~ L ~ )  (UOQO) : B0 is 

the  product  of a permuted lower- t r iangular  mat r ix  and a permuted upper- 

T -1 
t r i a n g u l a r  matr ix.  Equiva len t ly ,  (POLO) BO = UOQO. 

Now update Bo t o  a new b a s i s  B1, and cons ider  

- 
Uo need n o t  be upper - t r iangular ;  however, i t  does have an LU f a c t o r i z a t i o n ,  - T 
UOQO = ( P ~ L ~ )  (U1~l). S u b s t i t u t i n g  i n t o  (1)  and rear ranging  shows t h a t  

Thus B1 is f ac to r ed  a s  t he  product  of permuted lower- t r iangular  

ma t r i c e s  and a permuted upper - t r iangular  matr ix.  Linear  systems involv ing  

B1 a r e  then r e a d i l y  solved a s  before ,  bu t  with t he  add i t i on  of some back- 

s u b s t i t u t i o n s  i n  L1. 

S imi l a r  updates  can be appl ied  a t  subsequent b a s i s  changes. A f t e r  

k i t e r a t i o n s ,  the b a s i s  Bk is fac tored  a t  



FTRANL and BRRANL perform back-subst i tut ions with Lo through Lk' 

whi le  FTRANU and BTIUWU use 
Uk. 

LU updating i n  t h i s  way i s  p r a c t i c a l  because B d i f f e r s  from - 1 

B~ in only one column. Hence Uo i s  nea r ly  upper-tr iangular-- i t  d i f f e r s  

from Uo i n  only  one column--and, a s  a  r e s u l t ,  U1 i s  much t h e  same a s  

Uo, while  L1 is  not  much d i f f e r e n t  from the  i d e n t i t y .  The f a c t o r i z a t i o n  

(2) i s . t hus  f a i r l y  easy t o  f i n d  and record,  and the subsequent back-substi- 

t u t i o n s  a r e  only marginal ly more expensive than f o r  
Bo. 

Fur ther  updates 

a r e  equa l ly  economical, and may continue u n t i l  the c o s t  of back-substi- 

t u t i o n  i n  (3)  begins t o  r i s e  appreciably-- typical ly a f t e r  50 t o  100 

i t e r a t i o n s .  A f r e s h  LU f a c t o r i z a t i o n  o f  the b a s i s  is then computed, and 

updating begins  anew. 

Spec i f i c  algori thms f o r  LU updates d i f f e r  p r imar i l y  i n  t h e i r  

choice of permutations P1 and Q1 f o r  the  f a c t o r i z a t i o n  UOQO = ( P ~ L ~ )  (UIQ1). 

The o r i g i n a l  a lgor i thm of Ba r t e l s  and Golub [2,3]  was designed t o  ensure 

numerical s t a b i l i t y .  Subsequent v a r i a t i o n s  have given more weight t o  

* 
s to r age  arrangement [14,47] o r  s p a r s i t y  [17,44] . 

* h o t h e r  technique, proposed by McBride [36], promises an e s p e c i a l l y  

sparse  update. Es sen t i a l l y ,  i t  u s e s a s  B1 a c a r e f u l l y  updated and permuted 
T T 

Bo, wi th  t h e  r e s u l t  t h a t  the  product (POLO)(PIL1) may be co l lapsed  t o  

a  s i n g l e  lower-tr iangular  f a c t o r ;  in e f f e c t  t h i s  technique updates t h e  

lower- t r iangular  f a c t o r  a t  each i t e r a t i o n ,  whereas t h e  o the r  techniques 

merely augment i t .  McBride avoids Gaussian e l im ina t i on  i n  h i s  implemen- 

t a t i o n ,  however, p r e f e r r i n g  t o  keep the  i nve r se  of one small  ma t r i x  

e x p l i c i t l y .  



S t o r i n g  the  LU f a c t o r i z a t i o n  

To b e n e f i t  from s p a r s i t y ,  an LP code must s t o r e  on ly  the  nonzero 

elements  i n  m a t r i c e s  such a s  A, L  and U. The t o t a l  s t o r a g e  r e q u i r e d  by 

a  s p a r s e  problem is  thereby d r a s t i c a l l y  c u r t a i l e d ;  indeed, l a r g e - s c a l e  

l i n e a r  programming would be impossible  i f  all z e r o e s  had t o  be s t o r e d .  

Moreover, s p a r s e  s t o r a g e  makes p o s s i b l e  e f f i c i e n t  p r i c i n g  and p i v o t i n g  

r o u t i n e s  t h a t  a u t o m a t i c a l l y  s k i p  m u l t i p l y i n g  and adding zeroes .  

Because bases  a r e  s u b s e t s  o f  t h e  columns of A, i t  i s  u n i v e r s a l  

p r a c t i c e  t o  s t o r e  A by colunm. T y p i c a l l y  one a r r a y  l is ts  t h e  nonzero 

elements  of  A in column o r d e r ,  a  p a r a l l e l  a r r a y  lists t h e  row index  f o r  

each element ,  and a  s h o r t e r  t h i r d  a r r a y  i n d i c a t e s  h e r e  each column b e g i n s  

in t h e  f i r s t  two a r r a y s .  A b a s i s  is represen ted  by j u s t  a  l is t  of  t h e  

b a s i c  columns. 

To f a c t o r i z e  a  b a s i s  B s t o r e d  i n  t h i s  way, i t  may be e f f i c i e n t  

t o  r e a r r a n g e  t h e  o p e r a t i o n s  of Gaussian e l i m i n a t i o n  s o  t h a t  on ly  one 

column, b  is processed a t  a  time. An LU f a c t o r i z a t i o n  o f  P B Q ~  is  
1' 

then  computed by e s a e n t i a l l y  t h e  fo l lowing  a lgor i thm:  

1: SET L = U * I 

2: REPEAT f o r  each column b  of 8QT: 
1 

2.1: SOLVE Lx * Pb f o r  x 
j  

2.2: SET U = x f o r  i = 1,. .., 
i j  i 

1 

2.3: SET L = x / x  f o r  i - j+l,..., m 
i j  

L and U a r e  produced one column a t  a  time, and s o  may be s t o r e d  l i k e  A 

a s  columnwise l is ts  of  nonzeroes. FTRAN o p e r a t i o n s  read  forward through 



these  lists, whereas BTRAN opera t ions  s t a r t  a t  t h e  end of a l i s t  and 

read  backward t o  the  beginning. (Hence t he  terms ETRAN and BTRAN.) 

In  p r ac t i c e  the  s t o r age  arrangement of L and U i s  c l o se ly  t i e d  

t o  t he  updat ing technique.  Any of the  previously-mentioned techniques may 

s t o r e  L columnwise, s i n c e  i t  is j u s t  augmented (by P $ 1  a t  each 

i t e r a t i o n .  Only t he  Forrest-Tomlin technique,  however, can be adequately 

implemented wi th  U s t o r e d  coluumwise. ~ a u n d e r s '  technique r equ i r e s  

row-wise acce s s  a s  we l l  t o  a (hopefu l ly  small)  p a r t  of U, whi le  Reid 's  

technique i s  only p r a c t i c a l  wi th  row-vise access  t o  all of U. Thus t he se  

l a t t e r  techniques have been implemented with va r i ous  a l t e r n a t i v e  s t o r age  

schemes f o r  U: Saunders has s t o r ed  p a r t  of U e x p l i c i t l y  [47] ,  while  

Reid has experimented both w i th  l i nked  lists and w i th  a combination of 

row-wise and column-wise a r r a y s  [45]. 

There a r e  important  advantages t o  s t o r i n g  L and U by c o l u m  

only. Colwm-vise s t o r a g e  is  simple and compact; t he  a s soc i a t ed  FTRAN 

and BTRAN r o u t i n e s  a r e  a l s o  simple and L and U may be he ld  on any 

s equen t i a l  s to rage  device.  I n  a vir tual-machine environment, s equen t i a l  

s t o r age  a l s o  minimizes t h e  danger of  "thrashing"-excessive overhead 

cos t  t h a t  r e s u l t s  from t r y i n g  t o  access  too many widely-separated p a r t s  

of s t o r age  in a s h o r t  i n t e r v a l  of time. On t he  o t h e r  hand, i f  s t o r a g e  i s  

a t  a premium one may t ake  f u r t h e r  advantage of " t r i ang l e "  columns--those 

t h a t  a r e  zero  above the  d iagonal  of P B ~ ~ ;  a t r i a n g l e  column is  essen- 

t i a l l y  t r i v i a l  i n  U and unchanged i n  L, and s o  may be represen ted  i n  

L by j u s t  a po in t e r  i n t o  A. 

Access t o  U by column only does have its disadvantages,  however. 

It  r e s t r i c t s  updat ing t o  t h e  Forrest-Tomlin technique which, while  u sua l l y  



adequate,  i s  i n f e r i o r  t o  o t h e r  techniques In numerical  s t a b i l i t y  and 

s p a r s i t y .  I n  a d d i t i o n ,  i t  s u f f e r s  from c e r t a i n  i n e f f i c i e n c i e s  i n  app ly ing  

FTRAN and BTRAN t o  s p a r s e  v e c t o r s ,  a s  exp la ined  f u r t h e r  below. 

Sparse LU f a c t o r i z a t i o n  

I t  is well-known [11,12.13] t h a t  when B is  s p a r s e ,  some of  i t s  

permutat ions have much s p a r s e r  L and U f a c t o r s  than o t h e r s .  Conse- 

quent ly  all  LP codes implement some form of  s p a r s e  Gaussian e l i m i n a t i o n  

in which p i v o t s  a r e  chosen t o  promote s p a r s i t y  of  L and U a s  wel l  a s  

numerical  s t a b i l i t y .  

There a r e  p r i n c i p a l l y  two techniques  of s p a r s e  Gaussian el imina-  

t i o n  employed i n  l i n e a r  programming. Bump-and-spike techniques look  f o r  

a  b lock- t r i angula r  permutat ion of B t h a t  has  many small b l o c k s  ("bumps") 

and few columns ("spikes") t h a t  ex tend  above t h e  d iagona l .  Local-minimiza- 

t i o n  techniques choose each p i v o t  t o  minimize t h e  e s t i m a t e d  number of  non- - 
zeroes  added t o  L and U by t h a t  p i v o t  a lone .  These i d e a s  a r e  des- 

c r i b e d  and compared in S e c t i o n  1 of [15]. 

Each technique of  s p a r s e  e l i m i n a t i o n  is b e s t  s u i t e d  t o  c e r t a i n  

updat ing techniques .  Saunders '  update  r e l i e s  on t h e r e  be ing  r e l a t i v e l y  

few s p i k e s  in U,  and s o  i t  h a s  been implemented with bump-and-spike 

e l i m i n a t i o n .  Re id ' s  update ,  by c o n t r a s t ,  b e n e f i t s  when nonzeroes f a l l  

more h e a v i l y  in U than in L, and is  wel l - su i ted  t o  e l i m i n a t i o n  by 

l o c a l  minimizat ion.  

As noted prev ious ly ,  update  t echniques  can a l s o  be  designed t o  

promote s p a r s i t y  in t h e  updated f a c t o r s  \ and Uk.  Reid 's  update  i n  



p a r t i c u l a r  is  in tended  t o  p reserve  s p a r s i t y ,  and Gay h a s  a l s o  incorpora ted  

~ e i d ' s  i d e a s  Fn Saunders'  technique.  

Sparse  r ight-hand s i d e  v e c t o r s  

T 
The l i n e a r  systems of  t h e  s implex method, By = a and B r = z, 

u s u a l l y  have n o t  on ly  a s p a r s e  m a t r i x  bu t  a very  s p a r s e  right-hand s i d e :  

a is a column of  t h e  s p a r s e  mat r ix  A, and t h e  p r i c i n g  form z h a s  one 

nonzero when t h e  b a s i s  is f e a s i b l e  and k nonzeroes when t h e r e  a r e  k 

i n f e a s i b i l i t i e s .  FTRAN and BTRAN r o u t i n e s  can t a k e  advantage of  t h i s  

a d d i t i o n a l  s p a r s i t y  t o  a c e r t a i n  e x t e n t ,  depending on how they a c c e s s  

L and U. 

For purposes of  i l l u s t r a t i o n ,  cons ider  f i r s t  a s imple lower- tr i -  

angula r  system Lx = d. I f  t h e  nonzero elements  of  L a r e  a v a i l a b l e  

s e q u e n t i a l l y  by colunm, back-subs t i tu t ion  is c a r r i e d  o u t  a s  fo l lows:  

FTRANL : 

REPEAT FOR j FROM 1 TO m: 

SET x = d /L 
1 1 11 

REPEAT FOR L 0 ,  i FROM j + l  TO m: 
i j 

SET dl = dl - L x 
i j  j 

A t  t h e  j t h  pass  through t h e  main loop ,  i f  d = 0 then  a l s o  x = 0 
1 j 

and t h e  i n n e r  l o o p  merely adds ze ro  t o  v a r i o u s  e lements  of d. Hence 

t h e  j t h  pass  is s u p e r f l u o u s  when d = 0. Moreover, i f  i t  happens t h a t  
1 

d l , - - . ,  % a r e  all zero ,  then t h e  main loop does no work u n t i l  pass  k+l. 

A m r e  e f f i c i e n t  a l g o r i t h m  is t h u s  a s  fol lows:  



FTRANL : 

1: SET k - min{j:d Z 0 ) ;  SET x = 0 f o r  j = 1, ..., k 
1 1 

2: REPEAT FOR j FROM k+l TO m: 

IF  d j  - 0: SET x = 0 
1 

ELSE: SET x = d /L 
1 1 11 

REPEAT FOR L Z 0,  i from j+l  TO m: 
i j  

SET dl = dl - L x 
i j  j '  

Step 1 is espec i a l l y  valuable when dl,. . . , 4, a r e  knoun beforehand t o  

be zero. In  s t e p  2, d  tends t o  f i l l  in with nonzeroes in each pass of 

the  loop; but  i f  L and d a r e  both sparse  then d should no t  f i l l  i n  

too quickly. 

The s i t u a t i o n  is q u i t e  d i f f e r e n t  i f  ins tead  one must so lve  the  

T 
upper-triangular syetem L x - d. I f  the  nonzeroes of L a r e  only ava i l -  

ab l e  s equen t i a l l y  by co lum,  then L~ is e f f e c t i v e l y  ava i l ab l e  only by 

row, and back-substi tut ion must be ca r r i ed  ou t  a s  follows: 

BTRANL : 

REPEAT FOR j FROM m TO 1: 

REPEAT FOR L Z 0, i FROM m t o  j+l : 
i j  

SET d = d  - L  x 
j j i j i  

SET x = d /L 
1 1 11 

Here there  is no advantage t o  knowing d - 0, s ince  d is cont inual ly  
1 1 

modified wi th in  t he  inner  loop and 
x j  

is not  s e t  u n t i l  a f t e r  t h e  inner  

loop. The most one can say is t h a t ,  i f  d ,... . , dk a r e  a l l  zero, then 

x m,..., a a r e  a l s o  all zero and the  main loop may be s t a r t e d  with 

j = k-1. 



For s p a r s e  e l i m i n a t i o n  wi th  updat ing t h e  s i t u a t i o n  is  somewhat 

more complex, involv ing  n o t  one L b u t  a  s e r i e s  of permuted L's .  

The conclusions a r e  t h e  same, however: i f  the  lower - t r i angula r  f a c t o r s  of 

t h e  b a s i s  a r e  s t o r e d  by column only-as they commonly a r e t h e n  FTRANL can 

b e n e f i t  from s p a r s i t y  in t h e  right-hand s i d e  t o  a  much g r e a t e r  e x t e n t  than  

BTRANL. Moreover, t h e  same reasoning  can be appl ied  t o  U: i f  a l l  o r  p a r t  

of  t h e  upper - t r i angula r  f a c t o r  i s  s t o r e d  by co lwm only ,  then  BTRANU can 

e x p l o i t  right-hand s i d e  s p a r s i t y  much more than FTRANU. 

In p r a c t i c e  t h e s e  d i f f e r e n c e s  have v a r i o u s  consequences. A t  a  

t y p i c a l  i t e r a t i o n ,  t h e  FTRAN andBTRAN o p e r a t i o n s  a r e  c a r r i e d  o u t  once 

each,  t o  s o l v e  systems t h a t  look  l i k e  these:  

TO SOLVE By = a :  

PIB*M: (P:L~) (P:L~)- - * -  - (P:\) y ( l )  = a 

BTRANU: (UkQk) Y - Y (1)  

T 
TO SOLVE B r = z: 

T T (1) FTRANU: (QkUk)n 

Hence s p a r s i t y  of t h e  r ight-hand s i d e  can be  e x p l o i t e d  in t h e  fo l lowing  

ways : 

FTRANL can f u l l y  e x p l o i t  t h e  s p a r s i t y  of a .  A smal l  a d d i t i o n a l  

advantage can be  had i f  it i s  known t h a t  (Poa)l, . . . , (POali a r e  a l l  

zero f o r  some i; t h i s  knowledge i s  n o t  r e a d i l y  a v a i l a b l e  in t h e  g e n e r a l  

c a s e ,  bu t  it is o f t e n  a v a i l a b l e  from s t a i r c a s e  methods t o  be descr ibed .  



BTRANU can f u l l y  e x p l o i t  any s p a r s i t y  i n  y ( l ) .  Since y ( l )  i s  

the  s o l u t i o n  v e c t o r  from a s p a r s e  ETRANL, it may w e l l  be  s p a r s e  i t s e l f .  

Fl'RANU can e x p l o i t  t h e  c o n s i d e r a b l e  s p a r s i t y  in z on ly  i f  e i t h e r  

Uk 
is a v a i l a b l e  by row, o r  (QkzIl, . . . , (QkzIi a r e  a l l  zero from some 

i. I n  many c a s e s  it is p o s s i b l e  t o  a r r a n g e  t h a t  i is q u i t e  c l o s e  t o  m 

[21;]. Indeed, w i t h  some upda t ing  methods i t  can be guaranteed--provided 

t h e  b a s i s  is feas ib le - - tha t  (Qkz) l,. . . , (Qk~)m-l a r e  a l l  zero ,  so  t h a t  

Fl'RANU may e f f e c t i v e l y  be skipped.  

( 1 )  BTRANL g e n e r a l l y  cannot b e n e f i t  from s p a r s i t y  in t . However, 

t h e  update  f a c t o r s  L1, ... . Lk a r e  g e n e r a l l y  s o  s i m p l e  i n  form t h a t  

BTRANL handles  them a s  e f f i c i e n t l y  a s  ETXANL. The s i g n i f i c a n t  e x t r a  

T 
work l i e s  e n t i r e l y  i n  p r o c e s s i n g  Lo. 

P a r t i a l  s o l u t i o n s  

It is ev iden t  from t h e  preceding a n a l y s i s  t h a t  t h e  s o l u t i o n  t o  

T By - a o r  B n = z is u l t i m a t e l y  computed one element  a t  a t  t ime, regard- 

l e s s  of how L and U a r e  s t o r e d .  The v e c t o r  y is produced by BTRANU 

i n  t h e  o r d e r  (Qky) m, . . . , (QkyI1; l i k e w i s e ,  t h e  v e c t o r  n is computed 

by BTRANL in t h e  o r d e r  (Pon)m,. .. , (Pon)l. 

BTRANL o r  BTRANU may t h e r e f o r e  be  terminated prematurely i f  only 

p a r t  of  y o r  n needs t o  be  computed. Such a p a r t i a l  s o l u t i o n  h a s  two 

p o t e n t i a l  u s e s  in l i n e a r  programming: when t h e  r e s t  of y is h o w n  t o  

b e  zero,  and when only  a p o r t i o n  of  n is r e q u i r e d  f o r  p r i c i n g  i n  t h e  

c u r r e n t  i t e r a t i o n .  



Nevertheless ,  in the general  case  t he r e  i s  l i t t l e  t o  be gained 

from t r y i n g  t o  compute p a r t i a l  so lu t i ons ,  owing t o  t he  presence of permuta- 

t i o n s  Po and Qk: t h e r e  is no e f f i c i e n t  way t o  t e l l  &e the r  a l l  remain- 

i n g  elements of Qky a r e  zero,  o r  t o  p r e d i c t  which elements  of P o n  w i l l  

b e  needed. Sec t ion  6 vill show, however, t h a t  p a r t i a l  s o l u t i o n s  can 

o f f e r  a n  economyineolving s t a i r c a s e  LPs, provlded Po and Qk a r e  chosen 

t o  r e f l e c t  t h e  s t a i r c a s e  a t ruc tu r e .  



3. SPARSE ELIMINATION OF STAIRCASE BASES 

Two techniques  f o r  s p a r s e  e l i m i n a t i o n  o f  s c a i r c a s e  m a t r i c e s  were 

proposed in [15] :  one a d a p t s  t h e  bump-and-spike approach, whi le  t h e  

o t h e r  is  a kind of  l o c a l  minimizat ion.  E i t h e r  o f  t h e s e  techniques may 

be  a p p l i e d  t o  t h e  s t a i r c a s e  bases  t h a t  a r i s e  from s t a i r c a s e  LPs i n  t h e  

s implex method. 

This  s e c t i o n  summarizes t h e  d i r e c t  effects--on speed, s t o r a g e ,  

and sparsi ty--of  s u b s t i t u t i n g  s t a i r c a s e  e l i m i n a t i o n  techniques  f o r  

s tandard  ones  i n  a s implex LP. code. S e c t i o n  4 then shows how t h e s e  s t a i r -  

case  techniques make p o s s i b l e  a d d i t i o n a l  e f f i c i e n c i e s  i n  t h e  FTRAN and 

BTRAN r o u t i n e s .  

Bump-and-spike techniques  

The s t a n d a r d  bump-and-spike technique [24,25] is a tvo-step pro- 

cedure. F i r s t  i t  determines t h e  b lock- t ra iangula r  reduc t ion  of  t h e  

b a s i s  B,  an e s s e n t i a l l y  unique permutat ion t h a t  p u t s  B in b lock- t r i -  

angula r  form w i t h  a s  many d iagona l  b locks  ("bumps") a s  p o s s i b l e .  Second, 

each d iagona l  block l a r g e r  than 2 x 2 is  f u r t h e r  permuted by t h e  Pre- 

ass igned  P i v o t  Procedure (P3) ,  a h e u r i s t i c  t h a t  t r i e s  t o  make each  block 

lower t r i a n g u l a r  excep t  f o r  a smal l  number of  "spike" columns t h a t  extend 

above t h e  d iagona l .  Permuted i n  t h i s  vay,  B has  a good s t r u c t u r e  f o r  

s p a r s e  Gaussian e l i m i n a t i o n :  f i l l - i n  ( c r e a t i o n  of  new nonzeroes d u r i n g  

e l i m i n a t i o n )  is confined t o  t h e  s p i k e  c o l m s ,  and p i v o t s  w i t h i n  a given 

bump cannot g i v e  r i s e  t o  f i l l - i n  wi th in  o t h e r  bumps. 



A proposed s t a i r c a s e  bump-and-spike technique I151 dispenses wi th  

b lock- t r iangular  reduc t ion ,  and uses  i n s t ead  the  s t a i r c a s e  form of t he  

bas i s .  The h e u r i s t i c  P3, adapted t o  handle blocks t h a t  a r e  non-square 

o r  rank-deficient ,  is app l i ed  i n  t u rn  t o  each of t h e  diagonal  blocks 

(BEE)  of t he  s t a i r c a s e .  Thus t h e  rows of per iod  1 a r e  ass igned  t o  p ivo t  

f i r s t ,  followed by t h e  rows of per iod  2 ,  per iod  3, and so f o r t h  through 

per iod  t. The columns a r e  a l s o  gene ra l l y  p ivo ted  i n  period o r d e r ,  bu t  

" i n t e rpe r i od  sp ikes"  from c e r t a i n  per iods  a r e  p ivo ted  in l a t e r  per iods  

i n  order  t o  square  o f f  t he  oblong s t a i r c a s e  blocks.  Thus f i l l - i n  i s  con- 

f i ned  t o  two kinds of  sp ikes- in t raper iod  sp ike s  found by P3, and inter- 

period sp ike s  ass igned  t o  square  o f f  diagonal  blocks--and p ivo t s  w i th in  

a given period can only  g ive  r i s e  t o  f i l l - i n  w i th in  sp ike s  of t h e  same 

per iod  o r  w i th in  i n t e r p e r i o d  sp ike s  of preceding per iods .  The ba lance  

c o n s t r a i n t s  of Sec t ion  1 guarantee t h a t  t h i s  is a workable arrangement: 

t h e  number of i n t e r p e r i o d  sp ike s  need n o t  be  very l a r g e ,  and t h e r e  a r e  

always enough i n t e r p e r i o d  sp ike s  t o  square  o f f  every  s t a i r c a s e  block. 

Computational experience I151 has  shown t h a t  the  s t anda rd  and 

s t a i r c a s e  bump-and-spike techniques a r e  roughly comparable. They u sua l l y  

produce about  t he  same number of sp ike s ,  and both y i e l d  a spa r s e  f a c to r i z a -  

t i on :  t he  f i l l - i n  due t o  e i t h e r  technique is seldom more than twice t h e  

f i l l - i n  due t o  the  o t h e r .  However, each technique does appear t o  be  

supe r io r  in c e r t a i n  s i t u a t i o n s .  

Standard bump-and-spike seems i nva r i ab ly  b e t t e r  when a l l  bumps 

a r e  small and most a r e  1 x 1. P3 is then app l i ed  cheaply t o  a few b locks ,  

whereas t h e  s t a i r c a s e  technique must s t i l l  apply P3 t o  every diagonal  



block of the  s t a i r c a s e .  The i n t e rpe r i od  sp ike s  of t h e  s t a i r c a s e  technique 

a l s o  tend t o  be l a r g e r  than the  sp ike s  of t he  s tandard  technique, and so 

t he  former f i l l  i n  more: f i l l - i n  w i th in  L tends t o  be about  t he  same, 

bu t  the  s tandard  technique produces a no tab ly  s p a r s e r  U. I n  add i t i on ,  

the  s tandard  technique is l e s s  prone t o  producing s p i k e s  t h a t  have un- 

acceptab le  p ivo t  elements, and s o  l e s s  time is wasted i n  "spike-swapping" 

dur ing  the  e l im ina t i on .  

Staircase bump-and-spike has  t he  advantage when t h e r e  a r e  one o r  

two very l a r g e  bumps t h a t  comprise ha l f  o r  more of t h e  rows and c o l ~ s  

of B. P3 becomes h igh ly  i n e f f i c i e n t  in processing t he se  l a r g e  bumps. 

F i l l - i n  w i th in  U is comparable, whi le  t he  s t a i r c a s e  technique y i e l d s  

a s p a r s e r  L. Moreover, the s t a i r c a s e  technique produces s u b s t a n t i a l l y  

fewer sp ike s  t h a t  have unacceptable p ivo t s .  

Storage requirements  vary somewhat with the  s i z e  of the  l a r g e s t  

block t h a t  must be processed,  bu t  a r e  moderate i n  any case .  S ince  a 

p ivo t  o rder  is f u l l y  chosen p r i o r  t o  e l im ina t i on ,  s t o r age  requi red  by 

t h e  bump-and-spike'heuristics may l a t e r  be used t o  ho ld  p a r t  of L and U .  

Local-minimization techniques 

Standard local-minimizat ion techniques dynamically choose the  

k t h  p i v o t  element from the  remaining unel iminated mat r ix ,  B ( ~ ) .  The 

chosen p ivo t  minimizes some "merit" func t ion  over  a l l  nonzero elements  of 

(k)  t h a t  meet c e r t a i n  numerical  to le rances .  P r a c t i c a l  me r i t  f unc t i ons  

a r e  computed from two s e t s  of va lues :  r ( k ) ,  the  number of nonzeroes i n  
i 

row i of B ( ~ ) ,  and c i k ) ,  the  number of nonzeroes i n  col- j of B (k)  . 



Local minimization vas  f i r s t  suggested by Markowitz [ 3 4 ] ,  who proposed 

t h a t  t he  mer i t  of  element (1. j) be ( r ( k )  - l ) ( c i k )  - 1 ) ;  no s u b s t a n t i a l l y  
i 

b e t t e r  mer i t  func t ion  has  been found s ince .  

Proposed s t a i r c a s e  local-minimizat ion techniques [15] d i f f e r  by 

l i m i t i n g  t he  minimization t o  roughly one period of O(k) a t  a time. 

A s  a consequence both t h e  rows and columns of B a r e  pivoted in per iod  

order .  It can a l s o  be  shown t h a t  f i l l - i n  is l im i t ed  t o  a small p a r t  of 

(k) ~ ( ~ ) - - r o u g h l ~  two per iods  o r  less--while the  remainder of 0 i s  j u s t  

t he  same a s  B.  

S t a i r c a s e  local-minimization o f f e r s  c l e a r  economies in both 

execution tFme and s to r age  space. A l l  of the  work a t  t he  k t h  pivot- 

minimizing t he  . mer i t  func t ion ,  updating !3(k) t o  0 (k+l), and updating 

r ( k ) ,   is confined t o  t he  rows and columns of one o r  two per iods ,  
i j 

whereas t h e  s tandard  technique must dea l  v l t h  t he  e n t i r e  0 (k) . Storage  

(k) is requi red  only f o r  t he  p a r t  of 0 . a l s o  one o r  two periods.  bhat 

d i f f e r s  from B. 

For l a r g e  problems of many periods,  the  d i f f e r ences  i n  requi red  

s to r age  may be innnense. As a r e s u l t ,  s t a i r c a s e  local-minimization may be 

a b l e  t o  use simpler  o r  more e f f i c i e n t  s t o r age  s t r a t e g i e s  than standard 

local-minimization. During e l im ina t i on  by the  s tandard  technique the  

uneliminated B ( ~ )  sh r inks  v h i l e  L and U grow; thus some s o r t  of 

dynamic s to r age  a l l o c a t i o n  is necessary when B(k), L and U a r e  too 

l a r g e  t o  be s t o r ed  f u l l y  toge ther .  By con t r a s t ,  under t he  s t a i r c a s e  

technique t he  a c t i v e  p a r t  of 0 (k)  i s  small  and f a i r l y  cons tan t  i n  s i z e ,  

and might w e l l  be kept  in a f ixed  vork a r ea .  



Standard l o c a l  minimizat ion does seem t o  u s u a l l y  produce a s p a r s e r  

L and U, a s  might be  expected:  i t  conducts  i t s  minimizat ion over  a much 

g r e a t e r  number of p o t e n t i a l  p i v o t s .  I n  t h e  wors t  c a s e  i n  [15]  t h e  s t a i r -  

case  technique produced about  twice t h e  f i l l - i n  (47% v s  22%); i n  some 

cases  i t  d i d  n e a r l y  a s  v e l l ,  however, and i n  one i t  v a s  d i s t i n c t l y  b e t t e r .  

Comparison of t echniques  

Choice of  a sparse -e l imina t ion  technique cannot  be s e p a r a t e d  from 

choice  of an upda t ing  method ( a s  exp la ined  p r e v i o u s l y ) ,  and both choices  

a r e  s e n s i t i v e  t o  t h e  n a t u r e  and a v a i l a b i l i t y  of s t o r a g e .  Consequently i t  

is  impossible  t o  recommend one c l a s s  of  techniques-bump-and-spike o r  

local-minimization-over t h e  o t h e r  c a t e g o r i c a l l y .  Each may have i t s  p l a c e  

i n  c e r t a i n  s i t u a t i o n s .  

Indeed, the  evidence of [15]  s u g g e s t s  t h a t  e v e r y  technique  o u t l i n e d  

in t h i s  s e c t i o n  ( s t a n d a r d  and s t a i r c a s e  bump-and-spike, s tandard  and 

s t a i r c a s e  local-minimizat ion)  o f f e r s  t h e  l o v e s t  f i l l - i n  f o r  c e r t a i n  bases .  

E i t h e r  of t h e  s t a i r c a s e  t echniques  should be accep tab ly  f a s t ,  and a l l  b u t  

t h e  s t a n d a r d  local-minimizat ion have unproblematical  s t o r a g e  r e q u i r e u e n t s .  

S t a i r c a s e  bump-and-spike techniques  app ly  j u s t  a s  w e l l  t o  higher-  

o r d e r  s t a i r c a s e s .  S t a i r c a s e  local-minimizat ion might a l s o  be adapted t o  

handle  h igher -order  problems, b u t  t h e  e x t e n t  of f i l l - i n  vould be g r e a t e r  

and hence t h e  sav ings  would b e  l e s s .  



4. SOLVING LINEAR SYSTEMS UITH STAIRCASE BASES 

Both proposed s t a i r c a s e  e l imina t ion  techniques order  t h e i r  row 

p ivo t s  by period:  all rove i n  period 1 a r e  pivoted f i r s t ,  then a l l  rows 

in period 2, and so  f o r t h .  S t a i r c a s e  local-minimization a l s o  o rde r s  a l l  

columu p ivots  by period,  a s  does s t a i r c a s e  bump-and-spike with t h e  excep- 

t i on  of c e r t a i n  columns ( t h e  i n t e rpe r iod  sp ikes)  t h a t  p ivot  a f t e r  o the r  

columns of l a t e r  periods.  

This  s e c t i o n  desc r ibe s  how these  s t a i r c a s e  p i v o t  o rde r s  can be 

taken advantage of  t o  make t he  FIXAN and BTRAN r o u t i n e s  more e f f i c i e n t .  

A p a r t i t i o n  of t he  L  and U f a c t o r s  by period is f i r s t  defined more 

formally,  a f t e r  which each so lu t i on  routine-FTRANL, BRRANU, FTRANU, BTRANL- 

is taken up in tu rn .  

Period p a r t i t i o n s  of t h e  L  and U f a c t o r s  

In the  n o t a t i o n  of Sect ion 2, t he  b a s i s  B a t  an a r b i t r a r y  

i t e r a t i o n  is f ac to red  a s  

In  terms of  t h i s  f a c t o r i z a t i o n  and t h e  s t a i r c a s e  c o n s t r a i n t  matr ix A, 

one may def ine  t h e  fol lowing i nd i ce s  f o r  any per iod  1 :  

Xe f i r s t  row of POB whose corresponding row of A is 

in period L o r  l a t e r  

T u f i r s t  column of BQk from period e o r  l a t e r  of  A. 



Necessari ly X a  ( A L + l ,  pa( ue+l f o r  any f a c t o r i z a t i o n  a s  above. Thus 

{A1,. . . , At} and u ,  . . . , u t  p a r t i t i o n  the  rows and columns, respec- 

T T 
t i v e l y ,  of POBQk by per iod .  Since the rows of POBQk correspond t o  the  

rows of Lo, t h e  X's can a l s o  be thought of a s  p a r t i t i o n i n g  Lo; anal-  

oguously, t he  p ' s  p a r t i t i o n  "k. 

I n  genera l  these  p a r t i t i o n s  a r e  no t  p a r t i c u l a r l y  u s e f u l ,  a s  t h e  

A's and u ' s  a l l  t end  t o  be small. In  an  extreme case ,  f o r  example, i f  

the  f i r s t  row of POB is a period-t  row then A1 - A t  = 1. I t  is 

thus necessary  t o  show t h a t  t he  s t a i r c a s e  p ivo t ing  techniques y i e l d  worth- 

while  p a r t i t i o n s  whose X's and u ' s  a r e  more o r  l e s s  evenly spread  out .  

Consider f i r s t  a f a c t o r i z a t i o n  wi th  no updates,  P ~ B Q ~  - LOUO. 

Cer ta in ly  t h e  s t a i r c a s e  techniques,  appl ied  t o  the s t a i r c a s e  s t r u c t u r e  

t h a t  B i n h e r i t s  from A,  y i e l d  good p a r t i t i o n s .  E i t h e r  technique y i e l d s  

= l 1  mi + 1. For bump-and-spike ua  2 A t ,  and u a  - X a  i f  t h e r e  a r e  

a-1 
no a l l - z e ro  rows in B E E ;  f o r  l o c a l  minimization, pa  = l1 n + 1. 

i 

The s i t u a t i o n  is s l i g h t l y  more complicated i f ,  a s  suggested i n  

Sec t ion  1, B is put  i n  reduced s tandard  s t a i r c a s e  form before  t he  s t a i r -  

case  p ivo t ing  techniques a r e  appl ied .  Some rows of B t h a t  correspond t o  

p e r i o d 4  rows of A may then be pivoted a s  i f  they were i n  period a-1. 
a-2 a-1 As a consequence, one can say  only t h a t  l1 mi + 1 X a  ( l1 m + 1; 

i 

the  X's may be smal le r ,  and the  A-part i t ion l e s s  r egu l a r .  Nevertheless ,  

t he  A's a r e  s t i l l  we l l  spaced and c o n s t i t u t e  a u s e f u l  p a r t i t i o n ,  par t icu-  

l a r l y  i f  t he  per iods  a r e  smal l  and numerous. 

A s  B changes and t he  f a c t o r i z a t i o n  is updated, Lo and t he  

A - p a r t i t i o n  a r e  unchanged. Uo is  updated t o  Uk, however, and in the  pro- 

c e s s  the  u -pa r t i t i on  i s  a l t e r e d .  S p e c i f i c a l l y ,  a l l  of t he  common update 



T 
methods have t h e  fol lowing ac t i on :  a column of BQk-l i s  de l e t ed ,  and 

a new column i s  i n s e r t e d  a t  some poin t  a f t e r  the  de l e t ed  column t o  produce 

T 
BQk. The u -pa r t i t i on  up t o  t he  de l e t ed  column and a f t e r  t he  i n s e r t e d  

c o l m  is  t he r e fo r e  unchanged; bu t  i f  u Q  i s  between t h e  two columns then 

i t s  va lue  drops by 1. The u -pa r t i t i on  is thus  s lowly degraded. Degradation 

should no t  be severe ,  however, f o r  l a r g e  LPs with t h e  u sua l  50-100 updates 

between r e f a c t o r i z a t i o n s .  

It may be concluded, then,  t h a t  s t a i r c a s e  p ivo t - s e l ec t i on  tech- 

n iques  do y i e l d  A ' s  and u ' s  t h a t  c o n s t i t u t e  non - t r i v l a l  p a r t i t i o n s  of 

L and U by period.  

S t a i r c a s e  FTRANL 

A t  each i t e r a t i o n  FTRANL s t a r t s  by so lv ing  a system l i k e  

( P & ~ ) X  - a ,  o r  equ iva l en t l y  L x - P a ,  where a is  a col- of A.  0 0 

I f  a is  from per iod  11, then i t  is  zero on rows of per iods  1 through 

11-1. Consequently, 

and t he  main loop of t h e  FTRANL r o u t i n e  may begin a t  index 
A t  

a s  ex- 

p la ined  in Sec t ion  2. 

I n  s h o r t ,  when FTRANL transforms a p e r i o d 4  c o l m  i t  can s t a r t  

a t  t h e  11th period in Lo, r a t h e r  than a t  t h e  beginning.  The r e s u l t a n t  

sav ings  w i l l  be small, however, s i n c e  FTRANL a l r eady  handles right-hand 

s i d e  zeroes e f f i c i e n t l y .  

Fur ther  sav ings  might be  pos s ib l e  i f  one kep t  t r a ck  of upper- 

sub-s ta i rcases  of Bo, as descr ibed  i n  Sec t ion  1. The i dea  is a s  fol lows:  



i f  Bo has  an upper-sub-staircase i n  p e r i o d s  1 through 11, and i f  a 

l i e s  i n  per iod  11 o r  e a r l i e r ,  then t h e  s o l u t i o n  r o f  ( P > ~ ) X  = a is 

zero  i n  p e r i o d s  L+l and l a t e r .  Thus t h e  m a i n  loop of  FTRANL may be 

terminated prematurely. As a p r a c t i c a l  m a t t e r ,  however, the  l o g i c  of  such 

a scheme i s  f a i r l y  complex, and computat ional  e x p e r h n t s  [15]  have 

shown only  a moderate number o f  upper-sub-staircases;  s o  t h e  p o t e n t i a l  

sav ings  a r e  probably n o t  worth t h e  t r o u b l e .  

S t a i r c a s e  BTRANU 

At each i t e r a t i o n  BTRANU s o l v e s  a system l i k e  (UkQk)y = x.. where 

x is a s o l u t i o n  v e c t o r  from FTRANL. Since  FTRANL h a s  so lved  wi th  

Lo, L1,. . . , L , ,  t h e r e  is no t e l l i n g  where ze roes  may be  in x. Hence 

BTRANU cannot b e n e f i t  s p e c i a l l y  from a s p a r s e  right-hand s i d e .  

A small  sav ing  i s  p o s s i b l e ,  however, i f  t h e  l o c a t i o n  of ( lower)  

square  s u b - s t a i r c a s e s  in B is known. Suppose t h a t  the  l i n e a r  system a t  

hand is By = a,  t h a t  a is from per iod  j ,  and t h a t  B h a s  a sub-s ta i r -  

11 
c a s e  a t  per iod  11 < j t h a t  is, m i  = l lni) .  Then t h e  system can be 

p a r t i t i o n e d  a s  

where B(") and B ( ~ ~ )  a r e  t h e  square  sub-s ta i rcases .  C l e a r l y  t h e  solu-  

(1)  t i o n  must have y(') = 0, y being j u s t  t h e  p a r t  of  y t h a t  corresponds 

t o  t h e  columns of B in p e r i o d s  1 through k. 
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T 
Now i f  By a is w r i t t e n  i n s t e a d  a s  (BQk) (Qky) = a ,  t h e  pre- 

ceding s ta tement  i s  e q u i v a l e n t  t o  t h e  fol lowing:  an element of Q y k 

w i l l  be zero i f  it corresponds t o  a column of B Q ~  i n  per iods  1,. . . ,a. . 
That is, 

(Qky), = 0. i I 1, .. . ,u  -1 a. 

Thus t h e  main l o o p  o f  BTRANU, which computes (Qky)i, i = m,. . . ,  1, can 

s t o p  a f t e r  t h e  ua.-th pass ;  t h e  remainder of t h e  s o l u t i o n  is zero.  

S t a i r c a s e  FTRANU 

ETRANU s o l v e s  a t  each i t e r a t i o n  a system l i k e  (%Q~)'x = Z,  

T 
o r  Ukx = Qkz, where z is a p r i c i n g  form chosen in one of s e v e r a l  ways 

( s e e  Sec t ion  2 ) .  Usual ly mst of z is  zero ,  and o f t e n  i t  can be de te r -  

mined t h a t  z is zero  i n  a l l  coltnms of t h e  f i r s t  L per iods  of t h e  b a s i s ;  

d u r i n g  Phase I of  t h e  s implex method, f o r  example, t h i s  would occur  i f  a l l  

b a s i c  v a r i a b l e s  of t h e  f i r s t  pe r iods  were f e a s i b l e .  It would then 

fo l low t h a t  

and t h e  main loop  of  FTRANU could  begin a t  ua. a s  exp la ined  in S e c t i o n  2. 

T h i s  r e s u l t  i s  analogous t o  t h e  one f o r  FTRANL above: when 

FTRANU t ransforms  a z t h a t  is  zero  p r i o r  t o  per iod  11,  it can  s t a r t  a t  

t h e  llth per iod  in Uk r a t h e r  than a t  t h e  beginning.  However, t h e  

p o t e n t i a l  s a v i n g s  a r e  g r e a t e r  since--if 
Uk is s t o r e d  on ly  by colum- 

J?TRANU cannot  normally b e n e f i t  from s p a r s i t y  i n  z. I n  p r a c t i c e  t h e  

sav ings  depend on how U is a c t u a l l y  s t o r e d  and on how z is  handled.  



S t a i r c a s e  BTRANL 

BTRANL produces a vec to r  n t h a t  is employed in "pricing" non- 

b a s i c  colllllns of A; s p e c i f i c a l l y ,  each i t e r a t i o n  computes numerous inner  

T 
products  n a wi th  columns a .  I f  a is from period II then i t  is  zero 

except  on rows of per iods  II and II+l, and s o  only t h e  elements of n 

T 
t h a t  correspond t o  these  per iods  a r e  needed t o  form n a. Since t h e  

simplex method seldom cons iders  a l l  nonbasic columns a t  one i t e r a t i o n ,  i t  

can be arranged t h a t  only c e r t a i n  per iods  of n a r e  needed. (See 1161 

f o r  a more ex tens ive  explanation.)  

Aeeume,therefore, t h a t  a t  the  cu r r en t  i t e r a t i o n  one only needs 

elements of n corresponding t o  rows of per iods  k and l a t e r .  The vec to r  

T T 
n is t h e  so lu t i on  of B n = Z. o r  (POB) (Pan) - z. Thus, equ iva l en t l y ,  

one needs only elements of P n t h a t  correspond t o  r o w  of POB i n  0 

per iods  E and l a t e r .  It w i l l  s u f f i c e ,  t he r e fo re ,  t o  compute (Pon)i, 

i = X e ,  ..., m. 

T T BTRANL a c t u a l l y  produces t h e  elements of n by so lv ing  (POLO) n =  X, 

T o r  LO(POn) - x, where x has  been obtained from preceding t ransformat ions  

of z in FTRANU and BTRANL. Each pass through BTRANL computes another  

element of Pon, in reverse  order:  (Pon)m,... , (POn)l. Thus t o  compute 

the  des i red  pa r t  of n one need only  run BTRANL through t h e  Xeth pass 

of t h e  main loop;  the  remainder may be skipped. 

The p o t e n t i a l  savings in t h i s  ins tance  a r e  considerable.  Using 

o n e o f t h e  pa r t i a l -p r i c ing  schemes of [16] s u b s t a n t i a l  amomts of computa- 

t i o n  may be avoided, on t h e  average, a t  each i t e r a t i o n .  This  is e s p e c i a l l y  

important a s  BTRANL is one of t h e  l e s s  e f f i c i e n t  t ransformat ions ,  being 

unable t o  take  advantage of right-hand s ide  s p a r s i t y  when 
Lo i s  s to r ed  

in t h e  usual columwise fash ion .  



5. COMPUTATIONAL EXPERIENCE 

This  s e c t i o n  r e p o r t s  on initial computat ional  e x p e r b e n t s  v i t h  some 

of  t h e  p reced ing  i d e a s .  The r e s u l t s  i n d i c a t e  t h a t  s t a i r c a s e  a d a p t a t i o n  of  

t h e  s implex method does make a s i g n i f i c a n t  d i f f e r e n c e :  g e n e r a l l y  much 

l e s s  time is spen t  in c e r t a i n  r o u t i n e s ,  w h i l e  more t i m e  is s p e n t  i n  o t h e r s .  

O v e r a l l  t h e  s t a i r c a s e  runs were measurably f a s t e r ,  and i n  one c a s e  t h e  

sav ings  were q u i t e  s u b s t a n t i a l .  Mnreover, i t  appears  t h e r e  is  s t i l l  room 

f o r  improvement in subsequeat  implementations. 

For  t h e  t e s t  runs  an e x i s t i n g  LP code, WINOS [38,48], was modif ied 

t o  recognize  s t a i r c a s e  s t r u c t u r e  and t o  apply o p t i o n a l l y  t h e  s t a i r c a s e  

techniques of  S e c t i o n s  3 and 4. Each t e s t  LP could  then  be  so lved  twice 

-once w i t h  t h e  s t a i r c a s e  f e a t u r e s  tu rned  o f f ,  once wi th  them on--and 

t h e  r e s u l t s  could b e  meaningful ly compared. D e t a i l s  of  t h e  t e s t  code and 

t h e  experimental  s e t u p  a r e  given in Appendix B. 

MINOS employs a bump-and-spike f a c t o r i z a t i o n  v i t h  Saunders'  up- 

d a t i n g  technique. Consequently t h e  s t a i r c a s e  bump-and-spike technique v a s  

implemented in t h e  test v e r s i o n ,  and all t e s t  r e s u l t s  bear  d i r e c t l y  o n l y  

upon bump-and-spike methods. Never the less ,  from c e r t a i n  r e s u l t s  one may 

make q u i t e  f a v o r a b l e  s p e c u l a t i o n s  about  t h e  expected performance of  s t a i r  

c a s e  local-minimizat ion techniques ,  a s  descr ibed  f u r t h e r  below. 

To keep t h e  p r e s e n t a t i o n  compact,only s h o r t  t a b l e s  of r e s u l t s  a r e  

p resen ted  i n  t h i s  s e c t i o n .  Graphs of more e x t e n s i v e  test d a t a  a r e  c o l l e c t e d  

i n  Appendix C .  



Overa l l  r e s u l t s  

Seven mediunrto-large-scale l i n e a r  programs were used i n  t he  t e s t s .  

A l l  a r e  from app l i ca t i ons ,  and a r e  of d i s s i m i l a r  s t r u c t u r e s  ( a s ide  from 

being s t a i r c a s e ) .  Thei r  dimensions a r e  a s  follows: 

PERIODS 

SCAGRZS 25 

SCRS8 1 6  

SCSD8 39 

SCFXM2 8 

SCTAPZ 10 

PILOT 9 

BP1 6 

ROWS - 
472 

491 

39 8 

661 

1101 

723 

822 

COLUMNS 

500 

1169 

2750 

914 

1880 

2.789 

15 71 

NONZERO 
COEFFICIENTS 

ITERATIONS TO 
SOLVE FROM 
SLACK START 

For t he  sake of  economy, PZLOT and BPI were t e s t ed  on runs of 1000 and 

750 i t e r a t i o n s ,  r e spec t i ve ly ,  s t a r t i n g  from advanced bases. The r e s t  

were run t o  op t ima l i t y  from an a l l - s l ack  s t a r t .  Addi t iona l  Information 

about t h e  t e s t  LPs is  co l l ec t ed  in Appendix A, and Appendix B expla ins  

i n  more d e t a i l  how they were solved. 

Raw r e s u l t s  from the  t e s t  runs,  s tandard ized  t o  seconds 

per 1000 i t e r a t i o n s ,  were a s  follows; 



TOTAL TIME 
STANDARD STAIRCASE % CHANGE 

SCFXM2 43.4 42.2 - 3% 

S CTAP 2 67.2 67.1 04 

PILOT 155.7 106.4 -32% 

BPI 181.8 189.7 + 4% 

Savings were s u b s t a n t i a l  f o r  PILOT, and respec tab le  f o r  SCSD8. For t he  

o the r s  t he  gross d i f f e r ence  between the  standard and s t a i r c a s e  techniques 

was small, though the  l a t t e r  performed worse only on BPI. 

It is misleading t o  consider  only these  t o t a l s ,  however. When 

the  times a r e  broken down by function-as i n  the f i r s t  s e t  of graphs i n  

Appendix C--it can be seen t h a t  gains i n  some a r ea s  tend t o  be o f f s e t  by 

l o s se s  i n  o thers .  n ~ e  s t a i r c a s e  vers ion  has  an edge i n  simplex p r i c ing  

and p ivot ing ,  while i t  is usua l ly  s l i g h t l y  behind in updating t he  LU 

fac to r i za t i on ;  i t  ranges from much f a s t e r  t o  somewhat s l w e r  in p ivo t  

s e l e c t i o n  f o r  Gaussian e l imina t ion ,  bu t  i s  almost always slower in computing 

the  L and U f a c t o r s .  Miscellaneous rout ines  consume a good 10-20% of 

the  time, much of which could be saved in p r a c t i c a l  ( r a t h e r  than t e s t )  

circumstances. 

Thus much more is  t o  be learned by examining the  times of i nd iv idua l  

r ou t ine s  and funct ions .  The fol lowing subsec t ions  consider  f i r s t  the  simplex- 

i t e r a t i o n  rou t ine s ,  and then the  LU-factorization ones.  



I t e r a t i n g  r o u t i n e s  

The s implex method spends a  major i ty  of i t s  time in t a s k s  t h a t  

a r e  repea ted  a t  each i t e r a t i o n :  choosing a  column t o  e n t e r  t h e  b a s i s  

( p r i c i n g ) ,  determining which column l e a v e s  t h e  b a s i s  ( p i v o t i n g ) ,  and r e v i s i n g  

t h e  b a s i s  f a c t o r i z a t i o n  accord ing ly  (upda t ing) .  The LP code 's  " i t e r a t i n g "  

r o u t i n e s  c a r r y  o u t  t h e s e  t a s k s .  

For the  t e s t  problems, t o t a l  time spen t  i n  t h e  i t e r a t i n g  r o u t i n e s  

--again, normalized t o  seconds p e r  thousand i terat ions--was a s  followe: 

ITERATING TIME 
STANDARD STAIRCASE 4 CHANGE 

Qere  t h e  r e s u l t s  a r e  somewhat more s t r i k i n g ,  f o u r  of  t h e  seven shoving 

sav ings  of  10-20%. 

Again more can be  l e a r n e d  from a f u r t h e r  breakdown of  t h e  times. 

given by t h e  second s e t  of  graphs i n  Appendix C. The g r e a t e s t  d i f f e r e n c e  

by f a r  is  in BTRANL, which is s i g n i f i c a n t l y  f a s t e r  with t h e  s t a i r c a s e  v e r s i o n  

in every i n s t a n c e .  There is a corresponding,  b u t  smal le r ,  e f f i c i e n c y  in 

F'l'&UL. The f i g u r e s  f o r  t h e s e  two r o u t i n e s  a r e  a s  fo l lows:  



FTRANL B TRANL 
STD - STAIR 4 CHNG - STD - STAIR % CHNG 

SCAGR25 2.7 1.9 -29% 6.7 3.5 -48% 

SCRS8 2.4 1.5 -36% 5.7 3.4 -41% 

SCSD8 3.9 2.9 -25% 8.2 4.7 -42% 

S CFXM2 2.6 1 . 9  -28% 7.8 5.4 -32% 

S W 2  3.3 2.6 -21% 9.2 6.6 -28% 

PILOT 13.0 8.0 -38% 22.9 12.7 -45% 

BPI 14 .8  12.6 -15% 32.5 26.9 -1 7% 

Roughly t h e r e  is  a 30-50% s a v i n g  in BTRANL, and a  20-40% sav ing  in J?TRANL. 

There is a smal l  b u t  n o t i c e a b l e  tendency of  t h e  s t a i r c a s e  v e r s i o n  

t o  run slower i n  BTRANU and FTRANU. Most l i k e l y  t h i s  behavior  is  a con- 

sequence of  t h e  LU f a c t o r i z a t i o n :  t h e  s t a i r c a s e  bump-and-spike p i v o t  o rder  

t ends  t o  y i e l d  a  denser  U. 

S o w  of t h e  d i f f e r e n c e  in BTRAN and FTRAN t imings should be  due 

t o  t h e  methods of  Sec t ion  4. The e f f i c a c y  of t h e s e  nethods cannot  be t o l d  

from t h e  above d a t a ,  however, s i n c e  t h e  same t imings a r e  s e n s i t i v e  t o  d i f f e r -  

ences  i n  L and U d e n s i t y .  Consequently a  s e p a r a t e  s e t  of runs w a s  made, 

employing t h e  s t a i r c a s e  LU f a c t o r i z a t i o n  b u t  n o t  t h e  S e c t i o n  4 enhancements. 

The d i f f e r e n c e s  were a s  fo l lows:  



TIME SAVED 
BY EFFICIENCIES 
I N  FTRAN, BTRAN 

(SECTION 4) 
X OF 

TOTAL TIME 

15% 

Thus t he  e f f i c i e n c i e s  in FTRAN and BTRAN c u t  t o t a l  running times 9-15% 

in most cases ;  t h e  sav ings  would be more pronounced a s  a percentage of 

i t e r a t i n g  time only .  P r ed i c t ab ly ,  LPs of many per iods  tended t o  show the  

g r e a t e s t  d i f f e r ences .  

Comparable sav ings  should be r e a l i z e d  i f  s t a i r c a s e  bump-and-spike 

p ivo t  s e l e c t i o n  i s  rep laced  by s t a i r c a s e  l o c a l  minimizat ion,  s i n c e  t h e  

methods of Sec t ion  4 apply equa l ly  w e l l  t o  e i t h e r .  Hence l o c a l  minimization 

may w e l l  be duper ior  f o r  LPs such a s  SCAGR25 and SCFXM2 whose s t a i r c a s e  

fac tor iza t ions- -as  r epo r t ed  i n  [15]-are notably denser  under bump-and-spike. 

The one sou r  no t e  in the  t h r e e  t a b l e s  above is BPI, on which t he  

s t a i r c a s e  i t e r a t i n g  r o u t i n e s  seem t o  perform r a t h e r  poorly. On c l o s e r  

examination, however, t h i s  is n o t  e n t i r e l y  s u r p r i s i n g ,  as BP1 d i f f e r s  

s i g n i f i c a n t l y  from the  o t h e r  Us. Whereas the  o the r s  a r e  f i r s t - o r d e r  s t a i r -  

cases  ( o r ,  in the  case of PILOT, very n e a r l y  f i r s t - o r d e r ) ,  BP1 has a l a r g e  



number of  nonzeroes below the  s t a i r c a s e ;  i t s  form is i n  f a c t  c l o s e r  t o  dual- 

angula r .  BPl's bases  consequently tend t o  be unbalanced. Hence t h e  s t a i r -  

c a s e  technique produces cons iderab ly  more sp ikes ,  and a much denser  U f a c t o r .  

The r e s u l t :  much more time s p e n t  in FTRANU and BTRANU, o f f s e t t i n g  any ga ins  

in PTRANL and BTRANL. 

I t  thus  appears  t h a t  a good s t a i r c a s e  form is e s s e n t i a l  t o  success  

of t h e  s t a i r c a s e  t echniques .  BPl 's  s t a i r c a s e  arrangement was deduced from 

f a i r l y  s c a n t  in format ion ,  and is  e v i d e n t l y  inadequate.  A b e t t e r  s t a i r c a s e  

form may e x i s t ,  b u t  a b e t t e r  knowledge of  t h e  under ly ing  model may be necessary  

t o  f i n d  i t .  

F a c t o r i z i n g  r o u t i n e s  

At i n t e r v a l s  of  t y p i c a l l y  50-100 i t e r a t i o n s  a f r e s h  f a c t o r i z a t i o n  of  

t h e  b a s i s  is  computed by a s e p a r a t e  s e t  of  r o u t i n e s .  For bump-and-spike 

techniques,  t h e s e  " f a c t o r i z i n g "  r o u t i n e s  f a l l  i n t o  two c l a s s e s :  ones t h a t  

s e l e c t  a p i v o t  o r d e r ,  and ones t h a t  compute t h e  L and U f a c t o r s .  

For t h e  test problems, t o t a l  t i m e  i n  f a c t o r i z i n g  routines-normalized 

t o  seconds per  10 refactor izat ions--was a s  fol lows:  

SCAGR2S 

SCRS8 

SCSD8 

SCF2w 

SCTAP2 

PILOT 

BPI 

FACTORIZING TIME 
STANDARD STAIRCASE % CHANGE 

+IS% 

+22% 

-39% 

+4 7% 

+80% 

- 70% 

- 6% 



The outcomes appear  t o  vary wi ld ly .  However, they a r e  the  consequence of 

a few simple p a t t e r n s  which a r e  revea led  by looking a t  the  p ivo t - s e l ec t i on  

rou t i ne s  and LU-computation rou t i ne s  s epa ra t e ly ,  with re fe rence  t o  t he  t h i r d  

s e t  of graphs i n  Appendix C. 

P ivo t  s e l e c t i o n  involves  a r ou t i ne  f o r  t he  P3 h e u r i s t i c ,  a block- 

t r i a n g u l a r i z a t i o n  r o u t i n e  ( f o r  the  s tandard  technique on ly ) ,  and main 

rou t i ne s  t o  c a l l  t he se  and record  t he  s e l e c t e d  p ivo t s .  The s t a i r c a s e  

technique 's  main rou t i ne  seems t o  run usua l ly  somewhat longer ,  probably 

because i t  is more complicated. The o t h e r s '  t imes a r e  summarized below: 

STANDARD 
P3 - BLK h TOTAL 

SCAGR25 0.4 0.2 0.6 

SCRS8 0.2 0.2 0.4 

SCSD8 1.1 0.4 1 .5  

SCFXMZ 0.2 0.5 0.7 

SCTAP2 0.0 0.5 0.5 

PILOT 20.4 1 .0  21.4 

BP1 13.1 2.0 15.1 

MEDIAN S I E ,  
LARGEST BUMP 

4 5 

The behavior  of P3 is  c l e a r l y  c r i t i c a l .  When bumps a r e  small  P3 is  q u i t e  

f a s t ;  bu t  i t  begins t o  slow down whem bump s i z e  passes  100, and i t  i s  

extremely i n e f f i c i e n t  on bumps af s i z e  400 o r  500. PILOT, t he  worst  case  

here ,  spends 16% of its t o t a l  running t ime i n  P3 alone! By ex t r apo l a t i on ,  

i t  seems l i k e l y  t h a t  P3 w i l l  be p roh ib i t i ve ly  slow f o r  l a r g e r  bumps. Thus 

a s t a i r c a s e  bump-and-spike technique (o r  e l s e  an e f f i c i e n t  local-minimiza- 

t i o n  technique) may be e s s e n t i a l  f o r  l a r g e r  ve r s i ons  of models l i k e  SCSD8 

and PILOT. 



The main LU computation rou t i ne s  employ FTRANL and BTRANL a s  sub- 

r ou t i ne s :  Fl'RANL so lve s  f o r  the  next  colrrmn of L and U ( a s  descr ibed  Fn 

(k)  Sec t ion  2 ) ;  BTRANL eolves f o r  row k of 0 when a column in te rchange  

("spike swap") is n e c e s s i t a t e d  by an unacceptable p ivo t  element. The t e s t  

p rob l em gave t h e  fo l lowing  r e s u l t s  (where SWAPS i s  t h e  maximum number of 

swapped sp ike s  per  f a c t o r i z a t i o n ) :  

STANDARD LU STAIRCASE LU 
MAIN FTRAN BTRAN SWAPS MAIN FTRAN BTRAN S W X  ------- 

SCAGR25 0.2 0.0 0.0 3 0.6 0.1 0.1 20 

SCRS8 0.2 0.0 0.0 1 0.4 0.1 0.1 11 

SCSD8 0.4 0.1 0.0 6 0.5 0.1 0.1 11 

S CFXH2 0.5 0 .1  0.0 2 1.0 0.2 0 .1  8 

SCTAP2 0.2 0.0 0.0 0 0.7 0.1 0.4 19  

PILOT 3.3 3.8 2.4 27 3.2 1 . 8  0.8 1 6  

BPI 3.7 3.8 2.4 28 6.4 5.8 7.2 49 

Pred i c t ab ly ,  t he  times a r e  s e n s i t i v e  t o  t he  numbers of sp ike  swaps; each 

swap r equ i r e s  another  BTRANL and FTRANL, p lus  e x t r a  work in t h e  main 

rou t i ne .  Experience wi th  PILOT and o t h e r  LPs [15] sugges ts  t h a t  t h e  s t a i r -  

c a s e  p ivo t  o rde r  may gene ra l l y  r e q u i r e  fewer swaps when t he  bumps a r e  b i g  

( a s  f o r  PILOT) and t h e  s t a i r c a s e  is  well-balanced (un l i ke  BPI 'S) .  The 

o t h e r  t e s t  LPs have smal le r  bumps and r equ i r e  fewer swaps wi th  t h e  s tandard  

p ivot  o rder .  

Again t he  d a t a  sugges t  t h a t  s t a i r c a s e  local-minimization techniques 

might be p r e f e r ab l e  f o r  t he  small-bump s t a i r c a s e  LPs. An e f f i c i e n t  imple- 

mentation of l o c a l  minimization [12,45] i n c u r s  only a  small  e x t r a  c o s t  in 

r e j e c t i n g  any unaccepatably smal l  p ivo t  element. 



Comparison wi th  a commercial code 

The PILOT model was f requent ly  solved--on t h e  same computer a s  used 

f o r  the above tests--by a commercially-marketed machine-language LP code, 

HPS I11 [37]. These runs employed the  WHIZARD simplex rout ine  of MPS 111, 

which incorpora tes  a  bump-and-spike f a c t o r i z a t i o n  scheme. Various system 

parameters were s e t  from experience t o  y i e l d  f a s t  PILOT runs. 

For comparison, WIZARD was run 1000 i t e r a t i o n s  from t h e  same 

s t a r t i n g  b a s i s  a s  used above with MINOS. The running times were a s  fol lows : 

MINOS, standard p ivot  s e l e c t i o n  155.7 s ec  

MPS III/WHIZARD 114.7 s e c  

MINOS, s t a i r c a s e  p ivot  s e l e c t i o n  106.4 sec .  

MINOS did  r equ i r e  considerably more s torage ,  pr imar i ly  because i ts  s to r age  

scheme f o r  t h e  U f a c t o r  could not  e f f i c i e n t l y  accommodate a  l a r g e  number of 

spikes.  U could probably be s t o r e d  more compactly, however, without  

s i g n i f i c a n t  e f f e c t  upon the  MINOS timings. 

Nothing wry d e f i n i t e  can be i n f e r r e d  from these  f i g u r e s ,  s i nce  

MINOS and MPS I11 d i f f e r f n m a n y  ways; moreover, t h e  i n t e r n a l  s t r u c t u r e  

of t h e  l a t t e r  is l a r g e l y  mhown,  a s  is the  case wi th  many commrcia l  codes. 

Nevertheless,  i t  is g r a t i f y i n g  t h a t  MINOS-which is wr i t t en  i n  FORTRAU and 

intended more a s  a  t e s t  code-can compete with a supposedly f a s t  LP system. 

At t h e  l e a s t ,  one may conclude t h a t  t h e  t imings throughout t h i s  s e c t i o n  a r e  

probably q u i t e  r e a l i s t i c .  And the  s u p e r i o r i t y  of s t a i r c a s e  MINOS t o  MPS I11 

f o r  PILOT suggests  t h a t , f o r  a t  l e a s t  some l a r g e  s t a i r c a s e  problems, t he  tech- 

niques of t h i s  paper w i l l  o f f e r  s i g n i f i c a n t  savings.  



APPENDIX A: TEST PROBLEMS 

The l i n e a r  programs uaed in t h e  computat ional  experiments  of  

Sec t ion  5 a r e  descr ibed  i n  g r e a t e r  d e t a i l  below. The t a b u l a r  summarizes 

f o r  each LP a r e  l a r g e l y  se l f -exp lana tory ,  but  a few genera l  n o t e s  a r e  

a p p r o p r i a t e :  

A l l  a t a t i s t i c s  except  O B J  ELEM r e f e r  o n l y  t o  t h e  s t a i r c a s e  con- 

s t r a i n t  mat r ix ,  exc lud ing  t h e  o b j e c t i v e  rw and right-hand s ide .  I n  each 

c a s e  t h e  c o n s t r a i n t  matr ix,  A, h a s  been p u t  in reduced s tandard  form; 

DIAGONAL BLO(XS r e f e r s  t o  t h e  s t a i r c a s e  blocka AEE, OFF-DIAGONAL BLOCKS t o  

t h e  b locks  iE+l,E , and SUB-STAIR BLOCKS (when p r e s e n t )  t o  t h e  b locks  

AE+p8 s , AtL. 

Var iab les  (columns) a r e  i m p l i c i t l y  cons t ra ined  on ly  t o  be non- 

n e g a t i v e ,  u n l e s s  t h e r e  i s  an i n d i c a t i o n  t o  t h e  c o n t r a r y .  BOUNDED i m p l i e s  

i m p l i c i t  lower and upper bounds, FIXED i m p l i e s  f i x t u r e  a t  a given va lue ,  and 

FREE i m p l i e s  no i m p l i c i t  c o n s t r a i n t s .  

M4.X ELEM and HIN ELXM a r e  t h e  l a r g e s t  and smallest magnitudes of  

e lements  in A; LARGEST COL RATIO is t h e  g r e a t e s t  r a t i o  of magnitudes of  

e lements  in t h e  same column o f  A. Where v a l u e s  a r e  given BEFORE SCALING 

and AFTER SWING,  al l  t e s t s  were conducted v i t h  A s c a l e d  a s  descr ibed  

i n  Appendix B. Otherwise NO SCALING is  i n d i c a t e d .  



SCAGR25 

Test problem received from James K. Ho, Brookhaven National  

Laboratory, Upton, N . Y . ;  source no t  documented. 

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OB J 

- - - - -  ROWS COLS ELEMS DENS ELPIS PERIOD ROWS COLS ELEMS DENS - - 

GRAND TOTALS 

ROWS 4 71 (300 EQUALITIES, 171 IWQUALITIES) 

COLS 500 

ELMS 1554 

DENS 0.7% 

COEFFICIENTS 
NO 

SCALING 

MAXELEM 1 .3  

MIN E L M  2.0 x 10-1 

LARGEST COL RATIO 1.9 X 10-I 



SCRS8 

Derived from a model of t h e  United S t a t e s '  o p t i o n s  f o r  a t r a n s i t i o n  

from o i l  and gas  t o  s y n t h e t i c  f u e l s ;  documented i n  [27,33] .  

PERIOD 

1 

2 

3- 5 

6-8 

9 

10-12 

13-15 

1 6  

DIAGONAL BLOCKS 
ROWS COLS ELEMS DENS - - - -  

OFF-DIAGONAL BLOCKS 
ROWS COLS ELEMS DENS - - - -  

GRAND TOTALS 

ROWS 490 (384 EQUALITIES, 106 INEQUALITIES) 

COLS 1169 

ELEMS 3182 

DENS 0.6% 

BEFORE AFTER 
COEFFICIENTS SCALING SCALING 

MAX ELEM 

HIN ELEM 

LARGEST COL RATIO 4.5 X 1 0  
3 1.6 x lo1 



SCSD8 

A mult i -stage s tructura l  des ign  problem, documented i n  [ 2 6 ] .  

This is the only  s t a i r c a s e  t e s t  problem for  t h i s  paper i n  which the s t a g e s  

do n o t  represent  periods o f  time. 

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ 
PERIOD ROWS COLS ELEMS DENS -----  ROWS COLS ELEMS DENS ELEMS ---- - 

GRAND TOTALS 

ROWS 397 (ALL EQUALITIES) 

COLS 2750 

ELEHS 8584 

DENS 0 .8% 

NO 
COEFFICIENTS SCALING - 
HAX ELW 1 . 0  

KIN ELEM 2 . 4  x 10-I 

LARGEST COL RATIO 4 . 0  



s c m  

Tes t  problem received from James K. Ho, Brookhaven National  

Laboratory, Upton, New York; source no t  documented. 

PERIOD 

1 

2 

3 

4 

5 

6 

7 

8 

DIAGONAL BLOCKS 
ROWS COLS ELEMS DENS - - - -  

GRAND TOTALS 

Rows 
COLS 

nm 
DENS 

OFF-DIAGONAL BLOCKS 
ROWS COLS ELEMS DENS --- - 

660 (374 EQUALITIES, 286 INEQUALITIES) 

914 

518 3 

0.9% 

BEFORE AFTER 
COEFFICIENTS SCALING SCALING 

MAX ELM 1 .3  x 10 2 
1.1 x 10 

1 

MIN ELM 5.0 8.7 x lo-' 
LARGEST COL RATIO 1 . 3  x 10 5 

1 .3  x 10 2 



SCTAPZ 

A dynamic t r a f f i c  a s s ignment  problem, documented i n  [ 2 8 ] .  

The LP h a s  11 o b j e c t i v e  rows; t h e  o b j e c t i v e  named OBJZZZZZ was used i n  

a l l  tests. S t a t i s t i c s  below omit  t h e  o t h e r  t e n  o b j e c t i v e s .  

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OW 

-----  ROWS COLS ELEMS DENS ELEMS PERIOD ROWS COLS ELEMS DENS - 

GRAND TOTALS 

ROWS 1090 (470 EQUALITIES, 620 INEQUALITIES) 

COLS 1880 

ELEMS 6714 

DENS 0.3% 

COEFFICIENTS 
NO 

SCALING 
1 

MAX ELM 8 . 0  x l o A  
M I N  ELEM 1.0 

IARGEST COL RATIO 8 . 0  x 1 0  
1 



PIMT 

Derived from a v e l f a r e  equil ibrium model of t he  United S t a t e s '  

energy supply,  energy demand, and economic growth: seeks maximum aggregate 

consumer v e l f a r e  sub j ec t  t o  competi t ive market equil ibrium. The LP vas  

supplied by t h e  PILOT modeling p ro j ec t ,  Systems Optimization Laboratory, 

Department of Operat ions Research, Stanford Universi ty;  i t  is documented 

i n  [40]. 

DIAGONAL BLOCKS 
PERIOD ROWS COLS ELUS DENS - ---- 

OFF-DLAGONAL BMCKS 
ROWS COLS ELEMS DENS ---- 

SUB-STAIR 
BLOCKS 

ELEMS DENS -- 

GRAND TOTALS 

ROWS 722 (583 EQUALITIES, 139 INEQUALITIES) 

COLS 2789 ( 80 FREE, 296 BOUNDED, 79 FIXED) 

ELMS 9126 

DENS 0.5% 

BEFORE AFTER 
COEFFICIENTS SCALING SCALING 

MAX ELPI 4.8 x 10 2.0 x 10 1 

MIN ELPI 1 .4  4.9 

LARGEST COL RATIO 7.0 x lo6  4.2 x 10 2 



BP1 - 

Developed by B r i t i s h  Petroleum,  London; s u p p l i e d  v i a  t h e  Systems 

Opt imiza t ion  Labora to ry ,  Department of O p e r a t i o n s  Resea rch ,  S t a n f o r d  

U n i v e r s i t y .  

T h i s  LP is approx imate ly  dua l -angu la r ,  w i t h  6 main d i a g o n a l  b l o c k s  

and a b o u t  400 c o u p l i n g  v a r i a b l e s .  For  t h e  exper imen t s  d e s c r i b e d  i n  t h i s  

paper  i t  was t r e a t e d  as a 6-per iod,  5 th -o rde r  s t a i r c a s e  problem. 

SUB-STAIR 
DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS BLOCKS 

PERIOD ROWS COLS ELEMS DENS ROWS COLS ELMS DENS ELPIS DENS - - - - - - - - - - - 

GRAM) TOTALS 

ROWS 821  (516 EQUALITIES, 305 INEQUALITIES) 

COLS 1 5 7 1  

ELPIS 20400 

DENS 0.8% 

BEFORE AFTER 
COEFFICIENTS SCALING SCALING 

I(AX ELEM 2.4 x 1 0  1 . 3  x 1 0  1 

M I N  ELPl 2.0 7.6 x 

OB J 
ELMS 

LARGEST COL RATIO 1 .7  x 1 0  1 . 7 ~ 1 0  
2 



APPENDIX B: DETAILS OF COMPUTATIONAL TESTS 

Computing environment 

All computational experiments were performed on t h e  T r ip l ex  system 

[49] a t  t h e  S tanford  Linear  Acce le ra tor  Center, Stanford Univers i ty .  The 

T r ip l ex  comprises t h r e e  computers l inked  toge ther :  one IBH 36(1/91, and two 

IBM 37(1/168s. Runs were submit ted a s  ba tch  jobs i n  a vir tual-machine environ- 

ment, under t h e  c o n t r o l  of IBH systems OS/VS2, OS/WVT and ASP. 

Tes t  runs  employed a spec ia l ly -modi f ied  s e t  of linear-programming 

rou t i ne s  from the  MINOS system [38,48]. MINOS is w r i t t e n  i n  s tandard  

FORTRAN. For timed NUS, MINOS was compsled with t h e  IBM FORTRAN I V  (H 

extended, enhanced) compiler ,  v e r s i on  1.1.0, a t  op t imiza t ion  l e v e l  3 [30]. 

Timings 

Al l  running-time s t a t i s t i c s  a r e  based on "CPU second" t o t a l s  f o r  

i nd iv idua l  job s t e p s  a s  repor ted  by t h e  opera t ing  system. To promote 

cons is tency  a l l  timed jobs  were run on t h e  T r ip l ex  computer des igna ted  

"system A," and jobs whose t imings would be compared were run a t  about  t h e  

same time. Informal  experiments ind ica ted  roughly a 1% v a r i a t i o n  i n  t imings 

due t o  varying system loads .  

More d e t a i l e d  t imings employed PROGLOOK [31],  which takes  f r equen t  

samples of a running program t o  e s t ima t e  t h e  propor t ion  of time spen t  in  

each subrout ine .  To determine t h e  a c t u a l  t ime in seconds f o r  each sub- 

r ou t i ne ,  every timed job was run twice--once wi thout  PROGUIOK t o  measure 

t o t a l  CPU seconds, and once w i th  PROGLOOK t o  e s t ima t e  each sub rou t i ne ' s  

p ropor t ion  of t he  t o t a l .  PROGLOOK es t ima t e s  were based on a t  l e a s t  2300 

samples per  job. 



MINOS linear-programming environment 

MINOS was s e t  up f o r  t e s t  runs according t o  t h e  d e f a u l t s  ind ica ted  

i n  [38], with t h e  exception of  t he  items l i s t e d  below. 

Scal ing.  Problems noted a s  "sca ledWin Appendix A were subjec ted  

t o  t h e  fol lowing geometric-mean s c a l i n g  (where A denotes t h e  matr ix of 

c o n s t r a i n t  c o e f f i c i e n t s ,  no t  including t he  ob j ec t i ve  o r  right-hand s i d e ) :  

1: Compute po = maxl~  /A A $ 0 .  
i , j  i "  i"j  

2 :  Divide each row i of A, and its corresponding right-hand s i d e  

value,  by [(min ( A  / (max I A  ( ) ]I/ ' ,  t ak ing  the  minimum over 
1 il j i j  

a l l  A $ 0 .  
il  

3: Divide each column j of A, and i t s  corresponding c o e f f i c i e n t  

in  t h e  ob j ec t i ve ,  by [(min ( A  1 )  (max I A  t ak ing  t h e  
i i j  i i j  

minimum over a l l  A $ 0. 
il  

4 :  Compute p = max ( A  /A A $ 0. 
i l j  i 2 j  i 2 j  

This procedure was repeated a s  many times a s  pos s ib l e  u n t i l ,  a t  s t e p  4 ,  

p was a t  l e a s t  90% of po. (In o the r  words, s c a l i n g  continued a s  long 

a s  i t  reduced p, t h e  g r e a t e s t  r a t i o  of two elements i n  t h e  same column, 

by more than lo%.)  

S t a r t i n g  bas i s .  A l l  LPs except  PILOT and BP1 were solved wi th  

crash opt ion  0 of MINOS: t h e  i n i t i a l  b a s i s  was composed e n t i r e l y  of u n i t  

vec to r s ,  and a l l  nonbasic va r i ab l e s  were placed a t  zero. PILOT and BP1 

were run from i n i t i a l  bases t h a t  had been reached and saved i n  previous 

MINOS runs. 



Termination. A l l  LPs except PILOT and BP1 were run u n t i l  an optimal  

so lu t i on  was found. PILOT and BP1 were run f o r  1000 and 750 i t e r a t i o n s ,  

respec t ive ly .  

Pr ic ing .  Except f o r  SCTAPZ, t he  pa r t i a l -p r i c ing  scheme of MINOS 

was employed--with one important change: the  a r b i t r a r y  p a r t i t i o n i n g  of 

t he  columns normally defined by HINOS f o r  p a r t i a l  p r i c ing  was replaced by 

the  n a t u r a l  s t a i r c a s e  p a r t i t i o n .  Thus t he  periods of the  s t a i r c a s e  were 

pr iced  one a t  a time i n  a c y c l i c  fashion.  

P r i c ing  f o r  SCTAPZ was s i m i l a r  except t h a t  t he  incoming column 

was chosen from the  l a t e s t  pos s ib l e  period. (This choice was known t o  

produce a r e l a t i v e l y  small number of i t e r a t i o n s  from an a l l -uni t -vec tor  

s t a r t . )  

Refac tor iza t ion  frequency. MINOS was i n s t r u c t e d  t o  r e f a c t o r i z e  

t he  b a s i s  (by performing a f r e sh  Gaussian e l imina t ion)  every 50 i t e r a t i o n s ,  

except f o r  BPI (every 75) and PILOT (every 90). 

Tolerances. The "LU ROW TOL" f o r  MINOS was s e t  t o  lo-'. A l l  

o t h e r  to le rances  were l e f t  a t  t h e i r  d e f a u l t  values.  

Modificat ions t o  MINOS 

Al l  runs descr ibed  in t h i s  paper were made with a s p e c i a l  t e s t  

vers ion  of  MINOS. This  vers ion  r e t a ined  MINOS' rou t ine s  f o r  s tandard 

bump-and-spike e l imina t ion ,  and added new rou t ine s  t o  implement a vers ion  

of s t a i r c a s e  bump-and-spike e l imina t ion .  Routines f o r  so lv ing  l i n e a r  

systems were a l s o  modified t o  take advantage of the s t a i r c a s e  p ivot  order .  

Control r ou t ine s  were ad jus ted  appropr ia te ly .  



New subrout ines  i n  the  t e s t  vers ion  a r e  described b r i e f l y  a s  

fol lows : 

SP3--an adap t a t i on  of the  P3 h e u r i s t i c  t o  f i n d  a  bump-and-spike - 
s t r u c t u r e  i n  non-square o r  rank-deficient  b locks ,  a s  proposed 

i n  [15] .  This  r ou t i ne  is a modi f ica t ion  of the  MINOS subrout ine  P3. 

SP4-main rou t i ne  f o r  the  s t a i r c a s e  bump-and-spike pivot-sele'ction - 
technique of 1151;sorts  the  s t a i r c a s e  b a s i s  i n t o  reduced form, and 

c a l l s  SP3 once f o r  each diagonal  block. 

DSPSPK--spike-display rou t i ne ;  p r i n t s  a  g r aph i ca l  sunanary of the  

b a s i s  bump-and-spike s t r u c t u r e  found by P4 ( f o r  t h e  s tandard  tech- 

nique)  o r  SP4 ( f o r  the s t a i r c a s e  technique) .  

STAIR--a s t a i r c a s e  ana lyzer .  Given an  i n i t i a l  p a r t i t i o n  of the  rows 

by per iod ,  t h i s  r ou t i ne  permutes t he  c o n s t r a i n t  mat r ix  t o  a  reduced 

s tandard  s t a i r c a s e  form and s t o r e s  the  s t a i r c a s e  p a r t i t i o n s  i n  a r r a y s  

that a r e  read by subsequent r ou t i ne s .  STAIR is c a l l e d  once a t  t h e  

beginning of every run. 

SCALE--implementation of the  geometric-mean s ca l i ng  scheme described 

above; c a l l e d  op t i ona l l y  a t  t he  beginning of a  run. 

UPDBAL--updating rou t i ne  f o r  cumulative-balance counts:  a f t e r  

each i t e r a t i o n ,  r e v i s e s  an a r r ay  that records  t h e  cumulative excess 

of columns over rows a t  each period of the  s t a i r c a s e  ba s i s .  (This  

a r r a y  i s  used t o  f i n d  square sub-s ta i rcases . )  



In addition the  t e s t  version incorporates the folloving substantial  modifi-  

cations t o  MNOS subroutines: 

FACTOR e f f i c i e n t l y  handles a pivot order from e i ther  the  standard 

or staircase technique, and f inds  the  parti t ions X L  and p L  

(defined i n  Section 4 )  for  the  staircase technique. 

FTRANL, BTRANL, FTRANU and BTRANU incorporate the ideas o f  

Section 4 in a uniform vay. FlXANL and FTRANU can begin a t  a 

speci f ied  L or U transformation, and BTRANL and BTRANU can stop a t  

a speci f ied  transformation. BTRANZ, can also be restarted a t  a 

point where it previously stopped. 

LPITN determines a s tar t ing point for FTRANL and a stopping point 

for BTRANU when the  staircase technique i s  used. 

S E T P I ,  f o r  the  staircaae technique, determine6 a s tar t ing point 

for  FTRANU and a stopping point for BTRANL when it i s  f i r s t  called 

a t  an i t e ra t ion .  When subsequently called a t  the same i t e ra t ion  it 

determines res tar t ing and stopping points for BTRANL. 

PRICE incorporates the  staircaae-oriented partial-pricing methods 

described i n  the  preceding subaection o f  t h i s  appendix. When 

these methods are used wi th  the  staircase factor izat ion technique, 

PRICE also  keeps track o f  how much o f  the price vector it requires,  

and c a l l s  SETPI accordingly. 

SPECS2 determines whether the standard or staircase technique vill  

be used i n  a particular run, according t o  ins truct ions  i n  the SPECS 

input f i l e .  



Other  s u b r o u t i n e s  were  mod i f i ed  a s  n e c e s s a r y  t o  accommodate t h e s e  

changes .  

MPS 111 l i n e a r  programming environment  

For  pu rposes  o f  compar ison t h e  PILOT test problem was a l s o  r u n  o n  t h e  

HPS 111 sys tem [37], as e x p l a i n e d  i n  S e c t i o n  5. 

The HPS 111 r u n  employed t h e  WHIZARD l i n e a r - p r o g r a m i n g  r o u t i n e s  

o f  v e r s i o n  8915 o f  MPS 111. The r u n  used  t h e  same s t a r t i n g  b a s i s  a s  t h e  

MINOS r u n s  f o r  PILOT, and was t e r m i n a t e d  a f t e r  1000 i t e r a t i o n s  l i k e  t h e  

MINOS runs .  Exac t  CPU t i m i n g s  were  0 .56 seconds  i n  t h e  compi l e r  s t e p  

and 114.18 seconds  in t h e  e x e c u t o r  s t e p .  

The c o n t r o l  program f o r  t h e  MPS 111 r u n  was a s  f o l l o w s :  

PROGRAM 

INITIALZ 

=ROC = WROC + 6000 

XCLOCKSW = 0 

XINVERT = 1 

XFREQINV = 9 0  

XFREQLGO = 1 

XFREQl = 1000  

MVADR (XWFREQl, TIME) 

MOVE (XDATA, ' PILOT. WE ' ) 
CONVERT ( FILE' , INPUT' 

SETUP ('BOUND', 'BOUND', 'MAX' , 'SCALE' ) 

MOVE (XOBJ, 'OBJ')  

MOVE (XRHS , 'RHSIDE ' ) 
INSERT ('FILE',  PUNCH^') 

WHIZFREQ DC (250) 

WHIZSCAL DC (4)  

WHIZARD('FREQ', WHIZE-REQ, 'SCALE', WEIZSCAL) 

TSME PUNCH ( 'FILE' , 'PUNCH1 ' ) 
EXIT 

PEND 



APPENDIX C: TIMINGS 

The ba r  graphs below summarize timings of t he  MNOS t e s t  runs 

f o r  t h i s  paper. De t a i l s  of the  t e s t  runs and timing procedures a r e  i n  

Appendix B; i nd iv idua l  MINOS subrout ines  a r e  doclrmented i n  Appendix B 

and i n  [48]. 

Graphs a r e  presented i n  three  groups. The f i r s t  group shows 

time i n  a l l  r ou t ine s ,  t he  second shovs time i n  i t e r a t i n g  rou t ine s  only,  

and the  t h i r d  shows time i n  f ac to r i z ing  rou t ine s  only.  Within each 

grodp the  format is  the  same: t he  f i r s t  graph compares t o t a l s  f o r  a l l  

s e w n  t e s t  problems, and seven succeeding graphs-one f o r  each t e s t  

problenr-break t he  times down i n t o  varioua sub to t a l s .  

A l l  graphs show a p a i r  of ba r s  f o r  each t o t a l  o r  s u b t o t a l .  

The top ba r  is f o r  t he  run t h a t  w e d  s tandard  bump-and-spike e l imina t ion  

on t h e  ba s i s ;  t he  bottom b a r  i s  f o r  t he  run t h a t  used s t a i r c a s e  bump-and-spike 

e l imina t ion  and the  r e l a t e d  techniques described i n  t h i s  paper. 

Tota l  time 

The FORTRAN subrout ines  of MINOS are c l a s s i f i e d  below a s  fol lows:  

PRICE rou t ine s  choose a nonbaaic v a r i a b l e  t o  e n t e r  t h e  b a s i s ;  

they inc lude  FORMC, PRICE, SETPI and FTRANU, and BTRANL when c a l l e d  

from SETPI. 

PIVOT rou t ine s  choose a v a r i a b l e  t o  l e ave  the  ba s i s ;  they 

inc lude  LPIM and CHUZR, and FTRANL, BTRANU and UNPACK when c a l l e d  

from LPITN. 



UPDATE r e f e r s  t o  t h e  s u b r o u t i n e  MODLU, which upda tes  t h e  LU 

f a c t o r i z a t i o n  o f  t h e  b a s i s  a t  t h e  end o f  each  i t e r a t i o n .  

PERM r o u t i n e s  permute t h e  b a s i s  o f  a bump-and-spike s t r u c t u r e .  

For t h e  s t a n d a r d  method they  i n c l u d e  P4, P3, TRANSVL, BUMPS and 

XLIST;  f o r  t h e  s t a i r c a s e  method t h e y  are SP4, SP3 and MCLIST. 

FACTOR r o u t i n e s  compute an LU f a c t o r i z a t i o n  o f  t h e  b a s i s ;  t h e y  

i n c l u d e  FACTOR and  PACKLU, and FTRANL, BTRANL and  UNPACK when c a l l e d  

f rom FACTOR. 

OTHER r o u t i n e s  i n c l u d e  all o t h e r  HLNOS s u b r o u t i n e s ,  and  u t i l i t y  

r o u t i n e s  i n s e r t e d  by t h e  FORTRAN compi le r .  Other MNOS r o u t i n e s  

comprise  DRIVER and  r o u t i n e s  i t  u s e s  (BTRANU, FTRANL, ITEROP, SETX, STATE, 

UNPACK, UPDBAL), INVERT and r o u t i n e s  i t  uses  (BTRANU, DSPSPK, FTRANL, 

SETX) , and v a r i o u s  r o u t i n e s  c a l l e d  once o n l y  a t  t h e  b e g i n n i n g  o r  e n d  

o f  t h e  r u n  (CRASH, GO, HASH, INITLZ, LOADB, MINOS, MOVE, MPS, MPSIN, 

NMSRCH, SAVEB, SCALE, SOLN, SOLPRT, SPECS, SPECSZ, STAIRS). FORTRAN 

r o u t i n e s  f o r  i n p u t  and o u t p u t  r e g i s t e r e d  s i g n i f i c a n t l y  (3-10% o f  

t o t a l )  in t h e  t imings ;  t h e  volume o f  i n p u t  was very small, s o  t h e s e  

r o u t i n e s  p r o b a b l y  d i d  most o f  t h e i r  work i n  p roduc ing  p r i n t e d  o u t p u t  

f o r  t h e  r u n s .  A  FORTRAN square - roo t  s u b r o u t i n e ,  c a l l e d  f rom SCALE and 

SETPI, used  a n  i n s i g n i f i c a n t  a m u n t  o f  t ime.  
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I t e r a t i n g  time 

I t e r a t i n g  rou t ine s  a r e  those invoked a t  each i t e r a t i o n .  They 

a r e  c l a s s i f i e d  a s  followe: 

WIN inc ludes  DRIVER and miscellaneous rou t ine s  invoked from it:  

ITEROP, SETX, STATE, UNPACK and UPDBAL, and FTRANL and BTRANU when c a l l e d  

from SETX. 

PRICE r e f e r s  t o  subrout ines  FORnC, PRICE and SETPI. 

FPRANU and BTBANL r e f e r  t o  the lilte-named subrout ines  when c a l l e d  

from SETPI. 

PIVOT r e f e r e  t o  subrout ines  LPIZN and m Z R ,  and UNPACK when 

c a l l e d  from LPITN. 

FTRANL and BTRANU r e f e r  t o  t h e  like-aamed subrout ines  vhen c a l l e d  

from LPITN. 

UPDATE r e f e r s  t o  subrout ine  PQDLU. 
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F a c t o r i z i n g  t ime 

F a c t o r i z i n g  r o u t i n e s  a r e  those  invoked a t  each r e f a c t o r i z a t i o n  

of t h e  b a s i s .  They a r e  c l a s s i f i e d  a s  fol lows:  

MAIN i n c l u d e s  INVERT and miscel laneous r o u t i n e s  invoked from it: 

DSPSPK and SETX, and FTRANL and BTRAHO when c a l l e d  from SETX. 

PERMUTE i n c l u d e s  t h e  d r i v i n g  r o u t i n e  f o r  bump-and-spike 

permutation-P4 wi th  t h e  s tandard  method, SP4 w i t h  t h e  s t a i r c a s e  method-- 

and t h e  u t i l i t y  r o u t i n e  MKLIST. 

P3 r e f e r s  t o  t h e  s u b r o u t i n e  t h a t  implements t h e  sp ike- f ind ing  

h e u r i s t i c :  P3 f o r  t h e  s t a n d a r d  method, o r  SP3 f o r  t h e  s t a i r c a s e  method. 

BLK A r e f e r s  t o  s u b r o u t i n e s  TRNSVL and BUMPS, which f i n d  a  

b lock- t r i angula r  reduc t ion  o f  t h e  b a s i s  ( i n  t h e  s tandard  method o n l y ) .  

FACTOR i n c l u d e s  subrout ine  FACTOR, t h e  d r i v i n g  r o u t i n e  f o r  LU 

f a c t o r i z a t i o n  of t h e  b a s i s ,  p l u s  r o u t i n e s  PACKLU and UNPACK invoked 

from FACTOR. 

FTRANL and BTRANL r e f e r  to the l ike-named s u b r o u t i n e s  when c a l l e d  

from FACTOR. 



TOTAL FACTORIZING TIME 

a STANDARD 
g STAIRCASE 

SCTAP2 

PILOT 

CPU SECONDS / 10 FACTORIZATIONS 

" ~ k  BLK A 

FACTOR 

FTRANL 

CPU SECONDS / 10 FACTORIZATIONS 



MAIN 

PERMUTE 

P 3 

BLK A 

FACTOR 

FTRANL 

BTRANL 

CPU SECONDS I LO FACTORIZATIONS 

MAIN 

PERMUTE 

P 3 

BLK A 

FACTOR 

FTRANL 

BTRANL 1 

CPU SECONDS / 10 FACTORIZATIONS 



MAIN 

PERMUTE 

P 3  

BLK A 

FACTOR 

FTRANL 

CPU SECONDS / 10 FACTORIZATIONS 

PERMUTE 

P 3  

BLK A 

FACTOR 

FTRANL 

(XU SECONDS / 10 FACTORIZATIONS 



PILOT 

MAIN 

PERMUTE 

P3 

BLK A 

FACTOR 

FTRANL 

BTRANL, 

5 10 2 0 

CPU SECONDS / 10 FACTORIZATIONS 

MAIN 

PERMUTE 

BLK A 

FACTOR 

FTRANL 

BTRANL 

CPU SECONDS / 10 FACTORIZATIONS 



REFERENCES 

[I] Aonuma, T., "A Two-Level Algorithm for Two-Stage Linear Programs." 
Journal of the Operations Research Society of Japan 21 (1978), 
171-187. 

[2] Bartels, Richard H., "A Stabilization of the Simplex Method." 
Nmerische Mathematik 16 (19711, 414-434. 

(31 and Gene H. Golub, 'The Simplex Method of Linear Programming 
Using LU Decomposition.'' Communications of the ACH 12 (1969), 266-268. 

[4] Cobb, R. H. and J. Cord, "Decomposition Approaches for Solving Linked 
Problems." Proceedings of the Princeton Symposium on Mathematical 
Programming, Harold W. Kuhn, ed. (Princeton University Press, 1970). 

[5] Dantzig, George B., "Programming of Interdependent Activities 11: 
Mathematical Model." Econome trica 17 (1949) , 200-211. 

[6] , "Upper Bounds, Secondary Constraints and Block Triangularity 
in Linear Programing." Econometrica 23 (1955), 174-183. 

[7] , "Optimal Solution of a Dynamic Leontief Model with 
Substitution." Econometrica 23 (1955), 295-302. 

[a] , "Compact Basis Triangularization for the Simplex Method." 
Recent Advances in Mathematical Programing, R. L. Graves and 
Philip Wolfe, eds. (New York: McGraw-Hill Book Co., 1963), 

[9 1 , "Solving Staircase Linear Programs by a Nested Block-Angular 
Method." Technical Report 73-1, Dept. of Operations Research, 
Stanford University (1973). 

[lo] and Philip Wolfe, "Decomposition Principle for Linear Programs." 
Operations Research 8 (1960) , 101-111. 

[ll] Duff, Iain S., "On the Number of Nonzeroes Added when Gaussian 
Elimination is Performed on Sparse Random Matrices." Mathematics 
of Computation 28 (19741, 219-230. 

1121 , "Practical Comparisons of Codes for the Solution of Sparse 
Lirear Systems.'' Sparse Matrix Proceedings--1978, Iain S. Duff and 
G. W. Stewart, eds. (Society for Industrial and Applied Mathematics, 
1979). 

[I31 and J. K. Reid, "A Comparison of Sparsity Orderings for Obtain- 
ing a Pivotal Sequence in Gaussian Elimination." Journal of the 
Institute of Mathematics and Its Applications 14 (1974). 281-291. 



[14]  F o r r e s t ,  J .  J .  H. and J. A. Tomlin, "Updated T r i a n g u l a r  F a c t o r s  of  t h e  
Bas i s  t o  Main ta in  S p a r s i t y  i n  t h e  Product  Form Simplex Method." 
Mathematical  Programming 2 (1972) ,  263-278. 

[15]  Foure r ,  Robert .  "Sparse  Gaussian E l i m i n a t i o n  of S t a i r c a s e  Systems." 
T e c h n i c a l  Report  SOL 79-17, Systems Opt imiza t ion  Labora to ry ,  Dept. of 
Opera t ions  Research,  S t a n f o r d  U n i v e r s i t y  (1979) .  

[ l a ]  , "Solving S t a i r c a s e  L inear  Programs by t h e  Simplex Method, 2: 
P r i c i n g . "  Techn ica l  Report  SOL 79-19, Systems Opt imiaa t ion  L a b o r a ~ o r y ,  
Dept. of Opera t ions  Research,  S tanford  U n i v e r s i t y  (1979). 

[17].  Gay, David M. , "On Combining t h e  Schemes o f  Reid and Saunders  f o r  
Sparse  LP Bases .  " S p a r s e  M a t r i x  Proceedings-1978, I a i n  S. Duff and 
G. W. S t e w a r t ,  eds .  ( S o c i e t y  f o r  I n d u s t r i a l  and Appl ied Mathematics,  
1979).  

[18] Gear, C. W .  e t  a l . ,  "Numerical Computation: Its Nature  and Research 
D i r e c t i o n s . "  SIGNUM N e w s l e t t e r ,  A s s o c i a t i o n  f o r  Computing Machinery 
(1979). 

[19]  Glassey,  C. Roger,  "Dynamic L inear  Programs f o r  P roduc t ion  Scheduling. ' '  
O p e r a t i o n s  Research 1 9  (1971) ,  45-56. 

[201 , "Nested Decomposition and Mult i -Stage L inear  Programs." 
Management S c i e n c e  20 (1973), 282-292. 

[21]  Goldfarb,  D., "On t h e  Barte ls-Golub Decomposition f o r  L inear  Programming 
Bases. " Mathematical  Programming 1 3  (1977) , 272-279. 

[22]  Gr ino ld ,  Richard C., "S teepes t  Ascent  f o r  Large-Scale L i n e a r  
Programs." SUM Review 14 (1972) ,  447-464. 

[23]  Beesterman, A. R. G. and J. Sandee, "Spec ia l  Simplex Algori thm f o r  
Linked Problems. " Management Sc ience  11 (1965) , 420-428. 

[24]  Hel lerman,  E l i  and Dennis Rar ick ,  "Reinvers ion w i t h  t h e  Preass igned  
P i v o t  Procedure."  Mathematical  Programming 1 (1971) ,  195-216. 

4 
[25]  , "The P a r t i t i o n e d  Preass igned  P i v o t  Procedure (P )." Sparse  

M a t r i c e s  and T h e i r  A p p l i c a t i o n s ,  Donald J. Rose and Ralph A. Willoughby, 
eds .  (New York: Plenum P r e s s ,  1972) ,  67-76. 

1261 Ho, James K., "Optimal Design o f  Multi-Stage S t r u c t u r e s :  A Nested 
Decomposition Approach.'' Computers and S t r u c t u r e s  5 (1975). 249-255. 

127 1 , "Nested Decomposition of a Dynamic Energy Model." Management 
Sc ience  23 (19771, 10224026 .  



1281 , "A Successive Linear  Optimizat ion Approach t o  the  Dynamic 
T r a f f i c  Assignment Problem." Report BNL-24713, Brookhaven National 
Laboratory. Upton, New York (1978). 

[29 1 and Alan S. Manne, "Nested Decomposition f o r  Dynamic Models." 
Mathematical Programming 6 (19741, 121-140. 

[30] IBM OS FORTRAN I V  (H Extended) Compiler Programmer's Guide. No. SC28- 
6852, I n t e r n a t i o n a l  Business Machines Corp. (1974) . 

1311 Johnson, R. and T. Johnston, "PROGLOOK User's Guide." User Note 33, 
SLAC Computing Serv ices .  Stanford Linear  Acce le ra tor  Center (1976). 

[32]  Madeen, O l i  B. G.,  "Solut ion of  LP-Problems w i th  S t a i r c a s e  S t ruc tu r e . "  
Research Report 26, The I n s t i t u t e  of Mathematical S t a t i s t i c s ,  Lyngby, 
Denmark (1977). 

1331 Manne, A. S., "U.S. Options f o r  a T rans i t i on  from O i l  and Gas t o  
Synthe t ic  Fuels." Discussion Paper 26D, Publ ic  Pol icy  Program, 
Kennedy School of  Government, Harvard Univers i ty  (1975). 

[34] Markowttz, Harry M., "The Eliminat ion Form of  t h e  Inverse  and Its 
Appl ica t ion  t o  Linear  Programing."  Management Science 3 (1957), 
255-269. 

1351 Marsten, Roy E. and Fred Shepardson, "A Double Bas is  Simplex Nethod 
f o r  Linear  Programs w i th  Complicating Variables ."  Technical  Report 
531, Dept. of Management fnfbrmation-systems, Univers i ty  of  ~ r i z o n a  
(1978). 

[361 McBride, Richard D.,  "A Spike Co l l e c t i ve  Dynamic Fac to r i z a t i on  - - 
A.lgor i tk  f o r  t h e  ~ i m ~ l e x - M e t h o d . "  Management Science 24 (1978), 
1031-1042. 

[37] MPS 111 Mathematical Programming System: User Manual. Ketron, Inc . ,  
Ar l ing ton ,  VA (1975). 

[38] Murtagh, Bruce A. and Michael A. Salmders, "MINOS: A Large-Scale 
Nonlinear P rog raming  System (For Problems wi th  Linear  Cons t r a in t s ) :  
User 's  Guide." Technical  Report SOL 77-9, Systems Optimizat ion 
Laboratory,  Dept. of Operat ions Research, S tanford  Univers i ty  (1977). 

1391 Orchard-Hays, W i l l i a m ,  Advanced Linear-Programming Computing Tech- 
n iques  (New York: McGra rHi l l  Book Co., 1968). 

[40] Parikh,  S. C . ,  "A Welfare Equil ibr ium Model (WEM) of Energy Supply, 
Energy Demand, and Economic Growth." Technical  Report SOL 79-3, 
Systems Optimizat ion Laboratory,  Dept. o f  Operat ions Research, 
S tanford  Univers i ty  (1979). 



[41] Perold,  Andre, "Fundamentals of a Continuous Time Simplex Method." 
Technical  Report SOL 78-26, Systems Optimizat ion Laboratory,  Dept. of 
Operat ions Research, S tanford  Univers i ty  (1978). 

[42 1 and George B. Dantzig,  "A Basis  Fac to r i z a t i on  Method f o r  Block 
Tr iangular  L inear  Programs." Technical  Report SOL 78-7, Systems Opti- 
miza t ion  Laboratory,  Dept. of Operat ions Research, S tanford  Univers i ty  
(1978). 

[43] Propoi ,  A. and V. Krivonozhko, "The Simplex Method f o r  Dynamic 
Linear  Programs." Report RR-78-14, I n t e r n a t i o n a l  I n s t i t u t e  f o r  
Applied Systems Analysis ,  Laxenburg, Aus t r ia  (1978). 

[44] Reid, J. K., "A Spars i ty -Explo i t ing  Variant  of t he  Bartels-Golub 
Decomposition f o r  Linear  Programing  Bases." Report CSS 20, Computer 
Science and Systems Div is ion ,  A.E.R.E. IIarwell,  England (1975). 

[45]  , "Fortran Subroutines f o r  Handling Sparse Linear  P rog raming  
Bases." Report AERE-R8269, Computer Science and Systems Div is ion ,  
A.E.R.E. Harwell,  England (1976). 

[46] Sa iga l ,  Romesh, "Block-Triangularization of Multi-Stage Linear  
Programs," Report ORC 66-9, Operat ions Research Center ,  Univers i ty  
of Ca l i f o rn i a ,  Berkeley (1966). 

[47]  Saunders, Michael A.,  "A Fa s t ,  S t ab l e  Implementation of t he  Simplex 
Method Using Bartels-Golub Updating." Sparse Matr ix Computations, 
James R. Bunch and Donald J. Rose, eds .  (New York: Academic P re s s ,  
1976). 213-226. 

[481 , "MINOS System Manual.'' Technical  Report SOL 77-31, Systems 
Optimizat ion Laboratory,  Dept. of Operat ions Research, S tanford  
Univers i ty  (1977). 

[49] Vinson, I l s e ,  "Triplex User 's  Guide." User Note 99, SLAC Computing 
Serv ices ,  Stanford Linear  Acce le ra tor  Center (1978) . 

[50] Wolfe, P h i l i p ,  "The Composite Simplex Algorithm." SIAM Review 7 
(1965) , 42-54. 

[51] Wollmer, Richard D. ,  "A S u b s t i t u t e  I nve r se  f o r  the  Bas is  o f  a S t a i r -  
c a se  S t r u c t u r e  Linear  Program." Mathematics of Operat ions Research 
2 (19771, 230-239. 





A BASIS FACTORIZATION 'TECHNIQUE FOR STAIRCASE LINEAR 
PROGRAMS 

Philippe Gille and Etienne Loute* 
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Basis matrices of staircase linear programs can be rearranged in a block tridiagonal matrix 
with the property that it can be decomposed into a lower (L) and an upper (U) block tri- 
angular matrix. The U matrix has block diagonal submatrices consisting of identity mat- 
rices. The basic data and any representation of the inverses of the block diagonal submat- 
rices of L form a substitute for the basis inverse. 

We present an algorithm which allows updating of this basis inverse representation for any 
basic change. Our work is related to the papers of Heesterman and Sandee (1  965), Saigal 
(19661, and Wollmer (1977). Our contribution is  threefold: we prove it is  always possible 
to maintain the basis factorization for any basis change. We obtain better bounds for the 
worst case computational complexity of the updating algorithm. Moreover we present a 
practical method of controlling the accuracy of the basis inverse representation when it is 
updated . 

'Research supponed by the Belgian Department of Science Policy under contract E/1/3. 



I .  THE STAIRCASE STRUCTURED LINEAR PROGRAJ+ICIING PROGLEM 

A l i n e a r  programming problem i s  s a id  to  have a s t a i r c a s e  s t r u c t u r e  of 

t o  be a s t a i r c a s e  LP problem i f  the  nonzero c o e f f i c i e n t s  of t h e  c o n s t r a i n t  

matr ix  a r e  confined t o  c e r t a i n  submatrices on o r  j u s t  below the  block diago- 

nal  a s  i n  f i g u r e  1. A p a r t i t i o n i n g  of the  row ind ices ,  R 1 ,  ..., can be 

a s soc i a t ed  to  t he  s t a i r c a s e  s t ruc -  

t u re .  N w i l l  be r e f e r r ed  t o  a s  the  

number of periods and the  s ecs  R .  

a s  periods. The s e t  R. conta ins  

mi i nd i ces  and m = Z.m.. A c o l ~ n n  
1 1  

of t he  matr ix  w i l l  be c a l l e d  a type 

i c o Z m  i f  i t s  nonzero elements 

Fig. I : S t a i r c a s e  LP problem a r e  confined t o  rows i n  R i  and R i + l  

with a t  l e a s t  one nonzero element i n  R . .  

2. STAIRCASE 8ASES 

A b a s i s  matr ix  of a s t a i r -  

ca se  LP problem i n h e r i t s  the  

s t a i r c a s e  s t r u c t u r e  of f i p u r e  1. 

This can be formalized a s  follows : 

the  nonzero c o e f f i c i e n t s  of the  

matr ix  a r e  contained i n  the  subna- 

t r i c e s  Ai. M. and K. of f i g u r e  2 ,  

these  submatrices being r e spec t i -  

vely of dimension mi x m i ,  mi x m i + l  

and mi+, x m . .  I f  we denote by 

Fig .  2 : S t a i r c a s e  b a s i s  



e t h e  kth column of t h e  i d e n t i t y  m a t r i x  of  a p p r o p r i a t e  dimension,  we have 
k 

t h e  f o l l o w i n g  : 

For i E (2 ,  .... N-1) and k E Ri 

Mi-l R f 0 i m p l i e s  K. ek = 0 .  

We d e n o t e  by BS a b a s i s  of  a  s t a i r c a s e  LP problem w i t h  t h e  s t r u c t u r e  of  

t h  f i g u r e  2 and vhich  s a t i s f i e s  (2.1) .  Note t h a t  t h e  k column of Ai. Aiek, 

cor responds  n e c e s s a r i l y  t o  a b a s i c  column o f  t y p e  i - 1  o r  i. I f  Mi-lek f 0 ,  

t h e  column is s a i d  t o  be  of  t y p e  (i-1)'. I f  Ki\ i 0 .  it is s a i d  t o  b e  o f  

t y p e  i . 
It is k n o ~  ( s e e  e.g. WOLLMER [ 71 t h a t  through a s u i t a b l e  column 

p e r m u t a t i o n  of  BS between a d j a c e n t  p e r i o d s ,  t h e  fo l lowing  n a t r i c e s ,  hence- 

f o r t h  named b lock  p i v o t  o r  BP, e x i s t  and a r e  non s i n g u l a r  : 

- - - -1 
A l 9 A ,  A i g A . - K i - l A i - l ~ i - l  i = 2,  ..., N. 

The m a t r i x  BS is t h e n  s a i d  under  a  f e a s i b l e  form and i s  denoted by FBS. 

Such a m a t r i x  can  be  f a c t o r i z e d  i n  tvo  m a t r i c e s  L and U ,  t h e  f i r s t  one be ing  

F i g .  3 : Block LU decomposit ion of FBS 



lower b lock- t r iangular  and the  second one upper b lock- t r iangular  with iden- 

t i t y  ma t r i ce s  on the  p r i n c i p a l  diagonal (see  f i g u r e  3 ) .  This b a s i s  inverse  

s u b s t i t u t e  and t h e  r e l a t e d  ope ra t ions  of t h e  revised  simplex a lgor i thm a r e  

presented  i n  WOLLMER [ 7 1 .  This f a c t o r i z a t i o n  technique enjoys s eve ra l  

advantages : t h e  a s soc i a t ed  d a t a  s t r u c t u r e  i s  easy t o  handle and s impler  

than i n  r e l a t e d  works where "spikes" i n  t he  U matr ix  can extend beyond the  

second block diagonal  ( s ee  e.g.  PROPOI and KRIVONOSHKO [ 51 , LOLTE [ 41 ) . 
Any ope ra t ion  of t he  revised  simplex algorithm can be e f f i c i e n t l y  performed 

wi th  t h e  o r i g i n a l  d a t a  and t h e  block p ivot  i nve r se s  (BPI) only .  Updating 

t h e  b a s i s  i nve r se  reduces t o  updating the  BPI's. This can be done e f f i c i e n t -  

l y  by means of dyad co r r ec t ions  def ined a s  follows : 

I I + - hg' 
A (2.3) 

where A i s  a nonzero s c a l a r ,  I t h e  i d e n t i t y  matr ix ,  h and g column vec to r s  

of same dimension (g' denotes t h e  t ransposes  of g ) .  We r e s t r i c t  ou r se lves  

t o  t he  use  of such m u l t i p l i c a t i v e  co r r ec t ions  because they lead  t o  product 

form s u b s t i t u t e  f o r  t he  BPI's. 

3 .  THE PARTIAL UWATES 

Let us  denote  by v the  en t e r ing  column (see  f i g u r e  4.a) and by e the  

column vec to r  with zero  elements except  t h e  one of index correspondicg t o  

t he  leaving column which i s  equal t o  one : t h i s  index i s  supposed t o  belong 

t o  R Let us  denote  it P. E R . I n  f a c t ,  when the  updating begins ,  t h e  
9' q q 

p a r t i a l  updates of t hese  c o l ~ s  a r e  a v a i l a b l e ,  i . e .  t he  vec to r s  h - L-lv 

-1 and g'  = e'U ( see  f i g u r e s  4 b , c ) .  Thei r  subvectors a r e  given by 

g l q  - e k  . gp+ I - - M f o r  p > q 
P P P  (3.1) 

9 

-1 -1 
hi-l - ~ ~ - ~ d ,  hi - - K ~ ~ ) ,  h - -A K h f o r  p i. i .  (3.1) 

P+' p+l P P 



I We s h a l l  r e f e r  t o  t h e  p ivo t  element 

2 (supposedly nonzero) 5 = g 'h  a s  t h e  

. exchange va lue  . A s c a l a r  a is sa id  

"almost zero". noted a - 0, i f  I:I C n, 
i-l 

where n i s  a smal l  p o s i t i v e  number 
i 

chosen i n  order  t o  s a t i s f y  t h e  fo l lov ing  
i+l 

p r o p e r t i e s  : 

9 2) Le t  s  and t be  vec to r s ;  i f  s ' t  ?r 0 

9+1 t hen  t h e r e  e x i s t s  an  index k such 
I 

I i t h a t  t he  components s  and tk s a t i s f y  

y-l ~ i m u l t a n e o u s l ~  s ,?lo and tk C 0 .  (3.4) 

Remark on the  no ta t ion  : A t  any s t a g e  of I --- - ---------- --- 
t h e  a lgor i thm,  t h e  BPI'S and the  p a r t i a l  

(a) (b) (c) updates,  i .e .  t he  sequences --I A j . ,  h j ,  pj. 

Fig.  4 : The en te r ing  column and j - 1 ,  ..., F, a r e  a t  hand and sometimes 

t h e  p a r t i a l  updates 
modified by dyad co r r ec t ions .  To linit 

t h e  number of symbols used,  we s h a l l  not  in t roduce  a new no ta t ion  a f t e r  a 

co r r ec t ion .  We use  t h e  symbol +which  means "replaced by", and which a l l o v s  

a dynamic use  of t h e  no ta t ion .  

For example the  fo l lowing sequence of t ransformat ions  

-1 
A. - ( I  + s t ' ) P  
-J j  

h .  - ( I  + s t ' ) h  
-I j 

-1 rl- ( I  + shl.)*.  
-j I -I 

where s and t a r e  column vec to r s ,  w i l l  be w r i t t e n  

-I 
A + ( I  +  st')^' ; h + ( I  + s t V ) h  ; T I  + ( I  + s h l ) r I .  
j j j j ~  J j '  

t o  be  read from l e f t  t o  r i g h t .  



4. UPDATING : CULUhlN PERI!UTATICN 

I n  the  next  pages w e  o f t e n  use the  permutation of 
I 

.-. K? two columns i n  two subsequent BP's. Let us consi-  

d e r  a s  i n  f i g u r e  5 ,  t he  columns s of type j- and t 

.- 
of type j + .  The pe rnu ta t ion  i s  f e a s i b l e  i f  and only 

J + I  i f  

--.- 
\ '  t : e i  5' Mjet + 0. (4.1) 

Then the  sequence of computations i s  t h e  following : 
Fig.  5 : Column 

Permutation 

Step P ( j )  : Compute P - I - 1 -1 
1 (A. M.e - es )e i  

e lA.  M.et 
= J  J 

-1 P2 - I - e (e '  + e '  A .  M.) 
t t  S - J  J 

; h j + l  "2 h j + l  + e t e ' h  s  j '  1 next h j  + p1hj ; g:+, j: - g j+ l  '3' 

Modify the  d e f i n i t i o n  of A M j ,  K i .  Aj,l ( s ee  f i g u r e  5 ) .  

By "modify t h e  d e f i n i t i o n "  we mean t o  permute the  correspondin? values  

of t he  p o i n t e r s  which a r e  used t o  p ick  up the  o r i g i n a l  da t a .  

The o t h e r  elements (except f o r  A.  and Aj+l) remain unchanged. 
J  

5. u ~ A T I N G  : CEMRAL CASES 

As llientioned be fo re ,  t h e  a lgo r i t hmic  procedures presented  i n  t h e  paper 

produce the  co r r ec t ions  f o r  t h e  BPI'S success ively ,  i n  t h e  na tu ra l  o rde r  : 

1. 2, ..., N. For t he  BPI'S of i nd i ces  between i and q ,  we d i s t i n g u i s h  



seve ra l  cases  according t o  t he  types of t h e  en t e r ing  and leavic ;  :olumns(+). 

This i s  t he  o b j e c t  of Sect ion  6 .  However, f o r  each case ,  t h e r e  e x i s t s  a 

period say  p, where t h e  a lgor i thmic  procedure can be embedded L= a genera l  f r a -  

mework : t he  central cases where s i n g u l a r i t y  may occur.  These c e n t r a l  cases  

a r e  l inked a s  follows : the  principal centrcl case  gene ra l ly  occ2 r s  a t  t he  

per iod equal t o  max( i ,q) .  I t  i s  followed by the  a~-<Zicry cen:r.rI case i n  

t h e  next period.  This l a s t  ca se  then occurs  repeatedly  up t o  ? a r l o d  N.  

5 . 1 .  ~~r - r~E-~e-a t -e - i -e - !e -? -max! i~~ !L  
At period p, t he  BP has t o  be  modify i n  t he  fo l lov ing  way : 

N 
where A + O  and 151 - I A ~ - ~ +  Z g t E h l l l + ~ .  

P- 1 
E-P 

The input  a t  t h i s  s t age  of t he  a lgor i thm c o n s i s t s  of p and Gp-i .  

- 
We de f ine  t h e  value  A = A 

P p-l + g; hp. The non s i n g u l a r i t y  of A* depends 
? 

on the  value  of A . 
P 

We simply perform the  following s t e p  : 

Step A C I :  + ( I  - L h  g l ) r l  
P Ap P P  P 

and ve  f i n d  t h a t  t h e  fo l lov ing  BP becomes 

Therefore ,  a f t e r  t he  incrementation of p ,  we a r e  led back t o  formula (5.1). 

(t) In  s ec t ions  5 and 6 ,  t he  type of t h e  en t e r ing  column w i l l  be  zoted  i - 1  
and t h e  type of t he  leaving one q.  



From (5.2). (3.1) and (3.2) we find : 

Consequently, there must exist tvo indices s and t such that 

As M e C 0 and K e $ 0 ,  we have Kp+let - 0. Yp-les - 0 and, as a conse- 
P t P 

quence, it is possible at least from a structural point of view to permute 

the columns of indices s and t, as in figure 5 with j - p. However the 

condition (4.1) is required, so let us distinguish both possibilities. 

The permutation is performed by means of the step P ( p ) .  The new value of 

A - A + g'h is no longer almost zero and the algorithm is unlocked. 
P P-1 P P  

The step ACl is performed and we are led back to the situation above. 

e'rln e 0 (strong singularity) g 

In this situation, it is no longer possible to permute the columns s and t; 

this operation must be splitted as illustrated in figure 6. 

s t .+t s t s 

Initial writions R i o r  substitution Posterior substiturion 

Pig. 6. : Column permutation in case of strone singularity 



The p r i o r  s u b s t i t u t i o n  induces t h e  following ope ra t ions  

Af t e r  t h e  pre l iminary  co r r ec t ions ,  t he  nev value  of A - A + gihp i s  non 
p  P-1 

almost zero,  and the  s t e p  ACI can be performed. 

Step  ACO : Compute SI - (I -LT'M e e ' )  where A - I + e; Y'M e 4 0  
A1 P  P t S  I P  P t  

s2 - I - e  ( e ' y l ~  + 2 e i )  
t S P  P 

1  S3 - 1 - - e e  + 2.;). 
A1 S P P  

.."-I 
m e n  7' - s,%'; hp - s l h p  ; - s T' 

2 p+1; 

S  + e 'h  e  ; g;+] - gp+, 3 .  h p + l C S 2 h p + l  s p t  

F ina l ly ,  t h e  p o s t e r i o r  s u b s t i t u t i o n  has t o  be done, t h e  r e s u l t i n g  sequence 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

is divided i n  tvo  p a r t s .  

S t ep  AC2 : Update t h e  d a t a  Ap,  M p ,  Kp, Ap+l a s  i n  f i g u r e  6 .  

I -1 A* 
(I + Ap Mpete;) 5' where b2 - 1 - e1y1! i  e  - 1-*40i(5- 12) 

P  S P - P t  

I (A* is the  o ld  value  of b  which was almost ze ro ) .  
P  P  

-I I Step AC3 : + s4 Ap+!. (5.14) 

I Compute and s t o r e  S4 - I - e  ~ 'P 'M 
t S P  P' 

Note t h a t  t h e  s t e p  AC3 i s  performed only a f t e r  the  a u x i l i a r y  c e n t r a l  ca se  

is i n i t i a t e d  f o r  p+l ( i . e .  a f t e r  t he  s t e p  ACI f o r  p+l) because the  l og ic  

of t h i s  c o r r e c t i o n  i s  t he  fo l lov ing .  The p r i o r  s u b s t i t u t i o n  induces t he  

modif ica t ion  of t he  BPI'S p  and p+l .  The co r r ec t ion  (5.3) of ACI a f f e c t s  t he  

BPI p  and a l l  t he  following ones, inc luding p+ l .  F i n a l l y  t he  pos t e r io r  subs- 

t i t u t i o n  i s  c a r r i e d  o u t  and modifies the  BPI'S p  and p+l.  Hence, the  correc-  

(5.13) 



t i o n  of t h e  BPI p+l r e s u l t i n g  from t h e  p o s t e r i o r  c o r r e c t i o n  must be  s to red  

and performed l a t e r .  

The flow c h a r t  of t he  a u x i l i a r y  c e n t r a l  ca se  is descr ibed i n  f i g u r e  7 

We have introduced an  a r r a y  of l o g i c a l  v a r i a b l e s  DEG; the value  of DEGCp) 

is YES i f  s t rong  s i n g u l a r i t y  occurs i n  per iod  p, i . e .  i f  t h e  s t e p  AC3 is 

t o  be performed a t  per iod  p+l .  

5.2 .  !!&?5i&_c*-case 

The BP corresponding t o  per iod p has  t o  be  modified a s  f o l l w s . :  

1 x* P - x P [I + etp (up - *;I] {I + a [I-  eEpup)hp + (g;hp - ( a + r ) ) e E  ]up} (5.15) 
P 

where g 'e2  C 0 ,  E 0 ,  u'eE = I , u + 0 (5.16) 
P P 

and f o r  each index t i f  M e = 0 then u ' e  
p-1 t 

= e '  e 
p t = gpet i t 

P 
N 

and (51 = 1c - z g ; h e J .  
E'P 

The input  f o r  t h i s  procedure c o n s i s t s o f p ,  E E ,  a, u ' .  We de f ine  A = 
P'  P P 

g;hp-E: and the  s i t u a t i o n s  to  be  s tud ied  a r e  t he  same a s  i n  t he  previous 

s ec t ion .  

5 .2 .1 .  A & U  (No 6LnguLwLtyJ 
-P- - --- - --- - - - - - - - -- - - - 

The BPI is  updated i n  two s t e p s .  

S tep  PCI.1 : Compute El = I - eL (u; - g i )  
P 

P I P  

1 
Step PC1.2 : Compute E2 = I - (hp - (a + €Ie2  ) u '  

P P P 
r1 4- ~ " r l .  



SELECTION 

Fig. 7 : Flowchart of algorithm-AC 

Remark : Y stands for YES and N for NO. 
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ber of important problems in the areas of routing, location, scheduling, assignment, and 
set covering. This paper isa review of Lagrangian relaxation based on what has been learned 
in the last decade. 

'Published in Mensgemenr Scienn 27:1, 1981. Reproduced with fmrmission. Copyright O 1981 The 
Institute of Management Sciences. 
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1. I ~ t r a d u c t ~ o n  

it is  vell-icncwn t h a t  =omti? .ator ial  c r _ ~ . n i z a t i o n  > r o b l a a s  

come i n  two v a r i e t i e s .  There is a s m a l l  numjer z f  " s a s y "  z r a b l e n s  

irhlch can  be s o i v e a  in trme Sounded 3 aoiynornial i n  'Lie i n p u t  L e n g ~ !  

and an a l l - t o o - l a r q e  c l a s s  o f  "hard" ;roblems f o r  which a l l  known 

a l g o r i t h m s  r e q u i r e  e x p o n e n t i a l  t ime i n  t h e  worst-case.  Among t h e  hard  

problems, t h e r e  a r e  " e a s i e r  h a r d "  problems,  l i k e  t h e  h a g s a c k  problem, 

t h a t  have pseudo-golynomial alqorit.Sms c h a t  run ir. >ol:momial =idle 

15 c e r t a i n  n m b e r s  i n  Lhe problem d a t a  a r e  Scundea. 

One o f  t h e  most c o n p u t a t i o n a l l y  u s e f u l  i d e a s  o f  t..e 1979's 

t h e  obser r ra t ion  t h a t  many hard  problems can  be viewed a s  oasy prcblems 

compl ica ted  by a r e l a t i v e l y  s m a l l  s e t  of s i d e  c o n s t r a i n t s .  Dua l iz ing  

t h e  s i d e  c o n s t r a i n t s  produces a Laqranqian problem t h a t  is  easy  t o  

s o l v e  and whose op t imal  v a l u e  is a lower bound ( f o r  min imiza t ion  

problems) on t h e  o p t i m a l  v a l u e  of  t h e  o r i g i n a l  problem. 3 e .  

Lagrangian problem can thus  be  used i n  p l a c e  of a l i n e a r  p r o g r a m i n g  

r e l a x a t i o n  t o  p rov ide  bounds i n  a branch and bound a l g o r i t k i i .  A s  

we s h a l l  s e e ,  t h e  Laqranqian approach o f f e r s  a number of ' JJportant  

advantages  o v e r  l i n e a r  programming. 

There were 3 number o f  f o r a y s  p r i o r  t o  i970 i n t o  t h e  use  of  

Lagrangian methods i n  d i s c r e t e  o g t i m i z a t i o n ,  i n c l u d i n q  t h e  Lor ia -  

Savage [311 approach t o  c a p i t a l  budqet ing , E v e r e t t  s p r o p o s a l  f o r  

" g e n e r a l i z i n g "  i a g r a n a e  m u l t i p l i e r s  [I41 and ti.e _s'niloso~hicall~r-related 

d e v i c e  of  q e n e r a t i n q  columnsbv s o l v i n a  y! e a s y  c m b i n a t c r i a l  o p t i r u r a -  

t i o n  aroblem when p r i c i ~ g  o u t  Ln t h e  simr;lex ner-hod [ ? & I  . 3cwever, 



i-,e "Srr th"  of the Lagranglan approach as it e x l s t s  today occurred i n  

1970 when Held and .- [27, 28: used a Lagrangian problem based on 

;ninlmum spanning t r e e s  t o  devise a dramat ical ly  successful  algorithm 

fo r  the t r ave l ing  salesman problem. Yativated by Held and ibr;,'s success ,  

Lagrangian methods were applied in 'de e a r l y  70s t o  scheduling problems 

(Fisher [IS] ) and t!!e general  in teger  programninq problem (Shapiro 

[ & 2 ] ,  Fisher  and Shapiro [16;). Lagrangian methods had gained con- 

s ickrable  currency by 1974 when Geoffrion [2?] coined the  pe r fec t  

name f o r  t h i s  approach--"Lagrangian re laxat ion."  Since then the l ist  

of appl ica t ions  of Lagrangian re laxat ion has grown t o  L ~ c l u d e  over a 

dozen of the  most infamous ccmbi.?atorial optimization problems. For 

nost  of these problems, Lagranqian re laxat ion has provided 

the  b e s t  ex i s t ing  alqorlt!! f o r  the  9roblern and has enabled the  solu- 

t ion of problems of p r a c t i c a l  s i ze .  

h i s  aacer  i s  a review of Lagrangian re laxat ion based on . h a t  

has keen learaed in &he l a s t  decade. Fie reader is referred :O 

S?apiro !A31 f o r  mother  recent survev of  Lanranqian re laxat ion 

from a somewhat d i f fe ren t  perspective.  The recent book bv Shapiro 

[&&] marks the f i r s t  appearance of the :em Lagrang la  re laxat ion 

In a textbook. 

2. Basic Constructions 

We begin with a combinatorid optimization problem formulated 

as the h t e g e r  program 



Z a m i n  cx  

s . t .  .Ax = 5 

DX 5 e (2) 

x 2 0 and i n t e g r a l  

whare x is n x 1, b is m x 1, e is k x 1 and a l l  o t h e r  ma t r i c e s  have 

conformable dimensions. Le t  (I.?) denote  problem (PI wit!!  t h e  i n t e -  

g r a l i t y  c o n s t r a i n t  on x relax&, and l e t  Ztp denote t h e  o p t i a a l  va lue  

of (LP). 

We assume t h a t  t h e  c o n s t r a i n t s  of (PI have been p a r t i t i o n e d  

i n t o  t h e  two s e t s  AX = b and Dx ( e so  a s  t o  make i t  easv  to s o l v e  

t h e  Lagrangian problem 

Zg(u) = rmn cx  + u (Ax - b) 
Dx 5 e 

x 2 0 and i n t e g r a l  

where u = (u l ,  . . . , u is a v e c t o r  o f  Lagrange m u l t i p l i e r s .  9y n 

"easy t o  so lve"  we of course mean easy r e l a t i v e  t o  (P). For a l l  appl ica-  

t i o n s  of which I am aware, t h e  Lagrmgian  2roblem nas  Seen s o l v a b l e  

in polynomial o r  peudo-polynomial  t i n e .  

For convenience w e  assume that (P) is  f e a s i b l e  and c h a t  t h e  

s e t  X = {xlDx r e ,  x >- 0 and i n t e g r a l )  of f e a s i b l e  s o l u t i o n s  t o  

(mu) is f i n i t e .  Then 2 (u) i s  f i n i t e  f o r  a l l  u. It is s u a i g h t -  
D 

f o w a r d  t o  extand the development when t h e s e  assumptions a r e  v i o l a t e d  

o r  when i n e q u a l i t y  c o n s t r a i n t s  a re  inc luded  i n  t!!e set t o  be dua l i z ed .  

It is w e l l - ; u r m  t h a t  Z ( u ) c  Z.  Th i s  is a l s o  ea sy  t o  show by 
D 

assuming an o p t b a l  s o l u t i o n  X* t o  (PI and obse r r l ng  t h a t  



The inequa l i ty  i n  t h i s  r e l a t i o n  follows from the  d e f i n i r i o n  of  

ZD(u) and the  equa l i ty  from 2 - cx* and Ax* - b = 0. I f  Ax = b 

is replaced by & I b in (P ) ,  then ve r equ i re  u  2 0 and t h e  argument 

becomes 

ZD(u) I CX* + u(Ax* - b) 2 Z 

where the  second inequal i ty  follows from Z cx*, u 2 0 and 

Ax* - b j 0. Similar ly ,  f o r  Ax 2 b we requ i re  u  ( 0 f o r  

ZD(u) 5 Z t o  hold. 

we v i l l  d iscuss  i n  a  l a t e r  sec t ion  methods fordetermining u. I n  

genera l ,  it i s  not  possible t o  guarantee f inding u  fo r  which %(u)  = 

Z, but  t h i s  frequently happens fo r  p a r t i c u l a r  problem ins tances .  

The f a c t  t h a t  ZD(u) 5 Z allows (27 ) t o  Se used i n  p lace  of 

(LP) t o  ~ r o v i d e  lower Sounds in a  brancn and bound algorithm f o r  (PI. 

While t h i s  is t!e most obvious use of (LRU), it has a  number of o t h e r  

uses. I t  can be a  nedium f o r  se l ec t ing  branching va r i ab les  and choosing 

the  next brancn t o  explore. Good f e a s i b i e  so lu t ions  t o  

(PI can f r equendy  be obtained by per tarbing near ly  f eas ib le  so1utior.s 

t o  (T%). Fina l ly ,  Lagrangian r e l axa t ion  has been used r ecen t ly  

:10, 201 a s  an ana ly t i c  too l  f o r  e s t ab l i sh ing  worst-case Sounds on the  

performance of c e r t a i n  h e u r i s t i c s .  

3. -ample 

The generali:ed assign men^ problem is  an exce l l en t  e x w l e  

f o r  i l l u s t r a t i n g  Sagrangian re laxat ion because i t  is r i ch  with 

r ead i ly  apparent s u u c t u r e .  The generalized assignment problem (tXP1 

is t h e  in t ege r  r o q r a m  



1 

a .  x . .  s b i ,  i = l ,  ... , m  ( 3 )  
j '1 '1 

x . .  = 0 o r  1, a l l  i and j .  
'I 

( 4 )  

There a r e  tM n a t u r a l  Lagrangian r e l a x a t i o n s  f o r  t h e  gener-  

a l i z e d  assignment  problem. The f i r s t  is obta ined  by d u a l i z i n g  

c o n s t r a i n t s  (2  ) . 

s u b j e c t  t o  (31 and ( 4 )  

s u b j e c t  t o  ( 3 )  and ( 4 )  

This  problem reduces  t o  m 3 - 1 knapsack problems and can tbus be 
m 

so lved  in time p ropo r t i ona l  t o  n 1 bi . 
i= 1 

The second r e l a x a t i o n  is cb t a lned  by d u a l i z i n g  c o n s t r a i n t s  

s u b j e c t  t o  ( 2 )  and ( 4 )  

s u b j e c t  t o  ( 2 )  and ( 4 )  

This  r e l a x a t i o n  i s  de f i ned  f o r  v  LO, which is a necessary  cond i t i on  

f o r  ZD2(v )  5 Z t o  hold. S ince  cons t - a in t s  ( 2 )  a r e  g e n e r a l i z e d  upper 



Sound (GUB) cons ta in t s ,  we w i l l  c a l l  a problem l i k e  (UG) 

a 0 - 1 CUB problem. Such a problem is  e a s i l y  solved i n  t h e  pro- 

po r t iona l  t o  nm by determining min ( c .  . + v .  a .  . )  f o r  each j and 
i 1 3  1 1 3  

s e t t i n g  the  associa ted  x .  . = 1. Remaining x .  . are s e t  t o  zero. 
11 1 3  

4. I ssues  

X l i t t l e  thought about using (LRIU) o r  ( L q )  within a branch 

and bound algorithm fo r  t h e  generalized assignment problem quickly 

br ings  t o  mind a number of i s sues  t h a t  need t o  be resolved.  F o r e m s t  

among these  is: 

(1) Row w i l l  we s e l e c t  an appropr ia te  value f o r  u? 

A c lose ly  r e l a t e d  question is: 

( 2 )  Can w e  f i n d  a value f o r  u f o r  which Z (u )  is equal  t o  o r  
D 

near ly  equal t o  27 

The generalized assignment problem a l s o  shows t h a t  d i f f e r e n t  

Iagrangian r e l axa t ions  can be devised f o r  the  same problem. Comparing 

(L,UU) and (LR2J, we see t h a t  the f i r s t  is harder t o  solve bu t  .niqht 

provide b e t t e r  bounds. There is a l s o  t h e  question of how e i t h e r  of 

these  r e l axa t ions  compares with the  LP r e l axa t ion .  This leads  us 

to ask 

( 3) How :an sn choose between competing r e l axa t ions ,  i . e  . , 
d i f f e r e n t  Lagrangian r e l axa t ions  and the  l i n e a r  programming 

re laxat ion?  

Lanraagian r e l axa t ions  a l s o  can be used 

to srovide  good feas ib le  so lu t ions .  For example, a so lu t ion  t o  

(LRZV) w i l l  be f eas ib le  in t h e  generalrzed assiqnment problem unless 



the  ",*eight" of items assigned t o  one 3r more of t i e  " b a p s a c k s "  

c o r r e s ~ c n d i n g  t o  cons t r a in t s  ( 3 )  exceeds the capaci ty  b . .  If = h i s  
1 

happens, we could reass ign  items from overloaded knapsacks t o  o t i e r  

knapsacks, ~ e r h a p s  using a v a r i a n t  o fab in -pack ing  h e u r i s t i c ,  t o  

at tempt t o  achieve primal f e a s i b i l i t y .  In genera l  w e  would l i k e  

t o  know 

( 4 )  How can (LR ) be used t o  obta in  f e a s i b l e  so lu t ions  f o r  (PI ? 

How good a r e  these  so lu t ions  l i k e l y  t o  be? 

? i n a l l y ,  w e  note t h a t  t he  ultimate use of Lagranqian r e l axa t ion  

Is f o r  fathoming I n  a branch and bound algori thm, which 1 e a d s . u ~  to  

ask: 

(5) How can the lover  and upper bounding c a p a b i l i t i e s  of the  

Lagrangian problem be in t eg ra t ed  wi th in  branch and bound? 

The remainder of t h i s  paper is organized around these  Sive 

i s sues ,  which a r i s e  in any app l i ca t ion  of Laqrangian r e l axa t ion .  A sep- 

a r a t e  s ec t ion  is devoted t o  each one. In some cases  ( i s sues  (1) and 

( 3 )  qenera l  t h e o r e t i c a l  r e s u l t s  a r e  ava i l ab le .  But more o f t e n .  =he 

"answers" t o  the  ques t ions  we have posed must be extzapolatad from 

computational experience or t h e o r e t i c a l  r e s u l t s  t h a t  have been 

obtained f o r  s p e c i f i c  appl ica t ions .  

5. Exis t ing  A ~ o l i c a t i o n s  

Table 1 is a compilation of t he  app l i ca t ions  of Lagrangian 

r e l axa t ion  of which 1 am aware. f have not  attempted to  Include 

algori thms,  l i k e  those given In  [ 4 ]  and [ 7 ] .  t h a t  a r e  described 

d t h o u t  reference  to  LagrangIan r e l axa t ion ,  but can be described 

In terms of LagrangIan r e l axa t ion  vi th  s u f f i c i e n t  In s igh t .  

Yor have 1 Included references  descr ib ing app l i ca t ions  of the 

algori thms in Table 1. For example, reference C371 descr ibes  a 



- 

2rcblern Xeiesearchers Lagrangian Problem 

TRAVELING SALESFAN 

Held 6 xarp e7 281 Spanning Tree  
Za lb ig  Bansen h d  KraruP r261 Spanning Tree  

Bazarra  & Goode [ 3) Spanrung Tree  

Symmetric Ba las  r C h r i s t o f i d e s  [u P e r f e c t  2-Matching 

Xsynrmetric a a l a s  & C h r i s t o f i d e s  [ l ]  Assiqnmbnt 

nj m Xeighted 
Tard iness  F i s h e r  [Is] 

1 :,lachine Weight 
Tard iness  F i s h e r  [I81 

?ower (Generation ~ u c k s t a d t  & Koeniq [361 
Systems 

M o u n d e d  V a r i a b l e s  P i s h e r  & Shapi ro  [16] 

Unbounded V a r i a b l e s  Burdet  6 Johnson [51  

3 - 1 V a r i a b l e s  Z tcheber ry ,  e t .  a l .  [I31 

LOCATICN 

"capaci t a t e d  Cornue j o l s  , F i s h e r ,  & 

N e k a u s e r  110 
E r l e n k o r t e t  [ll) 

C a p a c i t a t e d  SeoZZrion 6 YcSride [23] 

Databases i n  
Computer Necworks F i s h e r  & Yochbaum [19] 

SZNERALIZED ASSICNMEXT 

ROSS & Soland [LO] 

Chalnet  6 Gelders  181 
F i s h e r .  Jaikumar h 

Van Wasseahove 2l.J 
SET C3EPX>~G--?ARTITICNIXG 

Covering Z t c k e b e r q  [12 1,  
P a r t i  t ~ o n i n g  Yeahauser & Neber [381 

pseudo-?olynomial 

Dynamic Proqramming 

Pseudo-?olynomial DP 

Pseudo-Polynomial DP 

Group Problem 

Group Problem 

0 - 1 GUB 

Knapsack 

Knapsack. 0-1 GW 

Knapsack 



s u c c e s s f u l  a p p l i c a t i o n  of the  Lagrangian r e l a x a t i o n  Fd [lo] t o  

a s p e c i a l i z e d  lmcapac i ta ted  l o c a t i o n  2roblem invo lv ing  d a t a  clustering. 

F i n a l l y ,  t h e  b r ead th  and developing a a t u r e  of 

-his f i e l d  nakes it certain t i a t  o t h e r  omissions e x i s t .  I srould be 

happ? t o  l e a r n  of any a p p l i c a t i o n s  t h a t  I have overlooked.  

h i s  list speaks f o r  i t s e l f  i n  t e r n s  o f  t h e  range of hazd prcblems 

t h a t  have been addressed  arid t h e  types  of embedded s t r u c t u r e s  t h a t  have been 

e x p l o i t e d  i n  Lilgrangian problems. Host of t h e s e  s t r u c t u r e s  a r e  vell-lmovn but  

two r e q u i r e  couaaent. h e  pseudo-pol*ynomial dynamic ?roqramminc 

2roblems a r i s i n g  i n  schedul ing  a r e  s i m i l a z  t o  t h e  0 - 1 knapsack 

problem i f  we regard  t he  schedul ing  hor izon  a s  t o  t h e  knapsack s i z e  

and the s e t  o f  jobs t o  be scheduled a s  t h e  s e t  o f  i t ems  a v a i l a b l e  

f o r  packing. The n o t a t i c n  W B  s t ands  f o r  " v a r i a b l e  upper  bound" [41] 

and deno t e s  a problem s t r u c t u r e  i n  whicii some v a r i a b l e s  a r e  upper 

Sounded Sy o t h e r  0 - 1 v a r i a b l e s .  An example of  t h i s  s t r x t u r e  i s  

given in Sec t i on  7. 

6. Determining u 

It is c l e a r  t h a t  t h e  b e s t  choice  f o r  u would be an opt imal  

s o l u t i o n  t o  L i e  d u a l  problem 

.%st schemes f o r  de te rmin ing  u have a s  t h e i r  o b j e c t i v e  f i nd ing  

opt imal  o r  neax opt imal  s o l u t i o n s  t o  (Dl 

Jroblem (0) has a number of  impor tan t  s t r u c t u r a l  p r o p e r t i e s  

t h a t  make it f e a s i b l e  t o  so lve .  We have assumed t h a t  t h e  s e t  X = 

i x l 3 x  S e ,  x 2 0 and ~ n t e ~ r a l ?  of f e a s i b l e  s o l u t i o n s  f o r  (LR ) is 

t 
f i z i z e ,  so  ;le can r ep r e sen t  :( a s  X = Cx , t = 1, ... , T?. This  



allows us t o  express (3 )  as  the following l i n e a r  arogram v l t b  nany 

cons t ra in t s .  

?'he LP d u d  of ( D l  is a  l i n e a r  program with m y  columns. 

Problem (5) with \ zequired t o  be i n t e g r a l  is equiYralent t o  
t 

(?)  , although (6) and (U) sene ra l ly  a r e  not equivalent  r o b l e m s .  

Both (6) and (5)  have been important cons t ruc t s  in the formu- 

l a t i a n  of  algorithms f o r  (D) . Problem (El  makes it apparent t h a t  

Z3(u) is the  lover envelope of a  f i n i t e  family of l i n e a r  functions.  

The form of Z (ul  is shown in Figuxe !. f o r  n = 1 and T = 4. m e  
D 

function Z (ul has a l l  t he  nice p roper t i e s ,  l i k e  cont inui ty  and con- 
D 

cavity?, t h a t  nake l i f e  easy for  a  hil l-cl imbing a lgor i t ! ! ,  excepc one-- 

Si f ferenciabi l i t - I .  The function is nonciifferentiable a t  any P where 

(L%l has multiple optima. .Uthouqn it is d i f f e r e n t i a b l e  almost 

everywhere, it generally is  nondif ferent iable  a t  an optimal point .  



Figure 1 

The Form of Z ( u )  
3 

- 
.An xi-vector y is ca l l ed  a subgradient  of ZD(u) a t  u i f  i t  s a t i s f i e s  

z ( u )  5 z ~ ( E )  + y ( U  - a ) ,  f o r  a l l  u 
5 

I t ' s a p p a r e n t t h a t  Z (u) is  subd i f f e ren t i ab le  everyvilere. 3 e  vector  
3 

t (Axt - j) is  a subgradient  a t  any u f o r  which x solves  

[A). Anv o the r  subgradient  is  a convex 

comSinatlon s f  these  p r i m i t ~ v e  subgradients.  Kith c h i s  pe r spec t ive ,  

..L ,.e well-hewn r e s u l t  t h a t  u* and A* are  optimal fo r  ( 5 )  and ( 5 )  i f  

and only i f  they are  f eas ib l e  and s a t i s f y  a complementary slackness 

condlt lon can be seen t o  be equivalent  to  the  obvious f a c t  t h a t  u* 

5s aptf_mal i n  (D) i f  and only i f  0 is a subgradient  of Z (u) a t  u*. 
3 



Stimulated in l a rge  ?art by applicaxions in Laqrangian re lax-  

a t i o n ,  t h e  f i e l d  of nondif ferent iable  optimization using subgradients 

has recent ly  become an important t o p i c  of study i n  its own r i g h t  

a l a r g e  and growing l i t e r a t u r e .  Our r e d e w  

of algorithms f o r  (D) vill be br ief  and l imi ted  t o  

the  following th ree  approaches t h a t  have been papular in Lagrangian 

r e l axa t ion  appl ica t ions  : (1) the subqradient method, ( 2  ) various 

versions of t h e  simplex method implamented using colunm cjeneration tech- 

niques. and ( 3 )  mul t ip l i a r  adjueuaent methods. 

-3eferences [171 and [ 2 9 ]  contain genera l  d iscuss ions  on the so lu t ion  

of (Dl within t h e  context of Lavangian re laxat ion.  S f e r e n c e  [2] is 

a good genera l  source on nondif ferent iable  optimization.  

The subgradient method is a brazen adaptation of t h e  gradient  

method in which q-rdients  a r e  replaced by subgradients.  Given an 

i n i t i a l  value u0 a sequence i u k j  is generated by the  r u l e  

K .  where x 1s jn optimal so lu t ion  t o  (LR X)  and tk is a pos i t ive  s c a l a r  
u 

s t e p  s i ze .  Because the subgradient method is  easy t o  program and has 

worked v e l l  on many p r a c t i c a l  problems, it has become the most popular 

mcthod f o r  (D)  . There have a l s o  bean many papers, such as CimerFni, e t  al. , C6J. 
t h a t  suggest  imprwements to  the  bas i c  r e l axa t ion  method. 

Computational perfomance and t h e o r e t i c a l  convergence 

g roper t i e s  of t h e  subqradient method are  discussed i n  iIela. Wolfe and 

Crowder [ 2 9 !  and thei: references ,  and i n  severa l  references  on aon- 

d i f f e r e n t i a b l e  optimization,  p a r t i c u l a r l y  Coffin [25].  The funda- 

k 
mental t h e o r e t i c a l  r e s u l t  is t h a t  ZD(u ) +ZD i f  t 0 

k 



and ; t ,  - . The s t e p  s i z e  used most commonly in 2 r a c t i c e  is  
i = O  

h e r e  i is  a s c a l a r  s a t i s f y i n g  0 < X 5 2 and Z* is an upper  bound on 
k k 

ZD, f r e q u e n t l y  a b t a i n e d  by apply ing  a h e u r i s t i c  t o  (PI. J u s t i f i c a t i o n  

o f  t h i s  formula is  g i v e n  i n  [ 2 9 ] .  Often t h e  sequence k is de te -Mned 

by s e t z l n g  X = 2 and h a l v i n g  1 whenever ZD(u) has  f a i l e d  t o  i n c r e a s e  
k 

in some f i x e d  number of  i t e r a t i o n s .  This  r u l e  has  p e r f o r a e d  v e l l  

e m p i r i c a l l y ,  even though i t  is n o t  guaran teed  t o  s a c i s f y  

t h e  s u f f i c i e n t  c o n d i t i o n  g iven  above f o r  op t imal  convergence. 

k 
Unless  we o b t a i n  a uk f o r  which Z ( u  ) e q u a l s  t h e  c o s t  of a 

D 

known f e a s i b l e  s o l u t i o n ,  t h e r e  is no vay of proving o p t h a l i t ?  i n  

t h e  s u b g r a d i e n t  ae thod .  To r e s o l v e  t h i s  d i f f i c u l t y ,  t h e  a e t h o d  i s  

u s u a l l y  t e r m i n a t e d  upon r e a c h i n g  an a r b i t r a r y  i t e r a t i o n  lfmit. 
0 

Usua l ly  u = 0 is t h e  most n a t u r a l  cho ice  b u t  i n  some c a s e s  one 

can d o  b e t t e r .  The q e n e r a l i z e d  asslqnment  problem i s  a ;ood example. 

Assuming c .  . > 0 f o r  a l l  i j , t h e  s o l u t i o n  X = 0 
11 

is opt imal  in (La ) f o r  any u s a t i s f y i n g  u .  5 c f o r  a l l  i and j .  
1 i j  

S e t t i n g  uO = min c .  . is thus a n a t u r a l  c h o i c e .  I t  is c l e a r l y  S e t t e r  
3 1 3  

+ban u0 = 3 and,  i n  f a c t ,  maximizes t h e  lower bound o v e r  a l l  u f o r  

vh ich  x = 0 is opt imal  i n  (LR1 1 .  
u 

Another c l a s s  o f  algorlt.hms f o r  ( D )  is based on apply- 

i n g  a v a r i a n t  of  t h e  s i n p l e x  nethod t o  ( ? ) ,  g e n e r a t i n g  an a p p r o p r i a t e  

s n t e r i n g  v a r i a b l e  on each ~ t e r a t i o n  5.1 s o l v i n g  ( L R )  , where 5 is ~ 5 e  
u 

c v x r e n t  v a l u e  of  t h e  s implex m l t i p l i e r s .  O f  c o u r s e ,  us ing  t h e  

-2rimal simplex method x i t h  column y e n e r a t i o n  is an approach wlt.5 a 

long h i s t o r y  [ 2 6 ] .  iiowever, t h i s  approach is known t o  converge v e r l  



slowly and does not produce monotonically increas ing lower bounds. 

These de f i c i enc ies  have p r o ~ t e d  researchers  t o  devise col*~rm gener- 

a t ion  implementations of dual  forms of t h e  simplex method, spec i f i c -  

a l l y  the  dual  sinq?lex method (Fisher  [151) and t h e  p r i aa l -dua l  simplex 

naethod (F i she r ,  No&up, Shapiro [17] ) . The primal-dual simplex 

method can a l s o  be modified s l i g h t l y  t o  b e  i t  the  method of s t e e p e s t  

ascent  f o r  (Dl- Hog=, Marsten and Blankenship [30] and Marsten [33] 

have had success with an i n t e r e s t i n g  modification of these  s m l e x  

0 
approaches tha t they  c a l l  BOXSTEP. Beginning a t  given u , a sequence 

k .  (u 1 1s generated. To obta in  uk+l from uk, we f i r s t  so lve  (c)  ~ i t h  

k 
t h e  add i t iona l  requirement t h a t  lui - u .  1 S 6 f o r  some f ixed posi-  

-k 
t i v e  6 .  Let u denote t h e  optimal so lu t ion  t o  t h i s  problem. If 

z i k  - u < 6 f o r  all i then $ is optimal in 0 ) .  Othemise  s e t  
i 
k uk+' = u + tk (8 - uk) where 4, is the  s c a l a r  t h a t  so lves  

This l i n e  search problem is e a s i l y  solved by Fibonacci 

methods. 

Generally,  t h e  simplex-based methods a re  harder t o  program 

and have not  perfonred q u i t e  s o  w e l l  computationally as t h e  sub- 

gradient  matbod. They should not  be counted o u t ,  however. Fur ther  

research could produce at'cactive va r i an t s .  ?Je note a l s o  t h a t  '-he 

dual ,  ~ r i m a l - d u a i  and ~ I S T E P  methods can a l l  be used in  tu ldem'wi t ;~  tbe 

subqradientmetho6by i n i t i a t i n g  them with a point  determined by the  



subgradien t  .nethod. Usvlg them i n  t h i s  fash ion  t o  f i n i s h  o f f  a  i u a l  

o p t w i z a t i o n  ?robably b e s t  s x p l o i t s  t h e i r  c o ~ a r a t i v e  advantages.  

; he  t h i r d  approach, m u l t i p l i e r  ad jusnnent  methods, a r e  

s p e c i a l i z e d  a lgor i thms  f o r  (D) t h a t  e m l o i t  t h e  s t r u c t u r e  of a  

p a r t i c u l a r  a p p l i c a t i o n .  I n  t h e s e  methods, a  sequence u k 

is genera ted  by t h e  rule 

U 
k+l  = Uk 

+ tr% where t is a  p o s i t i v e  scalar and 4( is k 

a d i r e c t i c a .  To derermine 5 we d e f i n e  a  f i n i t e  and u s u a l l y  

small  Set of p r i m i t i v e  d i r e c t i o n s  S f o r  which it is ea sy  t o  e v a l u a t e  

LCe d i r e c t i o n a l  d e r i v a t i v e  of z ( u ) .  TJsuallp d i r e c t i o n s  is F "mv0lve 
D 

changes fn only  one o r  t v o  m u l t i p l i e r s .  For d i r e c t i o n s  i n  S ,  i t  

should  be  eany t o  determine t h e  d i r e c t i o n a l  d e r t v a t i v e  of  ZD(u). 

M r e c t i o n s  I n  S  a r e  scanned I n  f i x e d  o r d e r  and % is taken t o  be  e i t h e r  

t he  f i r s t  d i r e c t i o n  found a long  which ZD(u) I nc r ea se s  o r  t h e  

d i r e c t i o n  of  s t e e p e s t  a s cen t  w i t h i n  S. The s t e p  s i z e  t;c can be 

k choeen e i t h e r  t o  maximize ZD(u + t%) o r  t o  take  us t o  t h e  f i r s t  

po in t  a t  which t h e  d i r e c t i o n a l  d e r t v a t i v e  changes. If  S con t a ln s  no 

Lmpmvhg d i r e c t i o n  we te rmina te ,  which, o f  course ,  can happen p r i o r  

t o  f i nd ing  an opt imal  s o l u t i o n  t o  (Dl. 

Succes s fu l  implementation of p r im i t i ve -d i r ec t i on  a scen t  f o r  

a  p a r t i c u l a r  problem r e q u i r e s  an a r t f u l  s p e c i f i c a t i o n  of  t h e  set S. 

S should be  manageably smal l ,  but  s t i l l  i nc lude  d i r e c t i o n s  t h a t  

a l l w  a scen t  t o  a t  l e a s t  a n e a r  op t imal  s o l u t i o n .  Held and Kam [27] 

experimented w i t h  p r + d t i v e - d i r e c t i o n  a s c e n t  i n  t h e i r  e a r l p  work 

on t h e  t r a v e l i n g  salesman problem. They had l i m i t e d  success  u s ing  

a  s e t  S  c o n s i s t i n g  of a l l  p o s i t i v e  and nega t i ve  coo rd ina t e  v e c t o r s .  

?h i s  seemed t o  d i scourage  o t h e r  r e s ea r che r s  f o r  soEe t ime,  bu t  

r e c e n t l y  E r l e n k o t t e r  [nl devised  a  mr r l t i p l i e r  adjw-t m t h o d  

fc r  t h e  Lagrangian r e l a x a t i o n  of t h e  uncapac i t a t ed  l o c a t i o n  problem 



s iven  in [ lo ]  in the  case where the  number of f a c i l i t i e s  loca ted  

i s  unconstrained. Although discovered independently. ~ r l e n i c o t t e r ' s  

a l g o r i t h  is  a v a r i a t i o n  on a method of a i l d e  and Erarup t h a t  

was f i r s t  described i n  1967 i n  a Danish working paper and l a t e r  

published i n  English a s  [ & I .  m i l e  t h e r e  has been no d i r e c t  

comparison, E r l anko t t e r ' s  method appears t o  p e r f o m  considerably  b e t t e r  

than the  subgradient  method. F isher  and Rochbaun! [ lg ]  have experimented wi th  

m l t i p l l e r  ad jus tmmt  f o r  another l o c a t i o n  problem and found themethod 

t o  work wel l ,  bu t  no t  q u i t e  so w e l l  as t h e  subqradiant  method. 

Fisher ,  Jaikmar, and Van Wassenhove 121) have success fu l ly  

developed a m u l t i p l i e r  adjustment method f o r  the genera l ized  

assignment problem i n  which one m l t i p l i e r  a t  a t i m e  is 

increased.  This method has l e d  t o  a s u b s t a n t i a l l y  improved 

algori thm f o r  the  generalized assignment problem. 

7. Bow Good a r e  the  Bounds? 

The "answer" t o  this ques t ion  t h a t  is ava i l ab le  i n  the  l i t e r -  

a t u r e  is completely problem-specific and l a r g e l y  empir ica l .  Fos t  of 

the empir ica l  r e s u l t s  a r e  s-rized i n  Table 2. Each l i n e  of t h i s  

t a b l e  corresponds t o  a paper on a p a r t i c d a r  app l i ca t ion  of Laqrangian 

r e l axa t ion  and gives the  problem type, the  source i n  ~ h i c h  the  computa- 

t i o n a l  experience is given, the  umber  of problems attempted, the  

percentage of problerns f o r  vhich a u was discovered wi th  ZD(u) - ZD = 2, 

and the  average value of Z,,(u*) x 100 divided by the  average value  

of Z ,  where ZD(u*) denotes the  l a r g e s t  bomd discovered f o r  each 

problem ins tance .  Except as noted f o r  the m n e r a l l a d  aas ignmnt  

problem, dl samples included a reasonable number of l a rgc  problems. 

In some cases the  sample included s i g n i f i c a n t l y  l a r g e r  problems than 

had been p r e d o u s l y  attempted. Frequently,  s tandard t e s t  p rob lem 

knovn f o r  t h e i r  d i f f i c u l t y  were included. Table 2 is based oo the 



CCSUTATICNAL EXPEXZNCZ W I T H  2 G R A N G i L V  REW[.=TION 

Problem Type Source Number o f  Percentage of Ave. ZD ( u * )  
Problems Problems With 100 

Solved ZD = Z Ave. Z 

T R A V E L I N G  sus; . lAN 

n/m weighted 
Tardiness ! 151 8 37.5 

1 rclachiqe 
Weighted 
Tardiness [ 181 6 3  19.2 

Power Gene rat ion  
Systems i 361 15 0 . 0  

T A G 4 T I O N  

Uncapacitated [lo] 33 6 6 . 6  

Capacitated [231 6 50 .0 

3atabases m 
Computer 
Neworits [19l 29 5 1 . 7  

G E N E R A L I Z E D  ASSIGNMENT 

Laqrangian* 
Relaxation 1 [a] 249" 96.0 

Lagrangian* 
Relaxation 1 [211 15 80.0 

*See Sect ion  3 . f o r  a d e f i n i t i o n  o f  Laarangian rsl2xaticr.s  1 and 1. 

**Yostly small zroblems. The l a r o e s t  had n = 3 and n = 17. 



r e s u l t s  re?orted i n  each refsrence  f o r  a l l  ?roblens f o r  which c m ? i e t e  

i n f ~ r z a c i o n  vas given. Of course. Table ? .g ives  highly aggrepated Lnforaa- 

r ion.  and in t e res t ed  readers a r e  urged :o c o ~ s u l t  the  appro?r ia t r  r z i s r snces .  

3 e s e  r e s u l t s  provide o v e ~ ~ h e l s i n a  evidencz L!at L!e Sounds 

provl&d by Lagrangian r e l axa t ion  a re  extremely r n w .  L C  i s  

na tu ra l  co ask why Lagrangian bounds a r e  so  sharp. 

I am aware of only one a n a l y t i c  r e s u l t  t h a t  even begins t o  answer 

t h i s  question.  This r e s u l t  was developed by Cornuejols,  F isher  and 

Nemhauser [IO] f o r  the  K-median problem. 

Siven n ~ o s s i b l e  f a c i l i t y  locations, m markets, and a ncn- 

negative value c . .  f o r  serving market i from a f a c i l i t y  a t  locat ion 
1 I 

j ,  the  K-median,problem asks where K f a c i l i t i e s  should be located  t o  

maximize t o t a l  value. Let 

( 1, i f  a  f a c i l i t y  is  placed i n  locat ion j  

r 1, if znarket i is served from locat ion j 

9,  otherwise 

If y .  = 5 we must have x .  . = 9 f o r  a l l  i. Thus Lqe K-median 
3 11 

problem can be formulated a s  the  in t ege r  p rogrm 

z = a w  1 1 c .  x . .  
i-1 j t l  '1 '1 



- 6 0 0 -  

I - x 5 : 2 1, f o r  a11 z and 1 
L j  J 

l a )  

x .  and y m t e q r a l ,  f o r  a l l  i and J . 
LJ I 

( 9 )  

A LagrangIan relaxation i s  ob t a ined  by d u a l i z i n g  cons t ra -mts  

subjec: t o  (71,  ( 8 )  and (9) 

? I! m 
= sax ! . . + . x .  - 1 ui 

i=l jal '1 1 'I i=l 

s u b j e c t  t o  (71,  ( 8 )  and (9 )  . 

T h i s  aroblem has t h e  0 - 1 WB s t r u c z u r e  de sc r i bed  i n  

Sec t ion  4 .  To s o l v e ,  we f i r s t  observe t h a t  t h e  VUB c o n s t r a i n t s  ( 8 )  

and the  objective o f  the L a e r a n e i ~  ~roblen Imply t h a t  

, , ={" i f  Cii + ui ' " 
o , otherwise  . 

- m 
Hence, de f i n ing  c .  = 1 nax ( 0 ,  c .  . ui) , opt imal  y .'s must so lve  

J F a 1  ' I 3 



which is a t r i v i a l  2roblem. 

Let ZD = rain Z (u)  and assume Z > 0 .  ~ o m u e j o l s ,  F isher  
u D D 

K- 1 1 and Nemhauser [ lo ]  proved t h a t  (ZD - Z)/ZD < ; and exh ib i t ed  

e x w l e s  t b t  show this bound t o  be the  bes t  poss ib le .  

This is an i n t e r e s t i n g  f i r s t  s t e p  towards understanding why 

Lagranqian r e l axa t ion  has vorked w e l l  on so  many problems. r u r t h e r  

study of %!is type is  needed t o  understand and b e t t e r  e x p l o i t  the 

-wwer o f  Laqrangian re laxat ion.  

8. Select ing Beween Comp~tinq Relaxations 

Two p roper t i e s  a r e  important in evaluat ing a r s l axa t ion :  t3e  

sharpness of the  bounds produced and t h e  a m u n t  of computation required 

t o  ob ta in  these  bounds. Usually s e l e c t i n g  a r e l axa t ion  involves a 

t radeoff  between these two p rope t t i e s ;  sharper  bounds require  more time 

t o  compute. It is genera l ly  d i f f i c u l t  t o  know vhether a r e l axa t ion  With 

sharper  bounds but g rea te r  computation time v i l l  r e s u l t  i n  a branch 

and bound algorithm with b e t t e r  o v e r a l l  gerformance. However, l t  is 

usual ly  poss ib le  t o  a t  l e a s t  compare the  bounds and computation 

requirements f o r  d i f f e r e n t  re laxat ions .  This w i l l  be demonstrated fo r  

the generalized assignment example. 



Two Lagrangian relaxations. (iR1 ) and (-av), were Cefined 

f o r  t i u s  probiem. ,The l i n e a r  procjranuriing r e l axa t ion  of f amulac ion  

(1) - ( 4 )  provides  a t h i r d  r e l axa t ion .  

Consider f i r s c  the  computational requirements f o r  eacn relaxa- 
m 

t i on .  s e  know t h a t  so lv ing  (LRL r equ i r e s  time bounded by n 1 b .  
u i=l ' 

and solv ing  ('JU r equ i r e s  t h  ~ r o p o r t i o n a l  t o  3 a. From *>1s it v 

would seem t h a t  t h e  f i r s t  r e l axa t ion  r equ i r e s  g r e a t e r  computacion, 

al though i t  i s  d i f f i c u l t  t o  know how many times eacn Lagrangian sroblem 

must be solved i n  optimizing t h a  duals .  I t  is d s o  impossible t o  know 

a n a l y t i c a l l y  t he  time requi red  to solve t h e  LP ro - l axa t~on  of 

(1) - ( 4 ) .  

Reference [8] r epo r t s  computational t i n e s  fo r  t h e  t h ree  relaxa- 

t i o n s  f o r  examples ranging in s i z e  from n = 4 and n = 6 t o  m = 9 and 

n = 17. 'The subgradient  method w a s  used t o  optiinize t h e  dua l  r o b l e m s .  

On average ,  Lhe f i r s t  r e l axa t ion  requi red  about 50% moro cospucat ional  

tzne chan t h e  second. This is  aucn l e s s  than would be ex-,acted f r m  

=omparison of  w o r s t e a s e  b o ~ ? d s  cn times t o  so lve  Laqranqian ?roblams 

because t h e  subgradient  method converqed more qu ick ly  f o r  t he  f i r s t  

r e l axa t ion .  Solving the  LP r e l axa t ion  requi red  one-fourth of the  t h e  f o r  

(LR1,) f o r  small  ?roblems bu t  2 .5  times f o r  l a rge  ?robloms. 

Now cons ider  t h e  r e l a c i v e  sharpness of the bounds produced by 

these r e l axa t ions .  Let Z = max Z (u)  , l e t  
D 1 

ZD2 = max ZJ2 (V), and 1st 
U v ', 

3.A 
ZLi denote t he  cpcimal .ralue c f  the iT rc laxaclon  of  (i) - (4) . 

A glance a t  t h e  computational exaerlence repor ted  i n  the  l a s t  

?do l i n e s  of Table 2 f o r  t h e  CJO Laqranglan :elaxations s = o n ~ l y  suqges ts  



t h a t  r e l axa t ion  1 produces nuch sharper  bounds than r e l axa t ion  2 .  

This observation can be v e r i f i e d  using an a n a l y t i c  result given by 

Geoffrion [221. This r r s u l t  VFU also a l l o w  us to compare ZD1 and ZZ2 

a 
with ZLp. 

The r e s u l t  s t a t e s  t h a t  in genera l  Z 
2 ZLp. Condit ions a re  D 

a l s o  given f o r  ZD = ZLp. The f a c t  t h a t  Z 2 ZLp can be established 
5 

by the  following s e r i e s  of   elations between opt imizat ion  ?roblens.  

x 2 0 and integral 

(By LP d u a l i t y )  = LIEU max ve - ub 
" v20 

s.t. vD 5 e + uA 

(By LP d u a l i t y )  = min cx 
X 



This l o g i c  a l s o  reveals  a s u f f i c i e n t  ccndi t ion  f o r  Z = Z 
D Le' 

?lamely, ZD = Z whenever Z (u )  is not increased by removing the in-  
LP D 

t e g r a l i t y  r e s t r i c t i o n  on x from t h e  cons t r a in t s  of the  Lagrangian 

problem. Geoffrion [ 2 2 )  c a l l s  t h i s  the  i n t e g r a l i t y  Broperty. 

Applying these r e s u l t s  t o  the  genera l ized a s s i g n w n t  2roblern 

e s t a b l i s h e s  t h a t  Z 2 ZD2 = Z s ince  the  second Laarangian r e l axa t ion  
5P 

has t h e  i n t e g r a l i t y  property while the  f i r s t  does not. 

I t  should be emphasized t h a t  t!!e i n t e g r a l i t y  property is  not 

defined r e l a t i v e  t o  a given lroblern c l a s s  but  r e l a t i v e  t o  a given 

in t ege r  programming formulation of a problem c l a s s .  This  is an 

important distinction because a problem of t en  has more than one form- 

u la t ion .  The Lagrangian re laxat ion of the  K-median problem given i n  

Section 7 has -he i n t e g r a l i t y  property i f  one takes  (P) t o  be formu- 

l a t i o n  (5) - (9)  . This f a c t  alone is misleading s ince  the re  is 

another formulation of the  K-median problem i n  which cons t r a in t s  (9) 

a r e  replaced by 

0 s x . .  s 1 ,  ?or a l l  i and j 
1 3  

This formulation is much more compact than ( 5 )  - (9)  and 1s t!e one ~ l sed  

nose LZ-based branch and bound a l q o r i C h s  f o r  the  K-mezian ?robleiti. 

The Laqrangian re laxat ion given previously can be defined equivalent ly  

in  terms of t h i s  formulation but r e l a t i v e  t o  t h i s  formulation,  i t  does 

not have =he integralit.! property.  21 f a c t ,  i: is  shown i n  [ 101 t ha t  



L!e Lagranoian bound Z, and the  LP value of ( 5 ) ,  ( 6 ) .  C7), (a),  (9) a-e s u b s t a n t i a l l y  

sharper than t h e  LP value of (5) , ( 6 )  , (7) , ( 8 ' )  and (9) . Others 

(IJilliiuns [45,461 and Wrs, e t  a1 [321) have a l s o  noted that the re  a r e  

f requent ly  a l t e r n a t i v e  IP f o m l a t i o n s  f o r  L3e same problem that have 

qu i t e  d i f f e r e n t  LP proper t ies .  

It is a l s o  worth noting t h a t  many o the r  success fu l  LagrangIan 

re laxat ions  ( including Held and Kaq cC7, 281, Etcheberry C123, ~ t c h e b e r r y  . 
e t  a l .  [131, and Fisher and Eochbaum [19]) have had  the  l n e e g r a l i q  

property.  For these  appl ica t ions  LagrangIan r e l axa t ion  was successful  

because t h e  LP r e l axa t i an  c lose ly  approximated (P I  and because L!e 

nethod. used t o  optimize (Dl (usual ly  the  subqradient method) was more 

powerful L3en methods avai lable  f o r  solving t h e  (genera l ly  large)  LP 

relaxit t ian of  (P). The important message of these  app l i ca t ions  is 

t h a t  conbinator ia l  optimization problems 2 e q u e u t l y  can  be fo r su la t ed  

a s  a l a rge  IP whose '9 r e l axa t ion  c lose ly  approximates the IP and can 

be solved quickly by dual methods. To e q l o i t  this f a c t ,  fu tu re  

research should be broadly construed t o  ?evelop met!!ods f o r  solving 

the l a rge  s t ruc tu red  U ' s  a r i s i n g  from cornbinatorial problems and 

t o  understand t h e  a r o p e r t i e s  of combinatorial problems t h a t  g ive  r i s e  



co good LP approximations.  There has a l r e a d y  been s i g n i f i c a n t  

r e s e a r c h  on methods o t h e r  than  Laqranqian r e l a x a t i o n  f o r  e.xploit;n,o 

the  s p e c i a l  s t r u c t u r e  of LP's  d e r i v e d  f rom c o m b i n a t o r i a l  problems.  

Schrage [b l !  , E l l i o t i s  [31, 35 1 , and C h r i s t o f i d e s  and Whit lock b 1 

have g i v e n  c l e v e r  s o l u t i o n  methods t h a t  e x p l o i t  c e r t a i n  types  of 

s t r u c t u r e  t h a t  a r e  connnon i n  f o r m u l a t i o a s o f  c o m b i n a t o r i a l  problems.  

g . F e a s i b l e  S o l u t i o n s  

This  s e c t i o n  i s  conce-ned wi th  us ing  (LR ) t o  o b t a i n  f e a s i b l e  

s o l u t i o n s  f o r  (PI. I t  is  2 o s s i b l e  i n  t h e  c o u r s e  of  s o l v i n g  ( D l  

Lhat a  s o l u t i o n  t o  (LR ) w i l l  be d i s c o v e r e d  t h a t  i s  f e a s i b l e  

i n  (P). aecause  t h e  d u a l i z e d  c o n s t r a i n t s  Xx = b a r e  e q u a l i t i e s ,  

-his s o l u t i o n  i s  a l s o  o p t i m a l  f o r  (P). I f  t h e  d u a l i z e d  c o n s - ~ a i n t s  

contair .  some i n e q u a l i t i e s ,  a  Lagrangian 2roblem s o l u c i o n  can 

be f e a s i b l e  b u t  nonoptimal f c r  (P). However, i t  i s  r a r e  t h a t  a 

f e a s l b l e  s o l u t i o n  of  e i t h e r  pee i s  discovcrer l .  On ?he o t h e r  hand, i t  

o f t e n  happens t h a t  a  s o l u t i o n  t o  (LR ) o b t a i n e d  whi le  o p t i m i z i n g  ( D l  

w i l l  be n e a r l y  f e a s i b l e  f o r  (21 and can be made f s a s i b l e  wit!! some 

j o d i c i o u s  t i n k e r i n g .  Such a  m e t h d  f ig ia t  be  c a l l e d  a Laarangian 

h e u r l s t l c .  A f t e r  i l l ~ s t r a t i n g  t h i s  approacn f o r  t h e  g e n e r a l x e d  

assiqtunent groblem and (LRl 1 ,  w e  w i l l  d i s c u s s  c o m u t a t i o n a l  e x s e r i e n c e  

wl th  Lagranglan h e l l r i s t i c s  f o r  o t h e r  problems. 

I t  is  convenien t  t o  t !  o f  t h e  g e n e r a l x e d  assignment  problem 

a s  r e q u i r i n g  a o a c k i n a  of n  i t e m s  i n t o  m knapsacks usFng each  i t e m  
rn 

e x a c t l y  cnce .  In ( L a  ) t i e  c o n s t r a i n t s  1 X:  . = 1, j = 1 ,  - .. , 9 
i=l -1 

r e q u i r m g  t h a c  each i tem be used e x a c t l y  once a r e  d u a l i z e d  and nay be 

-r lolaced.  Le t  i? l e n o t e  an o p t u n a l  solution t o  ( L a  1 ) .  P x t i t i o n  

!J = { l ,  ... , n j  i n t o  t h r e e  s e t s  d e f i n e d  by 



s 

si i J i i.. = o 
i=l '3 

m 
s 2 ={j i J 1 i Z .  -1) 

i=l '3 

m 
s3 =(j c J I 1 i . .  > 1 

irl '3 

The c o n s t r a i n t s  of (P) wnich a r e  v i o l a t e d  by 2 correspond. t o  

j E S1 u S3. 5Je wish- to  modif-/ 2 s o  t h a t  these  c o n s t r a i n t s  a r e  s a t -  

isfied. This  i s  easy f o r  a j E Sj. Simply renova item j from all 

but  one knapsack. X v a r i e t y  of r u l e s  could be used t o  eetermine in 

which kqapsack t o  leave i tem j. For example, it would be reasonable 

u .  - C . .  
1 11 t o  choose t h e  knapsack t h a t  m i m i z e s  

' i j  

To complete +_he const ruc t ion  of a f e a s i b l e  so lu t ion  it i s  only 

necessary t o  ass ign  items i n  S t o  knapsacks. : ihi le t he re  is no 
1 

guarantee t h a t  t h i s  can be done, t h e  chances of success should be 

good unless  the knapsack constraints  a r e  verl t i q h t .  Xany assignment 

r u l e s  a r e  p l a u s ~ b l e , s u c h  a s  the  following one tha t  is  motivated bp 51n 

packing h e u r i s t i c s .  Order i tems i n  S1 by decreas ing  value  of 

m 
1 a .  . and place  each item in turn i n t o  a knapsack wi th  s u f f i c i e n t  capaci ty  

i-1 '3 
u - c . .  i 11 

L ? a t  maximizes a 
i 1 

Several  researchers  have repor ted  success using Lagrang ia  

problem so lu t ions  obtained during the  app l i ca t ion  of t he  subgradient  method 

to  cons t ruc t  p r i s a l  f e a s i b l e  so lu t ions .  For example, ch i s  i s  rasv  ts ds f o r  

t h e  X-median prcblem. iet i ? ,  denote a f eas rb le  s o l ~ t i o n  t o  %!e 



i a g r a n g i a n  a r o b l e n  i e f i n e d  i n  Scczlon 7 f o r  t h e  K-median ?roblem. 
- 

At S = = l! and f o r  eacn i s e t  j .  = 1 f o r  a ; t h a t  s o l v e s  
1 I 

3 - 
l~ax C .  S e t  ;.. = 0 f o r  remaining i j .  The s o l u t i o n  x ,  y is  
jeES 11" 1 3  

f e a s i b l e  and r e p r e s e n t s  t h e  b e s t  assiqnment  o f  x given -. C o r n u e j o i s ,  

F i s h e r  and Yenhauser (101 found t!!at t h i s  approach performed a s  w e l l  

a s  t h e  b e s t  of  s e v e r a l  o t h e r  h e u r i s t i c s  t h e y  t e s t e d .  

F i s h e r  [ 181 r e p o r r s  experience f o r  t h e  r o b l e m  o f  s e ~ e n c l n g  

n jobs on one machine t o  minimize a t a r d i n e s s  f u n c t i o n .  X Laarangian 

s o l u t i o n  i s  a s e t  of  start tines 1 . . . , iZ f o r  t h e  n jobs t h a t  nay 

v i o l a t e  t h e  machine c o n s t r a i n t s .  A p r imal  f e a s i b l e  s o l u t i o n  is 

o b t a i n e d  by sequencing jobs on t h e  machine i n  o r d e r  o f  i n c r e a s i n g  2 .  
3 

v a l u e s .  T h i s  rule was t e s t e d  on 63 problems. I t  was a p p l i e d  i n  con- 

j u n c t i o n  wit!! t h e  s u b g r a d i e n t  nethod a f t e r  an i n i t i a l  f e a s l b l e  s o l u t i o n  

had Seen g e n e r a t e d  by a greedy h e u r i s t i c .  The greedy  h e u r i s t i c  

found an opr imal  s o l u t ~ o n  f o r  18 o f  Lye problems. The Laarv lg ian  

n e u r l s t l c  found op t imal  s o l u t i o n s  t o  2 1  of  t h e  remaininq 4 5  ?rcblems.  

On average t h e  greedy va lue  was :00.4% o f  t h e  o g t l n a l  v a i u e  v h i i a  :he 

va lue  of t h e  s o l u t i o n  produced by t h e  Lagrangian h e u r i s t i c  was 

100.16a o f  t h e  op t imal  va lue .  



10. Usmg iagrangian Reiaxation 
in aranch and 3ound 

The issues  involved in designing a Srancn and Sound algorithm 

t h a t  uses a Lagrangian re laxat ion are  e s s e n t i a l l y  *e same as those tha t  

a r i s e  when a l i n e a r  p r o g r d n g  re laxat ion is used. So- of these 

issues are  i l l u s t r a t e d  here fo r  the  generalized assignment problem and 

(LRIU) derived i n  Section 3. 

A na tura l  branching t r e e  fo r  t h i s  aroblem i s  i l l u s t r a t e d  in 

Figure 2 .  This t r e e  exp lo i t s  the s t ruc tu re  o f c o n s t r a i n t s  ( 2 )  by 

se lec t ing  a ? a r t i c u l a r  index j when branching and requir ing exact ly  one 

var iable  in the  s e t  x . , ,  i = 1 ,  ... , m t o  equal 1 along each branch. 
1, 

A hgrang ian  re laxat ion (presumably LBl, given the discussicm 

In Section 8) can be used a t  each noee of t h i s  t r e e  t o  obtain lower 

bounds and feas ib le  solut ions .  



Tiqure 2 

P a r t i a l  Branching Tree fo r  m e  Generalized Asslqnment ?roblem ,xith m = 3 

We nore thar the  Lagranpian problem defined a r  a p a r t i c u l a r  

node of t h l s  t r e e  has the same s t -ucture  a s  (W ) and i s  no harder 
u 

t o  solve.  nis is an obvious propecy t h a t  s u s t  hold f o r  any applica- 

t i a n .  Sometimes i t  is des i r ab le  t o  design the branching r u l e s  t o  

achieve t h i s  groperty (e .? . ,  Held and :(ar~, [ 2 8 ] ) .  

There are severa l  t a c t i c a l  decis ions  t h a t  musc be made in any 

branch and 5ound scheme such as  irhicn node t o  axplore next and what 

indices ( j l ,  and 1 in Ficure 21 t o  .lse i.7 brsnchmq. Laqrangian 

re laxat ion can be used L7 makinq these  decisions in  much the jams way 



thar: l i n e a r  r o g r w n g  wouLd t e  usea. Eor example, we sighr: zkoose 

m 
t o  branch on an lndex 1 f o r  which UJ( 1 x .  . - 1) is i a r g e  in t!!e curranr. 

1 =I 
Laqrangian problem so lu t ion  in  order t o  strengthen t h e  bounds a s  such 

M px t s ib le .  

F ina l ly ,  we note t h a t  t he  method f o r  optimizing (0) must be 

c a r e f u l l y  in tegra ted  i n t o  t h e  brsnch and bound clqorithm t o  avoid. 

doing .mnecessary work when (D) is reoptimized a t  a new node. A 

connmn s t r a t e q y  when using t h e  subgradient w t h o d  1s t o  take u3 equal 

t o  t h e  terminal value of u a t  t he  previous node. The subgradient 

nethod is then run f o r  a f ixed number of i t e r a t i o n s  t h a t  depends on 

the  :ype of n d e  being explored. A t  t h e  f i r s t  node a large  rimer 

of i t e r a t i o n s  is used. -Ahen b r a n c n i ~ g  down a small  number is . s e d ,  

and when Sacktzacking, an in termedia te  number. 

11. Conclusions and Future Research D i r e c t ' s n S  

Lagrangian r e l axa t ion  is an important nev couputatlonal  :=chnique 

i n  the nanagement s c i e n t i s t ' s  a rsenal .  This ?aper has documented a 

number of successful  appl ica t ions  of t h i s  technique, and nopefully 

vill i n s p i r e  o the r  app l i ca t ions .  aes ide  fu r the r  app l i ca t ions ,  

what oppor tuni t ies  f o r  f u r t h e r  research e x i s t  Fn t h i s  area?  The 

moet obvious is derelopment of more powerful technology f o r  optimizing 

the nondif ferent iable  dual function.  Nondifferentiable optimization 

has become an important genera l  research area  t h a t  su ra ly  w i l l  

continue t o  grow. One corner of t h i s  area  t h a t  seems t 3  hold g rca t  

promise forLagrangian r e l axa t ion  is the development of n u l t i p l i e r  



a d j , l s t z e n c  ne thods  of :he ::Te d e s c r i b e d  a t  t h e  end 31 s e c t i o n  6. 

5 e  e n o n o u s  s u c c e s s  t h a t  has  been a b t a i n e d  w i t h  t h i s  approach 

on t h e  u a c a p a c i t a t e d  locac ion  [11] and :he g e n e r a l i z e d  assignment  

problems [21], s u g g e s t s  t h a t  1: should  be t r i e d  on o t h e r  problems. 

Two o t h e r  r e s e a r c h  a r e a s  t h a t  d e s e r v e  f u r t h e r  a t t e n t i o n  a r e  t h e  

development and a n a l y s i s  of Lagrangian h e u r i s t i c s  a s  d e s c r i b e d  i n  

S e c t i o n  9 and t h e  a n a l y s i s  (worst-case o r  p r o b a b i l i s t i c )  of t h e  

q u a l i t y  of t h e  bolmas produced by Lagrangian r e l a x a t i o n  a s  d i s c u s s e d  

i n  S e c t i o n  7 and [ l o ]  . 
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AN ITERATIVE LINEAR PROGRAMMING ALGORITHM BASED ON 
THE MOD1 FIED LAGRANGIAN* 

E.G. Gol'shtein 

Central Economic Mathematical lnstinrte 
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Moscow 

Current LP solution algorithms are of two types: finite - such as the simplex method - 
and iterative - which after a finite number of iterations give only an approximate solu- 
tion. The main shortcoming of iterative methods to date is their slow rate of convergence. 
This paper describes an iterative LP algorithm which seems to have a satisfactory practical 
convergence rate. Naturally, the ultimate conclusion regarding its computational efficiency 
can be reached only after i t s  widespread use in practice. 

'This algorithm has been developed at CEMl by E.P. Borisova, N.A. Sokolov and N.V. Tretyakov in 
conjunction with the author. 



1. INTRODUCTION 

Economic models developed to describe the processes of econ- 

omic activity on various levels involve many problems concerning 

choice of an optimal decision from amongst possible alternatives. 

Such problems involve a wide range of mathematical concepts amongst 

which are static and dynamical formulations, continuous and dis- 

crete variables, the constraints of simple and very complicated 

structures, and stochastic and deterministic approaches. Never- 

theless, in spite of all these complications, practical problems 

are usually given a general formulation which is linear. To a 

large extent this is due to our ignorance regarding the mechanisms 

of economic processes as well as to difficulties in obtaining re- 

liable data. In any case linear programmdng (LP) remains one of 

the most important practical techniques with which to treat 

decision problems. 

The LP algorithms of today look rather powerful and sophisti- 

cated as a result of the widespread experience of many research 

workers. 

aasically, therearetwo types of LP methods: '<nit8 and 

.:teras<ve. Finite methods provide in principle the possibility 

of finding an exzct solution of the problem (to a specified mach- 

ine precision) after a finite number of operations, while generally 

speaking, any finite number of operations by an iterative method 

gives only an approzdmase solution. The typical--and most 

famous--finite method is the simplex nethod, which is the found- 

ation of most modern LP algorithms. The product form of the sim- 

plex method, together with special computational schemes involving 

reinversions, the rules for choosing pivot elements, prescaling 

of the initial data, and numerous additional procedures, are pre- 

sently used in all the commercial LP packages for solving sparse 

large-scale problems. The fundamental role of the simplex method 

in LP packages is due to an advanced level of computational ef- 

ficiency reached after the thirty odd years of its algorithmic 

development. However, some shortcomings of this highly popular 

method are well known. They are as follows: numerical instab- 

ility, inconsistency in, and complexity of, schemes for avoiding 

ill-conditioned bases and reducing the data representing the in- 

verse matrix, and awkwardness in taking the specific structure 



of a problem into account. 

Many attempts have been made to construct an efficient 

LP algorithm based on ideas different from the simplex method, 

in particular by using an iterative method. It is worth noting 

that algorithmic implementations of these iterative LP methods 

often do not require the computation of the inverse matrix, 

do allow compact representation and handy transformation of 

data, and are numerically stable--i.e., they obviate the short- 
comings mentioned above. Why then are iterative algorithms not 

widely used for practical LP problems? The reason lies in the 

very slow convergence of all known iterative algorithms; this is 

their main shortcoming. This report describes an iterative LP 

algorithm which seems to have a satisfactory practical rate of 

convergence. Naturally the ultimate conclusion concerning the 

efficiency of the algorithm can be reached only after obtaining 

widespread experience in practical use. 

The following research workers of CEMI have taken part in 

developing this algorithm along with the author: E.P. Borisova, 

N.A. Sokolov, N.V. Tretyakov. 

2. PROBLEM FORMULATION AND ALGORITHM OUTLINE 

We consider the general LP problem in c a n o n i c z l  form, i.e. 

in the form 

The algorithm is based on using the simplest modified 

Lagrangian of problem ( 1 ) : 
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! 
where U .  (x) = b. - 2 a. .x. i =  1,2, ..., m, 

1 j=l 11 3 ' 

a = (a1,a2 ,..., zm) is a penalty vector, a i > 0 Y i 

The values ui (x) and pi lY) = max iO,pj (y) are called 

residuals of the corresponding contstraints of problem (1) and 

of the dual problem 

The vectors u(x) = (ul (x) ,u2 (x) , . . . ,u (x) ) and m 

pf (y) = (p;(y),~;(y) ,...,PA (Y)) are said to be the residual 3ecscrs 

of the primal and dual problems respectively. 

The backbone of the algorithm is the well-studied (see [ I  -41) 

dual method based on the modified iagrangian (2). In this method 

the recursions 

(4) 
s+l - x = argmax ~ % ( x , y ~ ) ,  yS+l = ys - cx u(xSC1), s = 1,2,. . . , 

x.0 0 - 

with 3 = (zO,aO,. . . ,a0), are used to construct the sequences ixSi 
and iyS}, the first converging to a solution of (1) and the second 

converging to a solution of ( 3 ) .  

The implementation of the scheme ( 4 )  involves a number of 

questions such as the following. 

Which optimization method should be used to determine xS+l 

for the fixed y = ys? 

What accuracy is required to solve the "auxiliary" problem 

of maximizing Fz(~,YS) over the positive orthant x 2 0 ? 



Nay one use  t h e  v e c t o r  1 wi th  i d e n t i c a l  components a s  i n  ( U ) ,  

o r  should t h e s e  components be d i f f e r e n t ?  

Should t h e  v e c t o r  a be changed d u r i n g  t h e  p r o c e s s  of compu- 

t a t i o n  and i f  s o  how? 

The d e s c r i p t i o n  o f  t h e  a lgo r i thm p resen ted  below answers 

t h e s e ,  and some o t h e r ,  q u e s t i o n s .  From t h e  o u t s e t  i t  is worth 

n o t i c i n g  t h a t  f o r  a lgo r i thm e f f i c i e n c y  w e  must u s e  p e n a l t y  v e c t o r s  

w i th  d i f f e r e n t  components which must be changed from one i t e r a t i o n  

t o  a n o t h e r  a s  t h e  r e s u l t s  of c u r r e n t  computa t ion .  Th i s  r e q u i r e -  

ment i n  p a r t i c u l a r  d i s t i n g u i s h e s  t h e  p r e s e n t  a lgo r i thm from e a r -  

l i e r  implementations o f  (4) ( s e e  [ S ]  ) . 
When s o l v i n g  ( 1 )  by means of  t h e  sugges t ed  a lgo r i thm t h r e e  

ks sequences a r e  c o n s t r u c t e d  r e c u r s i v e l y ,  namely x  E E"+ ys E E ~ ,  
t t as E i n t  ET ( w e  use  t h e  n o t a t i o n  E t ,  E+ and i n t  E+ r e s p e c t i v e l y  f o r  

t h e  t - d i m e n s i o n a l  Eucl idean space ,  t h e  p o s i t i v e  o r t h a n t  of E  t 

t and t h e  i n t e r i o r  of  E+) . 
The v e c t o r  x 

~ S + I  , 1s determined a s  t h e  r e s u l t  of  approximate 

s o l u t i o n  of t h e  zuziZiary problem 

F ( x , ~ ' )  max, x  EE: 
CIS 

k  s  w i th  t h e  s t a r t i n g  p o i n t  x  which has  been found a t  t h e  p rev ious  

i t e r a t i o n .  

The v e c t o r  yS+' i s  computed by t h e  formula 

where t h e  parameter  hS E [0 ,1 ]  is  chosen t o  depend on t h e  s o l u t i o n  

p rocess  of  t h e  a u x i l i a r y  .problem ( 5 ) .  

The p e n a l t y  v e c t o r  a is recomputed according t o  t h e  r u l e  



where 5 i s  a c e r t a l n  v e c t o r - E u n c t i o n  whose c h o i c e  s u b s t a n t i a l l y  

~ n f l u e n c e s  t h e  e f f i c i e n c y  o f  t h e  a l g o r i t h m .  

C o n s i d e r  now t h e  i m p l e m e n t a t i o n  o f  t h e  scheme (5-71 i n  more 

d e t a i l .  

3 .  AUXILIARY PROBLEM OPTIMIZATION 

The aLternating cooriinate direction method (which i s  o f t e n  

c a l l e d  SeideL's o p t i m i z a t i o n  method) was c h o s e n  f o r  s o l v i n g  t h e  

a u x i l i a r y  problem ( 5 ) .  T h i s  c h o i c e  was made f o r  t h e  f o l l o w i n g  

r e a s o n s .  F i r s t ,  t h e  n u m e r i c a l  i m p l e m e n t a t i o n  o f  t h e  a l t e r n a t i n g  

c o o r d i n a t e  d i r e c t i o n  method i s  v e r y  s i m p l e  and f i t s  n a t u r a l l y  w i t h  

d a t a  p r o c e s s i n g  column by column ( a s  u s e d  w i t h  t h e  s i m p l e x  method) 

--an i m p o r t a n t  f e a t u r e  f o r  l a r g e - s c a l e  LP prob lems  ( 1 )  w i t h  n>>m. 

S e c o n d l y ,  t h e  c o m p u t a t i o n a l  t r i a l s  show t h a t  f o r  t h e  c a s e  o f  ?rob-  

lem ( 5 )  t h i s  method i s  n o t  much worse  t h a n  methods ( s u c h  a s  t h e  

c o n j u g a t e  g r a d i e n t  method) which a r e  more e f f i c i e n t  i n  g e n e r a l .  

A s i n g l e  i t e r a t i o n  o f  t h e  a l t e r n a t i n g  c o o r d i n a t e  d i r e c t i o n  method 

e n a b l e s  u s  t o  o b t a i n  t h e  v e c t o r  xt+ '  f rom xt  by s o l v i n g  n  one- 

d i m e n s i o n a l  p rob lems  i n v o l v i n g  o p t i m i z a t i o n  o f  t h e  f u n c t i o n  ( 2 )  
S 9 i n  c o o r d i n a t e s  x l , x Z ,  ..., x n  w i t h  f i x e d  y = y  , a = a  . The s o l u t i o n  

of  e a c h  problem may b e  computed from t h e  s i m p l e  r e c u r s i o n :  

t '? s t + l  t t 
t + l  

x  = m a i x  + [ p j  l Y s )  + i i l a i  a i l  u i ( x 1  , . .. , x j - l , x  ,. . . , x n )  I /  
I I 1 

where t = k s + l  and l i s  t h e  c u r r e n t  i t e r a t i o n  number o f  t h e  c o o r -  

d i n a t e  d i r e c t i o n  method used  i n  s o l v i n g  ( 5 ) .  

L e t  ls be  a n  i n t e g e r  s u c h  t h a t  ks+l  = ks+ls ,  t h a t  is  
k s + t  

x  is a c c e p t e d  t o  b e  x  ks+l , a n  a p p r o x i m a t e  s o l u t i o n  o f  ( 5 ) .  

The method o f  d e t e r m i n i n g  ts, which i s  o f  g r e a t  i m p o r t a n c e  f o r  

t h e  a l g o r i t h m s ' s  e f f i c i e n c y ,  is b a s e d  on u s i n g  two c r i t e r i a :  

A a n d / o r  B.  



Criterion A 

4 &+I 
P (Y 

?+ 1 S where: is derived from y according to ( 6 )  , 
with hs = 1 and x ks+ 1 t 

replaced by x , 

4 
p = 1 pj/n max {i,c 1 , 

j - 1  
j 

- m 
u = 1 luil/m max {i, Jbil} , 

1x1 

FO(x,y) = Fa(x,y) , with ;r = (O,O,. . .,O) 
and ci and ci are specified positive numbers. 

Criterion A stops the solution process for ( 5 )  when the re- 

lative average residual in the constraints of the dual problem 

and the relative difference between the objective functions of 

the perturbed primal and dual problems become comparable with the 

relative average residual in the constraints of the primal problem. 

Notice that when t -. 9 the left-hand sides of the inequalities in 
t 

A tend to zero, while u(x ) converges to a positive number, since 

yS is not a solution of ( 3 )  , 

Criterion B 

t A;(X~) 2 cBii(x ) , ~ 3 x 7  < AU(X~-'I , - 
m 

where A )  = 1 uilx t I-uilx t-1 1 1  / m a m a x  {lplbil? 
i= 1 

and cg is a specified positive number. 



Criterion B stops the solution process for (5) when the vec- 
t 

tor u(x ) which determines the direction for adjusting the vector 

y S ,  becomes stable. 

To avoid too many iterations in solving the auxiliary prob- 

lems, the algorithm implimentation is also provided with an iter- 

ation count "cut-off" Lnax = Lmax(n), which depends on the dimen- 

sion n of the vector x. 

The number LS of alternating coordinate direction method 

iterations performed to find an approximate solution of the aux- 

iliary problem (5) is t the minimal number of iterations after 
which at least one of the criteria A or B holds if l <emax; 

otherwise es = L . max 

4. PENALTY VECTOR UPDATE 

The details of the method for updating the penalty vector 

3, given in general form by ( 7 ) ,  is also critical for efficiency 

of the suggested algorithm. 

Set 

After termination of the auxiliary problem (5) solution process, 

we transform as into as+' according to the following formulae: 



The f u n c t i o n  Q i n  ( 8 )  changes t h e  components of t h e  pena l ty  

v e c t o r  p r o p o r t i o n a l  t o  t h e  r e l a t i v e  r e s i d u a l s  i n  the c o n s t r a i n t s  

of t h e  pr imal  problem. 

The r o l e  of formula ( 9 )  is t o  change t h e  norm of t h e  pena l ty  

vec to r .  The f a c t o r  rlsE [ 0 , 1 ]  dec reases  t h e  norm of a when t o o  

many i t e r a t i o n s  a r e  r equ i red  i n  so lv ing  t h e  a u x i l i a r y  problem ( 5 )  

t o  t h e  accuracy determined by t h e  c r i t e r i a  A o r  8. Thus 

The f u n c t i o n s  y and (I change t h e  norm of t h e  pena l ty  v e c t o r  

i n  r e l a t i o n  t o ,  r e s p e c t i v e l y ,  t h e  r a t i o  of t h e  c u r r e n t  average  

r e l a t i v e  r e s i d u a l s  of t h e  pr imal  and d u a l  problems, and t h e  r a t i o  

of t h e  average  r e l a t i v e  r e s i d u a l s  of t h e  pr imal  problem provided 

by two success ive  i t e r a t i o n s .  F i n a l l y ,  t h e  p e n a l t y  c o e f f i c i e n t s  

a r e  p r o j e c t e d  on to  t h e  c losed  i n t e r v a l  [ c l  ,c21 denoted by t h e  pro- 
j e c t i o n  o p e r a t o r  1 i n  (101, t h e  p o s i t i v e  numbers c l  and c 2  being 

t h e  minimal and maximal admiss ib le  va lues  of 3; r e s p e c t i v e l y .  

The f u n c t i o n s  involved i n  ( a ) ,  ( 9 )  were chosen a s  follows: 

where 



5. CURRENT DUAL VECTOR UPDATE 

To complete the description of the algorithm implementation, 

a few comments are in order concerning the formula (6) for updating 

yS to yield ys+l . The parameter hs entering ( 6 )  is determined 

according to the conditions at termination of the auxiliary prob- 

lem (5) solution process. Namely, we set hs=l if either criterion 

A or B is satisfied at termination (i.e., if ts <emax) and set 

hS = h E (0,l) otherwise (i.e. when tS = emax) . Thus the 

ks+l 
parameter hs decreases the step-size in the direction u(x ) 

when the solution accuracy for (5) is not high enough. 

6. COMPUTATIONAL EXPERIENCE 

Next we present the results of some trial computational ex- 

perience with the suggested algorithm. 

For all the test problems starting values of x,y and a were 

taken as follows: 

A preliminary normalization of the test problems in the form 

( 1 )  was also used. Basically it consisted of transforming each 

problem in the form (1) into an equivalent problem in the same f o m  

but having identical averages of the coefficients /a..l, lbi! and 
' 1 

13 
ICj, . 

Table 1 summarizes the results of solving 5 practical L? prob- 
lems of the size given in the first column. Each of the next five 

columns of Table 1 presents the computational effort required for 

solvlng the aroblems from the initial values to within an accuracy 

of E X ,  the values of E beinq indicated in the upper positions of 

each column. 



Simplex 
n x m  1 0 - 1 5 s  5 - 8 s  3 - 5 s  2 - 3 s  - ' ' 5 X  ~ t e r a t i o n s  

Table 1 .  Computational R e s u l t s  f o r  Five P r a c t i c a l  LP Problems 

The accuracy of t h e  s o l u t i o n s  has  been es t ima ted  a s  fo l lows:  

E = max IE, , E ~ , E ~ I  

I c ' x  k s 

€1 = 200 

i c ' x  ks + b 'ys  I 

The computational  e f f o r t  r equ i red  t o  s o l v e  a t e s t  problem t o  

t h e  s p e c i f i e d  accuracy i s  p resen ted  i n  Table  1 i n  t h e  i n t e r s e c t i o n  

o f  t h e  corresponding column and row. I t  i s  measured by t h e  num- 

be r  ks-1 o f  i t e r a t i o n s  r equ i red  f o r  t h e  de te rmina t ion  of  xks us ing  

t h e  a l t e r n a t i n g  coord ina te  d i r e c t i o n  method. The number s-1 o f  

updates  of t h e  vec to r  y is given i n  b racke t s .  The l a s t  column o f  

Table  1 c o n t a i n s  t h e  number o f  i t e r a t i o n s  r e q u i r e d  t o  s o l v e  t h e  

same t e s t  problems us ing  a modern v e r s i o n  of t h e  r ev i sed  simplex 

a lgor i thm i n  product  form. As i s  seen by i n s p e c t i o n  o f  Table  1 

t h e  suggested  a lgor i thm enab les  u s  t o  f i n d  s u f f i c i e n t l y  a c c u r a t e  

s o l u t i o n s  of t h e  g iven problems i n  a number of i t e r a t i o n s  compar- 

a b l e  t o  t h a t  r equ i red  by t h e  simplex method. (Note t h a t  an i t e r -  

a t i o n  o f  t h e  simplex method is  more compl ica ted  than one of ou r  



s o l u t i o n s  of t h e  g i v e n  problems i n  a  number o f  i t e r a t i o n s  compar- 

a b l e  t o  t h a t  r e q u i r e d  by t h e  s imp lex  method. (Note t h a t  a n  i t e r -  

a t i o n  of  t h e  s imp lex  method i s  more c o m p l i c a t e d  t h a n  one  of  o u r  

a l q o r i t h m . )  

I t  is w e l l  known t h a t  t h e  s imp lex  method h a s  wor s t - ca se  ex- 

p o n e n t i a l  comp lex l t y .  T h l s  a r i s e s  from t h e  f a c t  t h a t  f o r  c e r t a i n  

LP problems i t  must l ook  t h rough  a l l ,  o r  a l m o s t  a l l ,  v e r t i c e s  

of  t h e  f e a s i b l e  po lyhedron .  I t  i s  t h u s  q u i t e  n a t u r a l  t o  t r y  u s l n g  

t h e  sugges t ed  i t e r a t i v e  a l g o r i t h m  t o  s o l v e  such  " d i f f i c u l t "  L? 

p roblems.  

I n  view of t h i s  a  s p e c i a l  f a m i l y  o f  LP problems depending  on  

a p o s i t i v e  i n t e g e r  pa r ame te r  m h a s  been c o n s i d e r e d .  The problem 

c o r r e s p o n d i n g  t o  e ach  f i x e d  m i n v o l v e s  2m nonnega t i ve  v a r i a b l e s  

s u b j e c t  t o  m e q u a l i t y  c o n s t r a i n t s  and i t s  f e a s i b l e  po lyhedron  

h a s  2" v e r t i c e s .  The problems c o n s i d e r e d  have  t h e  p r o p e r t y  t h a t  

s t a r t i n g  from t h e  n a t u r a l  b a s i s  t h e  s imp lex  method w i l l  look  

t h rough  a l l  f e a s i b l e  v e r t i c e s .  The r e s u l t s  o f  a p p l y i n g  t h e  new 

a l g o r i t h m  t o  some problems o f  t h i s  f a m i l y  a r e  g i v e n  i n  T a b l e  2 

i n  t h e  same fo rma t  a s  i n  T a b l e  1 .  

T a b l e  2 .  Compu ta t i ona l  R e s u l t s  f o r  Four S implex  Method Wors t -case  
Problems 



7.  CONCLUSION 

I n  conclus ion a few words should  be s a i d  about  va r ious  pos- 

s i b i l i t i e s  f o r  us ing t h e  suggested i t e r a t i v e  a lgor i thm i n  prac- 

t i c e .  

F i r s t  of  a l l  t h e  a lgor i thm enab les  us  t o  g e t  approximate 

s o l u t i o n s  of p r a c t i c a l  LP problems i n  r easonab le  t ime us ing  an 

ext remely  smal l  amount of computer memory. 

F u r t h e r ,  t h e  new i t e r a t i v e  a lgor i thm is  r a t h e r  s u i t a b l e  f o r  

use  t o g e t h e r  w i t h  t h e  simplex method a s  an  i n i t i a l  s o l u t i o n  pro- 

c e s s .  A f t e r  acheiving a c e r t a i n  s o l u t i o n  accuracy a simplex ba- 

s i s ,  c l o s e  t o  t h e  opt imal  one,may be c o n s t r u c t e d  us ing  informat ion 

from t h e  approximate pr imal  and d u a l  s o l u t i o n s  ob ta ined  by t h e  

i t e r a t i v e  a lgor i thm;  t h i s  b a s i s  is  then  improved by t h e  simplex 

method. Computational exper i ence  shows t h a t  t h e  i t e r a t i v e  s t a g e  

of t h e  p rocess  should be performed wi th  a r a t h e r  low accuracy 

(no more than  about  10 - l S % , a s  de f ined  f o r  t h e  t a b l e s  of t h e  pre- 

v ious  s e c t i o n )  s i n c e  even t h i s  smal l  amount o f  p re l imina ry  work 

appears  t o  reduce t h e  number of simplex i t e r a t i o n s  by a f a c t o r  

o f  t e n .  

F i n a l l y ,  one could  t r y  t o  use  t h e  i t e r a t i v e  a lgor i thm f o r  

he lp ing  t h e  simplex method o u t  of t h e  neighbourhood of a "bad" 

b a s i s ,  b u t  no computa t ional  exper i ence  wi th  t h i s  idea  has been 

ob ta ined  a s  y e t .  
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EXPERIMENTS WITH THE REDUCED GRADIENT METHOD FOR 
GENERAL AND DYNAMIC LINEAR PROGRAMMING" 

Markku Kallio 
System and Decision Sciences, IIASA 

William Orchard-Hays 
Energy Systems Progam, IIASA ' 

This article deals with variations of the reduced gradient method for general and dynamic 
linear programming. Such methods generate a monotonically improving sequence of fea- 
sible solutions; examples are the simplex method and the standard reduced gradient meth- 
od. A class of these methods and their convergence have been discussed in a recent article 
by Kallio and Porteus. 

A version of these methods has been implemented in the SESAME system. This version 
resembles the standard reduced gradient method except that only a subset of nonbasic 
variables to bechanged is  considered a t  each iteration. We have tried out several modifica- 
tions of this basic version, experimenting with moderate sized nonstructured as well as 
dynamic problems. Compared with the simplex method. the overall performance of these 
variants appears to be about equal in the case of linear programs with no particular struc- 
ture. 

For dynamic LP we have obtained some encouraging results. Although we have been able 
to experiment with only a few problems, it appears that using a specially defined starting 
basis and an initial nonbasic solution can lead to considerable savings; in one case, the 
number of iterations required by the reduced gradient method was reduced by a factor of 
8. This starting basis i s  chosen so that i t s  columns are also likely to appear in an optimal 
basis. For the initial solution, available information, such as current lwel of activities in 
real life, may be employed. 

No fair comparison was made for dynamic LP between the simplex method and the reduced 
gradient method. However, our starting basis may be used also in the simplex method, and 
therefore the results obtained may be employed immediately in the simplex method as 
well, provided that an option for obtaining a vertex solution from a nonbasic starting solu- 
tion i s  available. 

*The authors wish to thank an anonymous reader for beneficial comments end many detailed sugges- 
tions which have significantly improved our paper. 

*Currently at: 

Energy Information Administration 
U.S. Depanment of Energy, Washington, D.C. 



1 .  I n t r o d u c t i o n  

C o n s i d e r  t h e  l i n e a r  program (LP) : 

f i n d  x  E Rn t o  

(LP1) maximize c x  

(LP2) s u b j e c t  t o  Rx = b  

( L P 3 )  O Z X ' U  , 

where c ,  u  E Rn, b  E R'", and A E R~~~ i s  o f  f u l l  row r a n k .  For  

s o l v i n g  (LP) we s h a l l  c o n s i d e r  methods ,  which c a n  be  c h a r a c e r i z e d  

a s  f o l l o w s :  L i k e  t h e  s i m p l e x  method 111, t h e s e  methods move from 

o n e  f e a s i b l e  s o l u t i o n  t o  a n o t h e r  a t  e a c h  i t e r a t i o n ,  t h e r e b y  i m -  

p r o v i n g  t h e  o b l e c t i v e  f u n c t i o n .  Each f e a s i b l e  s o l u t i o n  i s  a l s o  

a s s o c i a t e d  w i t h  a  b a s i s .  However, t h i s  f e a s i b l e  s o l u t i o n  need 

n o t  be  a n  e x t r e m e  p o i n t  and t h e  b a s i c  s o l u t i o n  c o r r e s p o n d i n g  t o  

t h e  a s s o c i a t e d  b a s i s  need n o t  b e  f e a s i b l e .  N e v e r t h e l e s s ,  a s  

shown i n  [ 2 ] ,  a n  o p t i m a l  s o l u t i o n ,  i f  o n e  e x i s t s ,  c a n  b e  found 

i n  a  f i n i t e  number o f  i t e r a t i o n  ( u n d e r  n o n d e g e n e r a c y ) .  



In  t h e  fo l lowing ,  w e  s h a l l  f i r s t  review t h i s  c l a s s  of  methods 

a s  p re sen ted  i n  [ 2 ] .  T h e r e a f t e r ,  w e  d i s c u s s  an  implementation o f  

such methods i n  t h e  SESAME system, an  i n t e r a c t i v e  mathematical  

programming system developed by Orchard-Hays (71.  I n  t h e  l a s t  two 

s e c t i o n s  w e  s h a l l  r e p o r t  exper iments  which w e  c a r r i e d  o u t  both  f o r  

nons t ruc tu red  and f o r  dynamic l i n e a r  programs (LP) .  

2. The C l a s s  of Methods 

W e  s h a l l  now review t h e  methods i n  c o n s i d e r a t i o n  a s  p re sen ted  

i n  [21. W e  c a l l  x  a  system s o l u t i o n  i f  it s a t i s f i e s  (LP2) ,  a  

homogeneous s o l u t i o n  i f  it s a t i s f i e s  Ax = 0 ,  and a  f e a s i b l e  so lu -  

t i o n  i f  it s a t i s f i e s  (LP2) and (LP3). I f  x  i s  f e a s i b l e  and z  is  

a  homogeneous s o l u t i o n ,  t h e n  x  + 8z is f e a s i b l e  a s  long a s  

0  < x + 8z < u,  f o r  a l l  8 E  R .  A s  8  i n c r e a s e s ,  t h e  o b j e c t i v e  

f u n c t i o n  i f  and on ly  i f  c z  > 0. The simplex method chooses  a s  z  

one of t h e  homogeneous s o l u t i o n s  corresponding t o  i n c r e a s i n g  t h e  

va lue  of a  nonbas ic  v a r i a b l e  such t h a t  c z ,  t h e  reduced c o s t ,  is  

p o s i t i v e .  The methods cons ide red  h e r e  may choose a s  z  a  l i n e a r  

combination of such v e c t o r s ,  r a t h e r  t han  j u s t  one. I n  p a r t i c u l a r ,  

t h e  d i r e c t i o n  may be  chosen according t o  t h e  reduced g r a d i e n t  meth- 

od ,  (e.g.  [ l o ] ) .  A s  i n  t h e  simplex method, a  new f e a s i b l e  s o l u t i o n  

is  found by i n c r e a s i n g  9 (and t h e  o b j e c t i v e  f u n c t i o n )  a s  much a s  

p o s s i b l e  wi thou t  l o s i n g  f e a s i b i l i t y .  

The Admissible D i r e c t i o n s  

Before s t a t i n g  t h e  method, w e  s h a l l  d i s c u s s  how an a d m i s s i b l e  

d i r e c t i o n  is  cons t ruc t ed .  Let  0 denote  t h e  set o f  b a s i c  i n d i c e s  

( i n d i c e s  f o r  b a s i c  v a r i a b l e s ) ,  and l e t  a and y be sets of v a r i a b l e s  



at thelr lower and upper bounds at x ,  respectively; i.e. 

= ~ ( x )  = W x .  = 0 )  and 

In the simplex method, all nonbasic variables would be in a U y, 

but this is not necessarily the case here. For convenience, 

assume that the variables have been ordered so that 0 = (1,2, ..., mj 
Let B be the corresponding basis matrix, and let aJ denote the j  

th 

column of A. For each nonbasic variable j  E (the complement of 

3)  define a column vector zJ E R" componentwise as follows: 

! O otherwise . 
-1 j  ' Clearly, zJ is a homogeneous solution, since A Z ~ = B  (-B a ) +a3=0.  

As mentioned before, zJ serves as the direction of change in the 

simplex method, when changing the value of a nonbasic variable j. 

For the methods considered here, linear combinations of such vec- 

tors serve as such directions z; i.e., if Z = z (z3) is the na (n-m) 

matrix having vectors zJ as its columns and w is an (n-m)-vector 

of weights, then 

We shall index the components of w by nonbasic variables rather 

than the first n - m integers. Thus, reference to w. always 
3 

carries the convention that j E 3. Taking (2) into account, the 

components w .  indicate the direction of change in the space of 
I 



nonbasic v a r i a b l e s  whi le  z  is  t h e  d i r e c t i o n  i n  t h e  space Rn of 

a l l  v a r i a b l e s .  

I n  g e n e r a l ,  c e r t a i n  c o n d i t i o n s  a r e  t o  be met by an admiss ib le  

d i r e c t i o n  i n  o r d e r  f o r  t h e  method t o  converge: ( i ) F o r  t h e  d i r e c -  

t i o n  t o  be f e a s i b l e ,  we r e q u i r e  ( f o r  a  nonbasic  v a r i a b l e  j  

c u r r e n t l y  a t  i t s  bound) t h a t  w > 0 f o r  j  E a and w. < 0 f o r  
j  - I - 

j  Y . (ii) I n  o r d e r  t o  improve t h e  o b j e c t i v e  f u n c t i o n ,  w e  must 

have cZw > 0. ( i i i I F i n a l l y ,  i n  o r d e r  t o  p reven t  zig-zagging,  we 

r e q u i r e  t h a t  cz jw.  > 0 i f  w. # 0. I f  no w E R " ' ~  s a t i s f i e s  
3 3 

c o n d i t i o n s  (i) - (iii), then  t h e  c u r r e n t  s o l u t i o n  is op t ima l  f o r  

(LP) . (For a  proof ,  s e e  r e f e r e n c e  (21  J 

I n  t h e  simplex method, an admiss ib le  d i r e c t i o n  w i s  a  u n i t  

v e c t o r  f o r  which cZw is  p o s i t i v e  o r  n e g a t i v e  depending on whether 

t h e  p a r t i c u l a r  nonbasic v a r i a b l e  is c u r r e n t l y  on i t s  lower o r  

upper bound. For t h e  reduced g r a d i e n t  method, w i s  given by 

i 0 i f  j  E a , and czJ  < 0 , o r  

W .  = 
3 

j  E y , and c z J  > 0 , 

[czj  o the rwise  . 

That is ,  nonbasic v a r i a b l e s  a r e  a d j u s t e d  i n  p ropor t ion  t o  t h e i r  

reduced c o s t s  un les s  they  a r e  c u r r e n t l y  a t  a  bound and a  f e a s i b l e  

movement o f f  from t h e  bound w i l l  no t  i n c r e a s e  t h e  o b j e c t i v e  

func t ion .  

The Basis  Chanqe 

I n i t i a l l y ,  any b a s i s  can be chosen independent ly  of t h e  i n i -  

t i a l  s o l u t i o n .  A t  an i t e r a t i o n ,  i f  a  nonbasic v a r i a b l e  moves t o  

its bound, then we simply l eave  t h e  b a s i s  unchanged. Otherwise,  

a t  l e a s t  one b a s i c  v a r i a b l e  r eaches  its lower o r  upper bound. 



We may a r b i t r a r i l y '  s e l e c t  one of  t h e s e  t o  be t h e  l e a v i n g  v a r i a b l e  

L. For t h e  e n t e r i n g  v a r i a b l e ,  t h e r e  may be many c a n d i d a t e s :  any 

v a r i a b l e  e i s  a  c a n d i d a t e  i f  it is c u r r e n t l y  o f f  from i t s  bounds 

( i . e .  0 < x  < ue) and 3 '  = B U {e l  - {k} i s  a  l e g i t i m a t e  set of  

b a s i c  v a r i a b l e s .  I t  h a s  been shown i n  [ 2 ] ,  t h a t  i f  (LP) is 

nondegenera te ,  t h e n  such a  v a r i a b l e  e  always e x i s t s .  Implemen- 

t a t i o n  of t h e  b a s i s  change r u l e  w i l l  be d i c u s s e d  i n  S e c t i o n  3 

i n  d e t a i l .  

The Method 

The s t e p s  of t h e  methods i n  c o n s i d e r a t i o n  can  be s t a t e d  a s  

f o l l o w s  : 

l o  I n i t i a l i z a t i o n :  S p e c i f y  an  i n i t i a l  b a s i s  ( s e t  of b a s i c  

v a r i a b l e s  3 ) .  an i n i t i a l  f e a s i b l e  s o l u t i o n  x  and t h e  c o r -  

responding sets a  = a ( x )  and y = y ( x ) .  

2' Spec i fy  d i r e c t i o n :  Determine a  v e c t o r  w of we igh t s  

s a t i s f y i n g  c o n d i t i o n s  (i) - (iii) above. I f  none e x i s t s ,  

t h e n  s t o p  ( t h e  c u r r e n t  s o l u t i o n  x  i s  o p t i m a l ) .  

3' Determine s t e p  s ize :  Le t  be t h e  l a r g e s t  5 f o r  which 

x  + d Z w  i s  f e a s i b l e .  I f  5 = = , t h e n  s t o p  ( ( L P )  i s  un- 

bounded) . 
4' Update:  Replace x  by x  + 8 ~ w .  T h e r e a f t e r ,  

4.1' i f  any of t h e  nonbas ic  v a r i a b l e s  moved t o  i t s  upper  

o r  lower bound, upda te  a  and y ,  and r e t u r n  t o  2 '  

(w i thou t  a  b a s i s  change) ;  

4.2' o t h e r w i s e ,  upda te  a  and y , and p i ck  any k E B n ( a 9 )  

' ~ c t u a l l y ,  s t a n d a r d  p i v o t  s e l e c t i o n  r u l e s  a r e  used.  



(a basic variable on its bound) as leaving vari- 

able. Pick e E 3 r (a nonbasic variable off 

from its bounds) such that 8 '  = 0 u (el - is a 

legitimate set of basic variables. Replace 0 by 8' 

and return to 2'. 

3. Implementation: The Basic Version 

The SESAME system was modified for adopting the features of 

the method described above. We shall describe an implementation 

which later will be referred to as the basic version. In subse- 

quent sections we report computational experience with the basic 

version as well as with several of its modifications. 

Shortly stated, the basic version is just the reduced gradient 

method modified so that only a certain subset of nonbasic vari- 

ables is considered for changing at each iteration. We shall 

first give a brief overview of the SESAME system. Thereafter, 

following the steps listed for the method in Section 2, we shall 

discuss details of our implementation. Such a discussion ought 

to be useful when we consider alternative implementations for 

these particular steps in subsequent sections. 

The SESAME System 

The SESAME mathematical programming system is a large out- 

of-core MPS with simplex algorithms and supporting procedures in 

traditional style. Its grandparentage is partly IBM's MPS/360 

and its parentage partly Management Science System's (now Ketron) 

MPS-I11 [ E l .  SESAME includes an elaborate data management exten- 

sion, called DATAHAT, which has very similar external (but not 

internal) specifications to MPS-111's DATAFORM. Both these exten- 

sions are the outgrowth of several lines of development going back 

as far as 1959 [ 6 ] .  



SESAME was designed from the beginning for use only on an 

interactive host, namely an IBM/370 operating under VM/C#S. 

While this restricts its portability, specialization to one type 

of computer enhances efficiency as with all other large MPS's. 

Both SESAME and, particularly, DATAMAT have been enhanced and ex- 

tended at IIASA, utilizing the IBM 370/168 at the CNUCE center in 

Pisa, Italy. SESAME is controlled by the user through and only 

through a remote terminal. There is no such thing as "submitting 

a job". Instead the user creates standard sequences of instruc- 

tions--at various levels--in the form of files which are then in- 

voked by a command at the terminal. The creation, modification 

and invocation of these "run" and "program" files are all performed 

interactively, as is ad hoc use of various system facilities. 

The main simplex algorithm in SESAME combines the primal, 

dual, generalized upper bounding (CUB) and separable grogramming 

all in one grocedure. It also includes bounds and ranges of 

all types, multiple and partial pricing, and a number of algo- 

rithm control switches. (Multiple pricing and suboptimization 

is permanently limited to seven columns, which becomes important 

below). Both standard MPS input and MPS-I11 extensions as well 

as another better but little-used format are accepted. Most 

models, however, are created with DATAMAT which enfiles them 

directly without an intermediate card-image form. Standard 

output of the various usual kinds is provided and, additionally, 

LP results may be enfiled directly for subsequent use with 

DATAMAT functioning as a report generator or master algorithm 

control. The system includes a number of other features which 

are of no particular pertinence here. 



Initialization of the Method 

We shall now turn our discussion to the implementation of 

our basic version of the reduced gradient method in the SESAME 

system. For the basic version, either an all logical starting 

basis (i.e. a basis consisting of slacks and artificials only) 

can be constructed or an advanced basis is loaded. The latter 

alternative is available if a basis from previous runs has been 

saved or if such a basis has been generated by other means. 

However, no crash algorithm has been employed. 

The initial solution of the basic version is the basic 

solution corresponding to the initial basis. If this solution 

is not feasible, we start Phase I in the usual way for minimizing 

the sum of infeasibilities. Thus in this case, the objective 

function coefficient is set to -1 for all variables above their 

upper bound (including artificial variable at a positive value), 

1 for all negative variables and to 0 in other cases. 

Specifying Direction 

At each iteration we consider at most k = 7 nonbasic variables 

to be changed simultaneously. In the following, this set is 

called the k-set. The maximum number of elements in the k-set 

was due to an implementation similar to one employed for a 

multiple pricing procedure in the SESAME system. In such a 

case, the alpha columns (the columns aj premultiplied by the 

basis inverse) for nonbasic variables j to be moved are stored 

explicitly, and core limitation soon becomes prohibitive for 

larger k. 

While choosing the k-set we cycle through the nonbasic vari- 

ables in a similar manner to one of the standard partial pricing 



schemes in the simplex method. We need to find, if possible, a 

set of t (standard value of t =  12) nonbasic variables, called the 

t-set, for which formula (4) of the reduced gradient method yields 

a nonzero weight w Among the t-set we choose, when possible, 
1 -  

k variables with the largest weights in absolute value. The opti- 

mum for (LP) has been obtained if the t-set is empty. 

After choosing in this way the k-set from the set of all non- 

basic variables, compute the alpha-columns for the k-set (all in 

one FTRAN pass), we set the weights according to (4) and move in 

this direction. If a nonbasic variable (one or more) encounters 

a bound, we redefine its weight according to (4) and leave the 

k-set unchanged. Otherwise, a basic variable Q having moved to 

~ t s  bound is replaced by a variable e of the k-set. Thereby the 

slze of the k-set is reduced by one element, and the alpha-columns 

and reduced costs are updated. We repeat such iterations until 

either the k-set becomes empty or the weights for all variables 

in the k-set are equal to zero. Therafter, a new k-set (of at 

most 7 variables) is chosen among the nonbasic variables as de- 

scribed above. 

Remark. Alternatively, the composite direction may be computed 

applying FTRAN on the composite column 1 w.aJ (where summation 
j I 

is taken over the k-set). This approach has been adopted in the 

nonlinear programming system MINOS by Murtagh and Saunders !U,51. 

The advantage is that the alpha-columns need not be stored nor 

computed for each j in the k-set. For large k, this is superior 

to the approach we have taken. However, for small k, this approach 

is likely to require mor work per iteration because normally a 

second FTRAN is needed to compute the alpha-column for the vari- 

able entering the basis. A fair comparison of these two alter- 

natives remains a topic of future research. 



Determining the step size 

As indicated above, the alpha-columns for all nonbasic 

variables in the k-set are stored explicitly. When a new k-set 

is chosen, an FTRAN pass is needed to compute these alpha-columns. 

Otherwise, the existing alpha-columns are just updated in the 

usual way utilizing the alpha-column of the entering variable. 

Given the alpha-columns, a composite column is computed as a 

weighted sum of these vectors, the weights being those given 

by the direction w. 

For Phase 11, the minimum ratio test is carried out using 

the composite vector as usual to determine the step size. For 

Phase I, however, there are several alternatives. The rule 

adopted in our basic version is to move as far as (i) a cur- 

rently feasible variable reaches its bound, or (ii) an infeasible 

variable, moving towards feasibility, reaches its farthest 

finite bound, whichever occurs first. 

Updating the basis inverse 

The basis inverse is stored in a product form and, given a 

leaving and an entering variable, updated exactly as in the sim- 

plex algorithm of the SESAME system. In our case, however, there 

is some freedom in choosing the entering variable. As shown by 

the following result,we may exclude from consideration all non- 

basic variables which are not in the k-set. 

Lemma. Let L E 8 be a basic variable becoming binding at the cur- 

rent iteration. Then there exists in the current k-set a variable 

e such that 8 '  = 8 U {el - {Ll is a legitimate set of basic vari- 

ables, and such that the updated price vector corresponding to 

.B' is (dual) feasible for column L. 



Proof: Let d. be the reduced cost and 2; the element of the alpha- 
I 

column j in pivot row L, for each j in the k-set. If basic vari- 

able !L 1s forced to 1ts lower bound, then there must be a variable 

j in the k-set for which either d > 0 and 3; > 0 or d < 0 and 
j I 

a; < 0. O n  the other hand, if 2. is forced to its upper bound, 

there exists variable j, for which either d. > 0 and a; < 0 or 
3 

d < 0 and a! > 0. In each case one can readily check that the 
I 

result follows.[/ 

Among all candidates e implied by this Lemma, we choose as 

the entering variable the one off bound with the largest pivot 

element. If this element is within the range of a pivot toler- 

ance (standard threshhold is 1  o - ~ )  the variable with the largest 

pivot element among all columns suggested by our Lemma is 

chosen. If both fail, this can only be due to digital difficul- 

ties, and no provision has been implemented to avoid this, 

except the possibility to change the tolerance. 

4 .  Computational Experience: General LP 

4 . 1  Test Problems 

The following test problems were considered: a tiny oil re- 

finery model (A), agricultural planning models (B) , (C) and (Dl, 

an energy supply model (E), and dynamic forest sector models (F) 

and (G) . All models (B) to (G) have been developed in conjunction 

with research projects at IIASA. The forest sector models (F) and 

(GI, which have been tested more extensively in this paper, have 

been reported in [ 3 ] .  Statistics concerning these test problems 

are given in Table 1 below. 



Table 1. Sunrmary of test problems. 

Problem Rows Columns Density ( 5 )  

U . 2  Results with the basic version 

Table 2 below shows computational results of our basic ver- 

sion compared with the simplex method (as implemented in the 

SESAME system). 

In each case, we have started with an all logical basis and 

the initial solution is the corresponding basic solution. The 

initial number of infeasibilities is shown, and the number of 

iterations required for reaching a feasible solution as well as 

an optimal solution is given. Furthermore, a measure for primal 

degeneracy is given for the initial and optimal solution in terms 

of the number of basic variables equal to zero. We shall refer 

to this measure in subsequent sections. 

As a measure for computational efficiency, the number of 

iterations, or rather the number of basis changes, may be used. 

For the reduced gradient method we did not count the minor iter- 

ations when a nonbasic variable moves to its lower or upper 

bound (the case without a basis change). On the other hand, an 

iteration is counted for the simplex method, when a nonbasic 

variable is moved from one bound to another. A set of experiments 



Table 2 .  Experience with the basic version of the 
reduced gradient method compared with the 
simplex method of SESAME. 

Reduced gradient method 

Problem A B C D E F 

Initialization: 

Infeasibilities 4  5  8  0  32 13 8 1  

Basic variables 
equaltozero 13 266 48 93  21 362 

Feasible solution: 

At iteration 26 - 1700' 288 47 976  

Optimal solution: 

At iteration 28 400*  444 106 1462 

Basic variables 
equal to zero 0  3  16  10 20 

Nonbasic vari- 
ables not on 1  15 il 1  25 
bound 

Simplex method 

Problem A B C D E F 

Feasible solution: 

At iteration 23 - 1175 171 40 818  

Optimal solution: 

At iteration 25 360*  1688 293  105  1085  

*the problem was found to be infeasible. 
+run was interrupted without finding a feasible solution. 



was c a r r i e d  o u t  on Problem F ,  which showed t h a t  t h e  average  CPU 

t ime p e r  i t e r a t i o n  f o r  t h e  reduced g r a d i e n t  method i s  . 8  t imes  

t h a t  f o r  t h e  simplex method. Thus, t o  make t h e  number of i t e r a -  

t i o n s  comparable measures f o r  computa t ional  e f f i c i e n c y ,  t h e  i t e r a -  

t i o n  numbers i n  Table  2 f o r  t h e  reduced g r a d i e n t  method should be 

m u l t i p l i e d  by a f a c t o r  of . 8 .  

I n  o r d e r  t o  e x p l a i n  t h i s  f a c t o r  we may cons ide r  two t y p e s  of 

i t e r a t i o n s :  f i r s t ,  t h o s e  where t h e  k-se t  i s  s e l e c t e d  from among 

t h e  nonbasic v a r i a b l e s ,  and second, t h e  r e s t  of  t h e  i t e r a t i o n s  

( i . e . ,  t h o s e  where only  t h e  v a r i a b l e s  i n  t h e  k-se t  a r e  c o n s i d e r e d ) .  

The f i r s t  t ype  of i t e r a t i o n  occurs  i n  t h e  s implex method when a 

m u l t i p l e  p r i c i n g  pass  is c a r r i e d  o u t .  Obviously,  t h e  second type  

of i t e r a t i o n  i s  cheap compared wi th  t h e  f i r s t  t y p e ,  because FTRAN 

and BTRAN a r e  unnecessary ( t h e  a lpha  columns and t h e  reduced c o s t s  

of nonbasic  v a r i a b l e s  i n  t h e  k-set  can be updated i n  a more s imple  

and s t r a i g h t f o r w a r d  manner).  

The reason f o r  an RGM i t e r a t i o n  ( i n  our  implementation) t o  

be cheaper  on t h e  average  than  a simplex i t e r a t i o n  r e s u l t  from t h e  

obse rva t ion  t h a t  t h e  p ropor t ion  of t h e  second type  of i t e r a t i o n s  

is l a r g e r  f o r  t h e  reduced g r a d i e n t  method than  f o r  t h e  simplex 

method. Th i s  i n  t u r n  r e s u l t s  from t h e  s t r a t e g i e s  implemented. In  

t h e  simplex method a new k-se t  having a t  most 7 columns is  chosen 

when t h e  reduced c o s t s  i n  t h e  c u r r e n t  k - se t  a r e  equa l  t o  z e r o  

wi th in  a to l e rance .  The a c t u a l  number of columns chosen t o  t h e  

k - se t  is determined by a h e u r i s t i c  r u l e .  I n  t h e  reduced g r a d i e n t  

method we choose always 7 columns t o  t h e  k-se t  ( i f  p o s s i b l e ) ,  and 

a new s e t  i s  chosen when t h e  k - se t  is empty o r  when t h e  reduced 

c o s t s  i n  t h e  c u r r e n t  k-se t  a r e  e q u a l  t o  z e r o  ( w i t h i n  z e r o  t o l e r a n c e ,  

which is much smal l e r  than  t h e  t o l e r a n c e  used f o r  t h e  simplex method).  



According t o  Table  2 ,  t h e  o v e r a l l  performance of t h e  b a s i c  

v e r s i o n  of t h e  reduced g r a d i e n t  method is  abou t  e q u a l  compared 

w i t h  t h e  s implex  method of t h e  SESAME system. (The d i f f i c u l t y  

i n  f i n d i n g  a  f e a s i b l e  s o l u t i o n  t o  problem C  is unexpla ined .  The 

s o u r c e  of  t h e  model i s  obscu re  and no i n v e s t i g a t i o n  was p o s s i b l e ) .  

U.3. Choosing a  Nonbasic S t a r t i n g  S o l u t i o n  

Because t h e  r i g h t  hand s i d e  v e c t o r  b  normal ly  i s  a  r e l a t i v e l y  

s p a r s e  v e c t o r ,  t h e  i n i t i a l  s o l u t i o n  is h i g h l y  d e g e n e r a t e ,  when a n  

a l l  l o g i c a l  s t a r t i n g  b a s i s  i s  chosen.  T h i s  i n  t u r n  r e s u l t s  i n  a  

l a r g e  number of  i t e r a t i o n s  w i t h  a  s t e p  s i z e  e q u a l  t o  z e r o .  The 

r a t i o  of such  i t e r a t i o n s  f o r  problems B and D, f o r  i n s t a n c e ,  was 

more t h a n  50 p e r c e n t ,  most of which occured  d u r i n g  t h e  e a r l y  iter- 

a t i o n s  f o r  both  of t h e  methods. I n  t h e  fo l lowing  w e  r e p o r t  a  l i t t l e  

s t u d y ,  where w e  c o n s i d e r  an approach f o r  avo id ing  t h i s  phenomenon 

and i n v e s t i g a t e  whether something can  be ga ined  i n  doing  so .  

B a s i c a l l y ,  ou r  approach i s  t o  s t a r t  t h e  reduced g r a d i e n t  

method w i t h  a nonbas ic  s o l u t i o n .  W e  t r y  t o  p rov ide  some motiva- 

t i o n  f o r  t h i s  approach through a n  example, which h a s  been pre-  

s e n t e d  i n  F i g u r e  1. 

The o r i g i n  ( x l ,  x 2 )  = ( 0 ,  0 )  i n  t h e  p i c t u r e  co r r e sponds  t o  

t h e  b a s i c  s o l u t i o n  f o r  an a l l  l o g i c a l  s t a r t i n g  b a s i s  which i s  com- 

p r i s e d  by t h e  (columns of  t h e )  s l a c k s  si. T h i s  s o l u t i o n  i s  h i g h l y  

d e g e n e r a t e  a s  n i n e  o u t  of  t e n  of t h e  b a s i c  v a r i a b l e s  a r e  e q u a l  t o  

ze ro .  There  i s  on ly  one  i n f e a s i b i l i t y  ( s l  = - 1 0 ) .  When t h e  s t a n -  

da rd  s implex  method o r  ou r  b a s i c  v e r s i o n  i s  used ,  e i t h e r  2 , 3 , 4 , 5 , 6 ,  

o r  7 i t e r a t i o n s  a r e  r e q u i r e d ,  depending on t h e  cho ice  of a l t e r n a -  

t i v e  p i v o t  p a t h s ,  t o  r each  t h e  op t ima l  s o l u t i o n  ( x , ,  x 2 )  = (10 ,  1 0 ) .  

For a l l  t h e  i t e r a t i o n s ,  e x c e p t  t h e  l a s t  one ,  t h e  s t e p  s i z e  i s  equa l  

t o  z e r o  and t h e  r e s u l t i n g  s o l u t i o n  i s  t h e  same a s  t h e  s t a r t i n g  s o l u t i o n .  



minimize - X1 + s1 = -10 

subject to - 5xl + x 2  + s2 0 

- 4x1 + X2 + s3 = 0 

3x1 - X 2  + s4 = 0 

5x2 - 2x2 + s5 = 0 

2x1 - X2 + S6 = 0 

5x1 - 3x2 + 5, = 0 

3x1 - 2x2 + sg = 0 

X1 - X2 + s9 = 0 

2x1 - X2 + Q 0 

X I ,  x 2  2 0 , s > 0 for all i. i - 

Figure 1. An example of a degenerate, all logical starting basis. 



For the reduced gradient method, we may choose a nonbasic 

starting solution. For instance, we may choose the starting basis 

as above, set the nonbasic variables to any nonnegative value, and 

solve (LP2) for the basic variables to obtain a nonbasic system 

solution to start with. In particular choosing any such point, 

other than the origin, the number of iterations to reach the 

optimum is either 2 or 3, depending on the choice. Thus, it seems 

likely that starting with a nonbasic solution results in a decrease 

in.the number of iterations in this example. Notice, that the 

number of infeasibilities at such a starting solution ranges 

between 0 and 7. (For brevity, we shall not discuss the possible 

pivot paths here). 

We shall now add to our basic version the possibility of 

setting nonzero values to the nonbasic variables at the starting 

solution (given that the initial basis has already been chosen). 

Because, in general, no indication may be available as to which 

values should be used, we have implemented the possibility of 

setting the same arbitrarily chosen nonnegative value for all 

nonbasic variables. 

Table 3 below shows the effect of starting with such non- 

basic solutions. As a general observation, we may conclude that 

setting all nonbasic variables initially to a given nonzero value 

indeed yields a slight improvement (but not in that degree which 

might be suggested by our example). The number of iterations 

with a stepsize equal to zero was decreased dramatically, and 

thereby the functional value both in Phase I and in Phase I1 

improved smoothly. 
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4 . 4  Improving t h e  Funct ional  Value i n  Phase I 

The f a c t  t h a t  t h e  f e a s i b l e  s o l u t i o n  generated i n  Phase I 

i s  o f t e n  a  r e l a t i v e l y  poor s o l u t i o n ,  l e d  us  t o  t r y  t o  t a k e  i n t o  

account a l s o  t h e  f u n c t i o n a l  when choosing t h e  d i r e c t i o n  i n  Phase I.  

We s h a l l  r e p o r t  such an experiment a s  w e l l  a s  ano the r  a t tempt  

aimed a t  improving Phase I i n  t h e  fol lowing.  

Our i n t e n t i o n  now is t o  s p e c i f y  t h e  v e c t o r  of  weights w f o r  

t h e  d i r e c t i o n  z = Zw i n  such a  way t h a t ,  i n  Phase I ,  improvement 

i s  made f o r  t h e  f u n c t i o n a l  value  cx a s  we l l  a s  f o r  t h e  sum o f  

i n f e a s i b i l i t i e s .  

1 Let  c  x  denote  t h e  o b j e c t i v e  func t ion  of an o rd ina ry  Phase I. 

We s h a l l  now r e p l a c e  t h i s  o b j e c t i v e  by (c '  + Xc)x, where A is  a  

p o s i t i v e  parameter.  Each t ime,  when o p t i m a l i t y  has  been reached 

wi th  t h i s  o b j e c t i v e  func t ion ,  and t h e r e  a r e  s t i l l  i n f e a s i b i l i t i e s  

l e f t ,  w e  swi tch back t o  t h e  o rd ina ry  Phase I r o u t i n e  and s t a y  t h e r e  

a s  long a s  t h e  s o l u t i o n  remains opt imal  s u b j e c t  t o  t h e  modified 

o b j e c t i v e .  Thus, t h e  technique is one v e r s i o n  of t h e  "composite 

o b j e c t i v e "  op t ion  a v a i l a b l e  i n  some of t h e  commercial MPS's. , 

The r e s u l t s  of our  experiments were nega t ive :  our  genera l  

obse rva t ion  was t h a t  t h e  t o t a l  number of i t e r a t i o n s  f o r  reaching 

o p t i m a l i t y  increased considerably;  e . g . ,  by f i f t y  pe r  c e n t  f o r  

Problem F  when t h e  s t andard  ve r s ion  was used. Typ ica l ly ,  t h e  

pr imal  o b j e c t i v e  func t ion  improved w e l l  a long t h e  Phase I i t e r -  

a t i o n s ,  even reaching t h e  neighborhood of t h e  opt imal  value ,  bu t  

then a  swi tch t o  t h e  o rd ina ry  Phase I r e s u l t e d  i n  a  l a r g e  degrad- 

a t i o n  i n  t h e  func t iona l  value .  

A s  another  a t tempt  t o  improve Phase I we implemented a pro- 

cedure f o r  choosing t h e  s t e p  s i z e  a t  each i t e r a t i o n  i n  such a  way 



that the sum of (the values for) infeasible variables is minimized. 

For the simplex method such a step-choosing technique is uncommon, 

but not new. (It has been implemented in MPS 111, for instance.) 

We denote the sum of infeasible variables as a funciton of step 

size tl by ~ ( 8 ) .  A typical picture of such a function is shown in 

Figure 2. It is a convex, piece-wise linear function whose deriv- 

ative is discontinuous at points eO, e,, e2, et cetera. At each 

of these points one or more variables become either feasible or 

infeasible. The minimization of this function, subject to the 

requirement that the nonbasic variables are not allowed to become 

infeasible, can be done easily because the information needed to 

compute the slope changes at each of the points ei, is readily 

available in the composite vector z = Zw. 

Somewhat surprisingly, the approach was also a setback com- 

pared with the basic version: suboptimization over 3 caused an 

increase in the number of iterations for reaching feasibility. 

Fiqure 2. Sum of infeasible variables as a 
function of step size. 



5. Specialization for Dynamic Linear Programminq 

In this section, further elaboration is made on choosing an 

initial nonbasic solution as well as an initial basis in the 

case of dynamic linear programming. 

5.1 The Dynamic Linear Programming Problem 

The dynamic linear programming problem (DLP) is an important 

special case of (LP). At the same time, it is known as a par- 

ticularly difficult class of LP problems. The problem can be 

stated as follows [9] : 

find x(t) and u(t), for all t, to 

(DLP1) maximize Ti1 (a(tlx(t) + b(tju(t)) + a(T)x(T) 
t=O 

S.t. 

(DLPUI u(t) > 0, x(t1 > 0 , for all t 

Here x(t) E Rnt is the vector of state variables at the beginning 

of period t, for t = 0, 1,. . . , T, and u(t) E Rrt is the vector of 

control activities during period t, for t = 0, I , . . . ,  T-1. For 

each t, a(t) E Rnt, b(t) E Rrt, s(t) E Rmt and f (t) E Rkt are 

exteraally given vectors, and A(t), B(t), ~ ( t )  and ~ ( t )  are exter- 

nally given matrices of appropriate dimension. The initial state 

of the system is described by the vector x0 E Rn0. The objective 

function in (DLP1) is a linear function of state variables x(t) 



and c o n t r o l  v a r i a b l e s  u ( t ) .  C o n s t r a i n t s  (DLP2) may be c a l l e d  

t h e  s t a t e  equa t ions ,  a s  they determine t h e  S t a t e  x ( t + l )  a t  t h e  

end of a  pe r iod  t (beginning of t h e  subsequent pe r iod  t + l )  g iven 

t h e  i n i t i a l  s t a t e  x ( t )  and t h e  c o n t r o l  a c t i o n  u ( t )  f o r  t h a t  pe r iod .  

C l e a r l y ,  (DLP) i s  a  s p e c i a l  c a s e  o f  (LP).  The c o n s t r a i n t  

ma t r ix  A f o r  (DLP) has  been i l l u s t r a t e d  i n  F igure  3 f o r  T = 3. 

F igure  3 .  A dynamic LP wi th  t h r e e  t ime pe r iods  

Zn t h e  fo l lowing,  w e  s h a l l  experiment wi th  i d e a s  of choosing 

an i n i t i a l  b a s i s  and an i n i t i a l  s o l u t i o n ,  when t h e  reduced grad- 

i e n t  method i s  a p p l i e d  t o  (DLP). 

5.2. An Advanced Bas i s  f o r  Dynamic LP 

For  dynamic l i n e a r  programs, i t  may seem i n t u i t i v e l y  

appea l ing  t h a t  most o f  t h e  s t a t e  v a r i a b l e s  appear  i n  t h e  opt imal  

b a s i s .  In  f a c t ,  f o r  va r ious  v e r s i o n s  o f  DLP Problems F  and G ,  

ove r  90% of t h e  s t a t e  v a r i a b l e s  appear  i n  t h e  op t ima l  b a s i s .  

Furthermore,  w e  b e l i e v e  t h a t  i n  a  t y p i c a l  dynamic LP fo rmula t ion ,  

bes ides  t h e  s t a t e  equa t ions  (DLPZ), t h e r e  a r e  only  a  r e l a t i v e l y  

smal l  number of c o n s t r a i n t s  of e q u a l i t y  type;  i .e . ,  mbst of t h e  



c o n s t r a i n t s  (DLP3) a r e  j u s t  i n e q u a l i t i e s  which have  been c o n v e r t e d  

t o  e q u a l i t i e s  t h rough  add ing  t h e  s l a c k  v a r i a b l e s .  For  Problem F ,  

9 5 %  o f  c o n s t r a i n t s  [DLP3) a r e  c o n v e r t e d  i n e q u a l i t i e s .  Fo r  problem 

G t h i s  r a t i o  i s  80%.  

These  remarks  l e d  u s  t o  c o n s t r u c t  an advanced  t r i a n g u l a r  b a s i s  

which c c n s i s t s o f  (i) columns o f  a l l  s t a t e  v a r i a b l e s ,  (ii) columns 

o f  s l a c k s  f o r  i n e q u a l i t y  t y p e  c o n s t r a i n t s  i n  (DLP31, and (iii) 

a r t i f i c i a l  columns f o r  e q u a l i t y  t y p e  c o n s t r a i n t s  i n  (DLP3). An 

example o f  such  a  b a s i s  c o r r e s p o n d i n g  t o  o u r  example i n  F i g u r e  3  

is  g i v e n  i n  F i g u r e  4 .  

F i g u r e  4 .  An advanced b a s i s  f o r  dynamic LP. 

When t h e  b a s i c  v e r s i o n  was u sed  f o r  Problem F  and t h e  above 

c o n s t r u c t e d  b a s i s  was used  a s  a  s t a r t i n g  b a s i s ,  t h e  number o f  it- 

e r a t i o n s  was reduced  from 1462 c o r r e s p o n d i n g  t o  an  a l l  l o g i c a l  

s t a r t i n g  b a s i s  t o  583. When t h e  same b a s i s  was u sed  f o r  t h e  s i m -  

p l e x  method,  o n l y  363 i t e r a t i o n s  were needed.  However, when t h e  

c o n s t r u c t e d  i n i t i a l  b a s i s  was combined w i t h  an  i n i t i a l  n o n b a s i c  

s o l u t i o n  where a l l  t h e  nonbas i c  v a r i a b l e s  were  set t o  one ,  t h e  

number o f  i t e r a t i o n s  was reduced  t o  260. Fo r  t h e  n o n b a s i c  v a r i -  

a b l e s  e q u a l  t o  10 and 100,  t h e  r e s p e c t i v e  numbers o f  i t e r a t i o n s  



were 313 and 399. This may support our earlier conjecture in 

Section 4.3 concerning possible advantages in starting with a 

nonbasic solution. In any case, the result seems promising as 

the total number of iterations was reduced by a factor of four 

to five. 

5.3 Initial Solutions for Dynamic LP 

We already obtained a relatively encouraging result while 

using initially the constructed basis and setting the nonbasic 

variables to a constant value. We shall now experiment further 

with some straightforward ideas for setting initial values to the 

controls. 

Setting Controls to the Same Level at Each Period 

Typically in a DLP the same or almost the same set of control 

variables [as well as state variables) repeat from one period to 

another. Let us concentrate on those controls which are common 

to all periods. Initially, we may set these controls to the 

same level at each period and the rest of the controls to zero. 

At least the following two approaches may be used to determine 

an initial value for the joint set of controls: (i) We adopt the 

real current levels for those controls (provided that the system 

described by DLP already exists), or (ii) we solve first a one- 

period problem (perhaps with appropriate bounds for the final 

state variables) and adopt the values for the joint set of con- 

trols from this optimal solution. 

For the two dynamic problems F and G, exactly the same set of 

controls appear at each time period. As both of the models de- 

scribe a real forest sector, the current rates for controls were 

easily available. When the constucted basis was used initially 

and all the controls were set to their current values it took 240 



iterations to solve Problem F representing a reduction by a fac- 

tor of about 6 compared with the basic version. We should note 

that the initial solution constructed this way was not feasible: 

there were 34 infeasibilities for Problem F initially. 

The other approach (ii) for constructing initial values for 

controls was applied as well. For the first period model we re- 

quire the final state to be at least as good as the initial state; 

i.e., for each state variable for which a large value is desireable 

(e.9. wood in the forest, production capacity, etc.) the initial 

value sets a lower bound for the final value, and for other state 

variables (e.9. amount of long term external financing) the initial 

value sets an upper bound for the final value. Starting with 

the constructed basis for DLP and the controls set to the optimal 

level of the one period model resulted in 213 iterations for Prob- 

lem F, thus yielding a slight improvement over the previous ap- 

proach. Again the initial solution was infeasible. This approach 

was also applied to the larger DLP model G. The optimal solution 

was found in 3050 iterations. 

Constructing a Feasible Solution 

A relative drawback was notable in both of the previous 

attempts in trying to construct an initial nonbasic solution. 

As the inltial solution was not feasible, it appeared that the 

relatively good initial functional value got substantially worse 

during the Phase I procedure. Thus we concluded that it would be 

desirable to construct an initial solution which is also feasible. 

Indeed, as described below, we were easily able to carry out this 

task for the two test problems F and G. Of course, the generality 

of such an approach may be doubtful. However, it is the authors' 

belief that a similar approach is applicable to most dynamic 

linear programs. 



W e  s h a l l  now t u r n  t o  a  c a s e  of c o n s t r u c t i n g  a  f e a s i b l e  

s t a r t i n g  s o l u t i o n .  For Problem F ,  w e  f i r s t  set  t h e  c o n t r o l s  of 

a l l  pe r iods  t o  t h e  op t ima l  l e v e l  of t h e  one p e r i o d  model. The 

p r i n t o u t  of  t h i s  s o l u t i o n  i n d i c a t e d  on ly  two t y p e s  o f  i n f e a s i b i l -  

i t i e s :  one s t a t e  v a r i a b l e ,  c a s h ,  became n e g a t i v e  f o r  most t i m e  

p e r i o d s ,  and t h e  on ly  e q u a l i t y  t y p e  of c o n s t r a i n t - - o t h e r  t h a n  t h e  

s t a t e  equations--was v i o l a t e d  f o r  a l l  e x c e p t  t h e  f i r s t  t i m e  p e r i o d ,  

i .e . ,  t h e  corresponding a r t i f i c i a l  v a r i a b l e  appeared a t  a  non- 

z e r o  l e v e l .  T h i s  e q u a l i t y  c o n s t r a i n t  d e f i n e s  t h e  p r o f i t  ( f o r  each 

t ime p e r i o d ) .  Taking i n t o  account  t h e  o b j e c t i v e  f u n c t i o n  it 

became c l e a r  t h a t  a  p r o f i t  a s  l a r g e  a s  p o s s i b l e  was d e s i r e d  f o r  

an  op t ima l  s o l u t i o n .  T h i s  a l lowed us  t o  r e p l a c e  t h e  e q u a l i t y  by 

an i n e q u a l i t y ,  and consequent ly  t h e  a r t i f i c i a l  v a r i a b l e  i n  t h e  

c o n s t r u c t e d  b a s i s  was r e p l a c e d  by a  s l a c k  v a r i a b l e .  For  b r i n g i n g  

t h e  n e g a t i v e  c a s h  t o  a  f e a s i b l e  range  w e  s imply  a d j u s t e d  a  c o n t r o l  

v a r i a b l e  de termining t h e  l e v e l  o f  e x t e r n a l  f i n a n c i n g .  A f t e r  t h e s e  

changes ,  t h e  c a s h  was brought  t o  a  f e a s i b l e  r ange ,  a l l  t h e  new 

s l a c k s ,  corresponding t o  t h e  rowdef in ing  p r o f i t  were nonnegat ive ,  

and no new i n f e a s i b i l i t i e s  appeared:  i . e . ,  t h e  i n i t i a l  s o l u t i o n  

was f e a s i b l e .  

S t a r t i n g  wi th  t h i s  f e a s i b l e  (nonbas i c )  s o l u t i o n  f o r  Problem 

F ,  and w i t h  t h e  advanced b a s i s ,  it took 161 i t e r a t i o n s  f o r  f i n d i n g  

an  op t ima l  s o l u t i o n .  A s i m i l a r  p r o c e s s  was c a r r i e d  o u t  f o r  Prob- 

l e m  F t o  c o n s t r u c t  a  f e a s i b l e  i n i t i a l  s o l u t i o n  based on t h e  

c u r r e n t  l e v e l s  of c o n t r o l s .  The r e s u l t i n g  number of i t e r a t i o n s  

f o r  f i n d i n g  an  op t ima l  s o l u t i o n  was 180. 

Thus, when t h e  advanced s t a r t i n g  b a s i s  was used t o g e t h e r  

w i t h  a  f e a s i b l e  i n i t i a l  s o l u t i o n ,  t h e  number o f  i t e r a t i o n s  f o r  

f i n d i n g  an op t ima l  s o l u t i o n  by t h e  reduced g r a d i e n t  method was 



reduced by a factor of eight to nine compared with starting with 

an all logical basis and the corresponding basic solution. 

As was noted above, an initial basis can provide a good 

starting point for the simplex method. We should point out that 

the nonbasic values could be used with the simplex method as well, 

in some cases. This is true for some commercial MPS's that have 

an option for obtaining a vertex solution from a given nonbasic 

solution. Thus our initialization strategies could be employed 

immediately by the users of such existing systems. The SESAME 

system, however, did not allow us to experiment with the simplex 

method when a nonbasic starting solution was used. 

6. Summary and Conclusions 

This paper may be seen as consisting of three parts: 

First, details of a variation of the reduced gradient method and 

its implementation is discussed in Sections 2 and 3. Second, 

computational experience as applied to general linear programs 

is reported in Section U .  Third, specialization to dynamic linear 

programs is presented in Section 5. In the following we shall 

briefly discuss each part in turn. 

(i) The SESAME system was adopted as a basis for implement- 

ation. A basic feature of our implementation is to compute ex- 

plicitly the alpha-columns for each nonbasic variable being charged. 

Because of core limitations and for the sake of computational ef- 

ficiency, we restrict to seven, the number of nonbasic variables 

allowed to change simultaneously. If a larger number is desired, 

an alternative approach to implementation would be preferred, 

where the weighted sum of the nonbasic columns is computed prior 

to the composite alpha-column. This in turn can be inefficient 



for a small number of nonbasics variables being changed simul- 

taneously. As a topic for future study remains the question, which 

one of the two approaches is more efficient, taking into account 

both the average computational effort per iteration and the number 

of iterations (which may be influenced by the number of nonbasics 

being changed). 

(ii) In the first part of computational experiments we pre- 

sent a comparison with the simplex method for general linear pro- 

grams starting with an all-logical basis. The test problems being 

used are mainly medium sized sectoral economic models (energy, 

agricultute, etc.) developed at IIASA. According to our results, 

the overall performance of both methods is approximately the same. 

We have tested also some further modifications concerning the 

choice of an initial (nonbasic) solution and strategies for Phase I. 

Even though these did not, in general, yield an improvement for 

the reduced gradient method we felt that it would be of interest 

to report briefly our negative experience as well. In fact, fur- 

ther tuning of such strategies could well reverse the conclusions. 

(iii) The most interesting practical results have been ob- 

tained in the final part where the special structure of dynamic 

linear programs is taken into account in starting the reduced 

gradient method. We observe first that the state variables in 

practical problens are likely to appear in optimal bases. This 

suggests to initiate with all state variables in the bases. Our 

experience shows that, when such a basis is completed with logical 

variables, considerable savings can be obtained indeed. 

According to another abservation, most control variables in 

practical problems appear in all time stages. Thus we might start 

with such controls being set to the same value for each time period. 



Suitable values may easily be obtained from empirical knowledge, 

or from a single-period model (e.g., a steady-state model). A 

few experiments have been reported, where such strategies are com- 

bined with the initial basis mentioned above. Also these results 

were encouraging in that considerable further gains in computational 

effort were obtained. Using an example, we have also demonstrated 

that the controls may actually easily be chosen to yield a feas- 

ible initial solution. Because Phase I is not needed, still fur- 

ther gains can be achieved. Of course, the procedure of generating 

such feasible controls is model-specific and may not always be 

possible. 

No comparison is given with the simplex method in the case 

of dynamic LP. However, an example demonstrates a good perfor- 

mance of the simplex method when the initial basis involving the 

state variables is employed. It is likely that further irnprove- 

ment is achieved, as above, when the simplex method is initiated 

with a nonbasic solution as described. This, of course, would 

require an option to obtain a basic solution from a given non- 

basic solution. Because such an option is available in some 

commercial MPS's, the strategies we have suggested for dynamic 

LP may be immediately employed by the users of such systems. 
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T h e  Problem 

we cons ider  a t r a f f i c  network represen ted  by  a d i r e c t e d  graph,  

a s  i n  Fig.  1. One of t h e  nodes is des igna ted  a s  t h e  d e s t i n a t i o n .  

The planning horizon is divided i n t o  a f i n i t e  number of d i s c r e t e  

t ime per iods .  For each t ime p e r i o d ,  e x t e r n a l  i npu t s  a r e  allowed 

a t  any node except  t h e  d e s t i n a t i o n .  For each a r c ,  t h e r e  is an 

e x i t  f unc t i on  which r e l a t e s  t h e  amount of t r a f f i c  e n t e r i n g  and 

leav ing  t h e  a r c  dur ing  a t i m e  pe r iod .  Congestion is modelled ((cf. [ S ' J )  

by assuming t h e  e x i t  f unc t i ons  t o  b e  nondecreasing, cont inuous and 

concave, a s  i n  Fig.  2. The o b j e c t  is t o  f i n d  t h e  f e a s i b l e  t r a f f i c  

flow t h a t  minimizes a c o s t  f unc t i on  which, t o  express  the d i s u t i 1 j . t ~  

of conges t ion ,  i s  assumed t o  be  t h e  sum of  nonnegative, nondecreasing,  

continuous convex func t ions  i n  t h e  a r c  f lows .  To formula te  t h e  problem, 

w e  use t h e  fol lowing notat ion:  

G = (??,a a d i r ec t ed  graph: 

??= set  of nodes of G;  

a= set  of  d i r ec t ed  a r c s  o f  G; 

N = planning  horizon;  

i = index of t i m e  p e r i od ;  i = 0 ,  l , . . . ,N; 

j = index of  a r c  i n e ;  j = l , . . . ,a:  

q = index of node inn; q = 1, ..., n; 

n = index of d e s t i n a t i o n  node; 

~ ( q )  = ( j c g l  a r c  j leaves  node q}; 

~ ( q )  = {jcgl a r c  j e n t e r s  node q ] ;  



~ ~ ( q )  = external input a t  node q in period i; 

x . .  = amount of t r a f f i c  (or flow) on a r c  j a t  the  beginning 
l3  of period i ;  

h . . ( x . . )  = cost  of x . .  ( t h e  sum of t h e s e  terms i s  t o  be min imized ) ;  
1 3  1 3  1 3  

di 
= amount of t r a f f i c  admitted t o  a r c  j i n  period i: 

g . ( x . . )  = amount of t r a f f i c  t o  e x i t  from a r c  j i n  period i. 
3 1 3  

The basic flow equations i n  the  model a r e  then 

For a piecewise linearization1, we p a r t i t i o n  the  nonnegative 

segment of the  r e a l  l i n e  by ~ ( j )  grid points  f o r  each a r c  jclf. 

Denote these  gr id  points  by ck so  t h a t  c1 = 0 and c = -. See 
j j j 

Fig. 3 .  Let lk be the  interpolation weight on g r id  point  k i n  
i j 

p e r i o d  i ,  and gk hk t h e  v a l u e s  o f  g  and h  a t  t h a t  p o i n t  3 '  11 j i j 
r e s p e c t i v e l y .  Then r e d e f i n i n g  c ? ( j ) =  1  , and t a k i n g  each  o f  g  K ( j )  

J j 

h K ( j )  t o  be t h e  s l o p e  o f  t h e  l a s t  segment o f  t h e  approximat ion t o  
i j 

t h e  corresponding f u n c t i o n ,  we can e x p r e s s  

1 
In  [ 5 ] ,  a sum-of-intervals represention of t h e  piecewise l inear-  
iza t ion is used. The grid-point-interpolatibn representation 
in t h i s  paper is equivalent but is preferable  f o r  data generation 
and LP solution considerations. . For example, e x p l i c i t  upper bounds 
on a l l  variables a r e  necessary in  the former but  none appears in  
t h e  l a t t e r  formulation. 



K(j)  
x  3 t ck 

i j  =  I ij 

K(j)  k k  
g .  (x. .) s t g j  ' i j  

3 l 3  k = l  

for some 2 0 ,  k = 1,  ..., K(j ) ,  with 
'i j  

and > 0 for a t  most two k;; which furthermore are 'ij 
consecutive. 

Subst i tu t ing (3) i n t o  (1) and (2)  w e  a r r i v e  a t  the following 

problem (P) 

minimize 

subject  to  
k=l  k=1 

+ di j  

i n 0  ,..., N - 1 ,  j P L  ,... , a (LP .1) 

i = O , . . . ,  N - 1, V q  # n (LP.2) 



and > o fo r  a t  most two k, which 
' i j  

furthermore a r e  c o n s e c u t i v e .  

(LP -3) 

(LP. 4) 

To obtain theore t ica l  resu l t s ,  the following assumptions are  

made. 

( ~ 1 )  The arcs a r e  not expl ic i t ly  capacitated. This is modelled i n  

(P) by l e t t i ng  cx!j)= 1 and excluding kK( j )  from the convexity 
13 i j  

constraint  in  (LP -5) . 
( ~ 2 )  dg. ( x ) / d x  = 0 for  "large" x and a l l  a rcs ,  i.e. saturation is 

3 

modelled by l e t t i ng  gK(J )  = 0. 
3 

(A3) For each j. the  gr id  points a r e  chosen such tha t  the nm-negative 

olopea of the piecewise linear approximation to  g are s t r i c t l y  decreasing. 
-1 

(A4) For the  convex  c o s t  funct ionf ,  we assume khat 

k 
(a) 0 * hij g hij k+l fo r  a l l  i, j  and k ;  

(b) For each simple path containing a rcs  jl and j 2 such tha t  



K ( j Z )  
j2 is the  a r c  c l o s e r  t o  the  s ink ,  

hi r h1 fo r  a l l  i. 
2 

i j  1 

Such cos t  funct ions  provide incent ive  t o  move t r a f f i c  e f f i c i e n t l y  

toward the  sink. Although condi t ion  (b)  may be  q u i t e  r e s t r i c t i v e ,  it 

does accomodate f o r  a r b i t r a r y  network topology two c o s t  funct ions 

likely to be useful fn practice, namely 

= 1 f o r  a l l  i, j a n d k ,  ( i )  h i j  

which g ives  t h e  t o t a l  c o s t  a s  t h e  amount of  t r a f f i c  

i n  t r a n s i t  summed over t h e  planning horizon; and 

which g ives  t h e  t o t a l  cos t  a s  t h e  amount o f  t r a f f i c  

remaining i n  t h e  network by the  end of t h e  planning 

horizon . 



Agreement  of  G l o b a l  Optima 

Except fo r  t h e  l a s t  cons t r a in t  (OSP) which is c a l l e d  the  ordered 

so lu t ion  property, (P) is a l i n e a r  programming (LP) problem (cf .  [l] .) . 
However, due t o  (OSP) t h e  problem is nonlinear and nonconvex. ~f 

(LP.0-LP.5) i s  s o l v e d  a s  a  LP b u t  t h e  o p t i m a l  s o l u t i o n  d c e s  n o t  

s a t i s f y  (OSP),  t h e n  i t  m i g h t  a p p e a r  t h a t  one  mus t  r e s o r t  e i t h e r  

t o  b r a n c h  and  bound t e c h n i q u e s  ( s e e  e . g . [ 2 ] )  which a r e  c o m p u t a t i o n a l l y  

v e r y  e x p 5 n s i v e .  o r  t o  o r d e r e d  b a s i s  e n t r y  p r o c e d u r e s  i n  t h e  s i m p l e x  

method ( s e e  e . g .  [ 3 ] )  which  do  n o t  g u a r a n t e e  g l o b a l  o p t i m a l i t y .  T h i s  

p a p e r  p r e s e n t s  a  more e f f i c i e n t  a p p r o a c h .  

Based  on a s s u m p t i o n s  A1-A4, t h e  f o l l o w i n g  r e s u l t s  a r e  i n f e r r e d  

f rom r e p e a t e d  a p p l i c a t i o n  o f  Lemma 1 i n  [ S ] .  

k 
Lemma a. I f  y = [ A i j ,  d 1 is a f e a s i b l e  so lu t ion  t o  (IP -1 - LP. 5) 

i j  

t h a t  v i o l a t e s  (OSP) f o r  i = r and j  a ,  then t h e r e  e x i s t s  a  f e a s i b l e  

-k 
so lu t ion  y = (Aij, . . t o  (LP.1 - IP.5) t h a t  d i f f e r s  from y only 

11 

f o r  i 2 r and f o r  a r c s  j on p a t h s  b e g i n n i n g  v i t h  a r c  s. x g i v e n  b y '  
rs - 

X i n  ( 3 )  e q u a l s  Zrs g i v e n  by A .  y s a t i s f i e s  (OSP) f o r  i-r and  j-s a s  

w e l l  a s  t h e  c o n d i t i o n s  in'Lemma B  and  Lemma C .  

Lemma B. For a l l  q c a  and i = 0 ,1 , .  . . , N ,  t h e  t o t a l  flow t h a t  reaches 

node q on o r  before period i is a t  l e a s t  a t  g rea t  f o r  y a s  f o r  y i n  

Lemma A. 

Lemma C. The c o s t  (LP.0) f o r  3 is no grea ter  than t h a t  f o r  y i n  

Lemma A. 



From repeated applications o f  Lemmas A and C, it follows 

that there exists on optimal solution to (LP.0-LP.5) that satisfies 

(OSP), hence is an optimal solution to (PI. This agreement of 

the global optimum value for the two problems shows, in particular, 

that (P) attains a global optimum. 



A S u f f i c i e n t  Cond i t ion  f o r  Opt i rnal i ty  

W e  now show how a  s o l u t i o n  t o  (P) can  b e  o b t a i n e d  by s u c c e s s i v e  

o p t i m i z a t i o n  o f  a t  most N+l o b j e c t i v e  f u n c t i o n s  s u b j e c t  t o  (LP.1 - 
LP.5). 

L e t  S  b e  t h e  s e t  o f  o p t i m a l  s o l u t i o n s  t o  (LP. 0 - LP. 5 ) .  S 

is nonempty b e c a u s e  t h e  a r c s  a r e  n o t  e x p l i c i t l y  c a p a c i t a t e d  and  t h e  

c o s t  is bounded from below by z e r o .  S . h a s  i n  g e n e r a l  more than one 

e l emen t  b e c a u s e  w i t h o u t  e n f o r c i n g  (OSP) t h e  g r i d  p o i n t  i n t e r p o l a t i o n  

is n o t  unique.  L e t  SNc S b e  t h o s e  s o l u t i o n s  i n  S which maximize 

N a K ( j )  Lk 
G ~ ( A )  5 C C C g . c  

i=1 j=l k=1 J j i j '  

I n  g e n e r a l ,  l e t  S c o n s i s t  o f  t h o s e  s o l u t i o n s  i n  S which maximize 
t t +  1 

G (A) r e p r e s e n t s  t h e  t o t a l  amount o f  t r a f f i c  l e a v i n g  a l l  t h e  a r c s  t 

up t o  t h e  end o f  t i m e  p e r i o d  t. m u i v a l e n t l y ,  it g i v e s  t h e  t o t a l  

amount o f  t r a f f i c  r e a c h i n g  a l l  t h e  nodes d u r i n g  o r  b e f o r e  p e r i o d  t. 

BY the l ineari ty of (LP.0-LP. 5)  and Gt w e  have 

k Theorem. If y = [ A i  j, d .  . I  c S1, t h e n  y  is a  s o l u t i o n  to (P) . 
1 3  

k Proof .  It s u f f i c e s  t o  show t h a t  YES i m p l i e s  t h a t  [X . .) s a t i s f i e s  
1 11 

(oSP). Suppose  n o t ,  and  that f I :  v i o l a r e s  (oSP) f o r  1 = 1 ,  j = I .  



Then b y  Lemma A ,  t h e r e  e x i s t s  = ~ t ~ ,  z. . ]  t h a t  s a t i s f i e s  (OSP) 
11 

for i - r ,  j - s, such t h a t  X P z  where 
rs rs 

By Lemmas B and C ,  Yesl = ... Sr 5 ... ,SN E S. 
-- 

K ( j 1  
kk is p iecewise  l i n e a r  concave, v i o l a t i o n  of  S ince  C g j  c j  i j  

kol 
(oSP) under assumption ( ~ 3 )  always s t r i c t l y  underest imates  its value.  

Therefore  

L e t  q be  t h e  node t o  which a r c  s po in t s .  By Lemma A, y and y 
8 

do n o t  d i f f e r  on o t h e r  a r c s  p o i n t i n g  t o  qS i n  pe r i od  r,  nor  on any 

a r c  f o r  i C r. Hence 

c o n t r a d i c t i n g  t h e  hypothes i s  t h a t  yoS1, C Sr. 



An Example 

Consider the fo l lowing  numerical example of (P) with 

= l  
hij 

; a l l  i , j , k  

I 100 ; i = O , q = l  ri (q) = ; otherwise. 



Three solutions to (LP.0 - LP.5) are taburated belo.4, where an 

asterisk denotes an optimal value. 

Y3 Y2 Solution 
Y1 

X 
1 
11 

X 
2 
11 

X 
1 
12 

X 
2 
12 

X 
1 
13 

X 
1 
2 1 

50 

50 

0 

0 

0 

50 

50 

0 

50 

0 

0 

0 

0 

50 

0 

50 

0 

50 

X 
2 
21 

0 
I 

0 

O 

0 

50 

200' 

150 

50 

YES 

0 

I 
50 

0 

0 

200* 

100 

0 

NO 

X 
1 
22 

X 
2 
2 2 

X 
1 
2 3 

G3 

G2 

G1 

OSP 

0 

0 

100 

200* 

200* 

loo* 

YES 



W e  remark that  a l l  three  s o l u t i o n s  optimize (Lp.0). ylcS1, 

hence s a t i s f i e s  OSP. y#S1 and v i o l a t e s  OSP. However, y&S1 but 

s t i l l  s a t i s f i e s  OSP. This  i l l u s t r a t e s  t h a t  t h e  condit ion o f  the  

theorem is s u f f i c i e n t  but not  necessary.  



A Successive Linear O ~ t i m i z a t i o n  A 1 c ; o r i t h m  

TO obtain a g lobal  minimum of ( P I ,  t he  following algori thm can 

be used. An a s t e r i s k  denotes an o p t i n a l  value. 

S tep  1. Minimize G subjec t  t o  (LP.1 - LP.5) t o  obta in  G* 
N+ 1 

N+ 1 
S e t  t = N+1. 

Step  2. Test  fo r  OSP), s t o p  if s a t i s f i e d .  

S tep  3. Add new cons t r a in t  

(c.. ti) 

maximize Gt-l sub jec t  t o  (LP.l - LP.5) and (c.t - c.bT+l) 

* 
t o  obtain G 

t-1 ' 
Se t  t = t-1 and r e t u r n  t o  Step  2. 

Note t h a t  t he  so lu t ion  obtained a t  t h e  end of each s t e p  provides 

a f e a s i b l e  s t a r t i n g  so lu t ion  for t h e  next  s t e p  i n  the  above algorithm. 



Computational E x ~ e r i e n c e  

Implementation of t h e  algorithm is very simple,as  any ava i l ab le  

LP code can be adapted t o  perform the  success ive  optimization6. The 

e f f i c i ency  of t h e  algorithm can be  measured by the  amount. of computation 

i n  Steps 2 and 3 r e l a t i v e  t o  t h a t  i n  S tep  1. Admittedly, even wi th  

good s t a r t i n g  f e a s i b l e  so lu t ions ,  t h e  so lu t ion  of N addi t ional  LP's  

may sti l l  b e  c o s t l y  when N is large.  To ga in  some i n s i g h t  i n t o  t h i s  

aspec t  of t h e  algorithm we r e p o r t  compntational experience on a t e s t  

problem w i t h  t h e  f o l l o w i n g  c h a r a c t e r i s t i c s :  

number of nodes n = 7  

number of a r c s  a = 12 

number of per iods  N = 10 

number of g r i d  po in t s  K ( j )  = 4,  j = 1, ..., 12 

The network f o r  t h e  t e s t  problem i s  d e p i c t e d  i n  F i g u r e  1 .  The e x i t  

funct ions  f o r  t h e  a r c s  a r e  given i n  T a l e  1. Five cases a r e  con- 

s idered  by varying t h e  ex te rna l  inputs  t o  t h e  nodes a s  given in Table 2- 

Each case  g ives  rise t o  a LP with 

311 rows 

791 columns 

3683 nonzero coe f f i c i en t s  , and 

1.5% densi ty.  



A F o r t r a n  implementation o f  t h e  r e v i s e d  simglex method w i t h  i n v e r s e  

i n  p roduc t  form ( s e e  e.g. [41)  has  been adapted t o  t e s t  f o r  (oSP) 

and t o  c o n t r o l  t h e  s u c c e s s i v e  opt imizat ions . .  Table  3 r e c o r d s  t h e  

number o f  s t e p s  r e q u i r e d  b e f o r e  a s o l u t i o n  w i t h  (OSP) is obtained.  

Tab le  4 r e c o r d s  t h e  number of s implex i t e r a t i o n s  and CPU t i m e  in-  

volved in each s t e p .  I n  each c a s e ,  s t e p  1 was i n i t i a t e d  wi th  an 

a l l - l o g i c a l  ( o r  a r t i f i c i a l )  .bas i s .  A l l  CPU t imes  r e p o r t e d  a r e  on 

a CDC 7600, excluding d a t a  i n p u t  b u t  i n c l u d i n g  (OSP) t e s t i n g .  

Based on t h e s e  computat ional  r e s u l t s ,  t h e  fo l lowing  o b s e r v a t i o n s  

are made. It  i s  only when t h e  network is extremely over loaded t h a t  

a s i g n i f i c a n t  number of  success ive  o p t i m i z a t i o n s  is r e q u i r e d  

t o  o b t a i n  a s o l u t i o n  with  (OSP). I n  such c a s e s  (e.g. I and I1 f o r  

our  test model),  s o  much t r a f f i c  never  reaches  t h e  s i n k  t h a t  it mat te r s  

l i t t l e  whether c e r t a i n  a r c s  move t h e i r  charges  a long  according t o  t h e  

wi t  f u n c t i o n s ,  o r  l e t  them s t a l l  t h u s  v i o l a t i n u  (OSP). I n  more 

r e a l i s t i c  c a s e s ,  even with  s u b s t a n t i a l  conges t ion  i n  t h e  a r c s  o v e r  

v a r i o u s  t i m e  p e r i o d s ,  very few s t e p s  a r e  requ i red .  ~ y p i c a l l y ,  

maximization of  t h e  t o t a l  t r a f f i c  throughput  (G ) s u f f i c e s ,  a s  w i t h  N 

c a s e s  111, IV, and V f o r  o u r  t e s t p r o b l e m .  I n  any c a s e ,  one can expedt 

t h e  t o t a l  computat ional  e f f o r t  t o  b e  very  s igni-r ' icant ly  l e s s  than  

N + 1 t i m e s  t h a t  f o r  t h e  i n i t i a l  LP. Experience w i t h  o t h e r  more 

complex t e s t p r o b l ~ s ( u p  t o  25  nodes.  65 a r c s  and 10 p e r i o d s )  agrees 

w i t h  t h e  above observa t ions  and s u g g e s t s  t h a t  s u c c e s s i v e  l i n e a r  op- 

t i m i z a t i o n  is an e f f i c i e n t  approach t o  t h e  dynamic t r a f f i c  ass ignment  

problem. 



F i g .  1. Network for the T e s t  Problem 



Fig.  2 .  A t y p i c a l  exit function for  an arc 

F ig .  3 .  Piecewise l i n e a r i z a t i o n  o f  an e x i t  function 



2 3 TYPE I cj g: cj g i I  ARC j 

1 1 4 
((ej 0 ,  gj 0 ,  cj 5 -, g4 s O) tor a11 j)) 

j 

Table 1 

Exit Functions for Test Problem 

Table 2 

Node Input for the F i v e  Cases. 

CASE 

I' 

1- I1 

I11 

N 

v 

ri(q) ,  i=l,. . . , 10, -1,. - -, 6 

30 

2 0 

17.5 

15 

10 



OSP \ 
Violations 
A f t e r  O p t i m i r  i n h  

Table  3 

The N u m b e r  of S t e p s  R e q u i r e d  to  O b t a i n  O S P  



Table  4. 

S o l u t i o n  S t a t i s t i c s  
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AN EFFICIENT ALGORITHM FOR UPDATING THE BASIS I N  
BICOMPONENT LINEAR PROBLEMS 

K.V. Kim, B.R. Frenkin, B.V. Cherkassky 

Central Economic Mathematical Institute 
USSR Academy of Sciences 
Moscow 

In this report we consider the bicomponent problem of linear programming. In such prob- 
lems each variable enters not more than two constraints. A basis updating procedure of 
maximal efficiency is suggested for the problem. Special list structures used in the proce- 
dure enable us to scan only those basis elements whose characteristics are updated. 



1. INTRODUCTION 

This paper reports on an efficient algorithm for basis 

manipulation in generalized transshipment problems of linear 

programming (LP). These bicomponent problems form a special 

class containing not only flow problems but also LP problems 

having not more than two non-zero elements in each column of 

the constraint matrix. The paper suggests an algorithm for 

updating the basis for these problems with maximal efficiency. 

The development of basis-updating algorithms is based on 

the assumption that the matrix of constraints is sparse. At 

first we tried to develop a basis-updating procedure requiring 
2 0 (m) instead of 0 (m operations, where m is the number of con- 

straints. If the size of a problem increases, the percentage 

of nonzero elements of its matrix usually decreases, and only 

a small part of the basis variables change during one simplex 

iteration. Thus in solving large-scale problems it would be 

desirable to have a basis-updating procedure requiring fewer oper 

ations than O(m). It is however evident that a lower bound for 

the number of operations in basis-updating procedures exists. Let 

X,Y denote primal and dual variables and AX, AY denote increments 

of these variables during one simplex iteration. Let d be the 



number of nonzero elements in vectors AX and AY. It is evident 

that we need no less than O(d) operations to update the basis. 

An algorithm requiring O(d) operations may be called vz irnal -e f f ic tmt .  

It is interesting to know whether maximal-efficient algorithms 

for different classes of linear problems exist. The efficiency of 

the algorithm depends of course on the data structure used. Thus if 

AX and AY are stored as simple vector arrays, the algorithm with 

such data structure cannot be maximal-efficient because we need 

no less than O(m) operations to find nonzero elements of these 

arrays. 

Bicomponent problems form a class of LP problems for which 

a maximal-efficient algorithm for updating the basis exists. 

In this paper we present this algorithm. 

2. THE STRUCTURE OF THE BASIS GRAPH 

The design of efficient algorithms is based on the graphic 

representation of bicomponent problems. The nodes of the basis 

graph correspond to the rows of the basis matrix and the edges 

to the columns. Thus all basis information may be presented as 

basis graph characteristics. The endpoints of the basis edge 

are the row numbers of nonzero elements of the corresponding 

column. Vectors X and AX also correspond to edges. Dual vari- 

ables Y and 5Y correspond to nodes of the basis graph. Scanning 

the vectors and all computations connected with these vectors may 

be interpreted as scanning the nodes and edges of the basis graph. 

Updating the basis information during one simplex iteration 

begins with computation of the vector AX. Its nonzero elements 

form the set of edges we must scan; we shall call them working 

edges .  At the end of the simplex iteration we compute the vector 

AY for changing the vector Y. The nonzero elements of AY form 

the set of nodes we must scan; we shall call them working nodes .  

We need to have direct access to working nodes and edges, 

and can realize this direct access using the special structure 

of the basis graph. Generally, the basis graph of a bicomponent 

problem contains m nodes and m edges. The basis graph does not 

contain isolated nodes and the endpoints of each edge belong to 



our  s e t  of nodes. The b a s i s  graph t h u s  c o n t a i n s  one o r  more 

connected  components, and each  connected  component c o n t a i n s  j u s t  

one c y c l e .  The c a s e  where we have a  one-element column i n  t h e  

sou rce  problem ( f o r  example, t h e  u n i t  column of t h e  a r t i f i c i a l  

b a s i s )  may be reduced t o  t h e  g e n e r a l  c a s e .  For t h e  purpose  of  

t h i s  r e d u c t i o n  we must t a k e  an  a r t i f i c i a l  node i0 and form an 

a r t i f i c i a l  c y c l e  w i th  t h e  h e l p  of  t h e  l o o p  ( iO,iO). I n  t h i s  c a s e  

one of  t h e  connected  components w i l l  a lways c o n t a i n  t h e  a r t i f i -  

c i a l  node. I n  a  pu re  t r ans sh ipmen t  problem t h e  a r t i f i c i a l  node 

is u s u a l l y  t h e  r o o t  of  t h e  b a s i s  t r e e .  F igu re  1 shows t h e  

g e n e r a l  s t r u c t u r e  of  t h e  b a s i s  graph.  

F i g u r e  1 .  The s t r u c t u r e  of t h e  b a s i s  graph 

3 .  THE SET OF WORKING EDGES 

The set of working edges  is  d e f i n e d  i n  a  unique  way a f t e r  

f i n d i n g  t h e  new b a s i s  column. The new b a s i s  column co r r e sponds  

t o  t h e  new b a s i s  edge ( k , j ) .  I n  t h e  b a s i s  graph t h e  working 

edges  form a  5 I - 2 c l z  s t r u c t u r e  c l o s e d  by t h e  new edge.  The b i -  

c y c l e  is a  connected subgraph c o n t a i n i n g  two c y c l e s  and t h e  new 

edge and n o t  having t e r m i n a l  nodes ( F i g u r e  2 ) .  

F i g u r e  2. Forming a b i c y c l e  



Nonzero elements of X must be computed and t h e  vector  X 

must be changed dur ing a  l i n e a r  scan of t h e  b icyc le  edges. For 

performing such a  scan,  t h e  s t r u c t u r e  of t h e  b a s i s  graph i s  re-  

presented by a  forward List ( a l s o  c a l l e d  a  predecessor L i s t ) .  This  

i s  an a r r a y  of r e fe rences  p ( i ) ,  where i and p ( i )  a r e  t h e  endpoints  

of the  b a s i s  edge. I f  i does n o t  belong t o  t h e  cyc le ,  then p ( i )  

is t h e  neares t  node on t h e  path  from i t o  t h e  cyc le .  I f  i belongs 

t o  t h e  cyc le ,  then p ( i )  i s  t h e  nex t  node on t h e  c y c l e  according 

t o  a  p a r t i c u l a r  cyc le  o r i e n t a t i o n .  The re fe rence  p ( i )  p o i n t s  

o u t  t h e  p a r t i c u l a r  o r i e n t a t i o n  of t h e  b a s i s  edge ( i , p ( i l )  

(Figure  3 ) .  

Figure  3.  The o r i e n t a t i o n  of b a s i s  edges 

We a r e  i n t e r e s t e d  i n  t h e  a lgor i thmic  sense  of t h i s  o r i e n t a t i o n .  

S to r ing  t h e  b a s i s  graph with  t h e  help  of t h e  forward l i s t ,  we 

point  o u t  d i r e c t l y  on ly  one endpoint of t h e  b a s i s  edge, i . e . ,  

p ( i ) .  The o t h e r  endpoint i i s  ind ica ted  by t h e  i - t h  p o s i t i o n  i n  

t h e  a r r a y  p. The edge ( i , p ( i ) )  thus  becomes connected with  t h e  

i - t h  node; t h a t  is, a l l  information connected with t h i s  edge is 

addressed by t h e  index i. This i n d i c a t i o n  ensures  d i r e c t  access  

t o  t h e  b icyc le  edges when w e  go down t h e  re fe rences  of t h e  forward 

l ist .  L e t  ( k , j )  be a  new edge added t o  t h e  b a s i s  graph. We begin 

t o  scan t h e  b icyc le  from the  node k.  We l a b e l  t h e  node k equal  

t o  l : t ( k ) : = l .  Going down t h e  forward l i s t ,  w e  execute  t h e  s t a t e -  

ment i : = p ( i ) .  The node i = p ( k )  i s  thus  t h e  next node t h a t  we 

should scan. This node g e t s  a  l a b e l  equal  t o  2 : t ( i ) : = 2 ,  and s o  

on, u n t i l  we t r y  t o  scan a  node l abe led  e a r l i e r .  We s h a l l  c a l l  



this node s the f i r s t  c t o s u r e .  We then begin to scan nodes from 

the node j going down the forward list up to the first labeled 

node denoted by t. The node t is the second  c l o s u r e .  In this 

case the nodes being scanned get negative labels: E(j):=-1; 

2(p(j) I:=-2, and so on. Depending on the relation between L(s) 

and E(t), we have three variants of the bicycle structure 

(Figure 4) . 

k j 
(a) C(t) < 0 e=- 

s t k j 

Figure 4. Three variants of the bicycle structure 

Before constructing the bicycle, the new basis variable is 

given unit value. Other nonzero elements of AX are computed from 

the constraint equations when we scan the bicycle edges. These equa- 

tlons are not satisfied at the closures. Hence we must correct the 

vector A X  on the edges of the cycle. To perform this correction, we 

must scan the cycles again. The remaining work necessary for 

changing basis variables and deleting an old edge from the basis 

graph may be performed by repeatedly going down the forward list 

from nodes k and j to closures s and t. It can easily be shown 

that for all the work described we need no more than 0 (dl) 

operations, where d, is the number of bicycle edges. To update 



t h e  forward l is t ,  we must change t h e  o r i e n t a t i o n  of b a s i s  edges 

on t h e  p a t h  from t h e  new edge t o  t h e  edge t h a t  h a s  been d e l e t e d  

( F i g u r e  5 ) .  

F i g u r e  5. The r e o r i e n t a t i o n  of t h e  b a s i s  edges  

U. THE SET OF WORKING NODES 

A t  t h e  end of a simplex i t e r a t i o n  w e  must change t h e  v e c t o r  Y .  

The e lements  of  AY may d i f f e r  from z e r o  on ly  i n  t h e  nodes preceding 

t h e  new edge: t h a t  i s ,  going from t h e s e  nodes down t h e  forward 

l i s t ,  w e  must p a s s  t h e  new edge. I f  w e  want t o  change t h e  v e c t o r  Y 

e f f i c i e n t l y ,  w e  must s t o r e  in fo rma t ion  about  t h e  p redecesso r s  i n  

each node. S t o r i n g  t h e  in fo rma t ion  i n  d i r e c t  form does  n o t  s o l v e  

t h e  problem because w e  need t o o  much t ime t o  upda te  t h i s  i n fo rma t ion .  

S p e c i a l  information about  t h e  p redecesso r s  i nco rpora t ed  i n  a backward 

: t s z  is used i n  e f f i c i e n t  a lgo r i thms .  Let  u s  c o n s i d e r  t h e  back- 

ward l i s t  f o r  one connected component. A t  f i r s t  it c o n t a i n s  an  

a r r a y  of r e f e r e n c e s  q ( i ) ,  which e n a b l e s  u s  t o  scan  a l l  t h e  nodes 

of t he  component. Beginning from a node i and execu t ing  t h e  

s t a t e m e n t  i : = q ( i ) ,  w e  should  f i r s t  scan  t h e  p r e d e c e s s o r s  o f  i: 

t h l s  must be e f f e c t e d  f a r  each node. F iqu re  6 show3 an admissible 

o r d e r  of  scannlnq.  One can c o n s t r u c t  t h i s  o r d e r  by moving 

i n  t h e  b a s i s  graph according t o  t h e  l a b y r i n t h  r u l e  and d e l e t i n g  

t h e  nodes be ing passed  f o r  t h e  second time on t h e  way back. 



F i g u r e  6 .  Going down t h e  backward l i s t  

Le t  ( k , p ( k ) )  be a new edge  i n  t h e  updated  b a s i s  graph.  The set 

of working nodes p recedes  t h i s  edge.  Thus w e  must s t a r t  from 

node k t o  s can  a l l  working nodes. I f  t h e  new edge  be longs  t o  

t h e  c y c l e ,  t h e n  a l l  nodes of  o u r  connected  component a r e  working. 

I n  t h i s  c a s e ,  w e  must go down t h e  backward l is t  back t o  t h e  s t a r t i n g  

p o i n t  k. I f  t h e  new edge d o e s  n o t  be long t o  t h e  c y c l e ,  t h e n  t h e  

s e t  of  working nodes forms a branch r o o t e d  i n  k. I n  t h i s  c a s e ,  

w e  w i l l  e v e n t u a l l y  be a b l e  t o  s t o p  going  down t h e  backward l i s t  

b e f o r e  r e a c h i n g  k. To s o l v e  t h i s  problem, t h e  backward l i s t  must 

c o n t a i n  n o t  on ly  t h e  a r r a y  of r e f e r e n c e s ,  b u t  a l s o  an  a u x i l i a r y  

a r r a y  f ( i ) .  There a r e  many v a r i a n t s  of  i n fo rma t ion  s t o r e d  i n  t h i s  

a r r a y ,  i n c l u d i n g ,  f o r  example, 

( a )  f ( i)  -- t h e  number of t h e  l a s t  node of t h e  branch 

r o o t e d  a t  i 

( b )  f ( i )  -- t h e  number of nodes i n  t h i s  branch 

( c )  f ( i)  -- t h e  d i s t a n c e  from i t o  t h e  c y c l e .  

I n  ou r  a l g o r i t h m ,  f ( i l  is t h e  deg ree  of node i d e c r e a s e d  by two. 

I t  can  e a s i l y  be shown t h a t  t h e  sum of  f ( i )  on t h e  branch r o o t e d  

a t  i i s  g r e a t e r  than  o r  equa l  t o  ze ro  i f  t h e  branch is  n o t  com- 

p l e t e l y  scanned and becomes l e s s  t h a n  z e r o  i f  t h e  l a s t  node of 

t h e  branch is scanned. Going down t h e  backward l i s t ,  w e  must 

t h u s  sum up t h e  v a l u e s  of  f ( i )  and s t o p  when t h e  sum becomes less 



than zero. Significantly, updating this backward list does not 

take more than O(d,) operations during one simplex iteration. 

Let d2 denote the number of working nodes. Changing the vectors 

X and Y and updating the forward and backward lists thus takes 

O(dl) + O(dZ) operations. Hence our algorithm may be called 

maximal-efficient. 

5. AN AVERAGE OPERATION NUMBER HYPOTHESIS FOR PIVOTING IN 

LARGE-SCALE PROBLEMS 

The time required to solve large-scale problems depends on 

the number of simplex iterations. Generating a good starting 

solution for a bicomponent problem is not a very important dif- 

ficulty because values of dl and d2 for an artificial basis are 

very small and starting iterations are performed quickly. One 

simplex iteration consists of selecting an incoming variable by 

pricing and updating the basis. By using efficient algorithms, 

the time required to update the basis decreases considerably. 

The choice of pricing strategy is also important. As pointed 

out in [4], the choice of a good pricing strategy is an art for 

large-scale problems. We believe that this problem requires 

special research. For example, everyone knows that selecting 

the "most negative" variable to enter the basis is bad because 

we spend too much time on pricing. 

It is interesting to estimate the average number of operations 

involved in a pivot. We suppose the number of operations depends 

on the branching of the basis graph. If the basis graph is a 

cycle, then it has no branches and dl + d2 = O(m), i.e., the 

estimation is bad. If the basis graph is a star, then dl + d2 
does not depend on m and the estimation is good. In speaking 

about "average branching", we imagine a complete binary tree. 

If we suppose a complete binary tree to be a basis graph, then 

an average number of working edges is O(log m). It can easily 

be shown that an average number of working nodes is also O(log m). 

Thus we suggest the hypothesis that an average number of opera- 

tions for pivoting in maximally efficient algorithms grows like 

log m. 



6. THE NONCYCLING MODIFICATION OF THE ALGORITHM 

we can easily exclude the possibility of cycling in flow 

problems. Transshipment and generalized transshipment problems 

are flow problems. The bicomponent problem is a flow problem if 

in each column one nonzero element is positive and the other is 

negative. In this case, the variables may be interpreted as a 

network flow with gains. The nonzero elements of AX may be 

interpreted as the correcting flow on the bicycle edges. The 

orientation of the correcting flow depends on the orientation of 

the new edge. The source and the sink of the correcting flow are 

the possible algorithm closures. The closures come at the source 

or the sink because of circulation in the basis cycle. If we go 

down the entire cycle with a certain orientation, then the flow 

increases and the closure is at the source. If we go down the 

entire cycle with another orientation, then the flow decreases 

and the closure is at the sink. As shown in Figures 7(a) and 7(b), 

if the new edge is oriented from k to j, then the closure s must 

be the source and the closure t must be the sink. Let us move 

around the bicycle from the source to the sink. Then cycling is 

impossible if two rules are followed: 

1. In the starting basis, all degenerate flows are 

oriented to the cycle: 

2. If we have several edges that we may delete, then we 

delete the first edge encountered in moving around the 

bicycle from the source of the correcting flow to its 

sink (Figures 7 (a) and 7 (b) ) . 

Figure 7. The order of search for the edge deleted 

from the basis graph 



Rule 2 can be simplified for pure transshipment problems. In 

such cases, the basis graph is a tree and the correcting flow 

circulates in the cycle formed by the new edge. Thus we have 

just one closure, which is simultaneously the source and the 

sink of the correcting flow. In this case, Figure 7 shows the 

order of search for the deleted edge. 

7. CONCLUSION 

The algorithms described for the pure transshipment problem 

were developed in the USSR in 1972 for soliing large-scale prob- 

lems in the development and placement of plants, taking into 

account the cost of transportation. Linear and nonlinear prob- 

lems were considered. Sometimes it was necessary to modify 

supplies, demands, and cost coefficients and to reoptimize many 

times. The maximal-efficient primal code was good for these 

applications. In 1974 the general description of maximal-efficient 

algorithms for bicomponent problems was presented in [ I ] .  These 

algorithms are now used in many codes. In particular, they are 

implemented in a code library for solving transportation problems 

in PL/1 and FORTRAN. This library is popular in the USSR. The 

design of a noncycling algorithm [21  is more interesting from 

the theoretical than from the practical point of view: however, 

it guarantees the finiteness of the code execution. Similar 

efficient algorithms for pure transshipment problems have been 

presented independently in other papers, as, for example, [ 3 1  

and [Y]. 
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SOME TECHNIQUES TO IMPROVE THE EFFICIENCY OF SOLVING 
LINEAR PROGRAMMING PROBLEMS* 

U.H. Malkov, G.G. Padchin, N.A. Sokolov 

Central Economic Mathematical Institute 
USSR Academy of Sciences 
Moscow 

Further improvements to the simplex algorithm with the multiplicative form of the inverse 
and in obtaining greater efficiency in solving LP problems are possible in the following 
directions: 

Reducing the required iterations by using new fast algorithms to obtain an initial 
solution. We use an iterative algorithm which seeks a saddle point of the augmented 
Lagrangian and uses a vector of updated penalty coefficients. 

Taking into account the specific features of particular problems. 

In this paper we first construct a special algorithm for obtaining an initial solution to an 
irrigation model. Second, in the framework of the multiplicative form of the inverse we 
implemented a specific simplex algorithm for the problem. 

'Paper presented to the Workshop by K.V. Kim. 



The simplex method is currently a rather efficient technique 

(in terms of running time, reliability, and the size of problems 

to be solved) for solving linear programming (LP) problems. Ac- 

cording to specialists, the best algorithm (as far as running 

time, compactness, and accuracy are concerned) is based on tri- 

angular (LUI decomposition of the basis matrix and on the trian- 

gular multiplicative factorization of the inverse basis matrix. 

We believe that it is possible to improve the multiplicative 

algorithm and to solve LP problems more efficiently by: 

1. reducing the number of iterations required through 

using more powerful algorithms to obtain initial 

solutions 

2. taking into account the specific features of a problem 

3. increasing the reliability of the algorithm through 

using more efficient techniques to handle "ill- 

conditioned" problems. 

One promising approach for obtaining a good initial solution 

is based on iterative algorithms. Professor E. Gol'shtein and 

his colleagues are studying iterative methods of solving LP prob- 

lems at the Central Economical Mathematical Research Institute 

(CEMI) of the Academy of Sciences of the USSR. 



Good r e s u l t s  a r e  achieved by using an i t e r a t i v e  algorithm 

which seeks  the  saddle  p o i n t s  of t h e  augmented Lagrangian 

where 
n 

x ,  y  a r e  primal and dua l  s o l u t i o n s ,  and ( a 1 , a 2 ,  ..., am) a r e  v e c t o r s  

of pena l ty  c o e f f i c i e n t s .  

An important d e t a i l  i n  t h i s  a lgor i thm is  t h e  use of a pena l ty  

c o e f f i c i e n t  vec to r  a  ins tead  of an o rd inary  s c a l a r  c o e f f i c i e n t .  

The pena l ty  vec to r  i s  recomputed dur ing t h e  i t e r a t i o n s  using in- 

formation about t h e  c u r r e n t  s o l u t i o n  of t h e  primal and dual  

problems. 

The s t e p s  of t h e  i t e r a t i v e  a lgor i thm follow. A vec to r  xS+l 

is  determined a s  an approximate s o l u t i o n  of an a u x i l i a r y  problem 

by means of t h e  a l t e r n a t i v e  coordinate  d i r e c t i o n s  a lgor i thm.  The 
s +  1 vec to r  y i s  recomputed from 

The vec to r  as  is then recomputed. A more d e t a i l e d  d e s c r i p t i o n  

of t h e  a lgor i thm is  given i n  [ I ] .  

The a lgor i thm i n  ques t ion  enables  us t o  f i n d  an approximate 

s o l u t i o n  t o  t h e  primal and d u a l  problems with  an accuracy of up 

t o  1 %  by a  number of i t e r a t i o n s  comparable t o  t h a t  of t h e  simplex 

method. 

The i t e r a t i o n  of an i t e r a t i v e  algorithm i s  much s impler  than 

t h a t  of a  m u l t i p l i c a t i v e  algorithm: t h e r e  i s  no need t o  s t o r e  t h e  

inverse  i n  t h e  i t e r a t i v e  a lgor i thm.  



Table 1 compares the iterative algorithm with the simplex 

method. 

Table 1 

- - -- 

Size of problem 1 The Number of Iterations 
- -- - 

Iterative algorithm* Simplex Method 

*cf and ER are the objective function and constraint tolerances, 
respectively. 

The number of iterations for the simplex method is obtained 

starting from an all-slack basis. 

To obtain an exact solution, it is possible to use the 

multiplicative simplex algorithm starting from the point given 

by the iterative one. 

The question of how to construct an initial basis associated 

with the iterative solution for the multiplicative algorithm is 

not yet completely solved, but there is no need for a more ac- 

curate iterative solution. Improving an initial point by means 

of the iterative algorithm does not however at present always 

give fast convergence to an optimal solution in the multiplicative 

algorithm. 

Evidently the subroutine for obtaining the initial solution 

must be fast and efficient. We have used a simple method to 

obtain an initial (usually infeasible) solution. We first bring 

all slack variables of a model into the basis. Then we pivot 

in the columns having nonzero elements in the iterative solution. 



Even i n  such cases ,  the number of i t e r a t i o n s  required t o  ob ta in  

the  optimal so lu t ion  may be reduced t o  ha l f  t h a t  required using 

standard simplex pivot  r u l e s  from the  i n i t i a l  a l l - s l ack  bas i s .  

The spec i a l  fea tures  of a problem may be taken i n t o  account 

i n  two ways. F i r s t ,  it is possible  t o  cons t ruc t  a spec i a l  algo- 

rithm t o  ob ta in  a f a s t  i n i t i a l  so lu t ion .  Second, i n  the  frame- 

work of a mul t ip l ica t ive  algorithm we can use spec i a l  fea tures  

of a problem--generating the columns, f o r  instance,  ins tead  of 

s t o r ing  them. 

These ideas were implemented i n  an optimal i r r i g a t i o n  model. 

Generating the  columns enabled us t o  increase the  s i z e  of the 

solvable  problems by four  times and t o  decrease the  running time 

by a s imi l a r  amount. A spec i a l  approximate algorithm f o r  find- 

ing an i n i t i a l  so lu t ion  decreased the number of i t e r a t i o n s  by an 

order  of magnitude. 

Let us consider the  rectangular  f i e l d  with a mesh on it (see  

Fig. 1 ) .  

Figure 1 

The values H a re  heights  (evaluat ions)  of t he  i n i t i a l  sur -  
j 

face. 

I t  is possible  t o  f ind  a f e a s i b l e  surface t h a t  gives t!!e mini- 

mum t o t a l  amount of ground t ranspor ta t ion  work (from the  po in ts  of 

cu t t i ng  t o  the  points  of f i l l i n g )  by solving t he  following mathe- 

matical  programming problem. 



The o b j e c t i v e  func t ion  

j # i  

must be minimized s u b j e c t  t o  t h e  fo l lowing c o n s t r a i n t s :  

- - long i tud ina l  ( v e r t i c a l )  s l o p e  c o n s t r a i n t s  

c1 ( z j  - z , + ~  ( d l ,  j  = l,...,nm, j S 0 (mod n )  

- - t r ansve r sa l  ( h o r i z o n t a l  ) s l o p e  c o n s t r a i n t s  

E < 2 .  - z ~ + ~  5 d 2 ,  j  = 1 ,..., nm-n 
2 -  3 

- - t r anspor t  v a r i a b l e  value  c o n s t r a i n t s  

nm - 1 tji ,  o the rwise  

H .  a r e  i n i t i a l  h e i g h t  marks, z .  a r e  p r o j e c t  h e i g h t  marks, t h e  
3 3 

values  z l ,  d l ,  E ~ ,  d2 d e f i n e  f e a s i b l e  i n t e r v a l s  o f  t h e  long i tu -  

d i n a l  and t r a n s v e r s a l  s l o p e s ,  and y d e f i n e s  the  balance  of c u t t -  

i ngs  and f i l l i n g s  . 
The f i e l d  may be p a r t i t i o n e d  i n t o  s e v e r a l  s u b f i e l d s ,  each 

s u b f i e l d  having i ts  p r o j e c t i o n  parameters E:, d:, E:, d i .  

The problem under c o n s i d e r a t i o n  comes up i n  p r o j e c t i n g  

i r r i g a t e d  f i e l d s  and b u i l d i n g  sites. 

Th i s  l i n e a r  programming problem has  t h e  s t r u c t u r e  

where x: = z - H. 



Here A has two nonzero c o e f f i c i e n t s  i n  each row (+I o r  -11 ,  

t h e  matr ix  A is diagonal ,  and D is a  matr ix  of t h e  t r a n s p o r t a t i o n  

problem. 

P r a c t i c a l  d i f f i c u l t i e s  a r e  of considerable  s i z e .  For example, 

a  f i e l d  of 100 a c r e s  gives  rise t o  t h e  problem of about 4000 rows 
and 500000 columns. 

A good i n i t i a l  s o l u t i o n  may be ob ta ined  i n  t h e  following man- 

n e r  (41, t ak ing  i n t o  cons ide ra t ion  t h e  s p e c i f i c s  of the problem. 

F i r s t ,  we so lve  an a u x i l i a r y  problem 

by t h e  group balancing a lgor i thm [ 2 1  t o  d e f i n e  t h e  i n i t i a l  values  

of t h e  v a r i a b l e s  x and y. 

The group balancing a lgor i thm c o n s i s t s  of t h e  fol lowing s t e p s .  
W e  scan t h e  f i e l d  c y c l i c a l l y ,  bu i ld ing  t h e  group f o r  t h e  nex t  j - th  

p o i n t  of the f i e l d .  Al l  the nodes around t h e  j-th one are included 

i n  the group i f  they s a t i s f y  t h e  s lope  c o n s t r a i n t s  a s  e q u a l i t i e s .  

Then w e  a t tempt  t o  move the  j - th  node wi th  i ts  group upward i f  2 . - H . < O  
3 3 

o r  downward i f  z  - H .  > 0. I f  a  new c o n s t r a i n t  comes i n t o  equal- 
j  I 

i t y  and does no t  allow f u r t h e r  movement (upward o r  downward), a  

corresponding node is included i n  the  group. We cont inue t o  move 

the  j - th  node wi th  its group u n t i l  a  balance of c u t t i n g s  and f i l l -  

i n g s  i n  t h e  qroup is reached. During t h e  f i r s t  scanning of the 

f i e l d ,  w e  include i n  t h e  group t h e  nodes t h a t  v i o l a t e  t h e  con- 

s t r a i n t s .  The given a lgor i thm converges f a s t ,  i n  3-6 s c a m i n g s .  

I n i t i a l  values  of t r a n s p o r t  v a r i a b l e s  a r e  determined using quant i -  
t i e s  of t obtained by solving t h e  following problem: 

min { c t  I Ax - D t  , t ) 01 . 

The approximate s o l u t i o n  obtained is usua l ly  wi th in  5% of 

t h e  optimal one. The l e s s  r i g i d  t h e  c o n s t r a i n t s ,  t h e  b e t t e r  the 

s o l u t i o n  is. Further  op t imiza t ion  by the  m u l t i p l i c a t i v e  algo- 

rithm r e q u i r e s  fewer i t e r a t i o n s  (by a  f a c t o r  of t e n )  than i f  w e  

s t a r t e d  from t h e  "zero" ,  i . e .  a l l - s l a c k ,  b a s i s .  



A s p e c i a l i z e d  m u l t i p l i c a t i v e  a l g o r i t h m ,  w i t h  a  c o e f f i c i e n t  

m a t r i x  and  c o s t  v e c t o r  a l l  k e p t  a l g o r i t h m i c a l l y ,  i s  used  t o  o b t a i n  

t h e  o p t i m a l  s o l u t i o n .  The m a t r i x  columns a r e  s p l i t  i n t o  f o u r  p r i -  

o r i t y  s u b s e t s .  W e  look  f o r  t h e  c a n d i d a t e  t o  e n t e r  t h e  b a s i s  f i r s t  

among t h e  y-columns; i f  t h e r e  i s  none,  w e  t h e n  l ook  among t h e  t r a n s -  

p o r t  columns t .  . such  t h a t  xi (xi  < 0 )  and  x ( x  > 0 )  a r e  i n  a  c u r r e n t  
1) j  j  

b a s i s ,  among t h e  x-columns, and f i n a l l y  among a l l  t h e  t r a n s p o r t  

columns. Such r e g u l a t i o n  of  t h e  column g e n e r a t i n g  p r o c e d u r e  h a s  pro-  

duced s i g n i f i c a n t  q a i n s , a s  s e a r c h i n g  f o r  c a n d i d a t e s  t o  e n t e r  t h e  

b a s i s  i s  t h e  most e x p e n s i v e  o p e r a t i o n  i n  t h e  m u l t i p l i c a t i v e  a l g o -  

r i t h m .  

The code  h a s  a  low runn ing  t i m e  and  t h e  p r o c e s s  is  r e l i a b l e  

i n  o b t z i n i n g  a f e a s i b l e  s o l u t i o n .  These p r o p e r t i e s  a r e  e s p e c i a l l y  

i m p o r t a n t  when d e a l i n g  w i t h  a n  i l l - c o n d i t i o n e d  problem,  where one 

c o u l d  e a s i l y  g e t  o u t  o f  t h e  f e a s i b l e  s o l u t i o n  set.  Our e x p e r i e n c e  

h a s  demons t r a t ed  t h a t  t h e  a l g o r i t h m  where v a r i a b l e s  o f  an i n t e r -  

med i a t e  b a s i s  c an  be  i n f e a s i b l e  i s  more r e l i a b l e .  Such an  a l g o r i t h m  

i s  n o t  much more complex t h a n  a n  o r d i n a r y  one ;  it d i f f e r s  from t h e  

l a t t e r  o n l y  i n  t h e  p i v o t i n g  r u l e s .  

We have  used  t h e  f o l l o w i n g  v a r i a n t  of t h e  s i m p l e x  method [ 5 1 .  

L e t  Jj, J q  be  sets o f  v a r i a b l e s  t h a t  a r e  n e g a t i v e  o r  o v e r  t h e  

upper  bound, r e s p e c t i v e l y .  When a c u r r e n t  b a s i s  is i n f e a s i b l e ,  

w e  use  t h e  f o l l o w i n g  o b j e c t i v e  func t i on : ,  

max 
j  X ~ k  

- i 
j EJ Xjk  
k u 

i n s t e a d  o f  t h e  i n i t i a l  one  and t h e  f o l l o w i n g  r u l e  f o r  choos ing  

t h e  p i v o t  row: 

G = min i o ,  , a,, 



j i  is  the number of a b a s i s  v a r i a b l e ,  xi is the  va lue  of a b a s i s  

v a r i a b l e ,  and 2 .  is  t h e  upper bound of t h e  va lue  of a  v a r i a b l e  x . .  
1 3 

is the transformat ion of a  column a e k  en tered  i n  the b a s i s .  
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i s  needed to finally deliver a significant improvement in the quality and success of strategic 
modeling applications. 
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1. Introduction 

The audience a t  which this paper is  di rec ted  cons i s t s  of both 

the mde l ing  c o d c y  and t he  developers of algorithms and software. 

'bperienced m a e l  bui lders  vill acknawledga the f r u s t r a t i o n s  they have 

suffered p rac t i s ing  t h e i r  trade,  while s tudents  of m d e l  building VFU 

beconm b e t t e r  avare of soma of the  resource cormtraints encountered iri  

applied mdrlFng mrCiSeS .  All of them w i l l  have a d e f i n i t e  i n t e r e s t  

in recognizing vays to  r e l ax  thwie resource canst ra ln ts .  Algorithm and 

software developers a r e  a l s o  an important pa r t  of the  audience aa t h e i r  

j o i n t  but uni f ied  contributions v l l l  be required fo r  the eventual  r e so lu t ion  

of the  f u n a n t a l  i s suss  ra ised  i n  chis papar. 

Tha mnFnfocueof the paper is on modeling in a s t r a t e g i c  pJ.anaing 

enrlronment. Section 2 w i l l  e labora te  on w h a t  ve mean by such an enviroruncnc. 

and what is amant by "succese" in the application of m d e h  i n  s t r a t e g i c  

3l&ag. In sec t ion  3 we examhe the current  M e a t i o n s  on mdel lng,  

emphasizing not only the artarrsivo resource requiremuits in terms of techoi- 

cal skills, nmney and t ime ,  but  a l so  such in t ang ib le  i s e u u  a s  the  law 

r e l l a b i l i c y  aseociated with our preeent m d e l  generating software, and the 

;rvesom c o d c a t i o n  problem aseociated v i t h  the  d i s e ~ t i o n  of m d e l s  

and t h e i r  resul ts .  Section 4 s e t s  out soma fundamental s t eps  tha t  w i l l  be 

required fo r  a s ign i f i can t  increase  in succaesful  nmdeUng, v h i l e  sec t ions  3 

and 6 e labora te  on some of tbe d e v e l o p ~ l l t s  t ha t  w e  have begun in m k h g  

chese s t eps .  



2. The b l e  of Mathematical % d e b  in a S t ra teg ic  Planning Emirommut 

In  order to ham a coxmum understanding of vhat ve aean by 

"mathematical models" and a " s t r a t eg ic  planning urvirorunaut," ve need to 

c l aas l fy  modals i n  r e l a t ion  to the arrvfroameat in vhich they a r e  uaed. We 

view mathematical mod& e s s e n c l d l y  aa mappings: each model tramforma 

a s e t  of input data i n t o  a s e t  of output data. With such a general 

definition i n  mind, it is no easy task  to  c l a m s i e  modela and t h e i r  use. 

Anyone punching a ca lcula tor  is u a i w  a model. A Unur program to  nm a 

ref inery  is  a model. h management F P f o n ~ e i o n  sys taa~  is a modal. A mathe- 

matLcal program capable of evaluating vater-related FnPcscments i n  a third- 

w r l d  country is a model. These examples represent models tha t  a r e  used i n  

d i f fe ren t  application euvirormrants, and each model has its w charac te r i s t i c s .  

One can ident i fy  a v ide  spectmm of models with operational nodels 

on tha m e  extrem, and s t r a t e g i c  planning models on the  other. Operational 

sod& can be characterized aa "black boxes." Thdr users  a r e  not in te res ted  

in the model i t s e l f .  Only the  r e s u l t s  produced by the  model a re  of in ta res t .  

Operational models are  used over and w e r  agl in ,  each time with d i f fe ran t  

pa ramtor  inputs.  230 s t r u c t u r a l  changes a r e  ever made to  t h u s  models, 

vhich makes them e s s m t i a l l y  s t a t i c  in nature. S t ra teg ic  planning models, on 

the othnr hand, can be characterized as "open boxes." Their users a r e  

pr-ily in te res ted  in how the model is comtructed. StrategLc planning 

mod& a r e  used only once. and t h e l r  r e s u l t s  serve  to  fu r the r  the  understandtag 

of the de l .  S t ruc tu ra l  changes a r e  continuaUp made, vhich m a k a ~  these 

models d w c  in nature. 



The u l c u l a t o r  is c len r ly  an e m l e  of an opera t ional  model. 

It is an hard-vired device ( u s u d l y  contained in a black box), vhlch can 

perform a s e t  of vell-defined tasks. A t yp ica l  user is in t e re s t ed  i n  the 

r e s u l t s  it produces, and v a t s  to  use i t  over and w a r  v i t h  d i f f e r e n t  input 

data. No mndifications a r e  even made to  the  ca l cu la to r  i t s e l f .  The l i n e a r  

program to run a r e f ine ry  is mostly an opera t ional  model. Its s t r u c t u r e  

is f ixed most of the t i m e ,  and it is used over and over again  t o  determine 

the operation of the  ref inery .  The managemant information system is soma- 

vhere in the  middle of the  spectzum. Whenever i t  is used to  provide f a c t u a l  

information t o  managenant i t  represents  an opera t ional  model. Whenever it 

functions aa a decls ion  support systam, capable of analyzing information, i t  

represents  a strategic plarrPing model. The sa themat ica l  program capable of 

evaluating vater - re la ted  hvascnonts  Fp a third-world country is c l e a r l y  an 

examplo of a s t r a t e g i c  planning sodel .  a e  understanding of t!e node1 is 

m c h  =re important than the r e s u l t s  i t  produces. S t r u c t u r a l  changes to  the  

m a e l  v i l l  be made a s  a result of d a n c e d  in s igh t s  h t o  both the  model 

itself and the real irorld i t  is designed to  capture. 

Xu thFP chapter  ve vant to focus on the r o l e  of modeh Fn a s t r a t e p i c  

planning envl romaut .  Such an anviroument is charac ter ized  by long-corm, o f t en  

U - d e f i n e d  and poorly understood i ssues  vhlch requi re  near FrPmedlate decis ion  

making. I t  is the  long-cers *act of :he decisions chat m k e  them important. 

hamples  of s t r a t e g i c  planning environments a r e  government planning agencies. 

corporate planning o f f i ces  and in t e rna t iona l  organizations.  



T h u s  planning envi romants  have comaon cha rac re r i s t i c s .  The 

Fseuee under consideration a r e  usually exumiely  complex, and need to  be 

sor ted  through. Tha amount of poaeibly re levant  Fpfo=tion is vaat .  I n  

addi t ion ,  the c o ~ e q u e n c e s  of any d e d s i o n  a r e  not  necessar i ly  l imi ted  t o  

one person o r  one l n a t i t u t i m ~ .  Sor are a l l  o the r  aapecrs of t he  decis ion  

necessa r i ly  undnr the  j u r i s d i c t i o n  of one peraon o r  one organization.  I n  

ouch an arrvirompmt, mathauatic modela play a o p e d a l  ro le .  They a r e  used 

aa a framework f o r  analys is ,  f o r  da ta  co l l ec t ion  and f o r  discuseion. They 

a r e  crea ted  to  lmprove one's conceptual understanding of the  problem. If 

o w n r a l  decis ion  makars and/or i n s t i t u t i o n s  a r e  involved in a f i n d  decis ion  

o r  set of recommendations, ande3.s can be used aa n e u t r a l  sodera tors  

t o  guide the  discussions.  Dif ferent  viewpoints can be t e s t ad  and e e d .  

I n  such a n  mviromomt the a c t u a l  d u e s  of model results a r e  not so  important, 

but t h e  r e l a t i v e  values r e s u l t i n g  from t e s t i n g  d i f f e r e n t  scenar io ' s  a r e  of 

interest. The andel  is a learning device, and should never be expected t o  

produce f i n a l  decisions.  Because of this i n d i r e c t  importance of a modal i n  

a s t r a t a g i c  p l a m b g  m r o - t ,  t he re  Fs ao dear vay to  measure the 

bene f i t s ,  although it is a o t  too d i f f i c u l t  to  keep t r ack  of the (usually high) 

coats.  It Fs precise ly  this lack  of vell-defined monetary bene f i t s  and the  

f a c t  t h a t  p l a m i n g  models a r e  continuously changing that dise inguish  them 

and t h a i r  envi ro~ment  from the  opera t ional  mod& discuseed previously.  

Eaving charac ter ized  models and t h e i r  r o l u  in a s t r a t eg ic :p l annbg  

environmmat, ve  can nov define the meaning of success of a modal. An 

opera t ional  model is succeseful  ff i t  producae r a l i a b l e  results, and i t  



ia easy  t o  opera te .  A s t r a t e g i c  p lanning  m d e l  Is s u c c e s s f u l  i f  it is 

easy to. understand t h e  model. I f  Its s t r u c t u r e  and c o n t e n t  can be  c d -  

c a t e d  e f f e c t i v e l y  t o  o t h e r s .  I f  t h e  r e s u l t s  produced by che model can be 

expla ined ,  and Ff model experiments  can  be  e a s i l y  r e p e a t e d  o r  v e r i f i e d  by 

e x p a r t s  o t h e r  than  t h e  o r i g i n a l  model b u i l d e r s .  R e f e r r i n g  t o  tvo of  o u r  

p r e o i o w  examples, t h e  c a l c u l a t o r  should be  easy t o  use, and t h e  r e f i n e r y  

model should  be  a b l e  t o  c o n t r o l  t h e  r e f i n i n g  process  e f f e c t i v e l y  f o r  them 

t o  be  s u c c e s s f u l  models. The requirements  f o r  t h e  s u c c e s s  of strategic 

? l a n n i n g  node ls  a r e  mch h i g h e r  chan t h e  ones f o r  t h e  success  o f  o p e r a t i o n a l  

models. Tbl,s has undoubtedly c o n t r i b u t e d  t o  t h e  l i m i t e d  r o l e  t h a t  mathematical  

models have played t h w  f a r  Fn a s t r a t e g i c  p lanning  environment. The 3-t 

s e c t i o n  w i l l  h i g h l i g h t  some s e l e c t e d  a s p e c t s  of  o u r  c u r r e n t  modeling technology 

co i l l u s t r a t e  this p o i n t .  

3.  Current  L i a i t a t i o n s  on Modeling A ~ ~ l i c a t i o n s  I n  a S t r a t e q i c  P l a n n i n g  
Znvironrnen t 

kr t h e  e a r l y  days of na themat ica l  m d e l l n g ,  l a r g e  a p p l l c a t f o n s  

ware a o e t l y  of a d l i t a r y  o r  i n d u s t r i a l  na ture .  Yodels were used t o  d e s c r i b e  

and s o l m  wal l -def ined  problems I n  t h e  areas of p roduc t ion  and d i s t r i b u t i o n .  

and they  v e r e  employed on a r o u t i n e  b a s i s .  i n  m y  f n s t s n c e s  It was cons idered  

c o s t - e f f e c t i v e  t o  e s t a b l i s h  a small group of t e c h n i c a l  people  vhose s o l e  

r u p o n s i b i l i q  va.6 t o  adncaln and co Improve t h e  e r i s t i n g  package of m d e l s .  

kr r e c e n t  y e a r s  t h e  scope of mathematical  modeling applications has widened. 

and a o d e l l n g  enrlronmsnts  d i f f e r e n t  from those  descr ibed  above have emerged 

(11, [ 2 ] ,  and [ 3 ] .  The U.S. Government, f o r  f n s t a n c e ,  has supported t h e  



development of a Large number of s t r a t e g i c  nodels, and many planning agencies 

arovnd che world use mathematical m d e l s  aa chai r  major t o o l  f o r  analysi9.  

La these planning or iented  enviroprpcnts we have observed t h a t  the cos t  of 

building and maintaining m a c h a m a t i d  models is high, while the  benef i t s  

a r e  not alvays d a o r l y  defined. 

A study by the National Sciance Foundation on the development and 

use of mathematical modah within the U.S. Gm-t provides some i n t e res t ing  

f igu res  [ Z ] .  The t o t a l  development cos t  OF the  650 m d e l s  s w e y e d  vie 

USS100 m i U o n  ($L51,000 per model), and i t  took on the  average 1 7  moatha 

to  make a model operational .  I t  vae o b s e n e d  tha t  75% of all models can be 

operated only by the o r ig ina l  development team, desp i t e  s t rong e f f o r t s  in 

model and program documentation. k t u d  poUcy usa of t h u e  models by groups 

o ther  than the  m o d e l  designers han been m i a i n d .  Given the  ~ d i a n  s i z e  of 

25 equations (oaly 6 models had more than 1,000 equat ions) ,  the  above f i g u r m  

look r a t h e r  depressing as i t  takas 3 veeks and $6,000 t o  develop one equation 

on the average. 

O u r  o m  experienca in the World Bank indicate6 &a t  a l a rge  por t ion  

of t o t a l  resources c u r r m t l y  spent on Large m o d e b g  e re rc l ses  Fs f o r  cha 

generation,  manipuktion.  +od repor t ing or' t h m e  models. I t  is evident tha t  

this percentage must be reduced s ign i f i can t ly  i f  m d e l s  a r e  t o  become 

e f f e c t i v e  too l s  Fn p- and decision making. 

Buridem chase extensive resource requiremaats w e  have encountered 

seve ra l  o the r  problem arms, most of them s t d g  f r m  at t - t s  t o  dis- 

seminate previous and ongoing research in a plarming environmnt.  The docu- 

mantatian of l u g e  models and t h e i r  modifications is one such problem. I f  

a projec t  is l u g e ,  and continues f o r  one o r  two years,  &a cos t  of complete 



documentation becomes horrendous. A decision is usually made to  maintain 

a fev versions of a model. In pracrfce this means tha t  scme baaic experiments 

can be repeated. Ln the Long run, hwever ,  the value of the  avai lable  

sof t v r r e  become essen t i a l ly  zero as people change jobs, and any changes 

t o  edsting versions require extensive set-up t i m e .  

h r e l a t ed  problem is the  cowmmication of models to  in t e res t ed  

persons tha t  a r e  not pa r t  of the  developmmt tw. As there a r e  no standards 

in notation,  i t  is of ten  U f i c u l t  t o  fudge from any vrite-up what exactly 

the m d e l  is. Experimentation v i t h  the  model my enhance one's understauding, 

but this requirae the  use of both the model and repor t  generators. bs these 

prograzns a re  non t r iv i a l ,  they in turn require the  use of a technical  person. 

The extensive t i m e  and money requirements prohibi t  many outs iders  frcm evan 

a t t e u q t h g  to s a t i s f y  t h e i r  cu r ios i ty  v i t h  regard t o  the modal. No 

d f e c t i v a  dissemination of Lnovledge can therefore  take place. 

Another major obs tac le  to  successful  modeling i n  a pllnning 

enviromnenc is *at there does not exist a commn in te r face  v i t h  the various 

so lu t ion  rout ines  modelers can use f o r  t h e i r  family of models. rle each 

solut ion package usually requires  U f c r e n t  data s t ruc tu res ,  i t  becomes both 

tima and mey consumlag to  switch back and fo r th  between solut ion algorithms. 

Ae a result models tend to  ge t  Locked i n t o  one so lu t ion  package which a t  

tinus limits t h e i r  development. There is d s o  no general-purpose sof tvare  

fo r  the l inking of models, an a c t i v i t y  tAht haa became -re prevalent v i t 5  

the increased w e  of models. 

The hear t  of the problem is the  f ac t  t ha t  so lu t ion  algorltinus 

need a daca s t ruc tu re  and a problem representation which Fs izposs ib le  to  



comprehend by hmans. A t  the same t h o ,  problem r e p r w e n t a t i o a s  that are 

m e a n i n g f u l  to hummm, are uot acceptable t o  machinu. The wo t r a n s l a t i o n  

pmcossea required un be i d e n t u i e d  aa t he  & source of d i f f i c u l t i e s  

and a r ro r r .  W i t 3  today's technology, each translation p r o c u s  b broken 

do- in to  a n d u  of i n t a r r e l a t e d  s t e p s  vhero most of the coordination 

d con t ro l  haa t o  ba dona by h-, and b therefore  sub jac t  to  a n o r .  

That's why cnturr ivo  the, skUl and -nay rasourcrcl a r o  raquirad f o r  ehe 

completion of l a rge - su la  modeling e x c o r h e s .  In addi t ion ,  it is not 

s u r p r i r i n g  t h a t  becaure of t h i s  m e n a i v e  hm8u inpu t  tho  werzll r a l l a b i U t y  

(th. p robab i l l t y  of no mistakes) of our mad.llng p rac t i ca  b e&urassiag.Ly 

llm. 

U e  would like t o  i l l luatratm th. above paragraph by uaing linear 

programing aa an -10, su re ly  the  -st vidaly rued and beat  developed 

t o o l  m a i l a b l e  today. &st studanta involved i n  q ~ t i t a d v o  s t u d i m  are 

axposed t o  Llno8.r pro- and its a p p l i c l t i o w  t h o u g h  t u t b o o k  exmplae ,  

vhfch cnn b. cumprrhended quit. w i l y .  S t i l l ,  many of them find tremendous 

d i f f i c u l t i e s  in bmdUag r u l - y o r l d  l i n a a r  pm8-g applicaciozml The 

reason f o r  chis b r w l y  sit.. If on. uses c u r b o o k  mthodology, o m  

f in& tht the camplaxit ies asaociatod vlth the  gsrura t ion  and maaipuladon 

of modolr grw utronomicaUy v i t h  sir.. Cowidor a small pmblem v l t h  

10 equations and 10 e l m .  This can bo nea t ly  p r in t ed  in mtrir 

form on one pago. Uo cau d i r e c t l y  inspact  each of the  100 a m r i d  

encr ies  and t h o i r  pos i t i on  r e l a t i v o  to  so& o t h u .  To p r i n t  th. mat* of 

a "standard" size a g r i c u l t u r a t  s ec to r  model v i t h  1,000 e q u t i o ~ ~  and 



2,000 var iables ,  on the o ther  hand, vould requi re  3,200 pagea of computer 

paper. Realizing t h r  of the  2 U o n  poss ib le  e n t r i e s  oply 80,000 o r  so 

a re  d i f f e r e n t  from zoro, ve could l abe l  m e  and colmns and p r i n t  these 

l abe l s  together v i t h  the no-zero en t r i e s .  Although t h i s  way of representing 

the  m a t e  reducm the r lqui rad  pagw to  1,230, w e  a r m  e r r sen t id ly  l e f t  

v i t h  a list of seemingly random numbers, unable t o  discover any ma~n ingfu l  

model. Unfortunately, t h i s  is exactly the  way wa have t o  comtmicate with 

today's  software. 

Table 1 is a f u r t h e r  e labora t ion  on hear  prograsming technology. 

The soluclon pmcese 9 broken down i n t o  I 2  d i f f e r e n t  ursk o r  pmcesse8 

and 15 c la s ses  of a s s o d a t e d  doomma% o r  &uz ,r'iles. As an i l l u s t r a t i o n  

of how to  i n t e r p r e t  the t ab le ,  consider the  t h i r d  rw. The ta8k is 

described a s  "design cumpurer program to  generate colunm/rov/valua records 

correspondlag t o  m d c l  i n  matrix form." It can ooly be pe~fo-d by a 

huaun, and i t  requi res  three  inputs and one output f o r  its cmtpletion. 

One necessar7 input  is the descr ip t ion  of daca and w d e l  i n  conventional 

notat ion.  On the  banis of this input. one haa t o  design X P S  naming 

convmtioas that vill be wad  in the naming of rows and calms of the  

h e a r  programing cab luu .  Added to  this input  vill be a da ta  s e t  coded 

in a program acceptable form. W i t h  t ho le  inputs the  t a sk  can be executed, 

and the  f i n a l  output, a monrir  ganerator program wr i t t en  i n  solno Language, 

vill r r s u l t .  Remember that each ingut and output in the  t a b l e  requi res  

h- intemanclon.  The f i n a l  goal, of course, is the  soluclon repor t  

v h i l e  the  13 intermediate docrnnants a re  an axpensioa and error-prone 

detour. i t  is lzpor tant  to  note that the f f r s t  7 tasks a r e  performed by 

h-. The Last 5 t a s k  a r e  perforned by the machine, but need add i t iona l  





control  instructions to coordinata input and output. This again is 

a source of e r ror ,  even tho@ cha execution of these 5 cash is f o r  a l l  

p r a c t i c a l  p q o a u  e r r o r  f raa.  Many e r r o r s  chat a r a  made a r e  usually of 

a vary i n t r i c a t e  nature, and do not  bacomm apparent a a d F a t e l y  a f t e r  

chay have been committad. They a r e  of ten car r ied  on throughout cha process 

v i thout  having f a d  e f f e c t s  on so lu t ion  procedures. 

Alchough cur prwant  modeling tadnology  han pruvm to be adequate 

in  mrny modeling auvirommro, it b c l e a r l y  inadequate in m a t i n g  cha naada 

of modal bui lders  in a s t r a t e g i c  planning envFrorrmcnt. A new genarr t ion 

of modeling cachnology b needed in order  co maka a  s i g n i f i c a n t  improvement 

in che t!us f a r  limited success of plaPolng modals. 

I r .  Relaxing Current 3oundarias on Successful Hodelinq i n  S t r a t e g i c  Pl~lninq 

Unthwat ica l  modals a r e  a  po ten t ia l ly  powerful too l  i n  a  s t r a t a q i c  

planning emrirorrmcat, but t h e i r  e f f e c t i v e  use and dissemination hnva b a a  

hamparad se r ious ly  thus f a r  by excessive resource requiremieats in carps of 

t ip . ,  money and cechnlcal s U ,  and by the d i f f i c u l t i e s  associatad with 

&a comrmmiution and zapea tab i l i ty  of modal exper-ncs. E a t i n g  n o d d i n g  

technology is a major iFmitiag Factor in t h i s  e n r i r o ~ t  vhera m d a l s  a r e  

always subject  to  structural durrgaa, and a t  moat one run of any modal 

version b of i n t a r m t .  &I vc noted in che premious sec t ion ,  :ha hear t  of 

the ?roblam b the f a c t  tha t  two rapresantat ioaa of d o  same modal a r e  naeciad 

before any solut ioaa can be obtained, and chat the required cranslat ioaa 



a r a  labor  in tens ive  and a m r  prona. I n  our opinion thara a r e  NO b u i c  

requiremauu L&C vlU a v e a o u l l y  laad t o  t&a succe8s of s t r a t a % c  nodeling. 

F i r s t  of all va need a I m i v a r s d l y  accapted, highly s o p h i s t i u t a a  

notat ion,  a formal r d a l i n g  h a g u g o ,  vhich is a u i l y  d a t s t w d  by both 

h- and tha =china. Secondly uu need a MivarsPl ly  available soforare 

s p t m  with a lw l e v d  intarnal  data  s t r u c t u r a  so  chat, a t  1-t Fn 

principla ,  i t  un in ta r faca  with any dnta b a a  and so lu t ion  r lgori thm th t  

i. available. It g o u  C1PDst without s.yLng chat t h u a  a r a  nace8aary and 

wt s u f f i c i e n t  c o n d i t i o ~  f o r  succe8sful modalfag. although their f u l i i l b s n t  

should grea t ly  enhance our mdalfag u p a b i l l t g .  

Detarmlnlng a ganaml m d a h g  lauguaga irr wt an a u y  task,  but 

its mautual d e f i n i t i o n  should ba guidad by obaermd mads. %at  p r o b l m  

aaaoclatad with m d d  bul lding un ba reduced to a b u i c  quaation concunlng  

m i c a t i o n .  Bov cur one c m c a t a  data  and its c u s o d a t a d  complex 

mmthematicrl s t r u c t u r u  whm tha h m a n  mind irr l h d t a d  Fn its p w a r  t o  grasp 

and c c q r a h m d  many irrsuaa s ~ t a n e o u s l y .  Tha only t o o l  a v d h b l a  t o  w 

is our power 02 a b a a a c t i o n  vhich aid8 w in d u s t m d i n g  the  complaxity 

of r u l  w r l d  phmomao.. It all- w to  defina par t i t ion ings ,  mappings, 

a a c i n g n .  and shor t -bnd  n o u d o n .  A m d r l l n g  languaga should provide w 

with such a short-h.nd notat ion,  allaving f o r  t&a rpacif icacion of p u t i -  

cionizqm, mmppwa a d  ne8tlags in a unifylag but say t o  us. m a r .  A. 

-st evaryana h.r bean expoad  t o  s m  r lgabra ic  no ta t ion  during &air 

f o r m l  education. tha hnguga should adopt aa much aa poss ib la  tha e x i s t i n g  

r lgobra ic  c o a v e n t i o ~ ,  v i t h  perhapa a f .v  addir iorv t o  handla tha inhareat  



complaxltiea of l a rge  modela. Since the l-ge vill only be urad to  

represurc models, it should not be an algorithmic programing languaga, 

but inatand rescmbla mora the Imgruga of a sophis t i ca tad  data b u e  capnbla 

of handling symbolic a lgabr r ic  relat ionships.  

The u l s t e n c a  of such a general purpose modeling language carries 

severa l  Lmporrmc i a p l l u c l o u a  v i t h  it. As it is mnchina readnble. only 

on* document is medad. This document scrpw also  as tha complata documan- 

taclon of tha modal. SFnca it  is easy to  inspact ,  c o ~ c a c i o n  beevaan 

parsous is grant ly enbmcad. In addi t ion,  tha mnchina can be of great  halp 

to tha m d a l  buFldar Fn discovering mlsspecificntiona. espacial ly  a t  tha 

s y n c a c t i d  leval .  

A u n i v u a a l l y  a v p i k b l a  s o f e v u a  ryscem vhich can in te r face  v i t h  

dntn b u e a  and roluclon a l g o r i t h m  a l so  u r r i e a  Lmportant t m p l l u t i o u a  f o r  

tha r m d e h g  c-unity. A l l  of a suddaa, many taaks t h a t  a re  current ly 

parformad by humans during tha sodel  building process, a r e  automatically 

parformed by tha machine. This lands to  a dr-clc lmprovemeat Fn tha 

r e U b i l i t p  of our m d e h g  sofwnre.  Solutious and r e p o r u  vill ba 

automrt ical ly  generated a# soon u a ccmpleta m d a l  reprasaacaclon hna baau 

specif ied.  No rmre h i m y  rLil1.d compucer techniciaru a r e  naeded. Tha 

t h a  thnt  L raquirad to  a c c q l l s h  any s t r u c t u r a l  c!mnges ia a modal 

raprwauta t ion  L ruddauly becoming negligent.  Ln addition. u many h w  

ar rors  a r e  prevaacad by chis n.v m a c h h c i n t a r u i v a  t c c h n o l o g ~ ,  the ovcraU 

coat per soda l  should decrease. 



& Fmporunt byproduct of an algebraic  modding system Is 

chat tho r lgobra ic  r a p r a s e n u t i o n  c o n u i n s  s t r u c t u r a l  i n f o m a t i o n  about 

tha m&l vhich can bo rocognizod by tha systam. Tha automntic detection 

of 1-r and nod inur  oqrutiorrr UI o m  exampla. Tho a u t m t i c  dotoction 

of block s t ruc turaa  Fn tho Fnd&nco matrix b anothor -la. A genornl 

m d e l l n g  systom w i l l  a l so  a i d  tha & v o l o ~ t  of a l g o r i t h  vhan it c ~ m u  

t o  tasting and -.ring them. Ln addit ion,  tha system can bo w a d  M a 

mukoting d o d c o  f o r  wall-implamntad a l g o r i c h s ,  thoroby raducing the 

diat.rrca b a m m  softvaro davolopon and modd b u i l d a n .  

It UI ovidmnt t h a t  c o l l b o r a t i o n  by various p r o f a s s i o n d s  and 

o r ~ P n i t o t l o a s  is oaodod t o  rr l t invtr ly  accomplish tho oro b m i c  tab o u t h o d  

Fn t h i s  sact ion.  A t  cho Davmloplunt B u e r r c h  Canter va hme made t h e  f i r s t  

s t q s  t a d  tha davalopmu~t of a g r n a r r l  a lgobraic  modollng lilngunqc and 

a g o n a r d  algobraic  modrlFng system wN& vo r s f o r  t o  as G A S .  We hop. 

thPt t h l a  d o ~ d o p m m t ,  vhich hau born undar wuy f o r  severa l  y u r s ,  w i l l  

bocoma r t a k m f f  point f o r  fucura c o l h b o r a d o n  and possibly s tandardizat ion 

Fn drllng sofcvare. 

5. Tho Davelopmmt of a Couoral U g o b r l l c  Hodaling System (GUS) 

Tho m d r l l n g  andro-t within cha World B a n k  can in g o n e a l  bo 

cimract.TFTed aa a s t r a t a g i c  planning urviromnurt, vhorc mod& a r m  b u i l t  

and u o d  u a l u r n i n g  a m c o  m d  a framnrcrk f o r  analysis  [ l ] .  OPar tha p u r r s  

va h m  bosn r r a o c i n t d  vith many modaling e x o r c i s u ,  and havo racognizod 

tho U t a d o r u  of our c u r r m t  modrllng soffxara. I t  ln tha oood f o r  a 



basic  change ln nudeling technology tha t  harr led t o  che incept ion of 

che G A S  project .  Thh project  hae progreased co &a point  vhere va 

represent  complete nudah  v i t h i n  GUS, and execute a l l  data  !UmipU&tions. 

Links  vich se lec ted  so lu t ion  algorithms a r e  s t i l l  under devdopmmt. 

The sysccm is current ly ilcled co foamdata and document severa l  

of our models. I c  guides and chocks tho u8.r ln the spec i f ica t ion  of a 

c o q l e c e  model. thareoy accelarat ing tho f o m u h t i o n  process. In  addition. 

dl data rP.nipuLtiona can be performed by the system. and t h e i r  results cau 

be displayed i n  the form of v e l l - d o c w t e d  reports .  The layouc of chase 

reports  a r e  automatically generated by chr system. An e a e n s i v a  aaa lys i s  

of the  lnput  da ta  can therefore ba made p r i o r  to any acteqac to  solve the  

nudel. Ln our q a r i a n c e  the daca preparacfon and ana lys i s  have always 

bean cha nuat cFM c o n s d n g  aspaccs of any nudeling u a r c i s e .  The e f f o r t s  

required f o r  ch i s  phase a r e  reduced subs tan t ia l ly  .dch the use of the system. 

For those solucion routinea tfiat a r e  noc linked to G A S  as ye t ,  ve use the 

Cbl3S nocation as a guide for  vrLcing che nudel generator (i .e. .  cha program 

tha t  generates cha n u d d  represantat ion an i t  1s required by a s p e c i f i c  

so lver ) .  This has resulced Fn an Fncreasad r a U a b i U t y  of the nudel 

generators. 

The choice of n o u c l o n  i n  GUS g r w  from an F n u e ~ s e d  understanding 

of both the nee& of the andel bui lder  and the shortcomings of ava i lab le  

cmputar  languages. Ynsc cammon prograumdng langruges a r e  designed co 

laplamuzt algorickms, and do not allow f o r  a si-1 and eaay co read 



r ep r a senu t i on  of Large and complu modah. Thue  are. hovaver. some 

s p a U z a d  m d a l  pnmratiElg la-gas. w u a l l y  d o s i ~ d  around a s p a d f i c  

algorithm. Tha DYAdPg kngurgo, f o r  i a s tmca ,  v u  deaigaad around an e f f i -  

c ian t  algorithm to  in tagra ta  dyuunic sys tem.  Tha WOU system vas dosignad 

around a Gauss-Saidal p r o c u s  co solve awncmatric d a b .  Languages such am 

U G R l  and M X  m r a  duignad  uormd tha s l m p l u  method fo r  linear propama. 

00th U A M  and M X  arm ensantial ly a short-hand r rou t ion  f o r  gmnarating the 

UPS tape (cha i ndu r t rpv ida  r t m d r r d i z d  input for  U n u r  p r o g m g  

s o f o l u a ) ,  a d .  u such, u a  l h l t a d  i n  scope. Thay a r e  r i gh t fu l l y  u l l a d  

" m a  genamtom," u ehay a ra  only su i tad  fo r  l i nea r  problems. In 

addition. s inca chair mrFn 0.k Fs t o  amnipdata charactam (s t r ings)  co put 

cogothar - f o r  an EIPS cape. thoy a l so  & not al low f o r  a m i n b d  and anry 

t o  r u d  r ap rea rnu t i on  of l u g e  models. Thoy ara, hwovar. a s tep  fomard 

-&m c q o r a d  t o  or- progr-g h q u a g w .  and have b.an usad succass- 

f u l l y  In onPironnvnts other  than s t r a t eg i c  plrrming. 

I n  our exparienca. &a typ ica l  modal bui ldar  v a t s  to ba fraod from 

any burdaru tha t  a r a  bp0s.d by solut ion a lgo r i t hm.  Us b u i c  naad. a r a  

ramad by both a n o u t i o n  tha t  al l -  him to v r i t a  dom a modal in a 

s t r a i g h t f o ~ o r d  mamar. and a syatam chat ukea ovar tho s teps rnquirad 

fo r  &a gararat ion of cha m d a l  axd iu results. KnovLrrg tha t  perrow from 

nvny dbc ip l l nea  have bamn Fnaoducad to so- m thsnu t i c a l  notation. and 

c h ~ t  e l a r n u r p  data b a a  w d o a a  a m  s u y  t o  rmdarsund, va have choaan 

for  m algebraic  longuaga v i t h  data b a a  concapts intlrvovsll. Tha r eau l t  

Fs a f l d b l a  and aasy to w a  nout ion .  t h a t  Fs powerful -ugh t o  hmdla  

complu =dab. In  addition, it  un ba wad  fo r  m8ay typar of mathamatical 

mdab both linaar and aoa l l nau .  



iha  data  modal used i n  G A S  is daoigned to take a d v a n t a e  

of s p u s e n s s e .  Oply tha w n z u o  o r  tha e x p l i c i t l y  defined dements  

a r a  s tored i n t e d y .  idith t h i s  d a m  s t r u c t u r e  tha e f f o r u  raquirad 

t o  puform any l o g i c a l  and algebraic  d a u  d p u l a t i o n r  can ba raducad 

to  the sor t ing  and merging of umltidimm.9ional f i l e s .  

n a r a  a r e  savera l  t a k a  tha t  ve envision tha  sys tun  t o  parform. 

Beaidaa tha capabi l i ty  to intarfacm v i t h  o u y i d e  daca baa- m d  so lu t ion  

routinam. the sy8t.m should f a c i l i t a t e  tha coupling of models. Simulations 

over t h e  may be such that the so lu t ion  of a modal  i n  ona pariod is used t o  

datarmfna a parameter of tha modal in tha o u t  pariod. This capabi l i ry  t o  

l i ak  m d e h  411 reduce tha excaasiva set-up t h e  tha t  is requirad vich 

c u r r m t  rmdeldng technology. Othar casks that va =vision cha system to  

perform a r e  autonutic  un i t  d y s i s  and automatic scal ing.  E s p a d a l l y  cha 

lattmr one . A l l  bacomn w o r t r o t  u the d i s w c a  beorean tha m d a l  bu i ldar  

and tha so lu t ion  algorithm vill grow v i t h  t h e .  

Bigura 1 g i v u  a s m l a  schematic ovarviev of the  s t r u c t u r a  of 

G A S .  Cantral Fn this f igura is tha CAtS t r ans la to r .  Folloving tha trans- 

l a t i o n  tha system e i t h e r  creatae o r  continuso a CUS Pro jac t  Fi le .  This 

U o v e  a user to  add o r  m d i f y  an ex is t ing  model v i thout  requir ing the 

system to rapeat pravioru operations. The r u p o n s i b i l i t y  fo r  the p ro jac t  

da ta  f i l e  l i e s  thareiora v i t h  the user. 211. responsibility f o r  tha GAM 

Daca BUR. on cha other  haud, lfa v i t h  the system. I t  contains infornut ion 

t h t  tr r P o i k b l a  and of intarmat to a m r i e t y  of u r u s  and models. The 

tachnic r l  no- tha t  a d a t  f o r  each proceas i n  tha f a r t F U z a r  industry 

daacribing the input quant i t i ae  requirad for one unit of ourput f o t s  one 

asample. The GAMS Executor i n t a r f a c u  v i t h  both the Pro jec t  F i l e  m d  a 



large var ie ty  of strangor sy8ttms. -10s of s tranger systems a r e  tho 

G U S  ovalrutor (which ovalrutor all dam a r p r u a i o ~ ) ,  tho GUS Mods1 

AndySer and the U u r  Prob~-n Executor. Each of tham mop in turn 

in tor face  v i t h  0tb.r such stranger s y s t a .  Tho ovmrall GUS s y a t m  i?, 

s e t  up such eht it cm Jways w a n d  an the nood ar i sor .  

Wi!i Project  F i l e  

Piqure 1: Schematic Ovemiev of GUS 

Polloving t h b  goneral d i s c w s i m  on tho devoloprmat of C A B ,  

ve vill devote tho n u t  section to r m  -re dotai1.d aspacts of tho m~doling 

languag. in w. 



6. Selected Asoects of t h e  Yodeling Language i n  G M  

This sac t ion  is d i f f e r e n t  i n  f l avor  from the pravioua sacdona  

i n  t h a t  it doer not concern i t s e l f  v i t h  g e n e r ~ t i a a .  I n s c ~ d  it concentrates 

on knguaga d a t r i l s  to  pmvida tha reader vich soma incuiclve f o a l  of w h a t  

the languaga is a l l  abouc. For i l l u r c r a t i v a  purposas, consider tha curnarp 

cranaportacion problam taken from the book, U n a a r  Proqranunlng and Prtensions 

by G. 3. Daaczig. h company demires co supply its threa w a r e h o u a  from 

NO canneries v l t h  given Inventories i n  cach, and manu to mFPimiza the t o t a l  

shipping cost.  The computer readable CAMS represantat ion of chis problem is 

s t a t a d  In Figure 2. 

.Is can ba weed  from tha model dascripcion, va have r e s t r i c t e d  

o u r s a l v u  to a  s d  character  s a t  which is a v d l a b l a  on most c o q u t a r s .  In  

addition, wa have assumed chat thare is M carr iaga coat-01 avoi labla  (i .e. ,  

M subscripts  o r  supersc r ip t s ) ,  and t h a t  thara are o d y  c a p i t a l  l e t t e r s .  

V i t h h  chase fmv l imi ta t ions ,  we have adhared a6 such as possibla  t o  esLstiag 

math-tical convcncions. 

'llih m d a l  statemaat un be viewed ad an integrated data  base. 

In  addi t ion t o  tha data  cables and usignmcnt  s t a r m m n u .  there a r e  che 

symbolic equmtiona which reprasant &ca tha t  can only ba obtained v i a  some 

so lu t ion  algorithm. Both &u and symbolic equaciom a r e  naadad for  a  complete 

'ha re  a ra  savaral  key vorda ured In the md.l ducr ipc iun .  They 

a re  ( in  order  of occurrmca) SET. PARAMETER. *TABLE, VARIABLE(S), ~UBTTON(S). 

SW, S D E L ,  SOLVE.. U S ~ G . . ~ I X G ,  and DISFLAY. Ua vill conmmnt on ach 

of them. 
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Sacs a re  used a s  dr iv ing indices  i n  many mathematical models. 

They usually have a snor t  aame f o l l w e d  by a description.  Folloving the  

descr ip t ion is a l i s t i n g  of the s e t  elements contained beewean two "siasnes." 

Each nanm can have an associated descr ip t ion Ff needed (e.g., the element 

KANSAS has a descr ip t ion KANSAS CITY). 

A parameter can be defined i n  a s imi l a r  Fashion, k i t h  a nunber 

fo l loving each Label aa ve did f o r  paranmter A. An algebra ic  d e f i n i t i o n  

uaing an assignment statement is a l so  possible,  and this w a s  dona f o r  

parametar R (each varehouae requirenmnt is 300 u n i t s ) .  A t h i r d  way to  

def ine  a pararpater L soma tabular  arrangement as va.9 done f o r  the  

parameter DTCOST. Both row and calm descr ip t ions  of the  parameter a r e  

required. Aa va s h d l  sea  l a t e r  t.Vs two-dimeasimal framework can be 

used to represeut parameters v i t h  more &an two dlmeneions at tached t o  

them. 

Variable and equation names must be defined f i r s t  before they 

can appear in any symbolic equations. One can recognize a syaboUc equation 

by the two dots  fo l loving the equation nnms. Hote t h a t  the a v a i l a b f i t y  

const ra in t  SUPPLY L defined over the domain ( s e t )  C. It la a short-hand 

nota t ion fo r  two a v a F l a b U c y  coaat ra in ts ,  namely one fo r  each carmery. The 

stnumation i n  the  SUPPLY equadon ts indica ted  by SUM, and followed by the  

s e t  rmm U to  vhich the sumnation operation is t o  be applied. Each spmbolic 

equation in GAkS haa a type. I n  the  example we have =L- (a less than o r  

equal t o  cons t r a in t ) ,  -+ ( a  greater  than o r  equal to  cons t r a in t ) ,  and 

WE- (an equalicy coaat ra in t )  . 



P modal in GAH fa the  se l ec t ion  of a subset  of the  symbollc 

equations. In t he  cannery e w l e  all equations a r e  included in the  

model. Once a model is defined, a par t lculax  algorithm must be choaen. 

In chis case Unau prosama.lng (LP) is se lec ted  to  m i n b i z e  the  va r i ab le  

TBCOST in the model CANICE. Display statements un b e  w e d  t o  get  

se lec ted  pieces of data. a e r e  ve have asked f o r  t h e  a c t i v i t y  l eve l s  associa ted  

with the var iables  (&a), and the shadov pricoe (marginal cos t s )  associated 

- d t h  the  a v a i l a b i l i t y  c ~ l u t r a i n t s  (SUPPLY .X) . 
The cannery m d e l  serves as a quick ove&ev of seve ra l  important 

aapects of tha language in G A M .  The uarnple does not portray some of the  

complexlcies associated v i t h  the  representation of large-scale models. That 

is vhy a more extensive descr ip t ion of the  nota t ion in ClMS is presented 

n-. 

6.1 Sets  and Set Yaovings 

A simple (one-dimarrsionol) s e t  i n  W fa a f i n i t e  co l l ec t ion  of 

labels .  These s e t s  play au important r o l e  i n  the indazing of a lgebra ic  

statements. The cannery example contziins two such simple s e t s  ( m l y ,  

C and W), and both t h e i r  syntax and w e  a r e  iUurr t ra ted  there. Several  

one-dinmasional s e t s  can be re l a t ed  t o  each other  in the  sense tha t  there  

is a correspondence between &am. .%a an esarnple conaider the corraspondence 

batvaan corrntrlee and ragiona. Depending on one's vievpoint ,  this fa a one- 

t m n y  o r  one-to-one correspondanca. To each country corresponds a 

s p e c i f i c  s e t  of regions,  vh i l a  each region corresponds t o  one s p e c i f i c  

country only. ke we shall see, these correspondences play an important 



r o l e  i n  CIMS s i n c e  they can be used t o  c o n t r o l  the domain of d e f i n i t i o n  

Fn assignment statenmu and symbolic equat ions.  

The s p l t a x  f o r  s a c  c o r r e s p o n d e n c u  is  much l i k e  t h e  one f o r  

s f n g l e  s e a .  Colrsider the f o M n g  U u s t r a t i o n .  

LNWNESIA. N-SUHBTRA 
INWNES u. AH- JAVA 
HhLdYSIA.W-WIb 

o r .  

SFT CR COUNTRY-REGION CORRESPOND~CE / 

INDONESIA. (N-SUMATRA, E-JAVA), HAUPSM.U+ULAYSU, . ../; 

Note tbat t h e  per iod  Fs used ae an o p e r a t o r  t o  r e l a t e  t h e  elements 

of t h e  d i f f e r m c  sets, and t h a t  t h e  o r d e r  of t h e  alements  Fn t h e  c o n e s p o n -  

dance is f i x e d  (in this c a s e  country f i r s t ,  r e g i o n  second).  I n  o r d e r  t o  

reduce m n e c w s a r y  r e p e t i t i o n ,  the parenchesea can be used when s e v e r a l  

e l a n a n t s  Fn oue set c o r r u p m d  t o  a s i n g l e  element of t h e  o t h e r  set. There 

can be any number of s e u  in a conespondence.  The fo l lowing  fw l i n e s  

FLluscra ta  a M l m e n a i o n a l  set mapping. 

SFT RZD REGION ZONE DISTRICT MAPPING / 

NO=. IRRIGATED. (U-NORTH, C-HOBTB, E-E1ORTB) 
CEFJZAL. ( IBBICaTED. (NU-UPPER, XE-UPPER) 

m. (S-UPPER, !+LOWER, E-LOWEB) 

1 i 

There ara ways t o  change t h e  Fnformacion c o n t o n t s  of sets and set 

mappings. This can be done vla a l g e b r a i c  a s s i p a n t  s t a t m e n c s ,  which r e q u i r e  

all seca t o  be indexed. h s u m e  t h a t  a s e t  R of r e g i o n s  haa been def ined ,  and 



t b t  a copy of t h i s  s e t  is des i red .  Then one can v r i t e  t h e  fo l lowing  ClMS 

s t a t a n e a r s .  

SIX R COPY OF SET R ; RR(R) = R(R) ; 

The nex t  exampla is a r e d e f i r r i t i o n  of RR on t h e  b a s i s  of t h e  above 

s e t  correspondence ap). Aseumc that t h e  ncv s e t  RR should  c o n t a i n  all r e g i o n s  

t h a t  a r e  n o t  rain-fed.  The F n s t r u c t i o o  SUM, a l r e a d y  mentioned i n  t h e  cannery 

erypple ,  denotes  a union i n r t n a d  of a suzmation when a p p l i e d  t o  sets. 

BB(R) = R(R) - SUM(D, BZD(R, 'TROPICAL', Dl) ; 

Yote t h a t  t h e  3-dimansional correspondence RZD r e q u i r e s  3 dr ivFng 

i n d i c e s .  S i n c e  t h e  middle i n d e s  Fs i n v a r i a n t ,  we have used t h e  quotes  t o  

i n d i c a t e  a s p e c i f i c  elemant r a t h e r  than  t h e  e n t i r e  set. 

6.2 Data Tables  

Tabular  arrangements of d a t a  a r e  a very conveniant  vay t o  d e s c r i b e  

dti-dimensional parameters. The unit c o s t  t a b l e  in t h e  cannery s a d e l  is an 

ararnple of a 2-dimeusionrl parameter. The fo l lowing  t a b l e  i l l u s t r a t a  a 

4 - d ~ i o p p l  parameter, where 3 d h a n s i o n s  a r e  cap tured  in t h e  rw d e ~ c r % p t i o a r .  

w h i l e  t h e  f o u r t h  dimension Fs conta ined  In t h e  column l a b e l .  

TABLE L LABOR ODEFFICIENTS EJ EOURS PER RAI 
* BY SCION, CBOP ROTATION, TECHNOLOCII AND MNTB 

JANUARY FEBRUARY APRIL 

MAX JUNE JULY AUGOST 



Notm tha t  w e  have speci f ied  tha units f o r  t he  e n t i r e  t a b l e  in 

the t a b l a  heading. A ~ I  it  s tands  a t  t he  moment, u n i t  a n d p s i s  han to  be 

dona by the  model bui lder ,  although one of our g o a h  is t o  mak. automatic 

un i t  ana lys i s  an i n t e g r a l  pa r t  of t h e  da t a  base system in G U S .  The order  

of the  s a t s  used in the  row and colrnnn dcscr ip t iona  i n  the  t a b l e  statement 

murt be maintained in later ref e r e n c u  t o  the  parameter. For the  a b w e  

exawple tUs vill be L(R,C,T,?I) vhere R, C, T and M rder t o  the s m l a  

sacs.  

6.3 .Asaignntent and Eauation Seacements 

*st of the  syntax uaad in aasigmaent statements and equations a r e  

the  same, a l a o u g h  it is s t ra ight fozvard  t o  de t ec t  Ff a CdMS statement is an 

assigfunaut o r  an equation. 

An a s a i ~ e n t  statement in CAMS is an i n s t r u c t i o n  t o  perfoxm same 

da ta  manipulation and s t o r e  the  result. It can ba cmparad t o  a FORTBAN 

stat-t vhere the  r e s u l t  of the  ope ra t iom perfoxmad is s tored  under the 

aama that  appears on the l e f t  s i d e  of the equal sign. Aa an exawpla consider 

the  parameter DIST(1.J) l n d i u t i n g  rha d i s t m c a  from loca t ion  I t o  l o u t i o n  J ,  

vhere the  elenants in the s a t s  I and J o re  iden t i ca l .  baeuma t h a t  i n i t i a l l y  

only tha h e r  t r b n g u l a r  pa r t  of DIST vaa spec i f i ed  i n  a TABLE s t a t ~ a n t ,  and 

t h a t  w e  arm i n t e r e s t e l  in specifying the antlrm laotrix. W e  can v r i t e  tha 

fo l loving sautenca 

DIST(1,J) - DIST(1.J) + DIST(J,I) ; 



The right-'nand s i d e  is defined f o r  each &tup le  of the  C a r t c s i ~ ~ ~  

product of t he  s e t s  I and J. h copy of DIST(1,J) is s to red  in a temporary 

vork a r r ay ,  and t h e  e n t r f e s  in DIST(1,J) a r e  replaced v i t h  the  r e s u l t s  from 

the  addi t ions  f o r  a l l  pa i r s  (1,J)  in a p a r a l l e l  fashion.  Note that all 

dues of DIST(1,J) t ha t  v e r e  not  defined in the  TABLE s t a t auen t s  a r e  

assumed t o  be zaro. An a l t e r n a t i v e  but equivalent  GAMS statement f o r  the  

above replacement Fs aa fo l l a rn .  

DIST(1,J) - MAX(DIST(I,J), DIST(J,I)) ; 

Bare the  .W operator s e l e c t s  t he  l a r g e s t  o i  t he  two values  i n s i d e  t h e  

parcntheaes. 

An equation in GAMS is a symboUc representa t ion  of one o r  w r e  

cons t r a in t s  co be uaed as p a r t  of a simultaneous system of equations, o r  an 

optimization model. It alvaya begins v i t h  the  equation name, possibly 

indexed, f o l l o w d  by tvo dots  (per iods) .  We again r e f e r  co the  equations 

In the  cannery arample. 

6.4 The 5 Operator 

P a t t i t i o o i n g  l a rge  m ~ d o l s  by using dr iv ing indices  providw an 

d a g a n t  short-hand notation. C o m p l ~ t i e s ,  hwever ,  a r e  Introduced vhen 

t t e r e  a r e  r e s t r i c t i o n s  Fmposed on che pa t t i t i on ings .  As these complexities 

a r i s e  cont inual ly  in large-scale models, ve have s t r i v e d  f o r  an elegant and 

e f f e c t i v e  vay to  incorpora te  tham i n  a model s t a t m e n t .  



Lat us bagin v i t h  au example. Define the  sets R and D as regions 

and d i s t r i c t s  raspectively.  APs- t h a t  f o r  each d i s t r i c t  in a region va know 

the level of incoma YD(R,D), and t h a t  v e  vrnt to  determine the regional  

inccam YX(R) f o r  each of the  regions. Writ* the assigmaant statement 

YB(R) = S W D ,  YD(R,D) ; 

is maaniagless aa not every d i s t r i c t  is contained i n  each region. We need to  

use, therefore ,  t he  r e l a t ionsh ip  betveaa the sets R and D. Let RD be the 

s e t  correspondence betv-n these  two sets. Than va  can mite t h e  following 

anslgnmant statement 

PR(R) - SUH(DSRD(R+D), YD(R,D)) ; 

Here the d o l l a r  s ign  Is used as a condi t ional  operator.  For each s p e d f i c  

region R it r e s t r i c t s  the  sum t o  be over those dements  of D fo r  vhi& the  

correspondence RD(R.D) is defined. 

Let A be a name o r  an expression i n  &US. a d  l e t  B be a m e  o r  

a t r u e f a l s e  arpreasion. Then t he  phrase A $ B is a condi t ional  statement 

in CAMS vhere  the  name A Is considered o r  the  expression A is evaluated if 

aud only If the  aam 3 is defined o r  t he  m r e s s i o n  B is true. 

When the d o l l a r  opera tor  Is used in an assignment statement,  it can 

appear both oa the r i g h t  and on the l e f t  of the  equal  sign. When it appears 

on the  l e f t ,  it contro ls  the domain over w h i c h  the  aaeigmnent is defined. 

lihanavar the  condit ion following the asme on the  l e f t  is not erua, the ex i s t ing  

data v a l u ~  contained under that name tannin  unaffected. I f  on the  o the r  hand, 

t h a t  same condit ion is applled t o  the  r i g h t  of t he  e q u d  sign, the  &s t ing  



values contained Fn che name on the  l e f t  vill be s e t  t o  zaro whenever :he 

condit ion i s  not true. 

I n  order t o  i l l u s t r a t e  the conjunctive use of t he  d o l l a r  opera tor  

and l o g i d  p h r a s e s  contl ined Fn an assignment stat-t, conaider the  

next example. Let the  s e t s  P, I and H denote processes, p l a n t s  and machines 

r u p e c t i v a l y .  The p a r m e t e r  K(H.1) denotes the  nmber  of rmits of a v a i l a b l e  

capacity of machine M in  p lant  1, v h l l e  the  parameter B(M,P) descr ibes  t h e  

required nmber  of cmits  of capacity of machine M per cmit level of p r o c u s  P. 

We vant  t o  d e f h e  a zero-one pa rme te r ,  PPOSS @ , I ) ,  indica t ing  which processes P 

need t o  be considered f o r  p lant  I. We can w r i t e  t h e  following s e t  of l o g i c a l  

r a t t i o n s  always r e su l t i ng  in e i t h e r  a zero o r  one. 

PPOSS(P,I) - Sm(M $ (K0f.I) EQ 0) .  B(M,P) NE 0)  EQ 0 ; 

Here the  expression B(M,P) NE 0 w i l l  conta in  a value 1 i f  process P is dependent 

on machine 23, and 0 otharvise.  T h u e  values a r e  sunnned over a l l  machinu H 

t ha t  a r e  nnt ava i l ab le  Fn p lant  I. I f  t he  r e su l t i ng  sum is zero f o r  process ? 

then the  procsss Fs nntdependent  on unavailable machines, and should the re fo re  

be considered. Note t h a t  PPOSS Fs one Fn t h  case. If  t he  resulting sum Fs 

nnt 0, che process is dependent on a t  least one unavailable machine, and 

should the ra fo re  not  be considered. The parameter PPOSS, is s e t  t o  zero Fn 

t h i s  case. 

When the  d o l l a r  operator appears Fn an equation statement,  i t  is 

used t o  con t ro l  t he  generation of equations and/or variables. A s  an i l l u s t r a -  

t i o n  l e t  CAP be an equation name r e f e r r i n g  to  capacity cons t r a in t s ,  and let  2 

be a va r i ab le  name rafer r ing  t o  l e v e l s  of process operation.  U s i n g  che 



not lc ion  of the  previous paragraph, ve can vrf ca the folio-g symbolic 

equation. 

CBP(H,I) $ (KCH,I) O ) . .  

SUM@ $ PPOSS(?,I), B O f , ) )  * Z(PsI) KRI,I) ; 

I n  t h i s  -la the s y s t m  w i l l  generate an equation f o r  a s p e c i f i c  

p a i r  of machines and p k n t s  only vhen the  capaci ty  of t h a t   chine in t h a t  

p h t  Fs s t r i c t l y  posit ive.  SincFlrrly, only those va r i ab le s  t h a t  refer t o  

procasacs vhich can be operated a t  a pos i t i ve  l e v e l  v i l l  be generated. 

6.5 Tha Lag and Lead Operators 

Mort sets m l o y e d  i n  mathematical n u d e b  a r e  co l l ec t ions  of 

l abe l s  vhoea only purpose Fs t o  i den t i fy  objec ts ,  p rope r t i e s  o r  even- tha t  

are re levant  t o  the nudal dmcr ip t ion .  There a r e  sew, hwever ,  fo r  which 

the order of the e l a n t s  is crucia l .  One fraquencly used n x a q l e  Fs any 

s e t  erpreasing soma nocion of tims. For these s e t s  it la of t en  important 

i o  reference elements r e l a t i v e  t o  each o ther .  A forward reference Fs 

usually r e fa r r ed  t o  aa a "lead" v h i l e  a backward raferenca is re fe r r ed  t o  

aa a "lag." La GA2-S i t  is poss ib le  t o  perform Lag and lead operations on 

any s e t  vhenever the elarnents in tha t  s e t  have never been used in a p r e v i o u  

s e t  de f in i t i on .  The order of entry is then the  re levant  order.  I n  the case 

t h a t  they have been used i n  provlous s e t s ,  t h e i r  mutual order should be 

unaltered. k'hmever a set is generaced o r  modified vFa an assignment 

statement, tho syatem wi l l  not execute any lag  o r  lead  operations using 

this se t .  



In t h e  language w e  make a d i s t i n c t i o n  between two mea of 

lead and l a g  operations.  If the lead operator is + and points  t o  an 

element beyoad the last e l m a n t  i n  the  s e t ,  the  corresponding opera t ion  

is not perfonnad. If the  lead operator is ++ , i t  w i l l  a c t  as a 

c i r c S r  opera tor ,  and consider the  kth el-t beyond the  last element 

in the  s a t  t o  be the kth clement in the  se t .  Tha l a g  opera tors  - and 

- a r e  defined Fn a s ~ h r  m e r .  W e  w i l l  give an -le of each. 

SET H MONTES / J A W ,  FEBRaABP, !hLEE, APBIL, HAY, .... 
DE-R / ; 

P W T E R  NSALE PROdTCTED CUMULATIVE S U E S  OF XITROCLNOUS FERTILIZERS; 
* (M 1000's OF KILOGRAMS) 

In this -1e a f o m r d  p ro jec t ion  is  mde.on b e  bas i s  of the  

s t a r t i n g  value of the f i r s t  month. The term NSALE('DECEMER' + 1 )  vill be 

considered aa vacuous. ilote t h a t  the looping devlce is necesearg f o r  t he  

above assignment s t a t m n t .  Without i t* d J . o p e r a t i o n s  w i l l  be performed 

in a p a r a l l e l  faahion, vhich w i l l  r e s u l t  in a proper d e f i n i t i o n  of the 

parameter NSALE ('FEBRUARY') only. A l l  o ther  valuea of NSALE w i l l  be 

equal t o  the  implied de fau l t  v a l u  of zero. 

In some a g r i c u l t u r a l  modals, the  constant  s e t  of months has been 

used Fn a c i r c u l a r  fashion, where JANUAX is the  one-period lead of DECEMBEB 



and DECESEB Ls the  one-period l a g  of JANUARY. As an example ass- t h a t  

ve  v a t  t o  determine &e f ive-dimensional  parameter CLaB denoting t h e  l abo r  

requirenmnt c o e f f i c i e n t  by d i s t r i c t ,  crop,  technology, month and p l an t i ng  

da te .  Assumo a l s o  chat the p l an t i ng  da t e s  a r e  EARLY and LATE, and t h a t  

tho  c o e f f i c i e n t  v a l u a  f o r  both a r e  t h e  sanm w e p t  t h a t  they d i f f e r  by 

a m n t b .  Lot the  paramater LABREQ be t he  Labor requirement c o e f f i c i e n t s  

by d i s t r i c t ,  crop,  technology and month, obtainod via a TABLE statement.  

The CIA can be generated from U B R E Q  aa fo l lova .  

7.  S u m a m  and Conclusion 

In t!ds paper we have described t ha  limitations of our cu r r en t  

nodaling technology vnen employed in a s cza t eg i c  planning environment. For 

modeling t o  becom successfu l ,  =e nave proposed t he  f o l l a v i n g  NO ba s i c  

changes in modeUng technology. F i r s t  ve  need a un ive r sa l l y  accepted,  eaey 

t o  use, genera l  purpose modeling Language vhfch is readable  by both man and 

machine. Secondly ve need a modelfng system t h a t  can r e a d i l y  i n t e r f a c e  

with data baaas, s o l u t i o n  algori thms and r epo r t  genera tors ,  and t h a t  cau 

perform such task aa t he  linking af nodels ,  u n i t  ana ly s i s  and automatic 

sca l ing .  

Follovfng this discuaeion,  the  paper descr ibes  t h e  development 

of a Ganeral Algebraic Hodeling System (GAMS), which v e  view as a f i r s t  

s t e p  toward a nev technology in modeling. Although modelers i n  t he  



Research Canter of the World sank have g rea t ly  beneficed from a system such 

aa CIMS, a uni f ied  e f f o r t  by the e n t i r e  mde l ing  conummlty and s o f m a r e  

industry Fs needed t o  br ing  about a universa l  change in w d e l i n g  c a p a b i l i t i e s .  

O u r  p redic t ion  Fs t h a t  there vill be a tremendow incrcase  in 

model-bu;Lldlag a c t i v L t i u  over the  next  decade o r  so i f  s o f m a r e  manufacturers 

provide the  technology f o r  modeling exerc ises  t o  become successful  in a 

s t r a t e g i c  plrnning anviroummnt. It is our s ince re  v i s h  t h a t  they vill all 

share  tha sama modellng language. Without such a standard,  models w i l l  not  

be por table ,  which lMts t h e i r  succesa. In  addi t ion ,  the burden of having 

t o  l ea rn  w y  d i f f e r e n t  aocacions b h p o r e d  on the growing group of model 

bui lders .  We hope t h a t  this paper vill become a stapping s tone  f o r  the 

developmmnt of a universa l ly  ava i l ab le  modaling Language, and t h a t  the 

general  topic  -All gain the  a t t e n t i o n  of the  modeling c o d t g  as a 

vhole. 
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AUTOMATIC IDENTIFICATION OF GENERALIZED UPPER BOUNDS 
IN LARGE SCALE OPTIMIZATION MODELS 

Gerald G. Brown and David S. Thomen 

Naval Postgraduate School 
Monterey, California 

To solve contemporary large scale linear, integer and mixed integer programming prob- 
lems, it is often necessary to exploit intrinsic special structure in the model a t  hand. One 
commonly used technique is to identify and then to exploit in a basis factorization algo- 
rithm a generalized upper bound (GUB) structure. This report compares several existing 
methods for identifying a GUB structure. Computer programs have been written to permit 
comparison of computational efficiency. The GUB programs have been incorporated in 
an existing optimization system of advanced design and have been tested on a variety of 
large scale real life optimization problems. The identification of GUB sets of maximum 
size is shown to be among the class of NP-complete problems; these problems are widely 
conjectured to be intractable in that no polynomial-time algorithm has been demonstrated 
for solving them. All the methods discussed in this report are polynomial-time heuristic 
algorithms that attempt to find, but do not guarantee, GUB sets of maximum size. 
Bounds for the maximum size of GUB sets are developed, in order to evaluate the effective- 
ness of the heuristic algorithms. 



1. INTRODUCTION 

Contemporary mathematical programming models are often so large that direct 

solution of the associated linear programming (LP) problems with the classical 

simplex method is prohibitively expensive. if not impossible in a practical sense. 

It has been found that most of these problems are sparse, with relatively few non- 

zero coefficients, and usually possess very systematic structure. These probleas 

exhibit inherent structural characteristics that can be exploited by specializa- 

tions of the simplex procedure. 

Methods:oexploit special model structure can be categorized generally as 

i n d i n e c t  (e.g.. decomposition), where a solution to the original prcblem is 

achieved by dealing with related models which are individually easier to solve, 

or as d i n e d ,  when the original problem is solved by a nodified simplex algcrirhm. 

Among the direct methods, the most frequently used technique is called bad is  

6 a c t o h i z a t i o n  [ 7 ] ,  where the reflection of special problem structure appears x d  

is used to good benefit in the intermediate LP bases. Basis factorization can 

be dyi~(UILic, where the algorithm deals with each basis sequentially and/or inde- 

pendently in an attempt to extract as much specialized basis structure as possible. 

or but, where the algorithm depends upon certain types of special structure 

being present in & bases. 

Static basis factorizations include ~ i m p e e  uppot boutds ,  _~c) let&;ed 

uppen bounds (CUB), and cmbedded ~ r a ' o a b  aou~b. among many others. Simple uppcr 

bounds are a set of rows for which each row has only one non-zero coefficicnt. 

Generalized upper bounds are a set of rows for wliich each column (restricted to 

those rows) has at most one non-zero coefficient. Setwork rows are a set of 

rows for which each column (restricted to those rows) has at most two non-zcro 

coefficients of opposite sign. 



Each of t h e s e  f a c t o r i z a t i o n s  p e r m i t s  t h e  s implex  a l g o r i t h m  t o  d e a l  w i t h  

t h e  s t a t i c  s u b s e t s  of t h e  rows (and columns) of a l l  b a s e s  encountered  w i t h  p r i o r  

knowledge t h a t  they w i l l  s a t i s f y  v C t y  r e s t r i c t e d  r u l e s .  Most of  t h e s e  methods 

work b e s t  when l o g i c  can be s u b s t i t u t e d  f o r  a r i t h m e t i c  ( a s  is t h e  c a s e  w i t h  t h e  

c o e f f i c i e n t s  2 1 ) .  For t h i s  reason ,  s t a t i c  f a c t o r i z a t i o n s  o f t e n  r e s t r i c t  t h e  

s p e c i a l  s t r u c t u r e  t o  p o s s e s s  on ly  2 1, o r  t o  be b c d e d  s o  a s  t o  produce an 

e q u i v a l e n t  r e s u l t .  

The concept  of g e n e r a l i z e d  upper  bounds was i n t r o d u c e d  i n  1964,  t h e  r e s u l t  

of work by Dantzig and Van Slyke  ( 5 1 .  The name is d e r i v e d  from ana logy  t o  t h e  

s imple  upper bound s t r u c t u r e .  Craves and HcBride [ 7 ]  r e f e r  t o  S - t d c  Signed 

I d e n t i t y  F a c t o h i z d o n  a s  a  term more s u g g e s t i v e  of  t h e  impl ied  b a s i s  s t r u c t u r e .  

S i n c e  t h e i r  i n t r o d u c t i o n ,  some form of GUB has  been implemented i n  many 

commercial LP systems.  There  is o f t e n  confus ion  between t h e  mathemat ica l  

c h a r a c t e r i z a t i o n  of GUB and t h e s e  v a r i o u s ,  widely used implementa t ions  of  GUB, 

i n  t h a t  t h e  l a t t e r  o f t e n  r e s t r i c t  t h e  GUB s e t  sembersh ip  r u l e s  t o  permi t  uncompli- 

c a t e d  s implex  l o g i c .  A l l  of t h e  methods r e p o r t e d  h e r e  a d d r e s s  t h e  f u l l  g e n e r l  

a l i t y  of GUB s e t s  but  can be modi f ied  t o  produce r e s t r i c t e d  CUB s e t s  a s  n e c e s s a r y .  

The d e t a i l s  o f  how CUB can be  e x p l o i t e d  t o  reduce  t h e  computa t ions  of 

t h e  s implex  a l g o r i t h m  a r e  n o t  d i s c u s s e d  h e r e .  See [1 ,5 .7 ,11 ,131 .  The under-  

l y i n g  concept  i s  t h a t  t h e  CUB s t r u c t u r e  e n a b l e s  t h e  s implex  a l g o r i t h m  t o  manipu- 

l a t e  t h e  GUB rows i m p l i c i t l y ,  w i t h  l o g i c  r a t h e r  than  f l o a t i n g  p o i n t  a r i t h m e t i c .  

t h u s  reduc ing  t h e  e f f e c t i v e  s i z e  and s o l u t i o n  t ime f o r  t h e  problem. The more GiJB 

rows one is a b l e  t o  i d e n t i f y ,  t h e  fewer rows one has  t o  c a r r y  e x p l i c i t l y  through 

t h e  s implex  o p e r a t i o n s .  I n  l a r g e  problcms t h e r e  e x i s t s  a  huge number of  s u b s e t s  

of rows t h a t  s a t i s f y  t h e  GUB c r i t e r i a .  I t  is g e n e r a l l y  regarded  t h a t  t h o s c  

s u b s e t s  w i t h  more rows a r e  " b e t t e r "  CUB s e t s  s i n c e  t h c y  imply a  more con- 

t r a c t e d  e x p l i c i t  b a s i s .  The impl ied  problem, thcn ,  is t o  f i n d  t h e  rnczxhm 

CUB s e t .  



Optimal algorithms to find a maximum GUB set do exist. These entail 

enumeration schemes and cannot be guaranteed to be efficient in a practical 

sense. Conceivably, zm-m sets of rows might have to be searched before a 

maximum GUB structure is found: as the problem size Srovs, the number of possible 

sets that need to be checked increases a p o n e r r t i & g .  As will be shovn later. 

the hope of finding an efficient algorithm to find the maxmm GL'B set for any 

general problem is dim. 

Therefore, researchers and practitioners have concentrated on con- 

structing efficient IIW&.~& algorithms that attempt to identify, but do not 

guarantee, a maximua GUB set. A few of these methods shoving great prom is^ hzve 

been reported, but they have not been tested vith large scale problems. 

This report (abstracted from [ & I )  outlines several automatic heuristic 

GLB-finding procedures that have been developed and published in the recent 

literature. These procedures are tested on a suite of large scale, real life 

optimization problem, and are modified to improve their behavior. Comparative 

perfomance of the methods is given both in terns of the computational effort 

to identify a GUB set, as vell as the size of the GUB set achieved. 

Identification of GUB sets of maximum row dimension is shovn in 

Section 7 to be among the class of NP-complete problems. Hovever, easily 

computed uppeh b0lutds on the size of the maximum GL'B set are developed and used 

to evaluate objectively the quality of heuristic CtB algorithms, shoving that 

very nearly maximum GUB sets are routinely achieved. 

2. PROBLEY DEFLVITION AND XEPRES~TXTIOYS 

The Linear Programing problem is defined as 

(range conscrnints) 

(simple b o m d s )  



where and ; a r e  m-vectors, x, c ,  b and 6 a r e  n-vec tors  and A is an 

m x n mat r ix .  The c o n s t r a i n t s  a r e  sometimes d e f i n e d  a s  e q u a t i o n s ,  bu t  f o r  t h e  

g e n e r a l  c a s e  of  CUB t r e a t e d  here  c o n s t r a i n t s  can  be e q u a t i o n s .  i n e q u a l i t i e s  

o r  a  mix ture .  The immediate d i s c u s s i o n  w i l l  be d i r e c t e d  a t  (L) ;  i n t e g e r  and 

mixed i n t e g e r  problems a r e  t r e a t e d  l a t e r .  

Tvo rows of A a r e  s a i d  t o  con@ict i f  t h e r e  e x i s t s  a t  l e a s t  one column 

w i t h  non-zero c o e f f i c i e n t s  i n  bo th  rows. The CUB problem can be r e s t a t e d  a s  t h a t  

of f i n d i n g  a  s u b s e t  of  t h e  r o v s  t h a t  do n o t  c o n f l i c t .  

There a r e  s e v e r a l  ways one c a n  model t h e  maximum CUB problem. Three 

approaches  a r e  p r e s e n t e d  t o  a i d  i n  t h e  u n d e r s t a n d i n g  of  t h e  t h e o r e t i c a l  c o n t e x t  

of t h e  h e u r i s t i c  methods examined and t o  h i g h l i g h t  t h e  formal  complexi ty  of  t h e  

o r i g i n a l  problem. 

Graph Theory R e p r e s e n t a t i o n  

A g r a p h i c a l  r e p r e s e n t a t i o n  of  t h e  m a t r i x  A can be c o n s t r u c t e d  through 

t h e  f o l l o v i n g  mapping r u l e ,  f .  Le t  each row o f  A be a  v e r t e x  of  t h e  graph.  

Should two rovs  of  A c o n f l i c t  t h e n  t h e  t v o  v e r t i c e s  of  t h e  graph  a r e  j o i n e d  

by a n  edge.  T h i s  mapping r e t a i n s  a l l  t h e  necessary  c o n f l i c t  i n f o r m a t i o n .  I f  

two v e r t i c e s ,  a  and b,  a r e  j o i n e d  by a n  edge,  e ,  then  a  and b  a r e  a d j a c e n t .  

and a  ( o r  b) is  i n c i d e n t  w i t h  e .  I f  a  and b  a r e  n o t  a d j a c e n t ,  t h i s  

i n d i c a t e s  t h a t  t h e  cor responding  two rows i n  A do n o t  c o n f l i c t .  

T h i s  i n t r o d u c e s  t h e  n o t i o n  of indcpurdence. Given a  graph C = (V,E) , 

a  s u b s e t  V '  c V is s a i d  t o  be an i n d e p o t d u ~ t  b e t  i f . n o  t v o  of its e lements  

a r e  a d j a c e n t .  It f o l l o w s  t h a t  i f  a n  independent  s e t  of  v e r t i c e s  can be found 

i n  C t h e n  t h e  cor responding  rows of t h e  m a t r i x  A do not  c o n f l i c t  and t h u s  

d e f i n e  a  GUB s e t .  Conversely,  a  CUB s e t  f o r  A d e f i n e s  a n  independent  set 

f o r  t h e  graph  G.  I t  is a l s o  c l e a r  t h a t  an independent  s e t  f o r  C is maximum 

i f  and only  i f  t h e  cor responding  CUB s e t  f o r  A is maximum. 



Consider the s e t  Am, the  s e t  of a l l  A-type matr ices  having m rows. 

The above mapping f ac to r s  t h i s  s e t  i n t o  a d e f i n i t e  number of h 4 u .  Two 

matr ices ,  Al and A2 a r e  sa id  t o  belong t o  the  same c l a s s .  C, i f  and only i f  

each is mapped i n t o  the  same graph. Cc. 

Figure 1 

Thus, an independent s e t  of v e r t i c e s  of Cc correspond t o  a CUB row s e t  f o r  

w e r y  matr ix  i n  the  c l a s s  C. 

The incidence matrix N is defined v i t h  n - 1 i f  ve r t ex  i is 
il 

incident  with edge j, and n - 0 o the rv i se .  There e x i s t s  one, and only one 
il 

incidence matrix f o r  each graph of G, vhere G is the  s e t  of a l l  graphs having 

m v e r t i c e s .  

Since the  s e t  of a l l  N-type matr ices  v i t h  m rows is a subset  of A m ,  

w e r y  c l r s s  of A conta ins  one and only one incidence matrix.  In  general,  f o r  

t he  CUB problem, every m row matrix is equivalent  t o  one of a f i n i t e  number 

of incidence matrices.  Supe r f i c i a l ly  t h i s  may seem t o  be a s impl i f i ca t ion .  

But a s  shorn in Sect ion 7 the  CUB problem on N is a s  d i f f i c u l t  a s  t he  independent 

s e t  problem on C. The equivalent  s t a t e m e n t s o f t h e  CUB problem do, however, o f f e r  

d i f f e r e n t  views of the  problem which a r e  he lp fu l  in considering a l g o r i t h m  f o r  

and ana lys i s  of the  problem. (NOTE: I n  Carey and Johnson (61 it is s h a m  t h a t  

two other  graph problems, the "vertex cover" and the  "clique" problem, a r e  

equivalent  t o  the  independence problem, and hence the  CUB problem. These problems 

do not seem t o  o f f e r  any add i t iona l  i n s i g h t  f o r  the CUB problem.) 



Confl ic t  Matrix Representation 

The con6fict rn& M I s  defined with mij - 1 i f  row i c o n f l i c t s  with 

row j i n  ( L ) ,  and m - 0 otherwise.  Note t h a t  t h i s  matrix is  symmetric. The sun 
1-1 

f o r  any row (or  column) ind ica t e s  the  number of o the r  rows i t  is  i n  c o n f l i c t  with,  

p lus  one. This  sum ind ica t e s  fo r  any p a r t i c u l a r  row how many o the r  rows would be 

subsequently excluded from a  CUB s e t  by its addi t ion.  

The rows of a  C'JB s t r u c t u r e  can be rearranged t o  form an embedded 

i d e n t i t y  matrix i n  M. 

Vector Space Representation 

Yet another h e u r i s t i c  approach can be modelled using vec to r s  i n  an n- 

dimensional vector  space, where n  is the  number of va r i ab le s  i n  the problen (L).  

Consider each row of A a s  a  vector  in  t h i s  space. having uni t  length  i n  those 

"dimensions" corresponding with i t s  non-zero c o e f f i c i e n t s .  

R,  the r e s u l t a n t  vector  from the  sum of a l l  vec to r s  of t he  rws of A, 

i nd ica t e s  the number of c o n f l i c t s ,  p lus  one, a s soc ia t ed  with each va r i ab le  of (L). 

A hypercube i n  n-space s i t u a t e d  i n  the  f i r s t  o r t h a n t a t  the o r ig in  with length  1 

i n  a l l  pos i t i ve  d i r e c t i o n s  denotes the f e a s i b l e  CUB region. Should R extend 

beyond t h i s  a rea ,  then the  s e t  of rows corresponding t o  the vec to r s  determining 

R does not c o n s t i t u t e  a  CUB s t r u c t u r e .  

A gradient  vector  can be ca l cu la t ed  ind ica t ing  the  d i r e c t i o n  of the  

shor t e s t  d i s t ance  t o  the @ u i b l e  kegion. I t  can be used t o  determine which row 

t o  remove from the  s e t  t o  obta in  the l a r g e s t  movement i n  the  des i red  d i r e c t i o n .  

When R f a l l s  within the f eas ib l e  region. the s e t  of rows determining R 

c o n s t i t u t e s  a  CUB s e t .  

3. EARLIER LITERATURE 

Two papers dcal ing with e f f i c i e n t  CUB f ind ing  methods a r e  worthy of 

spcclnl  note .  



B r e a r l e y ,  Mi t ra  and Will iams [ 2 ]  e s t a b l i s h  a  very  u s e f u l  framework f o r  

s tudy  of methods f o r  f i n d i n g  CUB s t r u c t u r e ,  a s  w e l l  a s  an i n s i g h t f u l  d i s c u s s i o n  

of t h e s e  ne thods  and a  taxonomy f o r  t h e i r  c l a s s i f i c a t i o n .  

They d e f i n e  t h r e e  s e t s  c o n s i s t i n g  of t h e  rows of t h e  t e c h n o l o g i c a l  m a t r i x  

A. The f i r s t  s e t ,  t h e  d i g i b L e  jet. is made up of every  row of A t h a t  is i n d i -  

v i d u a l l y  e l i g i b l e  t o  belong i n  the  CUB set. The J h D f l ~ t e  i s  a  s u b s e t  of the  

e l i g i b l e  s e t  and i n c l u d e s  a l l  t h o s e  rows c u r r e n t l y  cons idered  a s  members of t h e  

CUB s e t .  The candidrzte b e t  c o n s i s t s  of t h o s e  rows of t h e  e l i g i b l e  s e t  t h a t  a r e  

c a n d i d a t e s  f o r  i n c l u s i o n  ( o r  r e - i n c l u s i o n )  i n  t h e  CUB s e t .  Every one of t h e  

methods examined i n  [ 2 ]  i s  d e s c r i b e d  i n  terms of manipula t ion  of t h e s e  s e t s .  

Each method of b u i l d i n g  a CUB s e t  employs one of two b a s i c  s t r a t e g i e s .  

The koW-d&Jhvn s t r a t e g y  begins  w i t h  an  empty s t r u c t u r e  s e t .  Then, based on 

a  p a r t i c u l a r  c r i t e r i o n  f o r  i n c l u s i o n ,  rows a r e  removed from t h e  c a n d i d a t e  s e t  

and e i t h e r  added t o  the  s t r u c t u r e  s e t  o r  dropped from f u r t h e r  c o n s i d e r a t i o n .  

This  procedure  c o n t i n u e s  u n t i l  t h e  c a n d i d a t e  s e t  i s  empty. The rows i n  the  

s t r u c t u r e  s e c  form an a d m i s s i b l e  CUB s t r u c t u r e .  

The tow-d&&clt s t r a t e g y  t a k e s  t h e  o p p o s i t e  approach and i s  d i v i d e d  

i n t o  two phases .  Yethods of t h i s  t y p e  i n i t i a l l y  p l a c e  a l l  e l i g i b l e  r o v s  i n  

t h e  s t r u c t u r e  s e t .  T h i s  normally l e a d s  t o  an  i n f e a s i b l e  CUB s e t  w i t h  many con- 

f l i c t i n g  rows. Based upon t h e  p a r t i c u l a r  d e c i s i o n  r u l e s ,  rows a r e  removed from 

the  structure s e t  and p laced  i n  t h e  c a n d i d a t e  s e t .  The f i r s t  phase of t h i s  

s t r a t e g y  ends  when a f e a s i b l e  s t r u c t u r e  is  o b t a i n e d .  

A second phase i n v o l v e s  examining t h c  removed rows i n  t h e  c a n d i d a t e  s e t .  

Those t h a t  do n o t  c o n f l i c t  w i t h  any of t h e  members of t h e  c u r r e n t  s t r u c t u r e  s e t  

a r e  taken  from t h e  candidace s e t  and r e i n c l u d e d  i n  t h e  s t r u c t u r e  s e t .  Those 

t h a t  do c o n f l i c t  a r e  d e l e t e d  from t h e  c a n d i d a t c  s e t  and dropped from f u r t h e r  

c o n s i d e r a t i o n .  The second phasc cnds when tllc c a n d i d a t e  s e t  i s  empty. Ac t h i s  

p o i n t  t h e  rows of the  s c r u c t u r c  s e t  c o n s t i t u t c  an a d m i s s i b l c  CUB s e t .  



Brea r l ey ,  U l t r a ,  and W i l l i ~ m s  examine over 1 8  d i f f e r e n t  methods. These 

approaches d i f f e r  i n  t he  primary and secondary d e c i s i o n  c r i t e r i a  f o r  i nc lud in?  

(o r  removing) a  rw i n  t h e  CL'B s t r u c t u r e  set. The h e u r i s t i c  d e c i s i o n  r u l e s  

examined a r e  based on t h e  fo l lowing model e n t i t i e s  and combinations t h e r e o f :  

I nc lude  o r  remove a  row based upon: 

a )  t he  number of non-zero e lements  i n  t h e  given row. 

b) t h e  number of  rows i n  c o n f l i c t  w i t h  t he  g iven  row, 

C )  t he  number o f -  non-zero e lements  i n  rows t h a t  c o n f l i c t  wi th  tt.c 

g iven  row. 

d )  t h e  row's r e l a t i v e  weight  ob t a ined  by t h e  i nne r  product  of a  

vec to r  r e p r e s e n t a t i o n  of the  row and a  d i r e c t i o n a l  g r a d i e n t .  

These methods were implemented wi th  an ALGOL program run  on an  ICL 4133 

computer. Twelve l i n e a r  programming problems ranging  i n  s i z e  from 12 rows ur 

t o  166 rows v e r e  used f o r  computa t iona l  t e s t s .  The r e s u l t s  show t h a t  those  

r o r a d d i t i o n  methods u s ing  h e u r i s t i c  (d)  above " c o n s i s t e n t l y  performed very  :.-r:l" 

[Z] .  S i m i l a r l y ,  t h o s e  methods u s ing  h e u r i s t i c  ( b )  were found t o  perform near::: 

a s  w e l l  a s  ( d l .  

McBride [15]  compares t h e  d i r e c t i o n a l  g r a d i e n t  method (d)  w i th  an a p y r ~ ~ c ' n  

sugges ted  but  no t  t e s t e d  by Greenberg and Rar ick  [ a ] .  The l a t t e r  method uses r t e  

c o n f l i c t  ma t r i x  a s  does  h e u r i s t i c  ( b ) .  However, i t  focuse s  on f i n d i n g  a  maxi:;li 

embedded i d e n t i t y  ma t r i x  w i t h i n  t he  c o n f l i c t  ma t r i x ,  r a t h e r  than  u s ing  t h e  cc:- 

f l i c t  ma t r i x  t o  de termine  c o n f l i c t  counts .  app ly ing  a  s p e c i a l i z a t i o n  of t h e  r e -  

3 ass igned  p ivo t  procedure (P ) normally used f o r  r e i n v e r s i o n  ( 9 1 .  H c B r i d e ' ~  

r e s u l t s  i n d i c a t e  t h a t  h e u r i s t i c  (d)  is s i g n i f i c a n t l y  f a s t e r .  However, neithi-7 

method c o n s i s t e n t l y  a ch i eves  a  l a r g e r  CUB s e t .  

McBridc a l s o  c o m e n t s  on t h e  no t i on  of a  :good" CUB set. lie f i n d s  - ? r i t  

i n  s e l e c t i n g  a s e t  of GUB rows t h a t  minimizes t h e  non-zero build-up i n  t h e  r i - r e -  

s e n t n t i o n  of t h e  i nve r se  t r an s fo rma t ion  of t h e  e x p l i c i t  b a s i s  du r ing  a c t u a l  

op t im iza t i on .  R e s u l t s  a r e  a l s o  given l o r  o r c s t r i c t c d  CUB s e t  s r l c c t i o n  thnr 



gives  p r i o r i t y  to  equa l i t y  c o n s t r a i n t s .  Since e q u a l i t y  c o n s t r a i n t s  a r e  always 

binding i n  f e a s i b l e  so lu t ions ,  t he  subset of t he  b a s i s  a s soc i a t ed  with binding 

cons t r a in t s .  o r  kernel  [ 7 ] , i s  expected t o  have fewer e x p l i c i t  non-zero elements.  

Based upon the  r e s u l t s  i n  t hese  papers,  and on independent computational 

experience with automatic CUB f a c t o r i z a t i o n  reported by Brown and Craves [ 3 ] .  

the  present  research  i n i t i a l l y  concentra ted  on those approaches u t i l i z i n g  the  tvo 

most succes s fu l  h e u r i s t i c s  based on c o n f l i c t  and d i r e c t i o n a l  g rad ien t  ( i . e .  

methods 1.2. 11.2, 11.9 and 11.10 of ( 2 1 ) .  

The models s tudied  i n  t h i s  r epo r t  a r e  of much l a r g e r  s c a l e  and inc lude  

mixed i n t e g e r  problems a s  wel l  a s  models f o r  which p r i o r  CUB rov s e t s  have been 

manually spec i f i ed .  

4 .  DETERMINATION OF THE ELIGIBLE SET 

The implementation of CUB i n  simplex a lgor i thms usua l ly  admits only 2 1 

a s  non-zero c o e f f i c i e n t s  i n  t he  CUB rows. In l i n e a r  programming, a  column s c a l i n g  

can make each non-zero element i n  a  CUB row + 1. For v a r i a b l e s  of an i n t e g e r  o r  

mixed i n t e g e r  programing problem, t he  columns of matrix A t h a t  correspond t o  

i n t e g e r  v a r i a b l e s  cannot be sca led  without inconvenience f o r  o t h e r  opt imizat ion  

funct ions  depending upon the  i n t e g r a l i t y  condi t ion .  Therefore,  non-zero elements 

i n  columns corresponding t o  i n t e g e r  va r i ab l e s  w i l l  be modified by row sca l ing .  

If  i t  is impossible t o  ob ta in  t he  necessary + 1 non-zero coe f f i , c i en t s  by rw 

s c a l i n g  and column s c a l i n g  of columns corresponding t o  continuous-valued v a r i a b l e s .  

the  rov is deemed not  e l i g i b l e  f o r  i nc lus ion  i n  a  CUB s e t .  

I t  is  an ob jec t ive  of t h i s  research  tha t  the  procedures examined f o r  

l oca t ing  a  GUB s e t  i n  a  l i n e a r  programming problem be designed t o  be incorporated 

a s  an automatic,  i n t e g r a l  p a r t  of a  contemporary opt imizat ion  system of advanced 

design.  



Each method i s  implemented a s  a f e a t u r e  of t h e  read rou t ine  (wr i t t en  t o  

accept input  i n  the  standard MPS format,  a s  we l l  a s  e d i t i n g  information i n d i c a t i n g  

in teger  v a r i a b l e s ,  s ca l ing ,  and known p r i o r  GUB s t r u c t u r e ) .  Each method auto- 

ma t i ca l ly  examines the rovs of t he  input  and s p e c i f i e s  a CUB s e t .  Thc appro- 

p r i a t e  rovs and columns a r e  then sca l ed  a s  necessary t o  obta in  t h e  proper CUB 

s t r u c t u r e ,  and passed on t o  the  opt imiz ing po r t ion  of the  system. (Note t h a t  t he  

e d i t i n g  information p laces  condi t ions  t h a t  must be s a t i s f i e d  f o r  any achievable  

GUB s e t . )  

In  determining the  s e t  of e l i g i b l e  rows, t he  following f a c t o r s  have t o  

be considered.  

a .  Through the  e d i t i n g  process ,  have some of t he  rovs been dropped from the  

problem? I f  so,  these  "masked" r w e  a r e  no t  e l i g i b l e  f o r  i nc lus ion  i n  t h e  

GUB s t r u c t u r e  and a r e  thus  dropped from the  s e t  of e l i g i b l e  r w s .  

b. Through the  e d i t i n g  process,  have any rows been predesignated t o  be i n  t h e  

CUB s t r u c t u r e ?  Large segments of t he  c o n s t r a i n t s  can o f t en  be se l ec t ed  fo r  

t he  CUB s e t  e i t h e r  v i s u a l l y  o r  by r ecogn i t i on  of a member of a convenient 

c l a s s  of models. Any rovs t h a t  c o n f l i c t  v i t h  t hese  rows a r e  not  e l i g i b l e  

f o r  subsequent inc lus ion.  

c. A l l  rows designated "nonconstrained" (which inc lude  the o b j e c t i v e  funct ion)  

a r e  i n e l i g i b l e  f o r  i nc lus ion  i n  t he  GUB s t r u c t u r e .  

d. I f  t he re  a r e  any integer-valued va r i ab l e s ,  an add i t i ona l  check i s  performed. 

A roo i n  t he  CUB s e t  must eventual ly  be capable of being sca l ed  t o  2 1 

non-zero c o e f f i c i e n t s .  This is achieved. i f  necessary ,  through a combination 

of row and column sca l ing .  Hovever, wi th  i n t e g e r  va r i ab l e s ,  column s c a l i n g  

is no longer advisable .  Therefore any row with a non-zero element i n  i n t ege r  

columns t h a t  is not  a +1 or -1. o r  capable of being rendered i n t o  a 2 1 

i n  those p o s i t i o n s  through row s c a l i n g  alone.  must be mnrked a s  inc1.igible 

f o r  i nc lus ion  i n  the  CUD s t r u c t u r e .  



Once t h e  above r e s t r i c t i o n s  have been c o n s i d e r e d ,  t h e  r e s u l t i n g  s e t  o f  

e l i g i b l e  rows is  then a v a i l a b l e  f o r  s e a r c h  i n  o r d e r  t o  c o n s t r u c t  t h e  d e s i r e d  GCB 

s t r u c t u r e .  

5. LMPLMENTATION OF AUTOPLATIC CUB HEURISTICS 

C o n f l i c t  Hethods 

These employ the  n o t i o n  of  a  c o n f l i c t  measure f o r  e a c h  row. Cons ider  t h e  

c o n f l i c t  m a t r i x ,  M, of t h e  cor responding  t e c h n o l o g i c a l  m a t r i x  A. f o r  which a  GCB 

s e t  is t o  be found.  An i n d i v i d u a l  element,  mik is 1 i f  row i and row k of t h e  

o r i g i n a l  m a t r i x  have a t  l e a s t  one column j such t h a t  a i j  + 0 and a,j Z 0. I f  

t h e  two rows have no non-zero c o e f f i c i e n t s  i n  a  common column then  t h e  c o r r e -  

sponding mik of t h e  c o n f l i c t  m a t r i x  i s  0. Summing a c r o s s  a  rw of t h e  con- 

f l i c t  m a t r i x  can  t h u s  g ive  t h e  measure of t h e  number of rows p l u s  one t h a t  a r e  

i n  c o n f l i c t  w i t h  a  given row. For a  g iven  row. t h i s  sum l e a s  one ,  c a l l e d  t h e  

row's  d e l e t i o n  p o t e u ,  i n d i c a t e s  e x a c t l y  how many o t h e r  rows would be immedi- 

a t e l y  excluded from t h e  CUB s e t  by i n c l u s i o n  of t h i s  row. 

c o n i t i c t  t o w - w o n  p l a c e s  a l l  t h e  e l i g i b l e  rows on a  c a n d i d a t e  list. 

From t h e  c a n d i d a t e  l i s t ,  i n d i v i d u a l  rovs  a r e  s e l e c t e d  by rnbhnum d e l e t i o n  p o t e n t i a l  

and removed t o  be added t o  t h e  s t r u c t u r e  s e t .  Other rows t h a t  a r e  i n  c o n f l i c t  

v i t h  t h e  s e l e c t e d  row a r e  inrmediately removed from t h e  c a n d i d a t e  list and d i s -  

carded .  The s e l e c t i o n  of rows f o r  t h e  s t r u c t u r e  s e t  and t h e  d i s c a r d i n g  of con- 

f l i c t i n g  rows c o n t i n u e s  u n t i l  t h e  c a n d i d a t e  list is exhaus ted .  The r e s u l t i n g  

s t r u c t u r e  s e t  forms a  CUB s e t .  

A m o d i f i c a t i o n  t o  t h e  above h e u r i s t i c  is p o s s i b l e  which baeahd t i t i e b  among 

rows s h a r i n g  t h e  minimum d e l e t i o n  p o t e n t i a l  by ( f o r  i n s t a n c e )  s e l e c t i n g  t h e  

row having  t h e  most non-zero e lements  f o r  i n c l u s i o n  wi th  t h e  CUB s t r u c t u r e  set. 

The program used t o  t e s t  t h i s  h e u r i s t i c  approach is adapted  from an  

e a r l i e r  v e r s i o n  made a v a i l a b l e  by Graves. 



Con6fic€ Row-Addition 

Step 1. I d e n t i f y  E l i g i b l e  Rows. S e t  Bi  - 1 i f  row i is an e l i g i b l e  row, and 

e q u a l  t o  0 otherwise .  

Step 2. Detennine Delet ion P o t e n t i a l .  Scan each  e l i g i b l e  row i and increment 

Bi by t h e  number of o t h e r  e l i g i b l e  rows k where 
a i j  and a k j  are 

b o t h  non-zero f o r  at l e a s t  one column j. (Bi is  t h e  d e l e t i o n  p o t e n t i a l ,  

p l u s  one. ) 

Step 3. Stopping Condition. I f  any B i  is g r e a t e r  t h a n  0, go t o  t h e  next  s t e p .  

Otherv ise .  s t o p .  At t e r m i n a t i o n ,  t h e  s t r u c t u r e  s e t  is a CUB row set. 

Step 4. ROW Select ion.  S e l e c t  row i having  t h e  minimum p o s i t i v e  ( " d e l e t i o n  

p o t e n t i a l " )  Bi and add i t  t o  t h e  s t r u c t u r e  s e t .  

Step 5. Exclude Rows i n  C o n f l i c t  wi th  Selected Row. Locate  t h e  (Bi-1) rows 

i n  c o n f l i c t  w i t h  t h e  s e l e c t e d  row. For each  of  t h e s e  rows k ,  l o c a t e  

t h e  (Bk-1) rows t h a t  t h e y  a r e  i n  c o n f l i c t  w i t h  and decrement Bi f o r  

t h o s e  rows by one. 

Step 6. Marking Selected and Excluded Rows l n e l l g i b l e  f o r  Fur ther  Consideration. 

S e t  Bi  and t h e  B ' s  e q u a l  t o  z e r o .  Go t o  s t e p  3. k 

CondLic€ R o w d d e t i o n  is a two-phase method which i n i t i a l l y  p l a c e s  a l l  

t h e  e l i g i b l e  rows i n  t h e  s t r u c t u r e  s e t .  From t h i s  set i n d i v i d u a l  rows a r e  

s e l e c t e d  d u r i n g  Phase 1 and p laced  on t h e  c a n d i d a t e  l is t  by rnarimum d e l e t i o n  

p o t e n t i a l .  During Phase 2 ,  remaining c a n d i d a t e  rows t h a t  d o  n o t  c o n f l i c t  w i t h  

t h e  s t r u c t u r e  s e t  can be r e c o n s i d e r e d  i n  LOFI o r d e r  [ 2 ] .  A m o d i f i c a t i o n  of  

phase 2 is used i n  t h i s  r e s e a r c h  which s imply  e x c l u d e s  from f u r t h e r  cons ider -  

a t i o n  a l l  c o n f l i c t i n g  rows, r e i n c l u d e s  any remaining c a n d i d a t e  rows, and r e p e a t s  

phase 1. u n t i l  no  f u r t h e r  n o n c o n f l i c t i n g  c a n d i d a t e s  remain.  

Gradien t  Methods 

G d &  * o w - d d e t i o n  employs a h e u r i s t i c  method sugges ted  by Senju  and 

Toyoda [ 1 7 ]  f o r  approximate s o l u t i o n  o f  c e r t a i n  l i n e a r  programming problems w i t h  



0 , l  v a r i a b l e s .  The o b j e c t i v e  is  t o  o b t a i n  a  maximum number of rows i n  t h e  CU3 

s t r u c t u r e  whi le  s a t i s f y i n g  t h e  s t i p u l a t i o n  t h a t  t h e  CUB rows be d i s j o i n t .  

(S) Max Z = sl + x2 + ... + x 
m 

where xi e f 0.1) 

m i s  t h e  number of  c a n d i d a t e  rows i n  (L), 

n  is t h e  number of  v a r i a b l e s  i n  (L). 

xi 
is t h e  v a r i a b l e  vh ich  de te rmines  whether row i is i n  t h e  

GUB s e t  o r  n o t ,  and 

Z is t h e  o b j e c t i v e  f u n c t i o n .  

Using t h e  v e c t o r  space  v i e v p o i n t  o u t l i n e d  e a r l i e r .  c o n s i d e r  each row of (S) a s  

a  v e c t o r  i n  n-space. A r e s u l t a n t  v e c t o r  R i s  d e t e m i n e d  by t h e  s u n  of a l l  t h e  

inc luded  rows and. i n  g e n e r a l ,  e x t e n d s  beyond t h e  f e a s i b l e  s p a c e  denoted  by =he 

u n i t  hypercube.  A g r a d i e n t  v e c t o r  i s  c a l c u l a t e d  from t h i s  i n f e a s i b l e  p o i n t  i a  t h e  

d i r e c t i o n  o f  the  s h o r t e s t  d i s t a n c e  t o  t h e  f e a s i b l e  reg ion .  An i n n e r  product  of 

t h i s  g r a d i e n t  wi th  each  of t h e  row v e c t o r s  r e s u l t s  i n  a  r e l a t i v e  weight f o r  each 

rov. which can  be viewed a s  i n d i c a t i n g  t h e  r e l a t i v e  c o n t r i b u t i o n  t h a t  removal of 

t h e  row would have towards o b t a i n i n g  a  f e a s i b l e  s t r u c t u r e  s e t .  

Rows a r e  removed from t h e  s t r u c t u r e  s e t  a c c o r d i n g  t o  t h e i r  r e l a t i v e  

weight ,  t h e  l a r g e s t  weight  b e i n g  removed f i r s t .  This  p r o c e s s  i s  cont inued  u n t i l  

a  f e a s i b l e  s e t  of CUB rows has been o b t a i n e d .  (The g r a d i e n t  v e c t o r  is n o t  re- 

computed a s  t h e  method proceeds . )  

Next, a  phase 2 procedure examines each of t h e  i n i t i a l l y  removed rows t o  

s e e  i f  any can  be r e i n c l u d e d  i n t o  the  s t r u c t u r e  s e t  wi thout  v i o l a t i n g  t h e  CUB 

r e s t r i c t i o n s .  Upon completion of phase 2 ,  t h e  s e l c c t c d  rows c o n s t i t u t e  a  CUB s e t .  

A v a r i a t i o n  on t h c  nbovc procedure  r e c n l c u l n t e s  t h e  s h o r t e s t  d i s t a n c e  

t o  t h c  l e n s t b l e  r e ~ t o n  a f t c r  t h e  rcmovnl of r s c h  row. X t t h  t h e  new g r a d i e n t ,  



a new set of relative veights for the remaining rows is then calculated and used, 

if necessary, to determine which of the subsequent rows will be removed. 

Another modification is possible whenever two rows are found with equal 

weights. As a tie-breaking rule, the row found to have the least number of non- 

zero coefficients may be discarded first. 

GaadietU RowD&etion 

Phase 1: Deletion o f  In feas ib le  Rows 

Step 0. I n i t i a l i z e  Sets. Add all eligible rows to the structure set. 

The candidate set is empty. 

Step 1. Detennine the Vector R. For each column j, define p as the 
j 

number of rows in the structure set having non-zero elements in column j. 

Step 2. Detennine Relat ive  Weight o f  Each Row. For each row i, define 

vi as the sum of (p -1) of every column j, for which a f 0. 
j ij 

Step 3. F e a s i b i l i t y  Condition. If for every column, p < 1, then go to 
j - 

step 6; else find a colurrm j such that p > 1. 
j 

Step 4.  Detennine Row f o r  Exclusion. Examine the rows in the structure 

having non-zero elements in column j. Select the row i with the largest v 
i' 

Step 5.  Remove Selected Row. Remove row i from the structure set. decre- 

menting pj by one for every column j with a f 0 .  Add row i to the 
ij 

candidate set and return to step 3. 

Phase 2: Improve Feasible GUB Set Found by Re-including Excluded Rows 

Step 6 .  El iminate Rows i n  Candidate Set tha t  Conf l i c t  w i th  the Feasible Set. 

For every row i of the candidate set that has at least one aij Z 0 in a 

column with p - 1. remove that row from the candidate set. 
j 

Step 7. Re-inclusion o f  Rows. If any rows remain in the candidate set, 

then'find row i having the smallest 
vi. Remove row i from the candidate set 

and rc-include it in thc structure set. Increment o j  by one for every 

column j whcrc a i j  + 0. 



Step 8. Stopping Condit ion.  I f  t h e  c a n d i d a t e  s e t  is empty, s t o p ;  

e l s e  go t o  s t e p  6. 

To modify t h e  a l g o r i t h m  i n  o r d e r  t o  compute a  n e v  g r a d i e n t  v e c t o r  a f t e r  

t h e  r e c o v a l  of each  row i n  phase 1, s t e p  5 is chanced a s  f o l l o w s :  

Step 5*. Remove Selected ROW. Remove rw i from t h e  s t r u c t u r e ,  d e c r e -  

ment ing  P by one f o r  e v e r y  column j  such  t h a t  a  # 0. Loca te  e a c h  
1 i j  

r o v  k t h a t  is i n  c o n f l i c t  v i t h  row i. Decrement vk by t h e  number of 

c o n f l i c t s  b e t v e e n  t h e  t v o  rows. Add row i t o  t h e  c a n d i d a t e  s e t  and 

r e t u r n  t o  s t e p  3. 

T h e s e  two b a s i c  methods have been implemented a s  i n t e g r a l  modules o f  a  

l a r g e  s c a l e  o p t i m i z a t i o n  sys tem.  T h e r e f o r e .  e x p l i c i t  c o n f l i c t  m a t r i c e s  a r e  n o t  

b u i l t .  (To have done  s o  would have consumed t o o  much compute r  t ime and s p a c e . )  

I n s t e a d .  a l l  t h e  i n f o r m a t i o n  is  s t o r e d  i n  t h e  v e c t o r s  3 ,  3 ,  and 'J. L o g i c a l  

f l a g s  a s s o c i a t e d  w i t h  each  r o v  i n d i c a t e  whe ther  i t  is e l i g i b l e ,  and v h e t h e r  i t  

is i n  t h e  c a n d i d a t e  s e t  o r  i n  t h e  s t r u c t u r e  s e t .  

The problem d a t a  i s  e x p r e s s e d  i n t e r n a l l y  i n  t e r m s  o f  o n l y  t h e  u n i q u e  non- 

z e r o  e l e m e n t s .  T h i s  i n p u t  i s  s t o r e d  i n  a  doubly  l i n k e d  l i s t  hav ing  bo th  a  r o v  

and a  column t h r e a d .  Thus,  a l o n g  v i t h  any non-zero c o e f f i c i e n t  a i j .  t h e  l o c a -  

t i o n  of  a d j a c e n t  non-zero e l e m e n t s  i n  b o t h  t h e  row i and column j  a r e  a l s o  

i n m e d i a t e l y  a v a i l a b l e .  T h i s  c r u c i a l  f e a t u r e  p e r m i t s  e f f i c i e n t  row a c c e s s  f o r  

v a r i o u s  o p e r a t i o n s  (e .g. .  t o  l o c a t e  a l l  rows t h a t  c o n f l i c t  v i t h '  a  g iven  row a t  

a  p a r t i c u l a r  column).  

6 .  COMPUTATIONAL RESULTS 

The h e u r i s t i c  methods have been t e s t e d  on 1 5  p rob lems  t h a t  vary i n  s i z e  

from 92 c o n s t r a i n t s  t o  4 , 6 4 8  c o n s t r a i n t s .  A  d c s c r i p t i o n  o f  e a c h  of t h e  p rob lems  

is g i v e n  i n  F i j iu rc  2 .  A s  can  be scen .  f o u r  of t h c  problems a r e  n ixed  i n t e g e r  and 

two a r e  p u r e  i n t c g c r .  



Problem Number Number Integer 
of rows' of columns Columns Non-Zeros 

VANN 92 1.324 1,324 2.648 

NElTING 103 247 103 494 

AIRLP 171 3,040 0 6,023 

COAL 171 3.753 0 7,506 

TRUCK 239 4,752 4.752 30.074 

CUPS 415 619 145 1.341 

FERT 606 9,024 0 40.484 

PIES 663 2.923 0 13,288 

PAD 695 2.934 0 13.459 

ELEC 785 2,800 0 8.462 

GAS 799 5.536 0 27,471 

FOAM 1.017 4,020 42 17,187 

LANG 1,238 1,425 0 22,028 

JCAP 2.487 3,849 560 9,510 

ODSAS 4.648 4,683 0 30,520 

Figure 2 

The r e s u l t s  of these  experiments a r e  given i n  Appendix A. The f i r s t  

two columns give the  rws and non-zero column elements,  respect ively .  of the  

GUB s t r u c t u r e s  found. The time given i n  column th ree  is the time required t o  

loca te  the  CUB s e t  once the  s e t  of e l i g i b l e  rovs has been determined. The f i n a l  

columns give  add i t iona l  information r e l a t i n g  t o  the two vers ions  of t he  g rad ien t  

methods examined and r ep resen t s  t o t a l  time i n  phase 1 and the  number of rovs  re- 

included i n  the  CUB s t r u c t u r e  dur ing phase 2. 

A s  v i t h  the  e a r l i e r  work c i t ed .  the  Senju and Toyoda methods ve re  found 

t o  be cons i s t en t ly  the  f a s t e r .  Gradient row-deletion vhich updates the  gradient  

a f t e r  each rov is removed takes  longer i n  phase 1 than i t s  non-updating counter- 

pa r t .  However, i t  so  s e l e c t i v e l y  d e l e t e s  the  rows, t ha t  few i f  any rove a r e  

ever added back i n t o  the  s t r u c t u r e  dur ing phase 2. This  suggests  t h a t  i t  be 

implemented a s  s t r i c t l y  a  one phase mechod. 



A l l  methods a r e  r o b u s t  i n  t h a t  they  c o n s i s t e n t l y  f i n d  l a r g e  CUB s e t s .  The 

c o n f l i c t  approaches  g e n e r a l l y  f i n d  a l d r g e r  number of v a r i a b l e s  v i t h  non-zero 

c o e f f i c i e n t s  i n  t h e  GUB rovs .  Hovever, they  d e f i n i t e l y  become r e l a t i v e l y  

i n e f f i c i e n t  vhen l a r g e r  problems a r e  a n a l y z e d ,  r e g a r d l e s s  of t h e  r e l a t i v e  s i z e  

of t h e  CUB s t r u c t u r e  i n  t h e  problem. 

There i s  some d iscrepancy  be tveen  t h e s e  r e s u l t s  and t h o s e  p u b l i s h e d  

e a r l i e r  [ 2 ] .  The wide v a r i a t i o n  be tveen  g r a d i e n t  rov-de le t ion  v i t h ,  and v i t h o u t .  

g r a d i e n t  u p d a t i n g  has  n o t  been observed  i n  t h e  c u r r e n t  exper iments .  I t  is  

hypothes ized  t h a t  t h i s  is due p a r t i a l l y  t o  d i f f e r e n c e s  i n  implementat ion of  t h e  

v a r i o u s  approaches  and p a r t i a l l y  t o  problem s i z e  and s t r u c t u r e  v a r i a t i o n s  be tveen  

t h e s e  s t u d i e s .  

The c o m p t e x i t y  of a problem is s a i d  t o  be polynomial  i f  an a l g o r i t h m  

e x i s t s  f o r  which t h e  fundamental  o p e r a t i o n s  a r e  l i m i t e d  by a polynomial  f u n c t i o n  

of i n t r i n s i c  problem dimensions.  Such a n  a l g o r i t h m  vould  be c a l l e d  a p o t y n o n i d  

t i m e  o r  good a lgor i thm.  The c l a s s  of  a l l  problems f o r  v h i c h  such  a l g o r i t h m s  

e x i s t  is denoted  (P). I f  a n  a l g o r i t h m  is n o t  polynomial  t i m e ,  t h e n  i t  is d e f i n e d  

t o  be an e x p o n e n t i d  h e  a lgor i thm.  The d i s a d v a n t a g e  o f  an e x p o n e n t i a l  a l g o r i t h m  

is t h e  e x p l o s i v e  g r o v t h  of t h e  maximum s o l u t i o n  t ime a s  t h e  dimensions of  t h e  

problem i n c r e a s e  (141.  

A problem x is s a i d  t o  be t e d u c i b t e  t o  a  problem y i f  each good 

a l g o r i t h m  f o r  s o l v i n g  y can be used t o  produce i n  polynomial  t i m e  a  good 

a l g o r i t h m  f o r  s o l v i n g  x (121.  Note t h a t  t h i s  does  n o t  n e c e s s a r i l y  r e q u i r e  

t h a t  a good a l g o r i t h m  f o r  x and y a c t u a l l y  e x i s t .  T h i s  r e q u i r e s  on ly  t h a t  

i f  one e x i s t s  f o r  y ,  then one a l s o  e x i s t s  f o r  x. 



An  actable problem is one f o r  which i t  i s  known t h a t  no polynomial 

time algorithm e x i s t s .  In between t h i s  c l a s s  of problem, and the  c l a s s  P, 

is a v a s t  number of problems whose s t a t u s  is uncer ta in .  Among these  i s  a 

c l a s s  of no~rddenminid. t ic  p o l y n o d - h c  problems (NP) f o r  which a polynomial 

cime algorithm can be shown t o  e x i s t  t h a t  can vehidy a guessed so lu t ion ,  but 

f o r  which the  ex i s t ence  of a (de te rmin i s t i c )  polynomial cime a lgo r i t lm  t o  

a c t u a l l y  so lve  a problem has  not  ye t  been demonstrated. 

I f  every problem of the  c l a s s  NP is reduc ib le  t o  the  problem y,  then 

y is sa id  t o  be N P - h d .  In add i t ion ,  i f  y i t s e l f  belongs t o  NP, then y 

is  NP-complete [6.121. 

The following problem is  known as  t h e  independe td  .let d e o i d i o n  p t o b l m  (ISD) 

It belongs t o  the  s e t  of NP-complete problems. 

(ISD) Civen a graph C - ( V , E )  and an in t ege r  t ,  decide  whether C conta ins  

an independent s e t  of s i z e  c o r  more. 

The CUB decis ion problem (CUED) can be def ined a s  Follows: 

(CUED) Civen an i n t e g e r  p and an m x n matrix K def ined a s  K = 1 i f  a . .  # 0. 
il 11 

and K = 0 otherwise,  decide  whether K conta ins  a s e t  of p o r  more 
il 

rows il, i2, ... . iq such t h a t  

9 
(* 1 kiel 5 I f o r  every column; q 2 p . 

e l  1 

Given an ins t ance  of the  ISD problem, t h e  incidence matr ix  N can be const ructed.  

This matrix along v i t h  the  in t ege r  t i s  an in s t ance  of t h e  CUED problem. The 

following theorem proves the  co r rec tness  of t h i s  reduction: 

Theorem: The incidence matr ix  N has c rows s a t i s f y i n g  (*) i f  and only i f  

t hc rc  a r e  t v e r t i c e s  i n  C tlrac a r e  independent. 



Proof. - 
a) Assume there exists t rows of N that satisfy (*). They correspond to 

vertices v , v ,..., v in G. If any two of these vertices are adjacent, 
i2 it 

then 

where j is the column in N that corresponds to the edge connecting the two 

vertices. This is a violation of the assumption, hence the t vertices in 

C are not connected to one another. 

b) Assume there exists t vertices v . v , ... , v. in G that are 
i2 It 

independent. Since no t w  are adjacent. the corresponding rows in N satisfy 

(*) 1191. Q.E.D. 

Since the ISD problem. a problem known to be NP-complete. is reducible 

to the GUBD problem. it follows that the CUBD problem itself is NP-complete. (It 

is clear that the reduction is polynomial time and it is also clear that CUBD is 

in NP.) The related problems of finding a maximum independent set and a maximum 

GUB set are not in NP, hovever, they are NP-hard. It is therefore unlikely chat 

a polynomial-time algorithm will be found for these problems. Only exponential- 

time algorithms are presently available. 

The above analysis of CUB algorithms has only addressed the wo/rd2 c u e  

bound. No conclusions are made about the average performance of an algorithm. 

In other words. the possibility of the existence of an algorithm with good 

average performance. but having an exponential worst case bound, has not been 

ruled out. 

8. UPPER BOUNDS FOR TllE SIZE OF ,HAXIEILIM CUB SET 

The intrinsic difficulty of identifying a maximum CUB sec has been shown to 

be csscntially impossible for problcms of chc scalc at hand. However, the cfficicnt 



h e u r i s t i c  procedures have been shown t o  provide very  l a rge  CUB s e t s ,  whose s i r e  

appears t o  be r e l a t i v e l y  s t a b l e  f o r  each problem rega rd l e s s  of t h e  p a r t i c u l a r  necboP 

appl ied .  This  sugges ts  t h a t  t hese  l a r g e  CUB s e t s  may be. i n  f a c t ,  very  near ly  

maximum, although the re  is no p r a c t i c a l  way t o  v e r i f y  t h i s  d i r e c t l y .  

Although the  problem of determining t h e  s i z e  of t he  maximum CUB s e t  I S  a l s o  

NP-hard, i t  is poss ib l e  t o  develop an e a s i l y  computable uppm bound on the  maximum 

CUB s e t  s i z e .  This  bound can . then  be used t o  o b j e c t i v e l y  eva lua t e  t h e  qualit:: of 

the  CUB s e t s  produced by h e u r i s t i c  a lgor i thms.  

It is c l e a r  t h a t  t h e  number of rows of a CUB s e t  can be no g rea t e r  thzn t h e  

number of rows i n  t he  problem. Also any one rov by i t s e l f  can form a CUB s e t .  

But these  bounds a r e  of l i t t l e  p r a c t i c a l  use where consider ing t h e  problem of 

i d e n t i f y i n g  a maximum CUB s e t .  U t i l i z i n g  informat ion t h a t  is a l r eady  ava i l ab l e  i n  

t he  h e u r i s t i c  procedure, i t  is poss ib l e  t o  cons t ruc t  i n  polynomial time an upser 

bound on t h e  s i z e  of t he  maximum CUB s e t .  ( I t  is a l s o  poss ib l e  t o  cons t ruc t  a l o v e r  

bound on the  s i z e  of t he  maximum GL3 s e t ,  but  t h a t  t op i c  i s  not pursued i n  t h i s  

r epo r t .  ) 

For the  purpose of developing a b e t t e r  bound, t he  inc idence  matrix r e y e -  

s e n t i a t i o n  (N) of t he  problem is used. Let si be the  number of 1's i n  row i .  

Note t h a t  si is the  number of edges i nc iden t  t o  ve r t ex  i i n  G. Also note  t h a t  

si = Bi-1. The number of columns i n  N r ep re sen t s  the  number of d i s t i n c t  

c o n f l i c t s  chat  e x i s t  between the  rows of the  o r i g i n a l  problem. This  number i s  

denoted a s  c ,  and can be found by t h e  following formula 

I f  c is g r e a t e r  than 0 ,  a l l  the  rows of N cannot simultaneously belong t o  a 

CUD s e t .  which impl ies  the  cardin.1li ty of tlle CUB s e t  is l e s s  than m. A8 c 

becomes l a r g e r ,  t he  following argument s h m s  t h a t  t he  uppcr bound of the  maxiaum 

CUB s c t  dccrcases .  



I f  c  is p o s i t i v e ,  bu t  s t r i c t l y  l e s s  than  m ,  i t  is p o s s i b l e  f o r  a l l  t h e  

c o n f l i c t s  t o  involve  one row. Removal of t h a t  row would then l e a v e  m-1 rows t h a t  

form a  CUB s e t .  Thus f o r  c  i n  t h e  r a n g e  from 1 t o  m-1 ,  an upper bound on t h e  

s i z e  of t h e  maximum G U B  s e t  i s  m-1 .  S i n c e  one row can c o n f l i c t  v i t h  a t  most m-1 

o t h e r  rows, once c ,  m. a t  l e a s t  two rows have t o  be removed t o  form a  CUB s e t .  

For m ( c  ( [(m-1) + (m-2)] i t  is p o s s i b l e  t o  c o n s t r u c t  a  i n c i d e n c e  m a t r i x  such 

t h a t  a l l  t h e  c o n f l i c t s  a r e  between a p a i r  of rows and t h e  remaining s e t  of rows. 

Removal of t h e  p a i r  would r e s u l t  i n  a  GUB s e t  of m-2 rows. T h i s  c o n s t r u c t i v e  

argument c o n t i n u e s  u n t i l  c  - [(m)(m-l)] /2.  which o c c u r s  when each row c o n f l i c t s  

wi th  every  o t h e r  row. A t  t h a t  p o i n t .  t h e  max maximum GUB - min maximum CUB = one row. 

I n  g e n e r a l .  f o r  any problem v i t h  an m x c  i n c i d e n c e  m a t r i x ,  t h e  l a r g e s t  

maximum GUB s e t  t h a t  can be o b t a i n e d  is: 

v h e r e  L i n d i c a t e s  t r u n c a t i o n  t o  an i n t e g e r .  

The above bound is paoble~n- iudept f idea t  and a  bhahp bound i n  t h a t  m a t r i c e s  

v i t h  a GUB s e t  t h e  s i z e  of t h e  bounding v a l u e  can be c o n s t r u c t e d .  

With a d d i t i o n a l  i r ~ f o r m a t i o n  about  a  s p e c i f i c  problem a  b e t t e r  bound can be 

c o n s t r u c t e d .  S ince  s  is t h e  number of o t h e r  rows t h a t  c o n f l i c c  w i t h  row i ,  
i 

removing row i from the  s e t  of r o v s  reduces  t h e  number of c o n f l i c t s ,  c ,  by si. 

Le t  y  denote  max s f .  S ince  y  is t h e  l a r g e s t  rov c o n f l i c t  c o u n t ,  c  

can be reduced by not  more than  y  w i t h  t h e  removal of each row. The minimum 

number of r w s  t h a t  would have t o  be removed t o  reduce t h e  number of row c o n f l i c t s  

10 0 ,  is r e l y .  Therefore .  g iven  m, c  and y ,  t h e  bound can be inproved t o  

c  5 (Ul-y)y - 
1 . J  + i . 2 5  + y(2m-y-1) - 2. . c > ( r y ) y  ; 

where r i n d i c a t e s  t11e n e a r e s t  h i g h e r  i n t e g e r .  



In  order t o  determine y, t h e  e n t i r e  0 vec to r  must be examined. 

A t h i r d ,  even b e t t e r  bound can be obta ined v i t h  a d d i t i o n a l  information 

on t he  dhequency of the c o n f l i c t  counts  from 1 t o  y. The procedure is the  same 

a s  above, i n  t h a t  vhen a row is removed with y c o n f l i c t  count,  c decreases  by 

y. However. ins tead of continuing t o  decrease  c by y ,  i t  is  decreased by 

the  next l a r g e s t  si. This procedure continues u n t i l ,  once again ,  c becomes zero.  

This bound is named u 3' 

The bounds developed can be used t o  ob jec t ive ly  eva lua te  t h e  s i z e  of a CUB 

s e t  found by h e u r i s t i c  methods. In  two problems examined, VANN and AIRLP. the  

number of rovs i n  the  CUB s e t  equal an upper bound on the  maximum CUB s e t  f o r  t he  

problem. Therefore. f o r  those  problems, the  h e u r i s t i c  methods a r e  v e r i f i e d  t o  have 

located maximum CUB s e t s .  

Manual s p e c i f i c a t i o n  of a CUB s e t  from v i s u a l  inspect ion can u t i l i z e  these  

bounds a s  an exce l l en t  measure of t h e  maximum a d d i t i o n a l  rows t o  be found. This  

information is a l s o  an a id  i n  deciding whether t o  s u b j e c t  t he  problem t o  a d d i t i o n a l  

automatic search f o r  CUB. 

The upper bounds developed i n  t h i s  r epor t  vary  from a problem-independent 

bound t o  t i g h t e r  problem-dependent bounds. It is specula ted t h a t  add i t iona l  informa 

t ion can be e a s i l y  ex t r ac t ed  from t h e  a c t u a l  c o n f l i c t  s t r u c t u r e  of the  problems t h a t  

can be used t o  t i gh ten  the  e x i s t i n g  bounds even f u r t h e r .  This is s t rong ly  suggested 

by manual ana lys i s  of problems v i t h  p a r t i c u l a r l y  loose  bounds f o r  which the  c o n f l i c t  

s t r u c t u r e  seems t o  have higher order  pathology. In add i t ion ,  lower bounds have 

been developed by s imi l a r  methods. 

Another a r e s  tha t  va r ran t s  f u r t h e r  study is the s p e c i a l  s t r u c t u r e  of t he  

incidence matrix representa t ion of the  o r i g i n a l  problem. It is noted tha t  f o r  an 

incidence matr ix ,  N. the  r e l ~ t i v e  ve igh t s  generated f o r  cach rov a r e  (except f o r  a 



constant)  i d e n t i c a l  for  both the c o n f l i c t  and the  gradient methods studied. Th i s  

impl ies  that  f o r  a matrix N ,  t he  row-deletion heur i s t i c s  w i l l  i d e n t i f y  the  same 

CUB s e t .  

As th ings  now stand. CUB-finding demands far  l e s s  cost  than the  b e n e f i t s  

derived during model opt imizat ion.  Bet ter  CUB-finding methods may resu l t  from 

simple extensions ar is ing from relaxat ions  o f  (S), use o f  c o n f l i c t  in format ion o f  

higher order ,  l imi ted appl icat ion o f  backtracking enumeration, or exp lo i ta t i cn  o f  

conditioned bounds on the  remaining candidate rows to  a l loca te  heur i s t i c  e f f o r t .  

Finally.  research i s  continuing on automatic loca t ion  o f  network rov 

s tructure  (e .g . ,  Husalem [ 1 6 ]  and Wright [ l a ] ) .  As one i l l u s t r a t i o n  o f  an immediate 

general izat ion o f  the  CUB r e s u l t s ,  a CUB se t  fo r  a problem can be i d e n t i f i e d  and 

then another GUB se t  o f  an e l i g i b l e  subset o f  remaining rows can be found. Thus, 

a d i - p a h t i t e  ne7kvd-t &OW iactohization can be achieved (e .g . .  t ransportat ion or 

assignment rows).  

10. CONCLUSIONS 

The computational b e n e f i t s  o f  a large CUB s e t  fo r  an LP problem are widely 

recognized. This  report shows tha t  the  i d e n t i f i c a t i o n  o f  a maximum CUB s e t  i s  a 

d i f f i c u l t  problem. e s s e n t i a l l y  as hard as many other widely known d i f f i c u l t  problems. 

The use o f  h e u r i s t i c s  seems inescapable.  This  report has examined two 

promising h e u r i s t i c s  (w i th  two vers ions  o f  each) applied t o  a s e r i e s  o f  

real  l i f e ,  large scale models. A l l  vers ions  are robust i n  t h e i r  a b i l i t y  t o  f ind 

large C U B  row s e t s .  However the  two vers ions  that  use the  Senju and Toyoda method 

are consisccnt ly  the f a s t e s t .  These two methods are e s s e n t i a l l y  equal i n  t h e i r  

e f f i c i e n c y  and e f f e c t i v e n e s s .  Since the  vers ion which recalculates  the  gradient 

a f t e r  the  rcmoval o f  each row so s e l e c t i v e l y  removcs the  rows during the  f i r s t  

phase tha t  few i f  any rows are re-included i n  the CUR s e t  during the  second phase, 

Tliis suggests that  the  l a t t e r  phase be omit ted.  



The r ep re sen ta t ion  of an i n f i n i t e  number of m-row ma t r i ce s  by a f i n i t e  number 

of inc idence  matr ices  o f f e r s  a p w e r f u l  and concise  way of examining the  CUB 

problem. Under t h i s  r ep re sen ta t ion ,  both b a s i c  h e u r i s t i c  methods inves t iga t ed  

ass ign (wi th in  a constant )  t h e  same r e l a t i v e  s e l e c t i o n  weights t o  each r w .  

F ina l ly ,  the  a b i l i t y  t o  d e f i n e  upper bounds on the  maximum s i z e  of t he  CUa 

s e t  g ives  a new poverful  t o o l  i n  t h i s  a r ea .  It enables  one t o  eva lua t e  t he  q u a l i t y  

of CUB s e t s  found even i n  very l a r g e  problems, f o r  which the  a lgor i thmic  i d e n t i -  

f i c a t i o n  of a maximum CUB s e t  is probably impossible i n  genera l .  I n  some c a s e s ,  

v e r i f i c a t i o n  of a h e u r i s t i c a l l y  achieved maximum CUB s e t  is n w  poss ib l e .  Further.  

t he  bounds developed may be f u r t h e r  enhanced i n  f u t u r e  research ,  and may be app l i -  

cable  t o  r e l a t e d  problems of equivalent  complexity. 
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APPENDIX A 

This appendix conta ins  computational r e s u l t s  f o r  f i f t e e n  

l i n e a r ,  mixed in t ege r  and in t ege r  models. A l l  execution t imes 

r epo r t ed  a r e  expressed i n  a c t u a l  CPU seconds.  accu ra t e  t o  t h e  p r e c i s i o n  

d isplayed f o r  IBX 360167 and FORTRrtY H (Extended).  

For c l a r i c y ,  the  fo l lowing terms a r e  def ined:  

E l i g i b l e  rove: The number of r w e  of t h e  model i n i t i a l l y  e l i g i b l e  

f o r  i n c l u s i o n  In a s e t  of CL!B rows. 

C o n f l i c t  cpunt: The nrrmber o f  columns of t h e  i nc idence  motr lx  f o r  

che problem. 

Conf l i cc  dens i ty :  The r a t i o  of t h e  c o n f l i c t  counc t o  t h e  m a x i m a  

c o n f l i c t  count f o r  t h a t  problem s i z e  (1.e.. d m - 1 ) / 2  I .  

Time t o  f i n d  El ig :  The t ima I n  CPU seconds t o  de termine  the set 

o f  e l i g i b l e  r w e .  

I W :  The maximum of s  
i ' 

U1,U2,U3:  Bounds def ined i n  Sect ion  8 .  

The methods a r e  l abe l l ed :  

CRA Conf l i c t  Row-Addition 

CRD Conf l i c t  Row-Deletion 

GRD* Gradient Row-Deletion (with g rad ien t  update) 

GRD Gradient Row-Deletion 



Problem : VANN Description : Fleet Dispatch hfodcl 
Pows : 92 El i~ble  rows : 69 L M U  : 0 
2olumnr : 132.1 'conflict count : 0 U1 : 69 
lnteger : 1325 Conflict dens18 : 0 U2 : 69 
Non-zero : 2648 Time to Iind Elig : . l 5 l  rec U3 : 69 

Method R o w  in Columns in Time to r id  Timein Number add& 
CUB set CUB set CUB set (sec.) Phvc 1 in P h a  2 

CRA 69 1324 2 3 7  

CRD 69 1324 .I25 

GRD 69 1324 .202 .I98 0 

Problem : NETTING Description : Currency Exchange Model 
Rorn : 103 Eligible rows : 71 MAX : 5 
Columns : 247 Conflict count : 46 Ul  : 70 
Integer : 103 Cocflict density : 1.85% U2 : 59 
Non-zero : 194 Time to fiid Elig : .022sec U3 : 46 

Method Rows in Columna in Time to find Time in Number addti 
CUB set CUB set CUB set (sec.) Phve 1 in Phase 2 

CRA 36 &4 .I69 

GUD * 36 77 .047 .042 0 

Problem:  AIRLP Description : Fleet Dispatch hlodel 
Roar  : 171 Eligible row* : 170 IMAX : 150 
Columrrs : 3040 Conflict count : 2983 U1 : 151 
Integer : 0 Conflict dens~ty : 20.7740 U2 : 150 
Non-zero : 6023 Time to find Elig : .076rec U3 : 150 

Method Roar  in Columns in Time to find T h e  in Number addtd 
CUBwt GUBset CUB set (xc.) Phase 1 in Phase 2 

CRA 150 3000 

CUD 150 3000 

GRD * 150 3000 

GRD 150 3000 



Roblem : COAL Dacrjption : Energy Dcveloprnent ~ iodc l  
R o w  : 171 Eligible rows : 170 I M U  : 111 
Columns : 3753 Conflict count : 3753 Ul  : 146 
Integer : 0 Conflictdens~ty : 26.13% U3, : 136 
Non-zero : 7506 Time to r i d  Elig : .lo6 SF u 3  : 121 

Method Rows in Coiumns in Time to  Gnd Time in Number added 
GUBset GUBset CUB set (sec.) P h w  1 in Phase 2 

CRA 111 3753 1.38 

CRD 111 3753 1.24 

GRD ' 111 3753 .920 .912 0 

GRD 100 2568 .641 .631 0 

RobIan : TRUCK Description : F l e t  DLpatch Model 
Roar : 239 Eligible rows : 221 IMAX : 171 
Columnr : 4752 Connict count : 10438 U1 : 165 
Integer : 4752 Conilict density : 4294% U2 : 159 
Non-zero : 30074 Time to fmd Elig : .I16 KC u3 : 144 

Method R o w  in Columnr in T i e  to r i d  Time in Number added 
CUB set CUB set CUB set (sec.) P h w  1 in Phase 2 

CRA 32 1069 6118 

CRD 30 1099 7.095 

GRD 30 867 5.00 4.95 2 

GRD 32 986 1.70 1 5 8  8 

Problem : CUPS Dacliption : Production Scheduling &lode1 
R o n  : 416 Eligible rows : 390 MAX : 48 
Columns : 619 Connict count : 744 Ul  : 388 
Integer : 145 Conil ic tdedty  : .98% u 2  : 374 
Non-zero : 1341 T i e  to rmd Elig : .042sce u 3  : 294 

blethod Rows in Columns in Time to  flnd Time in Number added 
CUB set CUB set CUB set (sec.) Phace 1 in P h u  2 

CRD 214 442 3.15 

GRD 214 466 ,212 

GRD 200 394 .384 



Problem : FERT Description : Production Sr Distribution .Clodel 
Rows : 606 Elibible rows : 605 [MAX : 580 
CoIumnr : 9024 Confict  count : 16455 U1 : 677 
Inkger : 0 Conflict density : 9.01% '02 : 676 
Non-zcro : 40484 Time to find Elig : .257 sec ~3 : 567 

Melhod Rowr in Columns in Time to  find 'KJD~ in Number added 
GUBset GUBset CUB set (rec.) Phare 1 in Phase 2 

C RA 559 9024 15.8 

CRD 559 9024 10.5 

GRD 559 9024 6.73 6.71 0 

GRG 559 9024 2.52 2.50 0 

Problem : PIES Dacnption : Energy Reduction & Consumption Model 
Roar : 663 Eligible rows : 662 MAX : 21 
Columru : 2923 Conflict count : 4116 U1 : 655 
Integer : 0 Conflict density : 1.88% U2 : 466 
Non-zero : 13288 Time to fmd Elig .: 366 xc u3 : 422 

Method Rows in Columns in Time to  find Time in Number added 
CUB set CUB set CUB set (sec.) Phase 1 in Phase 2 

CRA 180 1848 10.8 

CRD 169 1693 13.5 

Roblem : PAD Dueription : Energy Production & consumption Model 
BOWS : 695 Eligible rows : 694 IPIfAX : 23 
Columns : 2934 Conllict count : 4116 U l  : 687 
Integer : 0 Conflict density : 1.84% u2 : 502 
Non-zero : 13.159 Time to fmd EM : .lo4 ~f u3 : 449 

Method Rows in Columns in Time to  6nd Time in Number added 
GUBset GUBset CUB set (sec.) Phase 1 in P h v e  2 

CRA 200 1864 13.1 

CRD 189 1771 16.6 

GRD* 188 1708 3.34 3.26 2 

GRD 189 1275 1.35 .928 21 



Problem : ELEC Description : Energy Production & Consumption Blodel 
Row¶ : 785 Eligible r o w  : 784 IMAX : 22 
Columru : 2800 Conflict count : 6167 U1 : 776 
Integer : 0 Conllict density : 2.01% U2 : 503 
Non-zero : 8462 Time to f i id  Elig : 489 sec ~3 : 492 

Metbod Roar in Columns in Time to  h d  Tfme in Number alded 
GUBset GUBret CUB set (sec.) Phase 1 in Phase 2 

C RA 309 2461 11.4 

CRD 210 2791 16.1 

GRD 309 2641 1-15 1.12 0 

GRD 309 2605 .842 .579 14 

Problem : G M  Description : Production Scheduling hlodel 
Rorn : 799 Elidble roan : 789 MAX : 608 
Colurrrru : 5536 Conflict count : 22220 U1 : 760 
Integer : 0 Conflict density : 7.1590 U2 : 752 
Non-zero : 27474 Time to f i d  Elig ': .15l sec U3 : 652 

Method RO& in Col- in Time to 6nd Timein Number added 
CUB set CUB set CUB set (sec.) Phase 1 in Phase 2 

CRD 639 5536 10.4 

Problem : FOAM Description : Reduction Scheduling hlodel 
Row¶ .: 1017 Eligible rows : 1006 LMAX : 261 
Columns : 4020 Conflict count : 8186 U1 : 997 
Integer : 42 Conflict density : 1.6290 u2 : 974 
Non-zero : 17187 T i e  to h d  Elig : 196 sec ~3 : 934 

Method Roar in Columns in Time to find Tfme in Number added 
CUB set , CUB set GUB set (sec.) Phase 1 in Phase 2 

CRA 932 4020 23.4 

CRD 932 4020 9.47 

GRD* 917 3981 173 

GRD 917 3981 .902 



RoLlra  : Dacription : Equipment & Sfanpower Scheduling >lode1 
ROWS : 1236 Eiigiblc r o w  : 1235 L h l a  : 181 
Columns : 1.425 c o n a c t  count : 46424 U1  : 1196 
Integer : 0 . Conact  dcnsity : 6.093 u 2  : 982 
Non.zem : 22023 The  to rind Elip : .072 sw ~3 : 973 

hicthod R o m  in Columnsin Time to Lind Time in Number added 
GUBset GUBset GUB set (scc.) P h w  1 in Phur? 3 

CRA 382 1207 46.2 

CRD 338 908 64.2 

GRD* 342 923 14.9 14.8 2 

GRD 342 922 1 2 4  1.13 234 

Problem : J C S  Dar ip t ion  : Production SchedulL~g hlodel 
Rowa : 2487 Eligible rows : 2416 IMkY : 488 
Columns : 3849 Conflict count : 16578 U1 : 2439 
Integer : 560 'Confiict density : .5:jP. ~2 : 2412 
Non-zero : 9510 TIme to find ELig : .2ti5 sec u3 : 1812 

Method Rows in Columnr in Time to find Time in Number acled 
GUB set GUB set CUB set (see.) Phze  1 in Phase 2 

CRA 529 2072 104 

CRD 612 W86 153 

GRD* 629 2087 223 1.87 6 

GRD 623 1393 3.98 1.10 59 

Problem : ODSAS Daeription : Manpower Planning Model 
R o w  .: 4648 Eiitjblerows : 46.17 LMAX : 4194 
Columns : 4683 Conact  count : 5220 U1 : 4645 
Integer : 0 Conflict density : .05% u 2  : 4645 
Non-zero : 30520 T i e  to f i d  Elig : .263 sac u3 : 4024 

Method Roar in Columns in Time to 6nd Time in Number added 
GUBwt GUBset CUB sct (sec.) Phve 1 in Phvc 2 

C RA 751 3116 369 

CRD 721 3846 651 

GRD 749 4436 7.12 6.88 0 
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AUTOMATIC IDENTIFICATION OF EMBEDDED STRUCTURE IN 
LARGESCALE OPTIMIZATION MODELS 

Gerald G. Brown and William G. Wright 

Naval Postgraduate School 
Montere y, California 

This  paper discusses automatic detection and exploitation of embedded structure in Large- 
Scale Linear Programming (LP) models. We report experiments with real-life LP and mixed- 
integer (MIP) models in which various methods are developed and tested as integral mod- 
ules of an optimization system of advanced design [61. We seek to understand the model- 
ing implications of these embedded structures as well as to exploit them during actual 
optimization. The latter goal places heavy emphasis on efficient, as well as effective, iden- 
tification techniques for economic application to large models. Several (polynomially 
complex) heuristic algorithm are presented from our work. In addition, bounds are de- 
veloped for the maximum row dimension of the various factorizations. These bounds are 
useful for objectively estimating the quality of heuristically derived structures. 



I .  INTRODUCTION 

Automat ic  d e t e c t i o n  and  e x p l o i t a t i o n  o f  s p e c i a l  s t r u c t u r e  

in. l a r g e - s c a l e  LP ( o r  MIP) models  h a s  b e e n  t h e  s u b j e c t  o f  a  con-  

t r n u i n q  r e s e a r c h  program c o n d u c t e d  a t  t h e  Naval  P o s t g r a d u a t e  

School  and  UCLA o v e r  t h e  p a s t  d e c a d e .  T h i s  p a p e r  d r a w s  from 

v a r l o u s  r e s u l t s  i n  t h i s  e f f o r t ,  and  r e f e r s  ( s p a r i n g l y )  t o  s i g n i -  

f i c a n t  work by  o t h e r  r e s e a r c h e r s .  The r e f e r e n c e s  c o n t a i n  c o m p l e t e  

d e s c r i p t i o n s  o f  t h e s e  r e s u l t s  f o r  t h e  i n t e r e s t e d  r e a d e r .  

Our s c o p e  i s  i n t e n t i o n a l l y  l i m i t e d  t o  a u t o m a t e d  methods  

o f  s u f f i c i e n t  e f f i c i e n c y  t o  e n a b l e  u s  t o  e c o n o m i c a l l y  a p p l y  them 

t o  r e a l - w o r l d  o p t i m i z a t i o n  p r o b l e m s .  Thus ,  w e  c o n s i d e r  o n l y  

t h o s e  a p p r o a c h e s  showing g r e a t e s t  p r o m i s e  f o r  immedia te  p r a c t i c a l  

a p p l i c a t i o n .  Al though  t h e  i n t e r p r e t a t i o n s  o f  embedded model 

s t r u c t u r e  c a n  l e n d  p r o f o u n d  i n s l g h t s  i n  t h e i r  own r i g h t ,  w e  a r e  

e q u a l l y  i n t e r e s t e d  i n  d e t e c t i n g  e r r o r s  i n  d a t a  p r e p a r a t i o n  a n d  

model g e n e r a t i o n - - m a t h e m a t i c a l l y  mundane i s s u e s  o f  f u n d a m e n t a l  

i m p o r t a n c e  t o  t h e  p r a c t i t i o n e r .  

The s h e e r  s i z e  o f  c o n t e m p o r a r y  l a r g e - s c a l e  LP models  p r e -  

s e n t s  s i g n i f i c a n t  c o m p u t a t i o n a l  d i f f i c u l t i e s ,  e v e n  f o r  o t h e w i s e  

e l e m e n t a r y  f a c t o r i z a t i o n s .  I m p l e m e n t a t i o n  o f  e f f e c t i v e  s t r u c -  

t u r a l  a n a l y s i s  p r o c e d u r e s  i s  primarily a m a t t e r  o f  e x e r c i s i n g  

l a r g e - s c a l e  d a t a  s t r u c t u r e s  e f f i c i e n t l y .  A s  w e  s h a l l  s e e ,  t h o u g h ,  

t h e s e  p r a c t i c a l  c o n s i d e r a t i o n s  c a n  g i v e  s i g n i f i c a n t  t h e o r e t i c a l  

g u i d a n c e  i n  t h e  s p e c i f i c a t i o n  o f  e f f i c i e n t l y  a c h i e v a b l e  c l a s s e s  

o f  model t r a n s f o r m a t i o n s .  

T h a t  d e t e c t i o n  o f  embedded s p e c i a l  s t r u c t u r e  c a n  b e  o f  

p r a c t i c a l  i m p o r t a n c e  i n  a c t u a l  model s o l u t i o n  i s  u n d i s p u t e d .  I t  



i s  widely  known t h a t  e x p l i c i t  s imp lex  o p e r a t i o n s  can  be m a t e r i a l l y  

improved i n  e f f i c i e n c y  by i n c o r p o r a t i o n  o f  b a s i s  f a c t o r i z a t i o n  

methods ( e .g .  [ 6 ] ,  ( 9 1 ,  and r e f e r e n c e s  o f  (71  1 .  The d e t a i l s  o f  

such m o d i f i c a t i o n s  of t h e  s implex  procedure  a r e  n o t  g i v e n  h e r e .  

However, t h e  unde r ly ing  themes o f  s implex  f a c t o r i z a t i o n  a r e  t h e  

s u b s t i t u t i o n  of l o g i c  f o r  f l o a t i n g  p o i n t  a r i t h m e t i c ,  and sepa ra -  

t i o n  of  t h e  a p p a r e n t  problem monol i th  i n t o  more manageable 

components. 

T h i s  pape r  d e a l s  e x c l u s i v e l y  w i t h  row f a c t o r i z a t i o n s .  

The p e r v a s i v e  imp l i ed  problem f o r  row f a c t o r i z a t i o n  i s  t h e  

i d e n t i f i c a t i o n  of t h e  beet embedded s t r u c t u r e  from a l l  t h o s e  

t h a t  may l i e  a t  hand i n  any p a r t i c u l a r  model. Convent ional  

wisdom d i f f e r s  a s  t o  t h e  c r i t e r i o n  f o r  t h i s  d i s c r i m i n a t i o n  among 

f a c t o r i z a t i o n s  o f  t h e  same c l a s s .  However, it is g e n e r a l l y  

accep ted  t h a t  t h e  row d i m e n s i o n a l i t y  o f  t h e  f a c t o r i z a t i o n  

s e r v e s  a s  an e x c e l l e n t  measure of e f f e c t i v e n e s s .  I n  t h i s  s e n s e ,  

embedded s p e c i a l  s t r u c t u r e s  f a l l  n a t u r a l l y  i n t o  a  taxonomy impl i ed  

by t h e  i n t r i n s i c  complexi ty  of t h e  a s s o c i a t e d  maximum row i d e n t i -  

f i c a t i o n  problems. 

W e  proceed w i t h  a  d i s c u s s i o n  o f  s e v e r a l  t y p e s  of embedded 

s p e c i a l  s t r u c t u r e s  d e t e c t a b l e  by e f f i c i e n t  po lynomia l ly  complex 

a lgo r i thms .  These s t r u c t u r e s  a r e  c o n s i d e r e d  i n  i n c r e a s i n g  o r d e r  

o f  maximum row i d e n t i f i c a t i o n  complexi ty .  W e  emphasize t h a t  

efficient polynomial  a l g o r i t h m s  a r e  o p e r a t i o n a l l y  d e f i n e d  h e r e  

a s  low-order polynomial  i n  terms o f  i n t r i n s i c  problem dimensions  

( e .9 .  number of rows, columns,  and non-zero e l e m e n t s ) ,  and n o t  

i n  te rms o f  t h e  t o t a l  volume o f  model i n fo rma t ion  ( e . g .  t o t a l  

number o f  b i t s  i n  a l l  c o e f f i c i e n t s ,  ad nauseam).  



2. SIMPLE REDUCTIONS 

LP models often exhibit simply detected structural 

characteristics which permit a reduction in row dimensionality 

without loss of model information. Several such reductions are 

possible in evidently polynomial complexity. These include: 

a) Void Rows 

b) Void Columns 

c )  Singleton Rows (simple upper bounds) 

d) Singleton Columns 

e) Fixed Variables 

£ 1  Rows that Fix Variables 

g) Null Variables 

h) Non-extremal Variables 

i) Redundant Rows. 

Some of these reductions do not obviously decrease row 

dimension. However, the reductions may be applied repeatedly 

to the model, revealing at each iteration more rows which can 

be removed. Thus, the cyclic application of reductions continues 

until a minimal model results. 

Experiments with some of these reductions have been 

reported by Brearley, Mitra and Williams ( 5 1 .  More extensive 

work at large-scale has been done by Bradley, Brown and Graves 

[ 3 ]  and by Krabek [lo]. 

Detection of . I L L  redundant LP rows requires complete 

solution of equivalent LP problems, and is thus equivalent in 

complexity to LP. (We hesitate to say polynomial in the sense 

of Khachian's recent result.) Thus, we restrict redundant row 



d e t e c t i o n  t o  o r t h o g o r i l l  redundancy, r evea led  by s u b s t i t u t i o n  o f  

bounds f o r  problem v a r i a b l e s .  An e f f i c i e n t  d e t e c t i o n  a lgor i thm 

r e s u l t s  . 
W i t h  r e a l - l i f e  LP and MIP models, a  remarkably l a r g e  

f r a c t i o n  o f  model rows can be removed by t h e s e  simple techniques .  

For some c a s e s ,  models have been n e a r l y  8 o l v e d  t h i s  way. 

We note  t h a t  i n t e g r a l i t y  c o n d i t i o n s  can be superimposed 

on these  simple reduc t ions  (e .g .  t i g h t e n  bounds on i n t e g e r  v a r i -  

a b l e s  by t r u n c a t i o n )  t o  s t r e n g t h e n  them. Nonlinear models a l s o  

b e n e f i t  from t h e s e  reduc t ions ,  and from o t h e r s  n o t  addressed i n  

t h i s  paper.  

Table 1 con ta ins  t h e  c h a r a c t e r i s t i c s  o f  s e v e r a l  r e a l - l i f e  

l i n e a r  and mixed i n t e g e r  models. Table 2 d i s p l a y s  t h e  r e s u l t s  

o f  simple reduc t ions  a p p l i e d  t o  t h e s e  models [ 3 ] .  Mul t ip le  

; a s s a s  a r e  made f o r  each model u n t i l  no mre reduc t ions  a r e  

p o s s i b l e .  The t imes given a r e  f o r  execu t ion  on an IBM 360/67 

using FORTRAN H (Extended) wi thout  code op t imiza t ion .  
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3 .  GENERALIZED UPPER BOUNDS 

Rows for which each column has at most one non-zero 

coefficient (restricted to those rows) collectively form a 

generalized upper bound (GUB) set. Usually, we additionally 

require that the coefficients in these rows be capable of being 

rendered to 1 by simple row or column scaling. 

The problem of identifying a GUB set: of m a z i r n u m  row 

dimension is NP-hard 1 7 1 ,  making optimal GUB factorization 

algorithms hopelessly inefficient for our purposes. Heuristics 

adapted from work by Graves and by Senju and Toyoda (see [131, 

and references of [ 5 ]  and [ ? I )  work very effectively and 

dependably at large-scale to find r n a z i m a l  GUB sets. 

Unfortunately, the problem of determining just the size 

of the maximum GOB set is also NP-hard. However, Brown and 

Thomen 171 have developed bounds on the size of the maximum GUB 

set which are sharp and easily computed. These bounds have been 

used to show, in some cases, that maximum GUB sets Have been 

achieved via heuristic methods. In any case, the bounds pro- 

vide excellent objective measure of the quality of any CUB set, 

regardless of the means of its derivation. Frequently, manual 

GUB analysis will suffice for models with amenable structure. 

The bounds are developed in terms of the number of dis- 

tinct .-,?nfliots present in the model. Two rows are in conflict 

i f  they each have a non-zero element in a common column, making 

them mutually exclusive in a CUB set. If si is the number of 

rows in conflict with row i, then the total problem conflict 

count for a model with m rows is 



A problem-independent bound on t h e  s i z e  o f  t h e  maximum 

GUB set i s  [71  

where L i n d i c a t e s  t r u n c a t i o n  t o  an  i n t e g e r .  

A t i g h t e r ,  problem-dependent bound is 

where 

y  = max s 
i i ' 

T i g h t e r  upper bounds have been d e r i v e d  f o r  t h e  s i z e  of t h e  

maximum CUB set,  a s  w e l l  a s  lower bounds. 

Table  3 c o n t a i n s  t h e  r e s u l t s  o f  au tomat i c  GUB f a c t o r i z a t i o n  

a p p l i e d  t o  t h e  benchmark models 171. R o w  e l i g i b i l i t y  i s  based on 

t h e  c a p a b i l i t y  t o  s c a l e  t h e  row t o  c o n t a i n  o n l y  0, 2 1  c o e f f i c i e n t s .  

S I J B  qualit? is t h e  number of GUB rows found, expressed  a s  a  per-  

cen tage  o f  t h e  b e s t  known upper bound on maximum CUB row dimension 

( a c t u a l  GUB q u a l i t y  may be  b e t t e r  than  t h i s  c o n s e r v a t i v e  e s t i m a t e ) .  

The r e s u l t s  were o b t a i n e d  us ing  FORTRAN H (Extended) w i t h  code 

o p t i m i z a t i o n .  
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4. IMPLICIT NETWORK ROWS 

Implicit network rows are a set of rows for which each 

column has at most two non-zero coefficients (restricted to those 

rows) and for which columns with two non-zero coefficients (in 

those rows) can be converted by b i m p l e  row and column scaling 

such that the non-zero coefficients have oppoeite sign. Such 

rows in LP are commonly called networks with gains. 

Pure network rows (NET) can be converted by d i m p l e  row 

and column scaling such that all non-zero coefficients (restricted 

to those rows) have value '1, and such that columns with two 

non-zero coefficients (in those rows) have one +1 and one -1. 

Such rows in LP are called pure networks (e .g. 14 1 ) . 
Simple row and column scaling is restricted such that 

application of each scale factor renders an entire row, or column, 

to the desired sign (and unit magnitude for pure NET) . 
The problem of identifying a NET factorization of m a x i m u m  

row dimension is NP-hard 1141, making optimal NET identification 

algorithms practically useless. The problem of determining just 

the b i : e  of the maximum NET set is also NP-hard. Thus, heuristic 

identification methods are mandated. 

An extension of GUB heuristics can be used to achieve NET 

factorizations. First, a GUB set is determined by methods men- 

tioned in Section 3. Then, a second GUB set is found from an 

eligible subset of remaining rows. The second GUB set is con- 

ditioned such that its row members must possess non-zero coeffi- 

cients of opposite sign in each column for which the prior GUB 

set has a non-zero coefficient. 



This double-GUB (DGUB) factorization yields a btpartite 

NET factorization. Thus, DGUB heuristically seeks the maximum 

embedded transportation or assignment r w  factorization. Pure 

network equivalents derive from proper editing of eligible rows. 

Generalizing on the theme of Senju and Toyoda (131, a 

more general method has been developed by Brown and Wright [ 8 ]  

for direct NET factorization of implicit network rows. Pure 

NET rows can be identified with the same procedure by simple 

screening of admissible candidate rows. 

This heuristic is designed to perform a network factoriza- 

tion of a signed elementary matrix (0,+1 entries only). It is a 

deletion heuristic which is feasibility seeking. The measure 

of infeasibility at any point is a matrix penalty computed as 

the sum of individual row penalties. The algorithm is two-phased, 

one pass, and non-backtracking, The first phase yields a feasible 

set of rows, while the second phase attempts to improve the set 

by reincluding r w s  previously excluded. Each iteration in Phase 

I either deletes a row or reflects it (multiplies it by -1) and 

guarantees that the matrix penalty will be reduced. Thus, the 

number of iterations in Phase I is bounded by the initial value 

of the matrix penalty, which is polynomially bounded. 

Let A = 
1 be an m x n matrix with a . .  = O,tlVi,j. 

11 

Problem: Find a matrix N = In. . l with (m-k) rows and n 
1 I 

columns which is derived from A by 



1. De le t ing  k rows o f  A where k L O ,  

2 .  Mul t ip ly ing  z e r o  o r  more rows o f  A by -1, 

where N has  t h e  p r o p e r t y  t h a t  each  column of N has  

a t  most one + 1  element and a t  most one -1 element .  

We wish t o  f i n d  a  " l a r g e "  N i n  t h e  s e n s e  o f  con- 

t a i n i n g  a s  many rows a s  p o s s i b l e ,  i . e .  minimize k .  

Terminology and Nota t ion :  

1. E i s  t h e  s e t  o f  row i n d i c e s  f o r  rows e l i g i b l e  f o r  i n c l u s i o n  

i n  N and i s  c a l l e d  t h e  e l i g i b l e  set. 

2 .  C i s  t h e  s e t  o f  row i n d i c e s  f o r  rows removed from E i n  

Phase I  ( D e l e t i o n ) .  Some rows i n  C may be r e a d m i t t e d  t o  

E i n  Phase 11. C is c a l l e d  t h e  c a n d i d a t e  set. 

3 .  The p h r a s e  " r e f l e c t  row i '  o f  A" means t o  m u l t i p l y  each  

e lement  i n  row i '  by -1, i . e .  a  + - a i , j  V j .  
i ' j  

4 .  O the r  n o t a t i o n  w i l l  be d e f i n e d  i n  t h e  a l g o r i t h m  i t s e l f .  

ALGORITHM: 

Phase I  - D e L e t i o n  u f  I n f e a s i b i e  R o w s  

S t e p  0: T n i t i d L i z n t i o n .  S e t  E = ( 1 , 2  ,..., m), C = 4 . 
For each column j o f  A compute t h e  + p e n a l t y  (K:) 

3 
and t h e  - p e n a l t y  ( K - 1  a s  fo l lows :  

3 

These p e n a l t i e s  r e p r e s e n t  t h e  number o f  e x c e s s  +1 and -1 

e lemen t s ,  r e s p e c t i v e l y ,  i n  column j which p r e v e n t  t h e  rows 



whose i n d i c e s  remain  i n  E f rom fo rming  a  v a l i d  N m a t r i x .  

A p e n a l t y  v a l u e  o f  -1 f o r  K+(K;I i n d i c a t e s  t h a t  t h e  
3 3 

column d o e s  n o t  c o n t a i n  a 1 - 1  e l e m e n t .  

S t e p  1 : Def'inc ?. 7 ; -  Penal  t i e s .  F o r  e v e r y  i C E ,  compute a  row 

p e n a l t y  ( p i )  a s  f o l l o w s :  

T h i s  is s i m p l y  t h e  sum o f  + p e n a l t i e s  f o r  a l l  co lumns  i n  

which row i h a s  a +1 p l u s  t h e  sum o f  - p e n a l t i e s  f o r  

a l l  columns i n  which  row i h a s  a  -1. 

S t e p  2 :  ? S  jiwe H a t r i t  P e n a l t y .  Compute t h e  p e n a l t y  ( h )  f o r  

t h e  m a t r i x  by s u m i n g  t h e  row p e n a l t i e s  a s  f o l l o w s :  

I f  h  = 0, t h e n  go  t o  S t e p  7 .  O t h e r w i s e ,  g o  t o  S t e p  3 .  

S t e p  3: Row S e l e c t i o n .  F i n d  t h e  row i '  6 E w i t h  t h e  9 - a t e s t  

p e n a l t y ,  i .e. 

F i n d  i '  C E such  t h a t  p i ,  = max p  . 
~ F E  

( I f  t h e r e  is a t i e ,  c h o o s e  i '  from among t h e  t i e d  v a l u e s . )  
- 

Compute t h e  r e f l e c t e d  row p e n a l t y  p i ,  f o r  i e  a s  f o l l o w s :  



( K T + ~ )  + 1 + 
P i l a  1 IK j+ l )  . 

j :a  > O  3 j : a  < O  
i ' j  i ' j  

T h i s  would be  t h e  row p e n a l t y  f o r  row i 1  i f  it were  t o  

be r e f l e c t e d .  

S t e p  4 :  U a L u t ~ ,  o r  / f r f l ~ a t  H w d .  

c a s e  i )  ,  p i  . L e t  E + E -  { i ' ) ,  C  + C U { i t ) .  G o  

t o  S t e p  5 .  

Case  i i )  p i ,  < p i ,  . R e f l e c t  row i t .  G o  t o  S t e p  6. 

S t e p  5:  h r . d u ~ . e  c o l u m n  p c n a L  t i ~ * e  a s  f o l l o w s :  

Fo r  a l l  j s u c h  t h a t  a i ,  > 0 ,  K; + K; - 1 

For a l l  j s u c h  t h a t  a .  < 0 ,  K- + K - -  1 
~ ' j  j j  

G o  t o  S t e p  1. 

S t e p  6:  S h a n j r  c o l u m n  p r n a l t i z s  a s  f o l l o w s :  

Us ing  t h e  a  v a l u e s  a f t e r  r e f l e c t i o n  o f  row i ' ,  

Fo r  a l l  j  s u c h  t h a t  a  0  K + K 1 a n d  K -  + K-- 1 
j I I 3 

For a l l  j s u c h  t h a t  a i l  < 0 ,  K; + K? - 1 a n d  K -  + K-+ 1 
3 j j  

G o  t o  S t e p  1. 

Phase  I 1  - H e i n c l r c e i o n  u j '  R o d s  j ' r o m  (.' 

S t e p  7 .  E ' L i m i r l  l t e  C o n f Z i , ~ t i n : j  H o w e .  The rows  w i t h  i n d i c e s  i n  E ,  

some p o s s i b l y  r e f l e c t e d  from t h e  o r i g i n a l  A m a t r i x ,  fo rm a  

v a l i d  N m a t r i x .  However, some o f  t h e  rows removed from E 

and  p l a c e d  i n  C  may now be  r e i n c l u d e d  i n  E i f  t h e y  d o  n o t  

make h  > 0 .  Remove from C ( and  d i s c a r d )  a l l  row i n d i c e s  

f o r  rows which ,  i f  r e i n c l u d e d  i n  E i n  p r e s e n t  o r  r e f l e c t e d  

form, would make h > 0.  



i.e. Remove i from C rf 

a) 3 jl such that a. . 0 and Kf = 0 
l31 31 

- 
or a , .  < O  and K = 0 

l31 11 

a& 

b) 3 j2 such that a. . > 0 and K- = 0 
l J 2  3 2 

or a . .  < 0 and K +  = 0 
l32 3 2 

If C = @, STOP, otherwise go to Step 8. 

Step 8. S e l e c t  400 for R e i n c l u s i o n .  At this point a row from 

C may be reincluded in E. There are several possible 

schemes for selecting the row. After the row is reincluded, 

the column penalties are adjusted. Then go to Step 7 .  

No dominating rule has been discovered for breaking ties 

in maximum row penalty encountered in Step 3. The rule used 

for the computational results presented herein is to select 

the row with the minimum number of non-zero entries in an 

attempt to place a larger number of non-zero entries in the 

network set. Other possible rules are "first-come, first- 

served," maximum number of non-zero entries, type of con- 

straint, or modeler preference. 

Modifications can be made to Step 0 to allow for 1) Matrices 

including non -0,+1 entries and/or 2) Pre-specified network rows. 

The modifications are: 



1. U = (i / a . .  = 0 , ? 1  for all j l  
1 3  

2. Let P = (i 1 row i is prespecified) 

E * E -  P 

After computation of K +  and K: find for all j 
3 1' 

if 3ieP such that a .  = 1 then K+ + K ? + l ,  
1 1  j I 

if 3 i6P such that a. . = -1 then K- + KT + 1 . 
1 I j I 

~t termination of the algorithm, the rows in N are given by 

E UP. 

One easily obtained upper bound on the maximum row dimen- 

sion of the network factorization is: 

This bound is easily computed and evidently sharp. It 

can be used to objectively evaluate the quality of a heuristically 

derived network factorization. The bound may also be used to 

preemptively terminate factorization effort. 

Another, generally tighter, bound has been developed which 

is based on the reflection and deletion potentials for each row 

in the eligible set. Using this information it is possible to 

obtain a lower bound on the number of rows which must be deleted 

to achieve a feasible network set. The upper bound is then: 

uZ = m -  lower bound on rows deleted. 



This bound is also evidently sharp and is the bound used 

to compute NET quality in the following table. 

Table 4 displays the results of DGUB and NET factorizations 

of the benchmark models. Row eligibility is determined by the 

capability to scale each row, by row scaling alone, to contain 

only O,+1 entries. The NET a k u l i c y  is the number of NET rows 

found, expressed as a percentage of the upper bound on maximum 

NET rpw dimension given above (actual NET quality may be consider- 

ably better than this estimate). 
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5. HIDDEN NETWORK ROWS 

Hidden network rowst are a set of rows which satisfy NET 

row restrictions after linear transformation of the model. That 

is, realization of these (LNET) rows may require a general linear 

transformation of the original model. 

The discrimination between implicit and hidden network 

rows is not (necessarily) in their use, but rather in their 

detection. The transformation group associated with implicit 

network rows involves only permutations and simple scaling of 

individual rows and columns. The hidden network rows require 

a completely general linear transformation and partial ordering. 

Thus, identification of hidden networks requires significant 

computation just to identify eligible rows, since any siven row 

may conflict with subsets of its cohorts after transformation. 

This problem has been solved for complete hidden network 

factorization, where all rows are shown to be LNET or the algo- 

rithm fails. Bixby and Cunningham [ 2 ]  and Muslem [ 1 2 ]  have given 

pol ynomially complex methods for complete LNET conversion. (The 

complete GUB problem is polynomial as well.) 

Strategically, the complete hidden LNET factorization 

requires two steps: 

D E T E C T T O N :  necessary conditions for existence of a complete 

LNET factorization must be established, and 

S C A L T N G :  a linear transformation to achieve the NET 

structure must be determined, if one exists. 

t ~ e  have coopted the term h i ~ i d e n  from Bixby [l], but his defini- 
tion r~lay not superficially appear to be equivalent. 



Cunningham and  Bixby a t t e m p t  d e t e c t i o n ,  f o l l o w e d  by s c a l i n g .  

Musalem tries s c a l i n g ,  t h e n  d e t e c t i o n .  T h i s  i s  a  c r u c i a l  d i f f e r -  

e n c e  between methods,  s i n c e  problems which  c a n  n o t  be  c o m p l e t e l y  

NET f a c t o r i z e d  may f a i l  i n  e i t h e r  s t e p .  

B r i e f l y ,  Cunningham and Bixby d e t e c t  by showing t h a t  t h e  

i n c i d e n c e  m a t r i x  o f  t h e  model rows c a n  b e  c o n v e r t e d  t o  a  g r a p h i c  

ma t ro id .  They employ a  method by T u t t e  (see r e f e r e n c e s  o f  [ 2 ] ) .  

Given s u c c e s s ,  t h e  g r a p h i c  r e c o r d  o f  t h e  d e t e c t i o n  is used  t o  

a t t e m p t  t o  s c a l e  t h e  model t o  NET, o r  to  show t h a t  n o  such  

s c a l i n g  e x i s t s .  

Musalem s c a l e a  t h e  model t o  a  t1 m a t r i x ,  and  t h e n  u s e s  

a  method by I r i  (see r e f e r e n c e s  o f  [ 12 ]  ) to b u i l d  a  tree, e d g e  

by edge ,  which  r e v e a l s  t h e  p a r t i a l  o r d e r i n g  c o i n c i d e n t  w i t h  com- 

p l e t e  h idden  LNET f a c t o r i z a t i o n .  

Both methods a r e  p o l y n o m i a l l y  complex.  However, c o m p l e t e  

LNET f a c t o r i z a t i o n  is  r e l a t i v e l y  e x p e n s i v e  by e i t h e r  method i n  

t h a t  q u i t e  a  l a r g e  amount of  r e a l  a r i t h m e t i c  and  l o g i c  is r e q u i r e d  

Under ly ing  d a t a  s t r u c t u r e s  have  n o t  been s u g g e s t e d  f o r  e i t h e r  

method. Both methods f a i l  i f  comp le t e  LNET f a c t o r i z a t i o n  i s  

i m p o s s i b l e ,  and n e i t h e r  l e a v e s  t h e  i n v e s t i g a t o r  w i t h  much informa-  

t i o n  u s e f u l  i n  s a l v a g i n g  a  p a r t i a l  LNET f a c t o r i z a t i o n .  W e  con- 

j e c t u r e  t h a t  r i s k  o f  p r eemp t ive  f a i l u r e  na r rowly  f a v o r s  t h e  

Musalem app roach ,  s i n c e  he  d e f e r s  t h e  r e l a t i v e l y  i n v o l v e d  d e t e c -  

t i o n  s t e p .  



Locat ing  a hidden LNET f a c t o r i z a t i o n  o f  mazimal row 

dimension has  been s u g g e s t e d  by Bixby 111 and by Musalem !12l, 

but  no c o n c r e t e  method i s  g i v e n  and no computat ional  t e s t i n g  i s  

r e p o r t e d .  E v i d e n t l y ,  t h e  mazimum LNET problem i s  NP-hard, and 

its maximal r e l a x a t i o n  remains unso lved  i n  t h e  p r a c t i c a l  s e n s e  

o f  this r e p o r t .  



6. CONCLUSION 

The t echn iques  r e p o r t e d  h e r e  have been used w i t h  g r e a t  

s u c c e s s  on a  wide v a r i e t y  o f  l a r g e  LP (MIP) models. The c o n t e x t  

of  t h i s  r e s e a r c h  is c e r t a i n l y  a t y p i c a l  in t h a t  t h e  models which 

w e  work w i t h  a r e  o f t e n  s e n t  t o  u s  f o r  a n a l y s i s  and s o l u t i o n  pre-  

c i s e l y  because  they  have a l r e a d y  f a i l e d  e l sewhere .  I n  these 

c a s e s ,  o u r  mot ives  a r e  t o  q u i c k l y  d i agnose  s u s p e c t e d  t r o u b l e  

b e f o r e  o p t i m i z a t i o n ,  p r e s c r i b e  remedies ,  and perform t h e  a c t u a l  

o p t i m i z a t i o n  r e l i a b l y  and e f f i c i e n t l y .  

T h i s  has  undoubtedly  b i a s e d  o u r  view o f  s t r u c t u r a l  d e t e c -  

t i o n  methods. P r a c t i c a l  c o n s i d e r a t i o n s  a r i s i n g  From tu rna round  

d e a d l i n e s  and t h e  s p e c i f i c  advan tages  o f  o u r  own o p t i m i z a t i o n  

sys tem [61t have c o l o r e d  o u r  judgment. Many p r o v o c a t i v e  sugges- 

t i o n s  f o r  f u r t h e r  r e s e a r c h  have n o t  been pu r sued ,  e i t h e r  d u e  t o  

l a c k  o f  o p p o r t u n i t y ,  t o  poor i n t u i t i o n ,  o r  t o  s h e e r  economics. 

Whether o r  n o t  by e q u i v a l e n t  p r e j u d i c e ,  Krabek (101 r e p o r t s  some 

s i m i l a r  methods f o r  s i m p l e  r e d u c t i o n s  a p p l i e d  t o  l a r g e  :UP'S. 

A g r e a t  d e a l  o f  i n s i g h t  h a s  been g a i n e d  from t h e s e  e x p e r i -  

ments. The c o s t  o f  f a c t o r i z a t i o n  is t r u l y  i n s i g n i f i c a n t  r e l a t i v e  

t o  t h e  in fo rma t ion  and ( p r i m a r i l y )  s o l u t i o n  e f f i c i e n c y  ga ined  

the reby .  Reve la t ions  have ranged from o u t r i g h t  r e j e c t i o n  o f  

absu rd  fo rmula t ions  t o  s u b t l e  i n f e r e n c e s  on t h e  i n t e r - p e r s o n a l  

t ~ h e  X - S y s t e m  (XS) d i f f e r s  i n  many ways from c l a s s i c a l  l a r g e -  
s c a l e  mathemat ica l  programming sys tems;  it s i m u l t a n e o u s l y  sup- 
p o r t s  s imple  and g e n e r a l i z e d  upper  bounds, g e n e r a l  b a s i s  f a c t o r -  
i z a t i o n ,  MIP, n o n l i n e a r ,  and decomposi t ion  f e a t u r e s .  I n  a d d i t i o n ,  
t h e  fundamental  LP a l g o r i t h m  h a s  been enhanced t o  i n t r i n s i c a l l y  
i n c o r p o r a t e  elastic range r e s t r i c t i o n s .  XS i s  p a r t i c u l a r l y  
s u i t e d  f o r  s o l u t i o n  i n  l i m i t e d  t i m e  of  l a r g e  models w i t h  
c o m p l i c a t i n g  f e a t u r e s .  



conflicts of model proponents. Very few models fail to reveal 

some totally unsuspected structural curiosity. Indeed, it is 

often some minor aberration that proves most revealing. Some- 

times, the combined effects of several minor features collec- 

tively contribute to a discovery of significant model attributes. 

Our general operational guideline has been to avoid 

heavy computational investment in factorization. Rather, 

highly efficient methods are used r e p e a t e d l y  on variations of 

each model. Manual and i n t u i t i v e  analysis of these results 

usually reveal much more than could be reasonably expected from 

any totally automated method applied to problems of exponential 

complexity. Interactive analysis of large-scale models is 

uncompromisingly challenging in a technical sense and equally 

rewarding. 

Accordingly, we have not yet implemented maximal hidden 

network heuristics, or block-angular clustering methods. In 

the former case, we find intrinsic NET factorization to unerr- 

ingly reveal more gene~al network forms. Also, reformulation 

to a NET factorization commonly requires more than a linear 

transformation; variables and constraints must frequently be 

z u g m e n t e d  to achieve the desired arc and node interpretation. 

In the case of block-angular and attendant structures, we 

require a great deal more information than row and column 

index subsets and aggregate relations to develop an effective 

and economically sensible mathematical decomposition scheme; 

further, even for unfamiliar models such structure is usually 

apparent in those cases that invite decomposition. 



Large f a c t o r i z a t i o n s  a r e  r o u t i n e l y  found a s  i n t r i n s i c  

f e a t u r e s  i n  r e a l - l i f e  models. However, we f e e l  t h a t  it i s  an 

abominable p r a c t i c e  t o  p r o s e l y t i z e  i n  f a v o r  of some p a r t i c u l a r  

model s t r u c t u r e  a t  t h e  expense  o f  model r e a l i s m  o r  common 

sense .  

For i n s t a n c e ,  network models have r e c e n t l y  r ece ived  

unprecedented a t t e n t i o n  i n  t h e  l i t e r a t u r e .  The i m p l i c a t i o n  has  

o f t e n  been t h a t  s i n c e  networks a r e  u s u a l l y  found i n  models, 

networks should  be used a s  t h e  e x c l u s i v e  model. Th i s  i s ,  o f  

c o u r s e ,  p a t e n t  nonsense,  smacking o f  a  s o l u t i o n  i n  s e a r c h  o f  a 

problem. An a n a l y s t  shou ld  view f a c t o r i z a t i o n s  a s  s p e c i a l i z a -  

t i o n s  of models, r a t h e r  than f o r c i n g  models t o  f i t  c e r t a i n  

popular  f a c t o r i z a t i o n s  1 4 1 .  
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HIERARCHICAL BLOCKSTRUCTURE AND FACTORIZATION 
METHODS 

Vladimir A. Bulavskiy 
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Novosi'bink 

In this paper some general concepe of hierarchical blockstructure are presented. Previ- 
ously considered structures are included as particular cases. The scheme of basis matrix 
factorization and a way of using this structure in nonlinear minimization are outlined. 



INTRODUCTION 

Two approaches a r e  involved i n  developing computa t ional  

methods t o  opt imize  l a rge - sca le  l i n e a r  systems. The f i r s t  

t a k e s  i n t o  account t h e  s p a r s i t y  of t h e  d a t a  ma t r ix ;  methods 

of t h i s  k ind p rese rve  s p a r s i t y  through a p re l imina ry  rearrangng 

of t h e  rows and columns a t  a s u i t a b l e  phase i n  t h e  a lgor i thm.  

The second agproach e x p l o i t s  t h e  s p e c i a l  s t r u c t u r e  o f  t h e  d a t a  

matrix-- f o r  example, h i e r a r c h i c a l  block s t r u c t u r e ;  methods 

of t h i s  k ind use  t h e  r e g u l a r  c o n f i g u r a t i o n  o f  z e r o s  i n  t h e  d a t a  

ma t r ix  f o r  a s p e c i a l  p r e s e n t a t i o n  of t h e  i n v e r s e  ma t r ix .  Th i s  

paper d e s c r i b e s  some g e n e r a l  concepts  of h i e r a r c h i c a l  block 

s t r u c t u r e  and o u t l i n e s  a method f o r  t a k i n g  t h e  s t r u c t u r e  i n t o  

account.  

The s t andard  way of d e f i n i n g  a nes t ed  s t r u c t u r e  is t o  choose 

an e lementary  block s t r u c t u r e  and then t o  a l low s e v e r a l  b locks  

( excep t  t h e  l i n k i n g  one)  t o  have t h i s  s t r u c t u r e  r e c u r s i v e l y .  

The elementary s t r u c t u r e  used i n  t h i s  paper is  more g e n e r a l  than 

usua l .  I t  is based on Bulavskiy and Zryagina,  1977, 1978. 



2 .  DEFINITION OF HIERARCHICAL BLOCK STRUCTURE 

To in t roduce  t h e  g e n e r a l  concep t ,  w e  s h a l l  c o n s i d e r  a few 

t y p i c a l  s i t u a t i o n s  t h a t  a r e  t r a d i t i o n a l l y  d i s c u s s e d .  I n  F i g . 1  

t h r e e  s imple  b lock- s t ruc tu red  m a t r i c e s  a r e  p r e s e n t e d ,  w i t h  

shaded a r e a s  i n d i c a t i n g  t h e  a l l o c a t i o n  of nonzero v a l u e s .  A l l  

t h e s e  s i t u a t i o n s  can  be  desc r ibed  by a t r e e - l i k e  graph whose 

r o o t s  r e p r e s e n t  t h e  e n t i r e  m a t r i x ;  o t h e r  v e r t i c e s  correspond 

t o  t h e  l i n k e d  b locks  and must be  connected t o  t h e  r o o t  by 

d i r e c t e d  edges ,  which symbolize t h e  b lock submiss ion .  However, 

each of t h e  s t r u c t u r e s  i n  F i g . 1  have t o  be  t r e a t e d  d i f f e r e n t l y .  

To decompose t h e  f i r s t  two m a t r i c e s ,  it is s u f f i c i e n t  t o  remove 

t h e  l i n k i n g  s t r i p ,  which c o n s i s t s  of  e i t h e r  rows o r  columns. 

Th i s  o p e r a t i o n  does  n o t  a l t e r  t h e  c o n d i t i o n  p r o p e r t i e s  of t h e  

o r i g i n a l  ma t r ix .  I n  c a s e  ( a )  t h e  rows of each d i agona l  b lock 

a r e  l i n e a r l y  independent t o  a t  l e a s t  t h e  same degree  a s  a r e  

t h o s e  of t h e  e n t i r e  ma t r ix .  Thus we  can ,  w i thou t  l o s s  of  

accuracy,  d i v i d e  each b lock independent ly  i n t o  b a s i c  and nonbas ic  

columns. The former group is t h e  l o c a l  b a s i s  of  t h e  c o r r e s -  

ponding b lock ;  t h e  l a t t e r  is inc luded i n  t h e  b a s i s  of t h e  l i n k i n g  

b lock.  

W e  can  t r e a t  c a s e  ( b )  i n  t h e  same way, b u t  t h e  t h i r d  m a t r i x  

must be decomposed d i f f e r e n t l y .  Its l i n k e d  b locks  may be more 

i l l - c o n d i t i o n e d  than  is t h e  whole m a t r i x .  To avo id  l o s s  of  

numerical  accuracy,  w e  d i v i d e  t h e  ma t r ix  i n  two s t e p s .  F i r s t ,  

f o r  example, w e  remove t h e  h o r i z o n t a l  l i n k i n g  s t r i p  a s  i f  c a s e  

( a )  had occur red  w i t h  o n l y  one d i a g o n a l  b lock.  Divid ing t h i s  

b lock i n t o  l o c a l  b a s i c  and nonbas ic  p a r t s ,  we o b t a i n  t h e  diagram 

on the l e f t  i n  Fig.2. The l o c a l  b a s i s  i s  p laced  i n  the upper  

r ight -hand c o r n e r .  A s  this l o c a l  b a s i s  is a squa re  nons ingu la r  

m a t r i x  o f  type  ( a ) ,  it can be d i v i d e d  i n  t u r n ;  t h e  diagram on 

t h e  r i g h t  r e p r e s e n t s  t h e  r e s u l t i n g  p a r t i t i o n .  

Thus we needcons ide r  o n l y  t h e  two k i n d s  of submiss ion  

p r e s e n t e d  i n  c a s e s  ( a )  and (b )  of  F ig .  1 .  A s  bo th  k i n d s  may 

occur  i n  one  ma t r ix ,  we  must ,  t o  avoid  confus ion ,  i d e n t i f y  and 

l a b e l  t h e  corresponding edges  on t h e  graph.  I t  is conven ien t  

f o r  u s  t o  l a b e l  t h e  edges  of t h e  f i r s t  k ind  (on t h e  l e f t )  wi th  



a minus sign and those of the second kind (on the right) with 

a plus sign. This conventionis illustrated in Fig. 3, where 

cases (a), (b) and (c) correspond to those in Fig. 1. 

It seems reasonable to introduce a symmetrical structure 

that is a generalization of both principal structures. Such a 

structure and its gra~h are presented in Fig. 4. This structure 

is treated as elementary and each of the linked blocks 
is allowed to have this structure. Thus we come to the following 

general concept of h i z r a r c h i c a l  b l o c k  s t r u c t u r e .  

Let G(P,Q) be a graph with vertex set P and edge set Q. We 

assume that the graph is a tree with the root at the vertex 0 

and that each of its edges is directed away from the root and 

denoted by the pendant vertex of the edge. Thus, Q = P\(o}. 

All edges are assumed to be labeled with a plus sign (for 

edges belonging to the set Q+) or with a minus sign (for those 

from Q-). The graph G is used as a skeleton of a structure. To 

define the structure, we must assign a block to each vertex. 

For this purpose we introduce the index sets 

The meaning of these sctsis clear from Fig. 4: Mk and IJk cor- 

respond to the entire block, while fik and L!k describe its 

linking part. It is assumed that fik C Mk, fik C Nk for k E  P and - - 
Mk = Xk, Nk = Nk for terminal blocks. 

For our purposes, the following relations must hold. If 

vertices s and t are subordinated immediately to vertex kr, then 

1 .  the sets MS and Mt, as well as tJs and Nt are disjoint 

To complete the matrix determination, we must specify the 

blocks ~[%,fj~l for all k. The information introduced is not, 

of course, minimal. It is sufficient to have only the sets ik 
and Nk for each k E P, but the sets Mk, Nk, and the graph G 

demonstrate the hierarchical structure in explicit form. 



4. BASIS FACTORIZATION 

To describe the method of factorizing structured matrices, 

we consider some particular cases. If all the edges are labeled 
with a minus sign (that is, Q+ = O), we have a purely RorizonaZ 

structure. An example is presented in Fig. 5. We use two 

principal operations when decomposing a structured basis matrix: 

1. select a maximal linearly independent set of columns 

for the matrix of full row rank 

2. select a similar set of rows for a matrix of full 

column rank . 
These operations are equivalent if we ignore the structure 

of the matrix, but in our case they are essentially different. 

Given the purely horizontal structure, we can implement the first 

procedure beginning with terminal blocks and advancing to the 

root. For example, in Fig. 5 we first select the local bases in 

four terminal blocks and for K = 3,4,5,6 obtain the following 

representation of these blocks: 

where the set Jk represents the basic columns in the block k, 

Sk represents nonbasic columns, and matrices Bk are the local 

bases. If we construct the matrices Hk as in Fig. 6 for 

K = 3,4,5,6 and multiply them by the entire matrix on its right- 

hand side, we exclude the nonbasic part of the terminal blocks. 

We can treat the transformed blocks 1 and 2 in the same way. As 

a result of these transformations, we obtain the decomposition 

in Fig. 7, where multipliers Hk must be ordered in accordance 

with block submission. Deeper hierarchies can clearly be treated 

in the same way. To eliminate the right-hand part of Fig. 7, we 

must multiply the right-hand side of this equality by the 

corresponding matrix H o. 

In the case under consideration the use of horizontal 

structure to a maximal degree does not affect the stability 

of the computations. This is not the case if the columns are 



linearly independent and we must select a row basis; this 

situation is presented in the diagram on the left in Fig. 8. 

We can begin with the terminal blocks again, but for 

computational stability we must choose some barrier 6 and take 

care that the absolute value of the leading elements of the 

transformations is greater than 5. Thus in several blocks some 

rows will be free, as illustrated in the diagram on the right in 

Fig. 8, where the free rows are placed at the top. 

In fact, we make the transformations as we made them 

previously, but the leading elements are chosen only from the 

lower part of the diagram. If this part is square, we obtain 

a local basis for this matrix. To eliminate the upper nonbasic 

part, we must now multiply the matrix on the right in Fig.8 by the 

appropriate matrix H o t  and this multiplication must also be 

effected on the left-hand side. If the lower part of the 

right matrix in Fig. 8 is not to be square, we must either de- 

crease 6 or note that the matrix to be decomposed is i l l -  

~ o n d i t i o n e d  (if 6 is already sufficiently small). 

When all the edges are labeled with a plus sign, we have 

a purely v e r t i c a l  structure. This case may be considered in 

the same way; the two situations that we previously encountered 

replace each other. Note that multipliers Hk in.this case are 

on the left-hand side of the matrix A[M O t N o l  : 

( n  Hk)- A is (lower) block-triangular. 

kEQ+ 

In the nore general case presented in Fig. 9, we assume that the 

matrix to be decomposed is square and nonsingular. This 

structure is composed of t w  pure structures, one of which is 

horizontal and the other vertical. We may successively make use 

of both previously presented algorithms to give 



where BT is a (lower) block-triangular matrix whose diagonal 

submatrices are the local bases of the blocks. Note that if 

natrix A is not square but has more columns or more rows, the 

matrix BT is trapezoidal. 

To use the decomposition obtained we must have the inverses 

8;' for all local bases. It is not our aim to discuss this 

matter. The inverses may be in a convenient form. If the - 1 
inverse BT is available, the inverse for this mouetache-like 

structure can be presented as 

where the product is computed in the same order as the edge 

labelling of the graph in Fig.9. 

The general case of hierarchical block structure can be 

reduced to these moustache-like structures. For this purpose, 

consider the example in Fig. 10, where the graph of a structured 

matrix is presented. If we ignore the structure of blocks 

1 , 2 , 3 , U ,  then we have the moustache-like factor structure in 

Fig. 11, and we can write the decomposition in (lower) block- 

triangular form as 

The diagonal blocks are represented on the right-hand side of 

the equality . 
The diagonal blocks E1,E2,i3 ,g4 can be reduced in turn to 

lower triangular matrices. For example, by multiplying El by 
the matrices H7,H6 on the left-hand side and by the matrix H5 

on the right-hand side, we arrive at the lower block-triangular 

matrix 



For the natrix g,, we must take yet another step. Thus we 

obtain a decomposition in which the order of multipliers is 

defined by the submission of blocks in each moustache-like 

structure and by the partial order in which these structures 

are nested. F7e shall not go into details in this discussion. 

4. BASIS UPDATE 

With regard to updating the decomposition, an algorithm 

exists for stable recomputation of the decomposition as one 

column is replaced by another, but the rules are ccmplicated 

and we shall not consider them here. Similarly, it does not 

seem rational to apply these rules unless the structure has 

a low depth. It generally seems more reasonable for the 

modifications of the basis to be accumulated in either product 

form or in the form 

Here the (pxn) - matrix T consists of the unit rows indicating 
the basic columns to be changed, the columns of the (nxp) 

-matrix S are the corresponding corrections, and p is the number 

of modifications. The new column of A"S is calculated by the 

simplex method. The necessary modifications of the (pxp) 

-matrix [I + TA-'s]-' are clear from the diagrams: 

There are three reasons for using this approach. First, a 

hierarchical structure allows partition of data, and each part 

of the information can be handled separately. In the above 

algorithm for handling the next block, we need the multipliers 

Hk of subordinate blocks only. Second, the use of a standard 

procedure for calculating the product (or any other) form of 



the inverse implies preliminary rearrangement of the rows 

and columns (in this case, it can be done for each block 

separately). Third. the hierarchical structure need be taken 
into account while updating the inverse only after every few 

iterations. Since the multipliers corresponding to different 

branches of the graph are commutative, we need implement the 

updating not for the entire matrix but rather only for those 

branches that have already accumulated a sufficiently large 

number of substitutions. 

5 .  EXTENSIONS TO NONLINEAR OPTIMIZATION OVER LINEAR CONSTRAINTS 

In conclusion, we may consider how to use the defined struc- 

ture in nonlinear minimization subject to linear constraints. In 

many descent methods it is necessary to project some vectoron the 

subspace defined by the system A, = 0. To compute this projection, 

the matrix (AA~)" is needed. The rows of A are assumed to be 

linearly independent. Two cases may occur. 

If A is an mx (m+d) - matrix and a is sail, then we may 
use the previously discussed algorithm and decompose the matrix 

in the form A = Ba[I 31, where B is square and nonsingular. Then 

the following equality holds: 

The middle matrix can be rewritten 

The order of the matrix [I + R'R] is a. As it is small, computing 

and storing the matrix is easy. The matrix B-' may be decomposed 

according to the structure of matrix A, as stated above. 

Note that this case occurs when the objective function 

differs from a linear one along directions in a low-dimensional 

subspace. If this is not the case, then a may be large and the 

above method becomes too expensive. 



If our structure is purely horizontal, then either 

Householder or orthogonalization methods are convenient. Consider 

for example, the latter method. If in the course of orthogonali- 

zation we involve the rows beginning from the terminal blocks 

and moving to the root, then we obtain the decomposition 

A = L-Q, where L is a lower triangular matrix, Q has orthogonal 

rows, and both matrices have the same structure as the matrix A. 

Then we can use the formula A A ~ =  L L ~ .  
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CONSTRUCTING LARGE LINEAR INPUT-OUTPUT SYSTEMS WITH 
RECURSIVELY GENERATED MATRICES 
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A modelling technique is proposed that allows recursive construction of large-scale systems. 
The process-flow-transition structure introduced allows the integration of several poly- 
hedral input/output (I/O)-processes. Such a structure can be transformed into a single I/O- 
process. A simple computer language is constructed which is oriented to this recursive 
definition of the input and output matrices of an I/0-process. All instructions required to 
generate these matrices as datafiles and their associated names as textfiles can be expressed 
in this language. The textfiles generated are part of the input of a reportwriter. 



Part iculary in  the modelling of large economic or  large production systems 

it is extremely important t o  maintain a s t r ingent  systematic in the form of 

a modular s e t  up which is  - a t  l e a s t  from a logical  view-pohit - invariant  

with respect t o  the complexity of the system. In par t i cu la r ,  it appears t h a t  

a module with a recursive nature o f f e r s  excel lentprospects  for  organizing 

data  bases, numr ica l  methods and reporting . r e s u l t s  in  a transparant manner. 

In addition it can be a natural  s t a r t i n g  point f o r  computer-aided model design 

system. Central theme of t h i s  study is  a modelling method based on three 

elemants: the polyhedral Input/Output process - being a special  case of the 

more generalconcept (concave) Input/Output process, proposed elsewhere C11 - 
t r ans i t ion  points ,  and commodity flows. After having introduced the  concept 

I/O-process, an example w i l l  show how t o  integrate  several  I/O-processes 

with the help of " t rans i t ion  points"  and "flovs" in to  one s ingle  "process- 

flow-transition" s t ructure.  I t  w i l l  appear t h a t  t h i s  s t ruc ture  can be taken 

- a f t e r  a self-evident transformation - a s  one s ingle  process w i t h  the same 

logical  s t ruc ture  as  our Input/Output process, implying tha t  t h i s  modelling 

system possesses the desired recursive propert ies ,  indeed. 

From an abstract  physical view-point, an economic process can be characterized 

by a s e t  of "feasible"  Input/Output combinations, say: S c prn xiRn . where mm 

represents the conrmodity space of the inputs,and where mn stands for the 

camrodity space of the outputs. Next, a preference ordering can be postulated 

by a u t i l i t y  functlon p on S. In t h i s  context,  an Input/Output process (o r  

1 br ie f ly  I/O-process) is defined as a (bi-)  function p:S c iRm x m n + ~  , s a t i s -  

fying the following hypotheses: 



- S c IRtxEtn (being a "minimal* hypothesis in o rde r  t o  suppor t  t he  d i s -  

t i n c t i o n  between inputs  and o u t p u t s ) ,  
- 

- f o r  every x,; 6 mrn,  y c IRn s o  t h a t  (x,y) c S,  x 2 x,  it holds ( x , ~ )  6 S, 

,, (x; Y )  2 ,, (x;y) (being a " f r e e  d i sposa l "  hypothesis concerning t h e  inpu t s ) .  

Within t h e  c o n t q t  of a p a i t i c u l a r  mwel  forrnulatlng t h e  I/o-process may b r i n g  

ou t  t h a t  t h e  Colllpodity spaces of t h e  inpu t s  and/or ou tpu t s  a r e  composed o f  

mz m 
s e v e r a l  differWaf c o m i t y  spaces. For in s t ance  (bl x P  x. .  . x * ) wi*  

n n 
r e spec t  to t h e  inpu t s  and ( R  x P  x . . . x mn 5 f o r  t h e  outputs .  Then, i n s t ead  

k 1 2  e of a s i n g l e  Input/Output p a i r  (x ,y)  , we have ( (xl ,x2,.  . . , X  ) ,  (y , y  , . . . .Y ) , 
r n .  

w i t h  x' c IR , y j  e mnj . Of course ,  t h i s  does no t  a f f e c t  t h e  na tu re  of  our  

Below we s h a l l  introduce the  not ion oia process-f low-t rans i t ion s tuc tu ro  . with 

t h e  help  of a simple (perhaps somewhat cherch4) &e l ,  represented by t h e  

" p r o c e s s - f l o r t r a n s i t i m "  diagram: 

I n  t h i s  example we have: t h r e e  I/O-processes P c m: x (Et: XR:) , 

C c XR: , D c IR: x(Et; XR+" ), w i t h  a u t ~ l i t y  funct ion p on C only.  We have 

s i x  " t r a n s i t i o n  po in t s "  numbered 1 to 6, w e  have e i g h t  i n t e r n a l  commodity 



"flow vec to r s " ,  t h ree  of them x1 12,  x2 '  l ,  x313 a r e  Input  flows, t h e  o the r s  

y4", y S r 2 ,  y6 '3 ,  y3I1 ,  y l ' l  a r e  output flow vec to r s ,  and f i n a l l y  the re  a r e  

s l x  "external  flows" represented by t h e  dotteci arrows. Economical ly-af ter  

a s u i t a b l e  specification of the  s e t s  P ,  C, D - one may th ink  about a 

conf igurat ion cons i s t ing  of a production process (PI, a consumption 

process (C) , a d i s t r i b u t i o n  process (D) , and two kin& o f  c d i t y  

stocks: the  s tocks  f o r  consumption and f o r  productive purposes. A l l  Of 

these  c d i t i e s  may have a c e r t a i n  " l i fe- t ime",  Ln such a manner t h a t  

t h e  remaining p a r t  of t h e  inpu t s  x1'2 ( resp .  x3'3) a f t e r  "passing" t h e  

production ( r e sp ,  consumption) process i .s  AP x112 ( resp .  ~ ~ ' ~ 1 ,  where 

AP ( resp .  A') is a diagonal matrix with diagonal elements between 0 and 1 .  

A p a r t  of t h e  outputs  of t h e  production process ( y 5 ' 2 ) ,  t oge the r  wi th  

the  "imports" to t r a n s i t i o n  point  numbered 2, can be added t o  the  s tocks  f o r  

product ive  purposes o r  t o  t h e  s tock f o r  consumptive purposes. This  leads  

t o  the " d i s t r i b u t i o n  s e t "  D :I ( ( x 2 ' 1 , ( y 1 ' 1 , y 3 r 1 ) )  c p ~ x ( p ~ x p l ~ )  ~ y ' "  + 

+ y311 2 x2").  In  t h i s  context  it i s  na tu ra l  t o  pu t  t he  u t i l i t y  funct ion 

on P and D i d e n t i r a l z e r o , a n d t o t a k e  t h e  u t i l i t y  Function u on C a s  the  

only i n t e r n a l  bas i s  f o r  t h e  valuat ion of flow r e a l i s a t i o n s  in the  system. 

Concerning t h e  formal s t r u c t u r e  of t he  example we obviously have t h e  

c o n s t i t u t i n q  elements: commdity s-paces, I/O-processes, t r a n s i t i o n  p o i n t s  

and flows. With each t r a n s i t i o n  po ln t  only one commodity space is associated; 

thus ,  r e f e r ~ n g  t o  t h i s  commodity space ,  w e  s h a l l  speaic about t h e  dimension 

of a t r a n s i t i o n  point .  I n t e r n a l  flows a r e  located only between a t r a n s i t i o n  

p o u t  and an I/O-process; of cau r se , the  corresponding f l w  vector  has the  

same dimension a s  the  t r a n s i t i o n  point .  T h i s  assumption impl ies  t h a t  f lows 

can be ind ica t ed  by a s soc ia t ing  w ~ t h  each I/O-process the C O M ~ C ~ E ~  t r a n s i -  

t i o n  po in t s ,  both f o r  t he  input  s i d e  and f o r  the  output s ide .  Fur ther ,  t he  



order has t o  be specif ied how the complete inpu t  and output  f l o v s o f e a c h  

I/+process a r e  composed of the  sepa ra te  f l w s ;  t h e  formal s e t  up w i l l  

be def ined with the  help  of set C := I ((if:-,) 1 m = I , 2 , .  . . , . Thus, 

a p a r t  from f l w  f a c i l i t i e s  between the  system a s  a whole and sane "outs ide  

world", w e  def ine  a process-flow-transition s t r u c t u r e  a s  a f i n i t e  ( o r  

countable i n f i n i t e )  number of:  

- t r a n s i t i o n  po in t s ,  indicated by a countable nonempty set U and a funct ion 

E:n+{1,2, ... f ,  r e fe r inq  t o  the  dimensions, 
C W - I/-processes u j  : sj c R ' j XR j + 1 ~ '  , j E N ,  N noneunpty countable,  

- input  f l w s ,  associa ted with each I/-process j c N by a funct ion 

0j :n-r  { O , I  , 2 , .  . . ), w i t h  +'(i) + o f o r  some i c n, and w i t h  

( { @ j ( i ) I i  
Oj( i )  + ,,I c C, 

- output f l w s ,  associa ted with each I/-process j c N by a funct ion 

* j : n - ( 0 , 1 , 2  ,... 1, w i t h  * j ( i )  + o f o r  s- i c n ,  and with 

s a t i s f y i n g  t h e  following hypotheses: 

1 K .  W .  - For each !.I':s' +1 , j r N ,  the  ccmmdity spaces 1R ' , 1R ' , possess the  

proper t ies :  (i) K = ( L  E ( i ) ,  over i c n ( ~ ' ( i )  + O ) ,  
j 

w j  = ( L  C ( i ) ,  over 
K W. 5 i c: n ( O' ( i l  f 0 ) .  (ii) sj  c 1+' xl+! (iii) f o r  every x, x c m , 

y c mu',  so  t h a t  (x ,y)  c s'. ; 2 x, it 1 s :  i ~ , ~ )  6 sJ ,  u j ( ~ : y )  2 u j ( x i Y ) .  

- For each i c M ,  t ha re  is a j c N ,  s o  t h a t  4 j ( i )  + + j ( i )  > 0 (1.e. each t r ane i -  

t i o n  point  is comecced w i t h  a t  least one I/-process).  

In  t h i s  context  0 j : f4+(0.1  ,... and ~l':FI-r(0,1, ... ) w i l l  be c a l l e d  t h e  input  

and output incidence funct ions  of process j. 



In the  example one may def ine  M := ( 1 . 2 . .  . . ,61, N := ( 1 , 2 , 3 ) ,  s 1  := D, 

1 2  u (x ;y)  :- 0 f o r  a l l  (x .y)  f D, s 2  :=  P .  P ( x ; y )  := 0 f o r  a l l  (x ,y )  f P ,  

3 
s 3  =: C,  p (x ;y)  : =  u(x ;y )  f o r  a l l  (x ,y )  6 C ,  

In case t h e r e  a r e  flows between the  system and sane "ou t s ide  world", t he  

flows cowards t h e  system w i l l  be c a l l e d  -port flows and t h e  flows in  

the opposrte d i r e c t i o n ,  export  flows. I t  is n a t u r a l  t o  a s soc ia t e  these  flows 

wlth t h e  t r a n s i t i o n  p o u t s ,  o r  formally with the  elements of s e t  n. Thus. 

t he  import and export  flow s t r u c t u r e  w i l l  be ind ica t ed  by the  elements 

of s e t s  M+ c n ,  M - c M ,  resp.  (poss ib l e  M+ := 0 o r  l4- := 8 ) ,  on t h e  under- 

standrng t h a t  t he  following "import/export  flow" hypotheses a r e  s a t i s f i e d :  

- f o r  every i 6 M+, the re  is a j E N so  t h a t  Q 3 ( i l  + 0 ,  

- f o r  every i t M-, the re  is a j E N s o  t h a t  $ ' ( i )  + 0; 

in  words: imports ( expor t s  r e sp . )  a r e  r e l a t e d  t o  t h e  m p u t s  (outputs  r e sp . )  

f o r  a t  l e a s t  one of the  i n t e r n a l  processes .  Summarizing: in the  presence of 

Fmport and/or export  f a c i l i t i e s ,  t h e  corresponding flows a r e  considered a s  

being a p a r t  of t he  process-flow-transrtion s t r u c t u r e ,  provided t h e  "import/ 

export  flow" hypotheses a re  s a t i s f i e d .  



Next we focus our  a t t e n t i o n  t o  the  problem h m ~  the  magnitude of t h e  

f l w s  between t r a n s i t i o n  po in t s  and t he  I/O-processes is r e l a t e d  t o  

t h e  cmposed input  and ou tpu t  flows of t h e  procesees and t o  t h e  import 

and axport  f l w r .  Let us denote: 

- t h e  f l w  vmctor f r m  t r a n s i t i o n  po in t  i f M towards I/O-process j N 

by xi'' f m E ( i ) ,  wi th  xi'' :- 0 i f  ('(i) - 0 ,  

- t h e  f l w  vec to r  f r a o  I/O-process j f N towards t r a n s i t i o n  p o i n t  i f I4 

by y i . j  , m E ( i )  , w i t h  y i v j  :- o i f  q l ( i )  = 0 ,  

- t h e  input  vec to r  of I/O-process j E N by xf j c R'? , where r . : = (E E (i) , 
3 

over i n I + j ( i )  + 0 ) .  

- t h e  output  vec to r  of I/O-process j L N by y*' f nu' , where w . := ( z  C ( i ) ,  
I 

over i c n l e j ( i 1  z 0 1 ,  

- t he  imports towards t r a n s i t i o n  po in t  i c n by xi* f R " ~ )  wi th  xi* := 0 

- t he  expor ts  fram t r a n s i t i o n  po in t  i E M by yi* E with  yif :* 0 i f  

i ti n-. 

Provided, the o rde r  har  t h e  inpu t  and output  flow v e c t o r s  xf', y*' a r e  

c-sed of  (xi'') n,  ( y  i, j l i  is spec i f i ed  by the incidence 

funct ions  +' and ~j resp. ,  we s h a l l  r e l a t e  xf3  t o  (xi"li and y*' 

t o  (yi"li Y, with the  he lp  of func t ions  F: i r n, ass igninq t o  a l l  

p a i r s  ( ( x f j .  ( j l l j  d {(yf ' ,  A l j  N, vec to r s  P~ (xf j ;  9') c IR ( i )  

and pi (y f j i e ' )  c mS(')  resp.  in t h e  ~ o l l o w i n g  manner: 

I pi ; '  :- (<:*ll,X$, ... ,<:c(i,), where: 

k :- o - i f  + j ( i )  = 1 o r  otherwise,  

1 k : - ( C r ( l ) ,  over t c n ( 0 < + j ( l )  < + j ( i ) ) ,  



and B' ( y * J ; y j )  being defined s imi la r ly .  Given t h e  formal s t r u c t u r e  

a s  introduced before.  P~ w i l l  be c a l l e d  the  flow conf igurat ion funct ion 

i 
of t r a n s i t i o n  point  i c M. One may v e r i f y  t h a t  the  funct ions  P , i c M 

e s t a b l i s h  a one-one r e l a t i o n  between t h e  input  and output  flow vectors  

x t j ,  y*' -and t h e  process- t ransi t ion flow vectors  xi", y i ' j  with xi'' :- 0 

i f  ( ' t i )  - 0,and yi" :- 0 i f  )'(I) - 0. Thus, x i  , , . 
w i l l  be c d l e d  an i n t e r n a l  flow conf igurat ion i f  a sequence (x*' ,y*'~, N. 

i 
( x t J g y * j )  .s ~ j ,  j c N u i a t s  such t h a t  xioj - F ( x * j ; + j ) ,  yinj - ~ ' ( y * j ; + j ) ,  

i c  n, j c N .  

i . j  Next, an i n t e r n a l  flow conf igurat ion ( (xi",y 1 Ii  . *, , w i l l  be c a l l e d  

I* 
f e a s i b l e  with respact  t o  t h e  import and export  flow vec to r s  ( x  Ii  

(yi*li  . i f ,  on each t r a n s i t i o n  po in t  i c M t h e  - s o  c a l l e d  - c o d i t x  

balance candi%s : 

a r e  s a t i s f i e d  (provided t h e  s u m  over j c N are well  de f ined) .  

I n  some a p p l i c a t i o n s i t m i g h t  be  convenient to model an import o r  export 

flow a s  one of the  i n t e r n a l  flows. Within our  formal s e t  up, t h i s  can be 

done (somewhat t r i c k y )  by introducing t h e  zero-dimensional r e a l  vector  

space no :- (01, 0 being t h e  r e a l  number zero. Then an ( a r t i f i c i a l )  I/- 

process w i t h  its input  p a r t  s i t u a t e d  in no can be taken as a resource ,  

where- an I/-process w i t h  its output p a r t  in XXO may be introduced a s  

a f i n a l  demand. Of course, t h e  corresponding ( a r t i f i c i a l )  t r a n s i t i o n  

0 
p o i n t s  and r e l a t e d  flows a r e  associa ted w i t h  a "ccamxiity" space . 

Returning t o  our  example: t h e  diagram suggests  that t h e  p r o c e s - f l o r  

t r a n s i t i o n  s t r u c t u r e  i t s e l v e s  might be conceived ae me s i n g l e  I/O-process 



on a "higher" abstraction level ,  just  by taking the import and export flows 

as  inputs and outputs and eliminating the  corresponding feas ib le  internal  

flows configurations by some optimality pr inciple  re la ted  t o  the ~ n t e r n a l  

u t i l i t y  function. We s h a l l  describe t h i s  transformation i n t o  an I/O-process, 

s t a r t i n g  f r m  the general s t ructure a s  introduced before. However, i n  order 

co avoid complications we r e s t r i c t  ourselves t o  the case where the number 

of I/O-procesaea I N I  and t ranei t ion points  i a  f i n i t e .  F i r s t  of a l l  we 

have co specify the order how the  - what we s h a l l  c a l l  - external  input 

vector and t h e  external  output vector a r e  composed of the import and export - 
flow vector reap.. In a similar manner a s  the intertlalflows cons t i tu te  the 

h t e r n a l  input and output vectors, t h i s  can be done w i t h  the help of inci-  

dence f u n c t i a n s ~  a :n+(0 ,1 ,2 ,  ... ) f o r  the external  inputs, and 6 : ~ + ( 0 . 1 , 2  ,... 
f o r  the external outputs. Having the Fmport flowsand export flows indicated 

by M+ c t4 and H- c M resp., these incidence functions have t o  s a t i s f y  the 

hypotheses ( i  c M I a ( i )  j 0) - M + ,  ( i  a M ( B ( i )  0) = t4-, ( ( a ( i )  I i r M, 

a ( i )  # 0 ) )  c E,  ( ( B ( i )  ( i 6 n, B ( L )  # 0 ) )  a a. The corresponding dimensions 

are r := ( E  C ( i ) ,  over i a M + )  f o r  the external inputs 5, and s := (L C ( i ) ,  

over i a M ) for  the external' outputs 1. Now, u t i l i z ing  our f lw configuration 

function8 d, i r M ,  the  corresponding import and export flaw vectors a r e  

i i 
F (z~a),  F (x;B), i M .  Since input vectors a r e  supposed t o  be nonnegative, 

the  a e t  of feanible  external input/output cmbinat ions 5 can be definad: 

i n  words: the s e t  of combinations ( 5 , ~ )  c IRt xIRS such tha t  thare e x i s t  cor- 

responding feasrble  internal  flow configurations. Next, the valuation of 

in te rna l  f l w  C ~ f i q U r a t L ~ s  can be effectuated on the bas i s  of a weighted sum 

1 1  
r j  y II (x*j ;yCJ)  over the separate u t i l i t y  functions ~ j ,  IY'), being a 



sequence of nonnegative weight factors .  These considerations lead t o  an 

1 
"external u t i l i t y "  functions k:g+ iU U I-1 ,defined by 

As a consequence of the  "import" hypothesis t ha t  for  each i a M+ there i s  a 

j < N with 9 j ( i )  > 0, we have that  the external process s a t i s f i e s  the " f ree  

disposal" hypothesis, indeed; i.e. for  each x, x a Etr . y c EtS with (5.y) i 2, 

x 5 5 it holds (x.yl c g,  y(x;y) ~ ( x i y ) .  Thus, i f  y(r;y) i s  f i n i t e  for  a l l  

(5.y) c 5, then y:S+ IR' can be taken as an I/0-process. 

With t h i s  fundamental transformation we have establ ishedtherecursive nature 

of our process - f lo r t rans i t ion  s tructure.  Each I/-process i n  such a 

s t ruc ture  might be generated by a (sub) pmce6s-flaw-transition s tructure.  

and, the other way round, each process-flow-trmsitian s tructure might be 

integratedasan I/-process i n a  larger  process-flowtransition s tructure.  

A s  an i l l u s t r a t i on  of t h i s  recursivi ty,  we consider a dynamic version of our 

-ample, as suggested by the diagram: 

Lt. 1 ) .  ( t . 2 )  

period t - 1 * period t * period t + 1 4 



As pe r iod  index w e  have in t roduced  t O , l ,  ..., h ,  where t := 0 i n d i c a t e s  

t h e  l a s t  past pe r iod ,  and where t h e  p o s i t i v e  i n t e g e r  h i s  t h e  f i n a l  pe r i od .  

The I /-processes and t r a n s i t i o n  p o i n t s . a r e i n d i c a t e d  by t h e  e lements  of  

h h i  1 
t h e  s e t s  :- { ( t , l ) ,  ( t , 2 ) ,  ( t , 3 )  and  := ( ( t , l ) ,  ( t . 2 ) .  ( t . 3 )  Itmi.  

The t r a n s i t i o n  p o i n t s  ara a l l  n-dimensional. The i nc idence  f u n c t i o n s  can  

be def ined:  

w i th  r e s p e c t  to t h e  i npu t  vec to r s ,  and f o r  the o u t p u t  vac to r s :  

- $ , ( t r l )  (0.k) := 1 i f  ( e , k )  = ( t , l ) ,  := 2 i f  ( 0 , k )  = ( t , 3 ) ,  

( t . 2 )  - (9.k)  := 1 i f  ( g , k )  = ( t + 1 , 1 ) ,  :- 2 i f  ( e , k )  := ( t + l , 2 ) ,  

- e ( t * 3 )  ( e , k )  := I i f  ( e , k )  - ( t + 1 , 3 ) ,  o the rw i se  := 0.  

Next w i th  t h e  h e l p  of our  f l w  c o n f i g u r a t i o n  f u n c t i o n s  r i ,  a l l  i n p u t  and o u t p u t  

1 
f low v e c t o r s  of  t h e  I /-processes ,,':s' + W , j E I! can  be  dec-sed into 

p r o c e s s - t r a n s i t i o n  f l w  v e c t o r s  which have to s a t i s f y  t h e  c m i t y  ba l ance  

cond i t i ons .  Thus, t h e  problem of f i n d i n g  an o p t d l  t r a j e c t o r y ,  under exponen t i a l  

t ime d i s coun t i ng  ntt  w i th  n > 0 (,rtt s t a n d s  f o r  n power t) and a v a l u a t i o n  o f  

1 2 3  
t h e  t e r m i n a l  commodity s t o c k s  q ,q ,q c , and g iven  i n i t i a l  s t o c k s  

$ := ( y ( 0 ' 1 ) , y ( 0 ' 2 ) , y ( 0 ' 3 ' ) ,  c an  be w r i t t e n  i n  t h e  s t anda rd  form: - 

k + ( h , k ) > )  
sup  ( ( z j  c l  ~ j u j ( x * j ; y + ~ ) )  + yhz < q  , y  

over  ( x* j , y* j )  c sj, j c N_, 
i 0 i s.r. t pi (X+';Q'I = F (z  ;a) + E~~ N~ ( y * j ; d ) ,  vi c i, 

I aN_ - 



t t  
vhere y ( )  : ( 1  , t = 1.2 ,..., h,  k = 1.2.3, where <.,.> r ep resen t s  

tho inner  product of tvo vec to r s ,  and vhere the  incidence funct ion a f o r  

tho "imports' $ is defined: a (0 .k )  := k i f  0 = 1 and k r (1 ,2 ,31,  o therwise  

:- 0. Note: i n  t h i s  example, the  s impl i c i ty  of t he  s t r u c t u r e  makes it 

poss ib l e  t o  g ive  an equal ly  simple s p e c i a l  foxmulation vhere the  per iod 

index t is adopted e x p l i c i t l y .  

Nor, a = re  s t r u c t u r a l  v i e w p o i n t  can be ob ta in  by taking t h e  process- 

f low-s t ructure  f o r  each sepa ra t e  per iod a s  one s i n g l e  I/*process, and 

naxt link- these  I/*processes, dynamically. Thua, one may de f ine  f o r  

each per iod t = 1.2 , .  . . ,h an (I/o) -process $:St c R~~ xn3n+Et1 U (-1; 

t h i s  can be done in the  same manner a s  the  s i n g l e  pe r iod  vers ion o f  the  

m d e l  WM transformed i n t o  an I/-process. The rerrult inq dynamic model can 

be cha rac te r i zed  by t h e  diagram: 

per iod t -1  per iod t per iod t + l  J 

The corresponding problem of  f ind ing  an optimal t r a j e c t o r y  can wr i t t en  

as :  

vhare is thr qiven i n i t i a l  s t a t e .  Of course ,  one may f i t  t h i s  p r o b l m  



in our process-flow-transition structure. More generally the question arises, 

under what conditions a part of a process-flow-transition may be substituted 

by its formulation as I/O-process. As a matter of fact, one has to require 

only, that input and output f l w s  can be distinguish, in such a manner that 

the hypotheses concerning the inputs are satisfied indeed; in that case one 

may conceive this as a structural decomposition, because the original input/ 

output structura is preserved. 

Beside this structural decomposition, one may apply Lagrangean decomposition 

techniques and the related shadow-price interpretation of Lagrange-multipliers. 

In order to introduce this approach briefly, let y:S c lm*Sln+lR1 be an 

I/O-process, let u c R~ be a "price" vector for the inputs and let v c mn 

be a "price" vector for the outputs. Then the corresponding supremum of the 

"net-profit" *u(u;v) can be found by: 

( 6 )  *u(u;v) := sup(u(x;y) - <u,x> + <v,y>), aver (x,y) c S. 

Thus "net-profit" maximization leads to a function u:* s c lm xIRn*IR1 - to be 

called the dual I/O-process - where the set *S (possible * S  = 0)  is defined: 

In case *S + 0 ,  it appears that s c IR: x l n  (being an implication of the 

"free disposal" assumption on inputs), and that for each u,; c lm, v 6 ln 

* -  - * -  
with (u,v) S, u 2 u: (u,v) S ,  p (u;v) : *u(u;v). (the latter being an 

m n 
implication of the hypothesis S c l+xIR ) .  Obviously, in the oppos~te 

orientation, the dual I/O-process m ~ g h t  be conceived (logically) as an I/+ 

* *  1 
process as well. In addition it is knawn that the epigraph of u: S+IR 

l *  
(i.e. the set (u.v,a) S x IR I p(u;v) a)) isclosed and convex. In 



case t h e  hypograph of ) r : ~ - t E t '  ( i . e .  t h e  s e t  ( ( x , y , a )  S x IR1 I a : p(x ;y )  1) 

** ** 1 
is closed and convex, t he  func t ion  II: S c Elm xIRn+E3 , def ined:  

U ( X ; Y )  :- i n f  (*y ( u ; ~ )  + <x,u> - <y,v*),  over (u ,v)  6 * s o  
(8) 

S :- i ( x , y )  f IRmxIRm I"p(x;y) > -01, 

t *  t *  
is t h e  inve r se  transfo-tionr i . e .  Y: S + 1' is exac t ly  t h e  o r i g i n a l  

func t ion  u : ~  +-nl  (c f .  I: 1 I o r  I: 2 I ) .  

N e x t  l e t  us consider  t h e  s t anda rd  h g r a n g w  rep resen ta t ion  o f  maximizatbn 

problem ( 3 ) .  w i t h  Lagrangean v e c t o r s  wi c  R " ~ ) ,  i c kl on t h e  t r - i t i on  

po in t s ;  t o  be wr i t t en :  

i i i 

- Z i r  <w , (F (y ;8 )  * F' (x*j;$ ')  - 
j c  N  

i - P (x:al + Z  j c N  ( y f j ; ~ ' ) ) > ! ,  

over  ( x f j , y * j )  6 s j ,  j c  N. 

Elabora t ing  t h i s  express ion o n e m y v e r i f y  that t h e  supremum is f i n i t e  i f ,  

and only i f ,  t h e r e  is a { ( u j , v j )  ) j : * s j  + m  1 ( u j , v f )  c  *s' (each u 

1 
be ing t h e  dual  of uJ:S' -t P( ) , such t h a t ,  f o r  a l l  i c  n, j N: y'pi ( u J ; $ j )  = wi, 

i and y f p L  ( v J : # j )  = w ; i n  t h a t  ca se  t h e  value  of t h e  supremum is 

i E yj*uJ ( u J ; v j l  + Z . < w i , p  (E;a) - F~ (y; 0) >. Consequently t h e  corres-  
j c N  I .? n 

pondlng "dualn problem t akes  t h e  form: 

i i * + E w ,  a - P ( 1 ; 0 1 > )  

over ( u j , v j )  c *s', j c  N ,  

wi <  1 4 ( i ) ,  i € n 

se t .  y j r i  ( u j ; $ j )  - wi,  y j d  ( v j ; $ j )  = wi,  v i  c  kl, j c  N .  



Obviously, instead of the commodity balance restrictions appearing in the 

original - or primal - problem (31, the dual restrictions might be taken 
as (weighted) price equality condition on the transition points. 

Now, prov~ded the suprenum in (3) is equal to the infimum ( 10) (wh~ch is 

generic in case the I/O-processes are concave), and provided ( (3 ,c3) I j  

(Cili is a dual optimal solution, a necessary condition for optinmlity 

A'j A'j 
of , I j  in 3 i s  t a h  x ,y ) is optimal ID the cor- 

responding problm: 

(11, { sup (,,j (x'j,y'j) - <cj,xfj> + <Cj,$'>), 

over (x",ytj) 6 s'; 

in case of uniqueness this condition is sufficient, as well. Since in these 

optimality conditions the commodity balans restrictions are eliminated, the 

optimization is decomposed over the separate I/O-processes. Illustrative is 

the dual fonnulation of the abstract dynamic problem ( 5 1 ,  which can be reduced 

to the £om: 

inf (n<$ ,$> + r:'l ( ~ ) ~ ~ * b ~ ( ~ ~ ; ~ ~ )  - ) , 

12. { over (ut,vt) c 'st, t = 1,2 ,..., h, - - - 
s.t. n5t+1 = $, t = 1,2, ..., h-1, 

h 1 2 3  
v - = (q ,q , ¶ ) ,  

3 
where ql, q2, q are fixed given valuation vectors of the terminal state. 

Note: in this formulation of the dual problem the elimination of the dual 

i 
variables (w 1 .  as introduced in (101, appears to be self-evident. 

I c n 
At At 

Further, given a dual optimal solution (y  , y  I ,  t = 1.2. ..., h, the decomposed 
problems (ll), in fact are single period optimization problems. 



We conclude t h i s  sec t ion  with some summarizing remarks. F i r s t  of a l l  

we found t h a t  the  nature  of t h e  process-f low-transi t ion s t r u c t u r e  is 

recurs ive  o r  r e p e t i t i v e .  Exploring t h i s  c h a r a c t e r i s t i c  it is possible  

t o  descr ibe  such s t r u c t u r e s  uniformlg with t h e  help  of a simple recurs ive  

p b t e r  system. The s t r u c t u r e  i t s e l v e s  gives  se l f -evident  s t a r t i n g - p i n t s  

f o r  - what w e  have c a l l e d  - s t r u c t u r a l  decomposition, a t  any des i r ed  

abs t rac t ion  l eve l .  S t ruc tu ra l  decomposition can be supported by standard 

i a g r a n g e ~  decomposition techniques; the  corresponding dual  problem can 

be described with the  help  of the  same recurs ive  po in te r  s y s t m .  cmcs 

t h e  s t r u c t u r e  of the  model i s  f ixed  i n  terms of such po in te r  system, 

it is poss ib le  t o  organize t h e  data and t he  r epor t  wr i t ing  along t h e  

same l i n e s .  

2 .  POLYHEDRAL PROCESS-PMW-TRANSITION Sl'RUCNRES 

In t h i s  sec t ion  ve w ~ l l  spec ia l i ze  t h e  domain of our  I/-process t o  a 

p a r t i c u l a r  polyhedral s e t ;  t o  beprec i se .  d i t h  a polyheder is meant anysolu-  

t i o n s e t  in a f i n i t e  dimensional r e a l  vector space of a f i n i t e  system of 

l i n e a r  inequa l r t r e s  and/or e q u a l i t i e s .  I t  w i l l  appear t h a t  every process- 

f low-transr t ion s t r u c t u r e  where t h e  processes a r e  spec ia l i zed  rn t h i s  

manner, can be represented in a matrrx form with again ,  a r e p e t i t i v e  

s t r u c t u r e .  Of course,  i f ,  in  add i t ion ,  the  u t i l i t y  funct ions  a r e  l i n e a r  

o r  represented by a quadrat ic  form, such matrices can be used d i r e c t l y  

in t h e  scandard optimizarion methods. Below t h e  s e t  of r e a l  m x n-matrices 

is denoted X t m x n ;  t he  s e t  of r e e l  m x n-marrices with nonnegative elements 

is denoted IRyn . 



Formally, we de f ine  a polyhedral  I/-process a s  a  (b i - ) func t ion  

rr:S C I R m * ~ ~ n + R L  LI I + - ) ,  being r ep resen tab le  by a  quadruple cons i s t ing  of 

k 
a  polyheder P  c R + ,  a  concave funct ion v:P+ R L  its hypograph 

1  X k  
( (= , a )  6 P x R I a  ; V ( Z )  1 closed,  a  matrix A 6 m:x k ,  and a  matrix B 6 mn 

i n  t h e  following manner: 

Observe that p c W: and A c w:~  implies:  S c ~ = x m " ;  f u r t h e r ,  t h e  

inequa l i ty  Az 5 x appearing i n  t h e  d e f i n i t i o n  i m p l i e s t h a t t h e  " f r ee  d isposal"  

hypothesis on inpu t s  is s a t i s f i e d . a e a r l y ,  In case  Y is f i n i t e  f o r  a l l  

(x ,y)  e S, t h e  funct ion u:S c m m x a n + ~ '  is an I/O-process, indeed. Ob- 

viously ,  f o r  each z 6 P, t h e  q u a n t i t i e s  Az and Bz can be conceived a s  t h e  

"e f f ec t rve"  inputs  and the  outputs  resp.  belonging t o  t h e  process  intensity 

vector  z .  Below, polyhedral I/-processes w i l l  be denoted b r i e f l y ,  by the 

de f in ing  quadruples,  t h e  order  of a  polyheder,  a  func t ion  on t h a t  polyheder,  

t h e  input  matrix,  and t h e  output  matrix.  Thus, we w i l l  c a l l  a  process-f lw-  

t r a n s i t i o n  structure polyhedral ,  i f  a l l  processes a r e  polyhedral I/-processes 

u ( j l x k ( j ) ,  Bj  m u ( j ) x k ( j $ ,  s p e c i f i e d  by (P' c m k ( j '  , v J : p j  +a1 , A' 6 m+ 

j  c N .  E v ~ d e n t l y ,  i n  t h i s  context  it is poss ib l e  t o  s u b s t i t u t e  m p u t  and 

output  flow vec to r s  x*', y*' ( j  N) by t h e  express ions  ~ j z j  and Bjz'. Then, 

glven the  incidence func t ions  @':M-.10,1 ,... ) f o r  t hg  inpu t s ,  $ j : M + { ~ , l ,  ...I 

f o r  t he  outputs ,  a:M+IO,l,  ...I f o r  imports, and 8 : ~ - { 0 , 1 ,  ... ) f o r  t h e  

expor ts  ( M  being the  index set f o r  t h e  t r a n s i t i o n  p o i n t s ) ,  t h e  c d i t y  

balance condi t ions  reduce t o  



(14) { Lor a l l  i E n vi th  $ ' ( i )  0 fo r  some j E N ,  

pi (y;,) = pi (z~b) + Z .  pi (B'Zj), 
I E N  

I fo r  a l l  i a t4 with $ j ( i )  - 0 for  a l l  j a N;  

x, y being the import and export flow vectors. Given theme import and - 
export flow vectors. (z' I N, z' E Pj ,  w i l l  be cal led a feasible  con- 

f igurat ion of process intensi ty  vectors i f  (14)  is satisfied. 

In connection v l t h  " c d i t y "  space PI' in the  dof in i t ion  of recourses 

and f i ~ l  d-ds as  s p c i a l  I/O-procem~es, one may introduce tho Oxk- 

m a t r u  as  the 1 x k-matrix v i t h  a l l  elemants zero, and denote tho s e t  of 

0 k-matrices a s  aox k. Then recourses can bs defined by taking A E a 0' k 

Ox k 
and f-1 demands by taking B E a . 

As an i l l u s t r a t i o n  ve spacify our (s ingle  period) conmodity d i s t r ibu t ion  

model of d e  f i r s t  diagram a s  follows: 

- rhe d i s t r ibu t ion  process, indicated j := 1: 

1 p1 :- m y ,  v ( 2 )  := o for  a l l  z 6 P', A' : =  (I",I"), := x2" 
e 

( I  being the  e x e-ident i ty  matrix) , 

- the production process, indicated j := 2: 

k e p2 :- i ( z 8 , z 1 * i  a: xm+ I&- r ,  i l l  z.1, g i v m  X atxk. r 6 q , 
- ndc 

and glvan A t a+ t 

2 
v Lz) :- 0 for a l l  z a P2, A2 := (I",o) (0 being the  nx k zero-matrix), 

- n x k  s2 :- (" i), given B a 5 , and given the diagonal -duration matrixn 0 
P 

A being introduced e a r l i e r ,  



- the consumption process, indicated j := 3: 

3 1 
p 3  := m:, v ((Z := <P,z> - --<z.Qz>, given p € IR: and given Q c R 

n x n  
2 

symmetric posi t ive semi-def i n i t e ,  

A3 := 1". g3 :- ,Ic, given the diagonal "duration" matrix ,Ic, 

- t r ans i t ion  points with indar s e t  M := (1,2,3,4,5,61, 

- input and output incidence function O':M+(0.1, ... 1, $ ' : M + ( o , ~  ,... 1 a s  

introduced e a r l i e r .  

I rmted  of formulatiag the c d i t y  balance ~ 0 n d i t i 0 ~  i n  tenUS of the 

flow configuration functions F ~ ,  one a l so  may use sequences of matrices 

' ~ ~ ' ' ' i  6 n, j 6 N 1  ( ~ ~ " ' i  c n V j  c N defined 

where a?[ ID?[ resp. ) represents the 1 - th  column of m i l t r i a  A' (B' resp.) ; 

observe t h a t  Ai" := 0 (Bi" :- 0 resp.) i f  O J ( i )  - 0 ( $ j ( i )  = 0 resp.) .  

Then, i n  the case t h a t  the processes and the t rans i t ion  points a r e  ordered 

s o  that U - { l , 2  ,..., n1, n - {1 ,2  ,..., m l ,  n :- I N I ,  m :- Inl ,  these matrices 

may b. conceived an g b l o c k - e l ~ t s g  of col~posd input and output matrices 

A** :- ( ( A ~ " ) ~ ~ ) ~ ~ ~  B** :- t ( ~ ~ " ) ~ ~ ) ~ , ,  representing the c m p l e t a  

input and output data i n  cur axamplevthese "super-matrices" take the form: 



obviously t h e  " p i l a r s " ,  numbered j - 1 . 2 ,  ..., n r e f e r  t o  t h e  processes ,  

whereas t h e  " f loo r s " ,  numbered i = 1 . 2 ,  ..., m r e f e r  t o  t h e  t r a n s i t i o n  

points .  

Analogous t o  t he  transfozmation from a gene ra l  process- f law-t rans i t ion  

sc ruc tu re  i n t o  an I/-process, we a l s o  have such a t ransformat ion f o r  t h e  

polyhedra l  case .  However, s i n c e  i n  the polyh-al c a s e  flows a r e  expressed 

in terms of process  i n t e n s i t y  v e c t o r s ,  we have tw d i f f e r e n c e s .  F i r s t l y ,  

we have to spec i fy  an orde r ing  on t h e  processes;  this can  b e  done wi th  

t he  h e l p  o f  an  o rde r ing  funct ion  0 : ! 1 , 2  ,..., n l + N ,  wi th  n :- I N ( ,  
P ( f I ,  2 ,  . . . , n ) )  = N. Secondly, in o rde r  t o  p re se rve  t h e  n o ~ e g a t i v i c y  con- 

ven t ion  concerning t h e  i n p u u ,  e x t e r n a l  i npu t s  (or imports)  only  may flow 

t o  t r a n s i t i o n  p o i n t s  which a r e  connected with processes  only  by inpu t  flows. 

Sometimes it w i l l  be  necessary t o  extend t h e  model in o rde r  t o  in t roduce  

s u i - A l e  t r a n s i t i o n  po in t s .  For i n s t ance ,  i f ,  i n  ou r  s i n g l e  per iod cmamodity 

d i s t r i b u t i o n  model, one l i k e s  t o  in t roduce  e x t e m l  inpu t s  a t  t h e  t r a n s i -  

t l o n  p o i n t s  i = 1 . 2 . 3 .  one has t o  extend t h e  process- f low-t rans i t ion  s t r u c t u r e  

in t h e  following manner: 

4 where TI is represented  by ( P ~ , u ~ , A ~ ,  s4),  p4 :- IR: , u ( z )  := 0 f o r  a l l  

z i p4, :- l n ,  g4 :- I", and T2 by ( P ~ , U ~ , A ~ , B ~ )  being def ined in t h e  

same manner. 



Again r e s t r i c t i n g  ourselves  t o  a f i n i t e  s t r u c t u r e  ( i . e .  m := \ M I  < +, 

n :- I N /  < e ) , and again  assuming t h a t  t he  ex te rna l  input  and output  

vec to r s  a r e  spec i f i ed  by flow incidence funct ions  a:M+{ 0,1,2.  ... ; and 
h 

B:n+(O. l ,2 ,  ... ) resp. ,  our composed polyhedral I/O-process (g c IR , 
1 s *h v : P  + R  , A €  IRZxh,  B E  Zl ) i s d e f i n e d :  - 

- h := L k ( j ) ,  r :- ( L  E ( i ) ,  over i c M ,  s.t. a ( i )  f 0 ) .  
j 6 N  

s :- ( L  E ( i ) ,  over i c M ,  s.t. B ( i )  # 0). 

- p :- ( ( z o ( l l  ,z‘'(2) ,..., Zo (n)) p~ (1)  p~ (21, (n) - I 
f o r  a l l  i c M with  a ( i )  + B ( i )  - 0: 

0 : (1 ,2 ,  ..., n )  + N  being an order ing on t h e  processes ,  

- O(l '  z0 (2)  0 ) : & y j v j  (,I) , - u ( z  , ,..., 
1 6  N 

{y l l  being a given sequence of nonnegative r i g h t  f a c t o r s ,  

- A :a ( ( A e ' j ) m '  " - - [ - l ) j = l '  m '  :- l ' a ( i ) ' i c M l a ( i )  o l '  
A a ( i )  # j  := A i , D ( j )  - , i c M s o  t h a t  a ( i )  Z 0 ,  j c N 

e , ] ,m1 '  n - - 8 ( (  ell) j=l,  m" :' I ( t 3 ( i ) ) i i  M j B ( i )  O l f  
B B ( i )  , j  := B i , ~ ( j )  - , i c M so t h a t  B(i) Z 0 ,  j c N; 

provided the  following "import hypotheses" concerning t h e  import i nc i -  

dence functron a r e  s a t i s f i e d :  

- f o r  each i c M s o  t h a t  a ( i )  Z 0,  t h e r e  is a t  l e a s t  one j  c N with $' (i) Z 0 ,  

- f o r  each i c M s o  t h a t  a ( i )  Z 0 ,  it hold: $ j ( i )  = 0 f o r  a l l  j c N. 

Returning t o  our example in t h e  extended form: pu t t ing  a ( 7 )  :=  1, a (2 )  := 2, 

a ( 8 )  := 3 .  a ( i )  := 0 f o r  i f 7 , 2 , 8 ,  6 ( 4 )  := 1 ,  B(5) :- 2. 0 ( 6 )  := 3 ,  B ( i )  :- 0 

f o r  i Z 4,5 .6 ,  o ( 3 )  := j ,  j  - 1.2, ..., 5,  t he  corresponding composed polyhedral  

I/O-process can b e  defined: 



1 
Next, taking scch a composed polyhedral  I/O-process(c c m h ( t )  f - Apt - * , 
A~ i a:nxh(t), $ I R ~ ~ ~ ~ ( ~ ' )  a s  an a b s t r a c t i o n  of a underlying - 
process-flow-transit ion s t r u c t u r e  f o r  a per iod t c (0 .1 .  ..., h},  t he  

polyhedral vers ion of our dycam~c model (5) can be wrr t ten:  

h t t  t t t i1  1 2 3  h h  sup ( ( L t l l  ( n )  Y (5 ) )  + ( H )  <(q ,4 ,4 1 • 5 > I r  

t 
over 5 c P t ,  t = 1 , 2  ,..., h,  

s . t .  
gt-l t = 1,2 ,..., h,  

0 where 5 LS a given process i n t e n s i t y  vector  of  t h e  l a s t  p a s t  per iod 

t = 0. I t  should be c l e a r  t h a t  t h e  r ecu r s ive  nature  of composed input  

andou tpu tma t r i ces ,  allow s i m ~ l a r  s t r u c t u r a l  o r  Lagrangean decomposition 

s t r u c t u r e s  a s  t h e  general  process-flow-transit ion s t r u c t u r e .  



The i r p u t  and output  matr ices  can be composed i n  a r ecu r s ive  manner. Solving 

problems with t h i s  s t r u c t u r e  by numerical methods means t h e  a v a i l a b i l i t y  of 

software t o  generate  t h e  matr ices  i n  t h e  appropr i a t e  format. This  s o f t v a r e  

must come up t o  t h e  next  requirements: 

a) Support of t h e  modellins - 

- The s e t  of i n s t r u c t i o n s  must allow the  r ecu r s ive  composing of matr ices ,  

a s  prcposed in t h e  preceding sect ions-  

- The -er t o  g ive  in s t ruc t ion6  must be o r i e n t a t e d  t o u s e r s v i t h  somemathe- 

ma t i ca l  background and s- experience with t h i s  s t r u c t u r e  of modelling. 

- Without handling t h e  d a t a ,  it must be poss ib l e  t o  make a o v e r v i w  how t h e  

matr ix  is composed by t h e  given ins t ruc t ions .  

- I l l e g a l  i n s t ruc t ions  must be recognized and repor ted  t o  t h e  user .  No 

i l l e g a l  s e t  of i n s t r u c t i o n s  +ay cause t h e  matrixgenerator t o  col lapse .  

b) Datahandling requirements - 

- Without e x p l i c i t  mention it is nota l lowed t o g i v e  i n s t r u c t i o n s  by which an 

a l r eady  assigned value of a (sub)matrFx is changed. 

- To avoid not-defined s i t u a t i o n s ,  it is necessary t o  con t ro l  t h e  dimensions 

of t h e  matr ices  dur ing t h e  e l abora t ion  of express ions  and t h e  assignment 

of  values.  

- A l a r g e  number of data foxmats m u s t  be a v a i l e b l e  and t h e  implementation 

of another fo rma to rchang ingofa  format must be easy. This  en la rges  t h e  

u s a b i l i t y  of t h e  matrixgenerator.  



C) Report writinq - 

- The matrixqanerator must have facilities to associate names with rove 

or floors and columns or pilars. These names can be used for the re- 

porting of the results. 

d_l Flexibility 

- The software must be easy to understand, so one can mslre changes Fn the 

design of the matrixgemrator to one's avn opinion. 

e) Machine independency - 

- The slze of the software must be smal1,to allow the matrixgenerator 

implementation on a microcomputer. 

- The design of the software must allow that one builds aninstmction set 

describing the recursive set-up of matrices on a small computer and 

runs that program with the data inon other computer. 

In view of these requirements, we choose to design a language. with a 

simple syntax and a sepl~tttidirected at the recursive composing of 

matrices. in which all desired instructions can bs represented. The graumar 

of this language is context-free and is expressed by so called syntax 

diaqram (see appendix 8 ) .  The intention of these diagrams is twofold. 

First, it is of use to the user. With the help of the diagrams he can easily 

check whether an instruction is a well- or ill-formed sentence of the 

language. 

Second, it is the starting-point for the hplemantation of the software. 

The diagrams are translated in a syntax parser. This parser is extended 

successively by error-recovery, code-generation and code-interpretation. 



The s t v i s e  refinement leads t o  a modular construction of the software 01. 

A table-driven psrser approach makes the language extensible, so it can be 

extended by further  syntact ic  constructs. This requires declaration of the  

variables preceding the instruction-part,  where theycoccur. 

A value is assigned t o  a submatrix, t h i s  value can b e t h e r e s u l t  of the  avalua- 

t ion of an expression. The various manipulations on matrices a r e  defined 

a s  operators. Monadic operators a re  t r a n s ~ e i t i o n o f a m a t r i x .  Fnversionofa matrix, 

inversion of the entr ies1 dyadic operators a r e  multiplication, addition;sub- 

t rac t ion  and a l so  the fusion of tvo matrices to one larger  matrix. 

CLnally standard procedures organisem the input and output of data. 

These procedures can be adapted ea s i l y ,  when the format of the  data is 

d i f fe ren t  f r m  the formats already implemented. 

Using recursion and dynamic data s tructurinc~ techniques, it is possible 

t o  wri te  short  programs. Because of the ava i l i b i l i t y  of Pascal-compilers for  many 

computersystemsthesoftware of the  matrixgenerator is written in the p roq rmlnq  

language Pascal. 

3.1. Datatypes and operators 

In our matrixgenerator language t he  standard implemented data typs are: 

integer, r e a l ,  matrix and f i l e .  The types integer and rea l  a re  well 

known, for  the other two types the following can be said: 

EE-%?!?-matf _is 

An object of the type matrLx is specified by the multiplicity of the re- 

presanting matrix. Multiplicity is a r~enera lha t ion  of the well-known dimanslon concept 

it indicates the number of matrices the super-matrix, introduced ea r l i e r ,  

consists  of. The number of r a t s  and columns denotes the dimensions of a 

matrix, similary the number of f loors  and p i l a r s  denotes the  mult ipl ici ty 

of a super-matriw, also h l l e d  compound matrix. 



The value of the type matrix fa  an elemant of the s e t  of mxn matrices 

with e n t r i e s  belonging t o  ZI1 . The following operators applied t o  operands 

of the type matrix y ie ld  a matrixvalue. 

- The monadic operators; s ign inversion ( - ) ,  inversion (INVERT),  transpo- 

s i t i o n  (TRANSPOSE) of a matrix. 

- The dyadic operators1 mult ipl icat ion ( + I ,  addition (+) , subtraction ( - )  , 

augmentation by placing matrices s ide  by aide (COL) or by placing a 

matrix b e l w  (m) o r  diagonally b e l w  ( D m 1  an other  matrix. The operators 

CQL, DXA and RCW are  d e f i n d  as: 

A COL B :- ( A , B )  

A DIA B :I (t i) 
A 

A ROU 0 :- . 

- The dyadic operators REPCOL. REPDIA and REP- a r e  the repe t i t ion  variants  

of the operacors COL, DXA and RCW. The l e f t  operand is of the  type integer 

and the r i g h t  of the type matrix. These operators y ie ld  a r e s u l t  of the 

type matrix and are  defined as:  

K REPCOL A :r (A,A,  ....., A) - 
k times 



- The s c a l a r  mul t ip l i ca t ion  ( * ) .  is a l s o  implemented, i n  the  case  t h e  

l e f t  operand may be of the  type in teqe r  o r  r ea l .  Let PI and A being 

a r e a l  rasp. matrix va r i sb la .  then is t h e  expression P I  + A a v a l i d  

one. 

The--%_e-Zll_e 

A var iab le  of the  type f i l e  des ignates  a sequence of data. The name of 

t h e  va r i ab le  and t h e  ruum of t h e  f i l e  on secondary s to rage  of a computer 

a r e  t h e  same. 

3.2. A matrixgenerator program 

Every program expressed in tho matrixgenerator language ccmsis ts  of a decla- 

r a t i o n  part, where a l l  objocto a r e  defined and a .s ta tcmcnt  specifying the  

ac t ions  t o  ka executed upon this ob jec t s .  

A program c o n s i s t s  o f :  

r m u l t i p l i c i t y  d e f i n i t i o n  

C dec la ra t ion  parc var iab le  dec la ra t ion  

funct ion dec la ra t ion  

program 
rass ignment  statement 

change statement 
statement p a r t  

r e p e t i t i v e  s ta tement  

[standard procedure 

3.3. Declaration part 

A dec la ra t ion  p a r t  cons i s t s  of a m u l t i p l i c i t y  d e f i n i t i o n  p a r t ,  a va r i ab le  

dea la ra t ion  p a r t  and a funct ion dec la ra t ion  pa r t .  

A m u l t i p l i c i t y  d e f i n i t i o n  introduce8 an i d e n t i f i e r  a8 a synonym f o r  t h e  

rider of f l o o r s  o r  p i l a r s  of acornpoundmatrix. The use  of m u l t i p l i c i t y  



i d e n t i f i e r s  ma)ios a program more readable.  The user  can a l s o  group the oxample 

dependent m u l t i p l i c i t y  of the mat r i ces  a t  t h e  b e g i ~ i n g  of t h e  program 

where it can be e a s i l y  changed. 

A v a r i a b l e  dec la ra t ion  a s soc ia t e s  an i d e n t i f i e r  and a s tandard type  wi th  

a n w  var iable .  In  t h e  dec la ra t ion  of a v a r i a b l e  of  the typo matr ix  the 

m u l t i p l i c i t y  is denoted vh.n t h e  va r i ab le  rmprewnts  cgpound  matrix- 

The nrmrb.r o f f l 0 O r s a n d  p i l a r s  is  recorded naxt t o  t h e  synrbol matrix.  An 

~ l e  of  t h e  va r i ab le  dac la ra t ion  of  a matrix A comibtm,of2 f l o o n  and 

2 p i l a r s  

VARIABLE 

A funct ion is a program part, which c a l c u l a t e s  a va lue  o f  t h e  type matrix.  

This  v a l w  is u s d  i n  t h e  evaluat ion of an supreasion. The funct ion dec la ra t ion  

has the  same form a s  a program,but is p r e c e e d d  by a function-headins of t he  

form: 

FVNmION i d e n t i f i e r  ; 

3.4. Statement part 

A statement can be an assignment, c o o p o ~ ~ ~ d , c h a n p e ,  r e p e t i t i v e  s ta tement  

o r  a s tandard procedure c a l l .  The assignment s ta tamant  s p e c i f i e s  t h a t  a newly 

cornputadvaluehas t o  be ass ignad t o  a va r i ab le .  The n w  value  is obta ined 

by eva lua t ing  an expression c o m i s t i n g  of s tandard o r  v a r i a b l e  operands,  

ope ra to r s  and funct ion des ignators .  The matr ixgenerator  lanquage k n m s  

t h r e e  s tandard ob jec t s  of t h e  typo matrix: 

mR9 - Zero-matrix 

-1 - E-matrix 

The value  of a l l  e n t r i e s  is 1 

IDEN - I d e n t i t y  matrix.  



The dimensions of these standard objects  must be recorded next t o  the  

appropriate symbol mR0, UI'RI or IDM. In the  case of an i d a t i t Y  matxu  

it suf f ices  t o  specify only one dimension. 

The normal rules  of operator precedence is  observed i n  the evaluation of 

an expression. The rmnadic o p r a t o r s  have the hlghest precedence, follcwed 

by the multiplying and repe t i t ive  operators and of lowest precedence, the  

adding operators. 

In an assig-t the variable and t h e  axpression muat k of tho mame type. 

In case of a m a t r i r  value the  dimensions of the  variable  and expressions 

must a l so  correepmd with each othor. To w e r y  coin-mnent of a compound matrix 

must be assigned a value. Only a change statement can change the value 

of a matrix variable. Assigmasnt to variables  of the type f i l e s  is not 

possible. 

The input and output of data is handled by the standard procedures READ and 

WRITE. A READ o r  WRITE procadure c a l l  associates  a f i l e  on secondary storage 

of a canputer with a matrix variable  i n  the  program. One of the parameters of 

these procedures designates the format of the transmitted data. 

Other f a c i l i t i e s  are: 

- Visualizing the  values already assigned t o  submatrices of a ccxpound matrix 

on t h a t  s tage of the  program. 

- Associating names w i t h f l o o r s o r  p i l a r s  of the compound matrix. These names 

a r e  l i s t e d  on a f i l e  and a r e  part of the input of the  report writer.  

- Associating re la t iona l  symbols (S, 3, - 1  with the rows of a compound 

matrix t o  meet the  input data  raquirements of some L.P.-programs. 

3.5. Software 3tructurinQ 

The canstruction of the matrixgenerator s t a r t s  from the  syntax diagram. 

The diagrams a r e  t ranslated in an appropriate program structure.  Such a 



program is able  t o  analyse the syntax of an input sequurce of oymbols. 

The parser uses a scanner whose t a s R i t t s w - q e t t h e  n u t  symbol. The scanner 

a l so  skips separates and recognizes reserved wrda, integer  and real numbern. 

spec ia l  symbols and iden t i f i e r s .  The parser c o l l e c t s  the declared i d e n t i f i e r s  

denoting the mult ipl ic i ty  of matrices variables  arid functions i n  a table .  

Th occururce of an i d e n t i f i e r  within a s t a t r e n t  thou causes a search of 

th in  t ab le  to detexmbe whether or. not tho i d a n t i f i a r  haa b w n  properly 

declared. Up to t h i s  point the  p u e u  cur only datermine whether o r  not 

the input nquence of ey&ols balcmgs t o  the m t r i x q u m r a t o r  L.nguage. 

Aa a f i r s t  r e f i n m u r t  ( u r o r - r r o v e r y )  the  parser  is argument& w i t h  an 

appropriate u r o r  di.g.n~mtic s y s t m  and aft- a syntax er ror  the  parsing 

process w i l l  be continued t o  f ind  possibly fu r ther  rnistakaa. 

In a aecond refinement (code generation) the  ins t ruc t io ru  (operators, 

assignments, sr lnan,procedures)  a r e  col lected i n  an other  table. For t h i s  

prrpose, it is necessary t o  list an expression in the  postf ix  form s.quence. 

An in te rpre te r  is added t o  ganerate a program in the programing language 

Pascal frcm the both tables  with i d e n t i f i e r s  and instruct ione.  The generated 

program can be executsd, not necessar i ly  by the same machine, with the  help 

of spec ia l ly  written LLbrUy Frogramp. 

1 J . J . M .  Evers, "The Dytmmics of Concave Input/Output Processes", i n  

Convex Analysis and Mathematical Economics, (J. lCriens ed.), Lecture 

~ o t e s  in ~conomics and nathematical Syst-, 168, Springer Verlag (1979). 

C21 R.T. Rockafellsr, "Convex Analysis", Princeton University Press (1970). 

[ 3 ]  N. W i r t h ,  "Algorithms + Data Structures  - Program", Prentice H a l l ,  

Enqle-d C l i f f s  ( N . J . )  (1976) . 



APPEhDIX A: An m p l e  

A multiperiod process-flowtransition prablem can be formulated a s  a dynamic 

I/-process (16). Taking a planning horizon h :- 4, the canposed polyhedral 

I/O-process (:t 
=6n+k(t) vt,pt +11 At c ,  =3n x (6n+k(t)) Bt , =3nx (6n+&t) 1 ) - ' - + ' -  

proposed i n  t h i s  paper, can be written an: 

where 2 is a givan process i n t w i t y  vector of the  l a s t  period t - 0. 
t The vector Pt and t h e  matrix 2 a r e  

A t  
Because of the polyhedral s t ruc ture  the matrix A and the vector 5t are  

defined as: 

A t \  1 - 2 3 4 5  

1 -1" : 0 I" I 0 0 -1" 0 
I 

2 0 '-1" 0 , O  In 0 -In I 

o r o  -1~12 o o o 
3 1 - - - - -  - - - -  

a , o  
' 

o 1 3 * ,  a 6 6 



- 8 5 4 -  

t t 
The matrices A and g are defined as :  

The prablem can be simplified to a concave quadratic programing problem. 

t 
For convencienc we have supposed that the polyhedral P is the independent  

and a l s o  the input and output matrices At and gc. To come to the short 

notation w e  have introduced: 



A 
The dimensions of A, A and g are not of the same size,  this fact must be  

taken into account by the definition of matr5x  S.  

Like matrix S ,  must vector b' be defined i n  an appropriate form 

, with the known identity vector in the last period t = 0.  



The standard Lagranqean of the concave quadratic p r o g r d n g  leads t o  the 

l inear  camplmantarity prablem formulation 

u c  a 24n+4e , v t a 24n+4k a r e  the Lagrange mult ipl iers  and y c m 24n+d 

the slack-vector of the constraints  ( S  + R)Z* 2 bt + rt .  

This problem can solved with the Lauke a l q o r i t h .  

With the n u t  program we want t o  generate the matrix II and vectar d defined 

a8: 



(program t o  gonerate the input of a computerprogram based on the Lemke 

algorithm f 

MlLTIPLICITY 

- = 3 r  M = 5 ;  H N - 4 ;  

VARIABLE 

(dimen~ion indicators  fo r  sutmatricesl 

K,L,N: IWIEGER; 

(discount factor  n and mi2f 

PI, SQPI: REAL; 

(compound matricesf 

AT, A, 8: MATRIX(I(L.Ml4); 

S: MATRIX(MN,MN) ; 

M: MATRIX(2.2); 

D: HATRIX(2.1); 

(matrices and vectors) 

P, Q, R, PP, PQ, C, RR, RB: MATRIX; 

(aux i l i a ry  matrices and vectors) 

PI'. QT, ASS. ASP, PG, BS. RS, ZNUL. QD: MATRIX; 

( f i l e s  on secondary storage with da ta )  

PFILE, QPILE, ASSFILE, ASTFILE. PCFILE, BSFILE, CGFILE, WILE, 

ZNULFILE. QDFILE: PILE; 

1.J: INTEGER 

BEGIN 

( t h e  ac tua l  parameter FORMAT i n  the procedure c a l l  read and write 

designates an arb i t ra ry  formst of the data)  

K :- 6 .  L :- 1; N := 3r 

( c o n s t r u c t f ~ o f v e c t o r  pf 

RERD(PFILE, F O W T ,  PT); (read the  data fo r  vector pf  

P := m0(2+ti,1) ROW KFRQ(N+K,~) ROW PF ROW(Z REPIMW MTR~(N,~))I 



(construction of matrix gl 

READ(QF1LE. FORHAT, QT); 

Q  := MTRv(Z*N,2+N) DIA MIl30(N+K, N+K) D I A  PT D I A ( 2  W D I A  MTRP(N.N); 

(canpsirsg mauix 

A T ( 1 , l )  :- -IDEN(Nl COL I ( P R v ( N , N ) ;  

A T ( 1 . 2 )  :- I D W ( N )  COL ~ P ( N , K ) ;  

A T ( 1 . 4 )  :- - I D E N ( N ) ;  

A T ( 2 . 1 )  :- I ( P m ( N . N l  COL - I D W ( N ) ;  

A T ( 2 . 3 1  :- L D W j N ) ;  

A T ( 2 . 5 )  :- - I D P ( ( N l  ; 

READ(ASSFILE, FOIIEIAT, ASS) ; (read d a t a  for  matrix i) 
READ ~ASl'F1I.E. FORE(AT, AST) r { raad data for  XI 

A T ( 3 . 2 1  :- ( - I D M ( N )  COL ASS)  RCH(MTR$(N,N) COL AST) ; 

tccapoaing matrix A )  

A ( 2 . 1 )  :- IDEN(N) COL IDEN(N1; 

A ( 2 . 2 )  :- MlTlv(N,N+K);  

A ( 3 , 3 )  :- I(PRQ(N,N);  

A ( 1 . 4 )  := I D M ( N ) ;  

A ( 3 . 5 )  :- IDEN(N) r 

t capos ing  matrix B l  

B ( 1 . 1 )  :- CcTRP(N,2+N);  

READ(PCFILE, FORMAT, PG) ; {read data for  matrix A') 

B ( 2 . 1 1  :- PG COL I(PRv(N,Kl ; 

READ(BSF1LE. POWAT,  B S ) ;  (read data for  matrix BS} 

B ( 2 . 2 )  :- E(TW(N,N) COL B S i  

READ(CGF1LE. FORP(AT, B ( 3 . 3 )  ) ; (read data for  matrix 

FOR I :- 4  TO 5 W B ( 3 , I )  :- Kl'RP(N,Nl;  

(construction of vector 51 

READ ( W I L E .  FOPMAT, RS) ; ( read data for  vector r )  

R  :- ( 3  REF'RCU I ( P R @ ( N , l ) )  ROW RSI 



P I  :- 0.9, (value of the discount fac tor )  S Q P I  := P I * P I ;  

(construction of vector p*) 

P P  :- P1.P Row SQP1.P Row P I + S Q P I * P  Rar SQPI.SQP1.P; 

tconstruction of matrix Q*) 

QP :- P I + Q  DIA SQP1.Q DIA PI*SQPI+Q DIA SQPI.SQP1.Q; 

(conotructfon of matric C l  

C :- AT DIA AT DIA AT DIA AT; 

t camposing of m a t r i r  S) 

WR I :- 1 TO 4 DO S ( I . 1 )  r -  A RCW IITR@(L,N);  

FOR I :- 1 1Y) 3 DO S ( I + l , I )  := -B ROW H l l l @ ( L , N ) ;  

t comtruc t ion  of vector r*) 

R R : - R R O W R R ~ M R R D W R I  

tcomtruct ion of vector b*) 

0 
RERD (ZNULFILE, FOREIAT, ZNUL) ; tread data f o r  vector = I 

RB :- B.ZNUL ROW KXW(L,N) ~ ( 3  REPROU ~ w ( N + L . ~ ) ) ;  

(canposing matrix M I  

n c l , l )  := QQI 

cni , 2 )  :- TRANSPOSE (SK) ; 

~ ( 2 . 1 )  :- - ( s + c ) ;  

tcomposing vector d l  

RERD(QDF1L.E. FORIIAT. QD) ; trclad data for  vector q*) 

D ( 1 . 1 )  :- P P  + SQPI+SQPIWSANSWSE(B)*QD; 

D ( 2 . 1 )  :- - ( R R + R B ) ;  

{put  the  data i n  the f i l e  DATA) 

WRITE (DATA, FORMAT. n) ; 

WRITE(DATA, FORHAT, D); 

mD. 
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APPENDIX C 

R e s e r v e d  words 

BEGIN, C W E ,  COL, D I A ,  MULTIPLICITY, W, END, FOR, FUNCPION, INVEKT, 

REPCOL. RJPDIA,  REPROW, ROW, TO, TRANSPOSE, VARIABLE 

S t a n d a r d  types 

FILE, INTEGER, HATRJX, REAL 

S t a n d a r d  o b - j e c t s  

LDEN. m R g ,  r n l  

S t a n W d  procedures 

W E ,  READ, SIGNFLOOR, SIGNFtW, VIEW, WRITE 





COMPUTATIONAL EXPERIMENTS IIV THE FORMULATION OF LARGE- 
SCALE LINEAR PROGRAMS 

Gerhard Knolmayer 

lnstitut f i r  Betriebswirtschaftslehre 
Universitat Kiel 

One of the decisions in the construction of a linear program is  which formulation should 
be used. This paper explains why there is  usually a very large number of equivalent formu- 
lations and reports on the computational behavior of these formulations. The usual text- 
book hypothesis - which claims that CPU-time increases with the cube of the number of 
constraints - is  falsified by the reported experiments which suggest that advantage in re- 
ducing the number of rows may be overcompensated by an increase in the number of non- 
zeros. 



S e v e r a l  ( m e t a - )  d e c i s i o n s  h a v e  t o  b e  made i n  t h e  con-  

s t r u c t  i o n  o f  a  d e c i s i o n  mode l :  

- Which s e c t i o n  o f  r e a l i t y  s h o u l d  b e  m o d e l l e d  ? 

- How a c c u r a t e  s h o u l d  o n e  model  t h i s  s e c t i o n  o f  r e a l i t y  ? 

- Which a l g o r i t h m  s h o u l d  b e  u s e d  ? 

- Which p e o p l e ,  c o m p u t e r ,  s o f t w a r e  s h o u l d  b e  employed  ? 

- Which f o r m u l a t i o n  s h o u l d  b e  u s e d  f o r  a  g i v e n  d e g r e e  

o f  a c c u r a c y  o f  t h e  model  ? 

The  i m p l e m e n t a t i o n  o f  d i f f e r e n t  a n s w e r s  o n  t h e s e  q u e s t i o n s  

w i l l  r e s u l t  i n  d i f f e r e n t  b e n e f i t s  and c o s t s  o f  t h e  d e c i s i o n  

mode l .  The  u l t i m a t e  b e n e f i t  o f  m o d e l l i n g  i s  t o  g a i n  i n s i g h t  

i n t o  r e a l i t y .  I n  more d e t a i l  o n e  c o u l d  d i s t i n g u i s h  b e t w e e n  

B e n e f i t  f r o m  mode l  a c c u r a c y  

3 e n e T i t  o f  t h e  e a s e  o f  u n d e r s t a n d i n g  

t h e  f o r m u l a t i o n  

t h e  s o l u t i o n  

o f  t h e  r .ode1. 

On t h e  o t h e r  hand  o n e  c a n  p a r t i t i o n  t h e  c o s t s  o f  d e c i s i o n  

n o d e l s  i n t o  

Z o s t s  o f  model  c o n s t r u c t i o n  

C o s t s  o f  c o l l e c t i n g  d a t a  

C o s t s  o f  m a n i p u l a t i n g  d a t a  

C o s t s  o f  c o m p u t a t i o n .  

Yany c o m o u t a t i o n a l  e x p e r i m e n t s  h a v e  b e e n  p e r f o r m e d  i n  

m a t h e m a t i c a l  p r o s r a m m i n p  (?!?I). Most r e s e a r c h  h a s  c o n c e n -  

t r a t e d  upon t h e  c o m p a r i s o n  o f  a l g o r i t h m s  a n d  c o d e s .  R e c e n t l y  



t h e  need f o r  r e s e a r c h  on a  n e t h o d o l o ~ y  o f  f o r m u l a t i n g  

YP-models has been expressed  / l a / .  

Most computa t ional  exper iments  compare " c o s t s " ,  u s u a l l y  

by g i v i n g  CPU-time. Sometimes c o s t s  and b e n e f i t s  a r e  compared, 
e .g .  i f  t h e  " q u a l i t y "  o f  s o l u t i o n s  o b t a i n e d  is compared t o  
t h e  CPU-time needed f o r  exac t  and h e u r i s t i c  a l g o r i t h m s .  From 

t h i s  p o i n t  o f  view one can  d i s t i n g u i s h  t h e  f o u r  a r e a s  o f  
compu ta t iona l  exper iments  shown i n  F ig .  1. These a r e a s  have 

been i n v e s t i g a t e d  t o  a ve ry  d i f f e r e n t  e x t e n t .  Th i s  paper  
c o n c e n t r a t e s  on a  cos t -compar ison  o f  e q u i v a l e n t  fo rmula t ions  
by u s i n g  a  p roduc t ion  code f o r  l i n e a r  propramming (LP). 

Formula t ions  

Big. 1: Types o f  e x p e r i a e n t s  and t o p i c  o f  t h e  paper  ( X ) 

We d e f i n e  e q u i v a l e n t  fo rmula t ions  a s  models f-om which 

i d e n t i c a l  op t ima l  a c t i v i t y  l e v e l s  can  be d e r i v e d  (by u s i n g  
a  r e p o r t  w r i t e r ) ;  t h e  op t ima l  va lues  of  t h e  o b j e c t i v e  func- 

t i o n s  c o i n c i d e .  S e v e r a l  r e s e a r c h e r s  have compared two equi -  
v a l e n t  fo rmula t ions  f o r  l i n e a r  o r  mixed- in teper  problems; 

I make r e f e r e n c e s  t o  t h e  well-known s t u d i e s  o f  H.P.Williams 
/17;19/  on (mixed-) i n t e g e r  models and t o  t h e  c o n f r o n t a t i o n  

o f  l i n e a r  product-mix-models w i t h  a  "normal" r e s p .  "aggre-  
ga ted"  t e c h n ~ l o g i c a l  ma t r ix  / 1 2 ; 1 4 , p . 1 4 8 - 1 5 7 ; 1 6 , p . 2 7 - 8 2 1 .  

Such comparisons s u f f e r  from t h e  f a c t  t h a t  o f t e n  not  only  



two bu t  p l e n t y  of e q u i v a l e n t  fo rmula t ions  e x i s t .  E s p e c i a l l y  

i f  YP-models a r e  gene ra t ed  from d a t a  bases  c o n t a i n i n q  i n f o r -  
mation on every-day-operat ion t h e  model b u i l d e r  has  t o  d e c i d e  

which of  t h e  e q u i v a l e n t  fo rmula t ions  should  be gene ra t ed .  
This  d e c i s i o n  de termines  t h e  computa t ional  e f f o r t  f o r  m a t r i x  
g e n e r a t i o n  and f o r  o p t i m i z a t i o n .  

I n  p r i n c i p l e  one can  d e f i n e  b a s i c  r e l a t i o n s  from t h e  d a t a  

base  a s  a c t i v i t i e s  of  t h e  LP model and connect  t h e s e  A c t i v i t i e s  

by ba l ance  e q u a t i o n s .  But o f t e n  t h e  s o  emerging model w i l l  

be unso lvab le  by p roduc t ion  codes  due t o  an  enormous number 
of  ba l ance  equa t ions .  A product-mix-model f o r  a  manufac tur ing  

f i r m  w i t h  400 f i n a l  and 10000 i n t e r m e d i a t e  p roduc t s ,  w i t h  30000 
m a t e r i a l s ,  300 c a p a c i t i e s  and a n  ave rage  number of  5 opera-  
t i o n s  f o r  t h e  manufactured p roduc t s  would need 82301 rows and 
82400 s t r u c t u r a l s !  The re fo re  i t  i s  d e s i r a b l e  t o  g e n e r a t e  a  
compact model by e l i m i n a t i n q  ba l ance  e q u a t i o n s .  F i g .  2  shows 
a  s m a l l  ou t  of  t h e  very  l a r g e  number of e q u i v a l e n t  LP-models 

t h a t  can  be  gene ra t ed  from a  Cata  base .  I n  F i g .  2  t h e  s i z e  
of  t h e  model i s  measured by t h e  number of  rows. Data manipu- 

l a t i o n  looks  h i g h l y  a t t r a c t i v e  from t h e  u s u a l  tex tbook hypo- 
t h e s i s  t h a t  CPU-time grows w i t h  t h e  cube of  t h e  number o f  

rows / c f .  e . g .  1, p.83;3,p.16;5,p.146;6,p.181;15,p.118;2O,p.10/. 

Few a u t h o r s  c l a im  t h a t  CPU-time is  in f luenced  by t h e  d e n s i t y  
of  t h e  s o d e l ,  too  / l l , p . 5 7 ; 1 4 , p . 1 9 0 / .  By e l i m i n a t i n g  ba i ance  
equa t ions  u s u a l l y  t h e  number of rows i s  reduced and t h e  den- 
s i t y  r i s e s .  The re fo re  r u l e s  o f  thumb a r e  wanted which inform 

about presumable e f f e c t s  of  m a t r i x  condensa t ion .  To suppor t  
t h e  d e c i s i o n s  i n  model c o n s t r u c t i o n  two types  of  exper iments  

a r e  neces sa ry  : 
- Experiments of g e n e r a t i n g  MP-models ou t  of  (non-specia-  

l i z e d )  d a t a  bases  

- Experiments on t h e  o p t i m i z a t i o n  behav io r  o f  e q u i v a l e n t  
f o r m u l a t i o n s .  

Th i s  pape r  r e p o r t s  on t h e  second type  o f  e x p e r i n e n t s .  



R E L A T I O f l A L  D A T A  B A S E  

1:l - 
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Fig.2: D i f f e r e n t  ways of ma t r ix  gene ra t ion  r e s u l t  i n  equ iva len t  
LP-models of d i f f e r e n t  s i z e  



Let  

c '  x +max ! 

x  0 

b e  a  f e a s i b l e  LP w i t h  s l a c k  and s u r p l u s ,  b u t  w i t h o u t  a r t i f i c i a l  

v a r i a b l e s .  The i n d i c e s  o f  t h e  c o n s t r a i n t s  i form t h e  s e t  

M-MluM2. Rows i t  M2 a r e  c a l l e d  .ba lance  e q u a t i o n s .  L e t  M2=M21~M22. 

We s e a r c h  f o r  a  t r a n s f o r m e d  LP w i t h  new v a r i a b l e s  2 

c '  T  + max! 

T j i S O  

r h i c h  i s  e q u i v a l e n t  t o  (1) b u t  c o m p u t a t i o n a l l y  more a p p r o p r i a t e .  

The l a t t e r  r e q u i r e m e n t  might  b e  a c h i e v e d  i f  

I n  t h i s  c a s e  1 ~ 2 2 1  rows c a n  b e  dropped  a s  r e d u n d a n t .  

I f  t h e  o r i g i n a l  f o r m u l a t i o n  (1) c o n t a i n s  p = / ~ 2 !  b a l a n c e  

e q u a t i o n s  t h e r e  a r e  a t  l e a s t  2' e q u i v a l e n t  f o r m u l a t i o n s !  To 

overcome t h e  prob lems  d u e  t o  t h i s  enormous number c f  e q u i v a l e n t  

f o r m u l a t i o n s  we r e s t r i c t  t h e  d i s c u s s i o n  t o  t h o s e  f o r m u l a t i o n s  

which a r i s e  by a  s e q u e n t i a l  e l i m i n a t i o n  o f  b a l a n c e  e q u a t i o n s .  

The s e q u e n c e  c a n  b e  d e t e r m i n e d  h e u r i s t i c a l l y  by some p l a u s i b l e  

c r i t e r i u m .  I n  t h e  s e q u e n t i a l  p r o c e d u r e  we have  

1 ~ 2 2  1 
T =  i7 

i= 1 Ti 



where Ti is t h e  t r a n s f o r m a t i o n  m a t r i x  f o r  t h e  i - t h  e l i m i n a t i o n  
o f  a  ba l ance  equa t ion .  

It remains t o  de termine  m a t r i c e s  Ti i n  such  a  way t h a t  (1) 

and ( 2 )  a r e  e q u i v a l e n t .  A f t e r  e l i m i n a t i o n  o f  f - l < p  ba l ance  
e q u a t i o n s  t h e r e  e x i s t s  a  row krM21 so  t h a t  

Le t  ; O S ( ~ ) =  ( j  ( a k j  >O) and N E G ( ~ ) =  (j lakj ' 0 )  . These s e t s  
a r e  nonempty if t h e r e  a r e  no n u l l  v a r i a b l e s .  Fr ( r r Y ~ ~ ( k ) )  c a n  

be p o s i t i v e  i f  and only  i f  a t  l e a s t  one X (j.f&G(k)) i s  pos i -  
j 

t i v e .  Th i s  n I f - t h e n n - r e l a t i o n  a l l o w s  Zr>O and Xs>O ( s r ? ~ G ( k )  ) 

i m p l i c i t l y  by a  ncoupled  a c t i v i t y "  a U > O .  The c o e f f i c i e n t s  o f  
t h e  coupled  a c t i v i t y  a r e  computed a s  

s o  t h a t  v a r i a b l e  u  h a s  a  z e r o  i n  row k. g i s  a n  a r b i t r a r y  

p o s i t i v e  f a c t o r ;  i n  t h e  subsequent  t e x t  we assume g = l .  

A l l  p o s s i b l e  a c t i v i t y  l e v e l s  o f  t h e  p r i o r  fo rmula t ion  can  - 
be exp res sed  by I F o s ( ~ ) ~ .  ( k ~ ~ ( k ) l  coupled  a c t i v i t i e s .  A f t e r  

t h e  t r a n s f o r m a t i o n  a l l  v a r i a b l e s  K ( j t p ~ ~ ( k ) u g ~ ~ ( k ) )  can  be 
j 

d e l e t e d .  I n  t h e  ma t r ix  

t h e r e  a r e  u n i t y  column v e c t o r s  f o r  t h e  untouched a c t i v i t i e s  

and two non-zeros i n  t h o s e  columns which r e p r e s e n t  coupled  



a c t i v i t i e s .  Ue have  T f l  0  and t h e r e f o r e  T  5 O.Fur thermore  

we g e t  m o d i f i e d  s e t s  

The t r a n s f o r m a t i o n  r e d u c e s  t h e  number o f  rows by o n e .  The 

e f f e c t  on t h e  number o f  l e g i t i m e  v a r i a b l e s  depends  on t h e  

number o f  p o s i t i v e  and n e s a t i v e  c o e f f i c i e n t s  i n  row k :  

T a b l e  1 shows how t h e  number of l e g i t i m a t e  ( = n o n - a r t i f i c i a l )  
v a r i a b l e s  changes  w i t h  t h e  s i q n  o f  t h e  non-zeros  i n  t h e  

e l i m i n a t e d  b a l a n c e  e q u a t i o n .  The e f f e c t s  o f  c o n d e n s a t i o n  on 

model s t ructure a r e  i l l u s t r a t e d  i n  T a b l e  2 and F i g .  3  f o r  a  

r e f i n e r y  model g i v e n  by Meyer-Steinmann /10 ,p .390-393/ :  

The p o i n t s  on t h e  r i g h t  hand o f  F i g .  3  c h a r a c t e r i z e  t h e  

s r i g i n a l  f o r m u l a t i o n ;  t h e  e f f e c t  o f  s e q u e n t i a l  d a t a  manipu- 

l a t i o n  on problem s t r u c t u r e  is shown by g o i n g  t o  t h e  l e f t .  

" A c t i v i t y  c o u p l i n g "  r e d u c e s  t h e  number o f  rows f a r  more t h a n  

e . g .  t h e  REDUCE-module o f  APEX-111. 

From a n  economic p o i n t  o f  view one c a n  d e s c r i b e  t h e  con- 

d e n s a t i o n  by t h e  i s o q u a n t  g i v e n  i n  F i g .  4 .  I t  might  happen 

t h a t  b o t h  f o r m u l a t i o n s  compared i n  l i t e r a t u r e  a r e  u n s o l v a b l e  

on t h e  s y s t e m  used  w h i l e  some e q u i v a l e n t  f o r m u l a t i o n s  might  

b e  c o m p u t a t i o n a l l y  w e l l  s u i t e d .  The i s o q u a n t  must b e  r e a d  

Net 
E f f e c t  

- 1 

0  

17  

from r i g h t  t o  l e f t .  

T a b l e  1: E f f e c t s  o f  E l i m i n a t i n g  a  B a l a n c e  E q u a t i o n  k  

1 ? 0 ~ ( k ) l  

3 
2 

7 

I R E G ( ~ ) I  

1 

2 
I I  

N u m b e r  o f  

new l e g i t i m a t e  
, Variables 

3  
4 

2 8 

l e g i t i m a t e  
v a r i a b l e s  d e l e t e d  

II 

4 

11 



N u m b e r  o f  I 
s t r u c t u r a l  

rows s t r u c t u r a l s  v a r i a b l e s  nonzeros nonzeros I 

Tab 

75 144 32  1 39 0 
7 4 l u 2  3 1 5  383 
73 140 31 3 38  0 
7 2 130  307 373 
7 1 136 301  366  
7 0 134  295  3 5 9  
69 132  289  352  
68  130 283  345 
67 128 28 1 34  2 
66  126  2 79 339  
65 124 277  33 6 
64  122  275  33 3 
63  120  273  33  0 
6 2 118 271 327 
6 1 116 2 69 324 
6 0 114 2 67  32 1 
5 9 112  2E5 31  8 
5 8 I10 2 6 3  31 5 
57 108 261  31 2 
56 106 259  309  
55 104 2 57 306 
5 4 102 255  303 
53 100 2 53 300 
52 98  251  297  
51 9 6  249 29 4 
5 0 94 247  2 91 
49  9 2 245 288 
4 8 9 0 24  3 285  
4 7 88 241  282 
4 6  0 6 239  2 79  
45 8 4 237 276  
'4 4 82 235  27 3 
4 3 8 0 233  270 
4 2 78  231  267  
4 1 7 6 229 264 
4 0 7 4  227 261 
39 7 2 224 257  
32 70 222 254 
37 6 8 21 8 249 
3 E 6 6 214  244 
3 5 64  210 239 
3 4 62  206  23 4 
3 3 6 0 21 3 240 
3 2 5 8 220 2 46 
32 57  240 265 
3 2 5 6 2 61 285 
3 2 5 5  282 hO 5 
32  54 3 0 3  31 5 
3 2 53  3 1 6  33 7 
3 2 52  329  349  
4 t  6 5 49  7 516 
7 0 R 8 853 87 1 

116 133 1375  1392 
2 LO 250  5 0 7 5  3091 

l le  2:  E f f e c t s  of condensat ion  f o r  t h e  r e f i n e r y  

d e n s i t y  
s t r u c t u r a l  

d e n s i t y  

3.92512 X 
3.96645 X 
4.05117 X 
4.09550 X 
4.14027 X 
4.18610 X 
4.23280 X 
4.28040 X 
4.38012 X .  
4.48413 X 
4.59267 X 
4.70605 X 
4.82456 X 
4.94855 X 
5.07837 X 
5.21442 X 
5.35714 X 
5.50699 '1 
5.66449 X 
5.83019 X 
6.001.71 X 
6.18873 2 
6038298 '1 
6.58829 X 
6.80556 X 
7.03578 '1 
7.2800? X 
7.53968 X 
7.81596 X 
8.11047 X 
8.42491 X 
8.76123 X 
9.12162 X 
9.50855 X 
9 . 9 2 ~ 8 1  x 

10. '17361 X 
10.81650 X 
11.33979 X 
l l b 8 1 2 l L  X 
12.32323 X 
12.87716 X 
13.47926 r 
14.81b81 X 
16.31300 X 
18.59699 X 
21.20536 '1 
24.11067 X .  
27.35690 X 
30.27853 Z 
33.55769 X 
41.78138 X 
5L.98737 % 
61.56568 X 
75.4C387 X 

model /lo, p. 



Number o f  rows 

500.  

A 

Number o f  n o n z e r o s  

Number of  v a r i a b l e s  

FTumber o f  rows 

y node1  /lo, p.390-3931 



I n  economic t h e o r y  o n l y  t h e  p a r t  BC o f  t h e  i s o q u a n t  would 
be  r e g a r d e d  a s  e f f i c i e n t .  I n  t h i s  c o n n e c t i o n  t h e  p a r t  AB is  

e f f i c i e n t  t o o  because  i t  t a k e s  r e s o u r c e s  t o  go from A t o  8. 

The p a r t  CD is  e x p l a i n e d  by t h e  r e a s o n  t h a t  by e l i m i n a t i n g  
a  b a l a n c e  e q u a t i o n  one o r  more bounds can  become r e g u l a r  

rows; t h i s  p a r t  o f  t h e  i s o q u a n t  i s  i n e f f i c i e n t .  

A s  soon  a s  a  f o r m u l a t i o n  ( 2 )  i s  r eached  which i s  r e g a r d e d  
c o m p u t a t i o n a l l y  w e l l  s u i t e d  t h e  o p t i m a l  l e v e l s  o f  t h e  a c t i -  

v i t i e s  i@ a r e  de te rmined .  The o p t i m a l  v a l u e s  o f  t h e  c r r i g ina l  

v a r i a b l e s  c a n  be  computed by 

Cons ide r  a problem i n  which two f i n a l  p r o d u c t s  xl and x 2  

a r e  produced by u s i n g  a  p a r t ,  which can  be  e i t h e r  pu rchased  
( x  ) o r  produced ( x u ) :  3 

Max. 500  xl + 1000 x 2  - 2 0 0  x3  - 1 5 0  x 4  

s . t .  2 x; + X 2  + 1 X4 5 1 0 0 0  

X 2  + 2 x 4 5 2 0 0 0  
l X 1 +  4 x 2 -  1 -  1 x 4 =  0 

x 0 a l l  j 
j 

The f i r s t  two c o n s t r a i n t s  r e p r e s e n t  c a p a c i t i e s ,  t h e  t h i r d  
i s  t h e  b a l a n c e  e q u a t i o n  f o r  t h e  p a r t .  The d e f i n i t i o n s  

... q u a n t i t y  o f  f i n a l  p r o d u c t  1 produced by 

u s i n g  p a r t s  purchased  
12 ... q u a n t i t y  o f  f i n a l  p roduc t  1 produced by 

u s i n g  p a r t s  produced by t h e  f i r n  



" ... q u a n t i t y  o f  f i n a l  p r o d u c t  2 produced  by 

u s i n g  p a r t s  p u r c h a s e d  

... a u a n t i ' y  o f  f i n a l  p r o d u c t  2 produced  by 

u s i n g  p a r t s  p roduced  by t h e  f i r n  

a l l o w  t h e  f o r m u l a t i o n  

Nax. 300 + 350 i2 + 200 i3 + Q 0 0  k4 

s . t .  2 x l +  3 k 2 +  1 5 ? 4 *  1000 

2 k2 + 4 13 + 12 %4 "000 

k = O  a l l j .  .i 

Formal ly  s u c h  a  r e f o r m u l a t i o n  c a n  be  o b t a i n e d  by m u l t i -  

p l y i n g  t h e  o r i g i n a l  c o e f f i c i e n t  m a t r i x  w i t h  t h e  t r a n s f o r m a -  

t i o n  m a t r i x  

- 
We have ~ 2 = 6 2 2 = ( 3 } ,  4 -1 -1). T-0 a n d  z=k+2.2-2-2=~. 

The 3 p t i m a l  s o l u t i o n  f o r  t h e  condensed  LP i s  ?"=(250 0 500 3)'. 

C p t i m a l  l e v e l s  o f  t h e  o r i g i n a l  v a r i a b l e s  car.  b e  d e t e r m i n e d  by 

x " = ~ < ~ = ( 2 5 0  500 2250 0 )  I .  

The d i f f e r e n t  p a t h s  t h r o u g h  t h e  ne tworks  i n  F i g .  5 show 

c h a r  a  g e n e r a l  s e r i e s  r r a n s f o r m a t i o n  i s  employed f o r  e l i m i -  

n a t i n g  a  b a l a n c e  e q u a t i o n .  
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Fig.5: Elimination of a balance equation as general series 
transformation 

In Fig. 6 the general design of the experiments is sketched. 

The following tasks were necessary: 

1. Problem Generation 

Computational experiments usually need a problem generatcr, 

especially if a statistical analysis is wanted. A problem 



Fig. 6: Flow of information in computational experiments 



generator PPPOEN was written in FORTRAN to create LP- 

models of product-mix-type. ?he user specifies the type 

of model to be created in much detail by setting 16 
scalar and 3 vector parameters. One set of parameters 
generates different LP-problems with very similar but 

not identical structures by use of random numbers. 

2. Preprocessing 

A FORTRAN-program performs the transformations discussed 

above. The user controls the order in which the balance 

equations are selected for elimination by 7 parameters. 
This selection is based on an estimation of the number of 

additional non-zeros an elimination might create. 

3. Optimization 
Optimization was done by the in-core-system BASE-APEX-I11 

using the standard parameters (except LOG=I) on a CYBER 7 4  

under NOS/BE. The reported CPU-time was needed for optimi- 

zation only. (The maximal deviation of CPU-time due to 

multiprogramming is only about 1 % on the system used.) 

4. Postprocessing 
APEX-I11 produces an FORTXAN-accessible file which was 

used to determine the optimal levels of the activities in 

the original formulation. This postprocessinq is based on 

( 3 )  although the matrix T was not computed explicitly. 

5. Recording Information about Optimization 
The regular OUTPUT-file of APEX-I11 contains information 

which is necessary to analyse the optimization behavior. 
This output-file was read by a program which recorded the 

structure of the model and the specifics of the solution 

process. 

6. Regression Analysis 
The data collected in step 5 were examined by regression 
analysis. First the exponents of the variables in various 



r e g r e s s i o n  mDdels were d e t e r m i n e d  by SPSS1 n o d u l e  f o r  

n o n - l i n e a r  ? e g r e s s i o n .  The r e s u l t s  were  used  t o  d e f i n e  

t r a n s f o r m e d  v a r i a b l e s  f o r  a  " l i n e a r "  r e g r e s s i o n  t h r o u g h  

t h e  o r i g i n .  S e v e r a l  h y p o t h e s e s  on t h e  dependence  of  o p t i -  

m i z a t i o n  t i m e  on model s t r u c t u r e  were compared by t h e  

c o e f f i c i e n t  o f  d e t e r m i n a t i o n ,  R ~ .  

7 .  C o n t r o l  Exper iments  

A t e s t  d e v e l o p e d  by Hoe1 / 7 /  was u s e d  t o  compare t h e  b e s t  

r e g r e s s i o n  e q u a t i o n  a g a i n s t  t h e  t e x t b o o k - h y p o t h e s i s .  

A more d e t a i l e d  d e s c r i p t i o n  of  t h e  e x p e r i m e n t s  a n d  t h e  program 

l i s t s  a r e  g i v e n  i n  / 9 / .  

F o u r  problem c l a s s e s  and f o u r  p rob lem s i z e s  f o r  e a c h  p r s b l e m  

c l a s s  have  b e e n  examined.  F o r  e a c h  o f  t h e  16 c a s e s  5 models 

were g e n e r a t e d .  T h r e e  problem c l a s s e s  were  used  co d e v e l o p  a n  

a p p r o p r i a t e  e x p l a n a t i o n  f o r  t h e  CPU-time o b s e r v e d ;  problem 

c l a s s  4 was used  t o  c o n t r o l  t h e  r e s u l t s .  T a b l e  3 shows t h e  

a p p r o x i m a t e  s t r u c t u r e  o f  t h e  models  i n  l a r g e s t  s i z e .  For  

p rob lems  o f  s m a l l e r  s i z e  t h e  f i g u r e s  i n  T a b l e  3  h a v e  t o  b e  

r e d u c e d  by 25%, 50% and 75%.  

A l l  80 f o r m u l a t i o n s  were  condensed  i n  f i v e  s t e p s .  I n  t h e s e  

s t e p s  s b a l a n c e  e q u a t i o n  was e l i m i n a t e d  i f  n o t  more t h a n  a  

z e r t a i n  number o f  a d d i t i o n a l  non-zeros w e r e  e x p e c t e d  t o  a r i s e .  

F o r  p rob lem c l a s s  3 and l a r g e s t  s i z e  T a b l e  4 shows t h e  e f f e c t s  

o f  t h e s e  c o n d e n s a t i o n s .  The o p t i m i z a t i o n  was done by t h e  proce-  

d u r e s  CRASH and PRIMAL o f  BASE-APEX-111. A l l  f o r m u l a t i o n s  w e r e  

o p t i m i z e d  u s i n g  c o n s t a n t  f i e 1 3  l e n g t h  RFL,1000008 (-32768 

d e c i m a l  words o f  60  b i t s  e a c h ) .  O p t i m i z a t i o n  t i m e  was r e d u c e d  

romarkably  i n  t h e  f i r s t  p h a s e s  o f  t h e  c o n d e n s a t i o n  b u t  i n  

l a t t e r  p h a s e s  t h e  c o n d e n s a t i o n  d i d  n o t  pay.  



Number of rows/columns 

in problem class 
1 2 3 4 

R O W S  

Objective function 1 1 1 1  
Capacity constraints 25 25 25 25 
Balance equations for final products 45 45 45 45 
Balance equations for intermediate products 200 0 200 430 
Balance equations for materials 

C O L U M N S  

Sales variables for final products 45 45 45 45 
Sales variables for intermediate products -20 -43 -20 -43 
Purchase variables for intermediate products -20 -43 -20 -43 
Purchase variables for materials 250 20 250 20 
Production variables for 45 final products -135 -135 -59 -59 
Production variables for intermediate products -600 -1290 -260 -559 

-1070 -1576 -654 -769 

Tzble 3: Structures of product-mix-models generated 

Table 4: Effects of condensation in problem class 3 

Aver. 

CPU- 

time 

40.8 
26.0 
8.4 

7.5 
10.8 
10.4 

Average number of 

rows columns nonzeros 

521 651 3009 
351 481 2040 

185 315 1619 
144 286 1953 
137 294 2288 
1 3  338 3 206 

# 

1 
2 

3 
4 

5 
6 

Max. 

add. 
nz 

- 
-5 
0 

30 
100 
1000 

CPU - time estimated by 
textbook 

59.4 
18.2 
2.7 
1.3 
1.1 
1 .O 

"best" regression 

35 -0 I 
18.8 
7.8 

I 

6.1 
6 .0 

6.5 



The d a t a  o b t a i n e d  from 517 LPs b e l o n g i n g  t o  p r o b l e n  c l a s s e s  

1, 2  and 3  were a n a l y s e d  by r e g r e s s i o n  n o d e l s .  T a b l e  5  com- 

p a r e s  t h e  q u a l i t y  o f  f i t  f o r  s e v e r a l  h y p o t h e s e s  and some o t h e r  

p l a u s i b l e  e q u a t i o n s .  

T a b l e  5:  Comparison o f  r e g r e s s i o n  models  f o r  e x p l a i n i n g  

CPU-time i n  p rob lem c l a s s e s  1 t o  3  

R e g r e s s i o n  e q u a t i o n  

(4) .00000042 m3 

.0627 m 

.000000015 n3  

.0081 

.OIL17 n1'05 

.0381  n z e 7 0  

( 5 )  .00 l0  m1.2' nzm3'  

.0015  I I I ~ ' ~ ' I  ."I5 

.0293 n 2 ' 5 3  r 1 2 - l ' ~ ~  

.00085 m 2 ' 3 5  [ n z / ( m . n ) ]  .86  

( 6 )  . 0 0 0 9 ~  m1'29 nz ' "  

The improvement o f  ( 6 )  o v e r  (5) i s  s o  s m a l l  t h a t  

( 7 )  PREDCPU = a  nb nzC 

is r e g a r d e d  a s  most s u i t a b l e .  F o r  t h i s  model t h e  a p p r o x i n a t e  

95% c o n f i d e n c e  i n t e r v a l s  f o r  t h e  e x p o n e n t s  a r e  computed i n  

E x p l a i n i n g  v a r i a b l e s  

p roposed  by 

/ e . g .  1 ; 3 ; 5 ; 6 ; 1 5 ; 2 0 /  

/ 8  / 

/4 ;13 /  

t h e  n o n - l i n e a r  r e g r e s s i o n  by SPSS a s  

1 . 1 5  b = 1 . 2 5  1 . 3 4  

. 2 5  ' c  = 3 3  .39 . 

F( 
2 

. 7 0 1  

.867 

.532 

.889 

.766 

.697 

.916 

.913  

.816 

.912 

.916 

Al though  t h e s e  i n t e r v a l s  a r e  c i p h t  t h e y  l e a d  t o  r a t h e r  wide  

c o n f i d e n c e  i n t e r v a l s  f o r  CPU-time. 

The new a s s u m p t i o n  ( 5 )  was compared w i t h  t h e  e s t a b l i s h e d  

h y p o t h e s i s  ('I) v i a  a t e s t  d e v e l o p e d  by Hoe1 / 7 / .  This t e s t  



:?ads t o  a l i n e a r  r e g r e s s i o n  o f  t y p e  

f c r  s d d i t i o n a l  d a t a .  The u s e f u l n e s s  c f  NE'dHYP i s  c o n f i r m e d  
if w i s  s i g n i f i c a n t l y  p o s i t i v e .  R e n r e s s i o n  ( 8 )  g i v e s  a  
c o e f f i c i e n t  w=1.37 f o r  111 c a s e s  belong in^ t o  prob lem c l a s s  u ;  
t h e  95% c o n f i d e n c e  i n t e r v a l  is ~ ' 1 . 2 2 .  The t - v a l u e  f o r  r e -  

g r e s s i o n  ( 8 )  i s  15.11.  T h i s  v a l u e  c a n  b e  compared w i t h  t h e  
s n e - s i d e d  v a l u e  f o r  95% and DF=llC which i s  1 .66 .  The s c a t r e r -  
gramm i n  F i g .  7  shows t h a t  i n  9 3  o f  111 c a s e s  t h e  s i p n s  o f  
t h e  d i f f e r e n c e s  i n  ( 8 )  a r e  i d e n t i c a l .  T h e r e f o r e  t h e  new f o r -  
mula ( 5 )  p r e d i c t s  s i g n i f i c a n t l y  b e t t e r  t h a n  t h e  e s t a b l i s h e d  

h y p o t h e s i s  ( u ) .  

F i g .  7 :  Comparison o f  t h e  p r e d i c t i o n s  from ( 4 )  and (5) w i t h  o b s e r v e d  
CTU-time 



An i d e n t i c a l  LP-optimum u s u a l l y  c a n  b e  o b t a i n e d  by many 
e q u i v a l e n t  p rob lem f o r m u l a t i o n s .  D a t a  c o n d e n s a t i o n  i s  n e c e s s a r y  
i f  l a r g e  models  a r e  g e n e r a t e d  from d a t a  b a s e s  c o n t a i n i n g  
i n f o r m a t i o n  a b o u t  e v e r y - d a y - o p e r a t i o n s .  Most t e x t b o o k s  r e -  
commend t o  r e d u c e  t h e  number o f  rows a s  much a s  p o s s i b l e .  Our 
e x p e r i m e n t s  show t h a t  t h e  u s u a l  m3-hypothesis  i s  m i s l e a d i n g  
and  s h o u l d  b e  c a n c e l l e d  from t e x t b o o k s .  The e x p e r i m e n t s  d e s -  

c r i b e d  a b o v e  i n d i c a t e  t h a t  t h e  number o f  non-zeros  h a s  re- 

m a r k a b l e  i n f l u e n c e  on c o m p u t a t i o n a l  e f f o r t .  The r u l e  g i v e n  by 
E.N.L.Beale / l , p . 8 3 /  t h a t  it i s  n o r m a l l y  n o t  w o r t h  s a v i n g  a  
row by s u b s t i t u t i n g  a  v a r i a b l e  i f  t h i s  a d d s  more t h a n  a b o u t  

h a l f  a  d o z e n  non-zeros  r e m a i n s  u s e f u l  i n  t h e  l i g h t  o f  o u r  
e x p e r i m e n t a l  r e s u l t s .  The number o f  non-zeros  may r i s e  i f  

t h e  number o f  s t r u c t u r a l s  i s  r e d u c e d ;  t a k i n g  i n t o  a c c o u n t  
t h e  e f f o r t  f o r  m a t r i x  g e n e r a t i o n  o n e  migh t  p r o p o s e  a n  e v e n  

e a s i e r  r u l e  o f  thumb: 

" E l i m i n a t e  b a l a n c e  e q u a t i o n s  o n l y  i f  
- t h e  model i s  s o  l a r g e  t h a t  t h e  number o f  rows i s  a  S u r d e n  

i n  t h e  c o m p u t a t i o n a l  env i ronment  u s e d  

- t h e  number o f  s t r u c t u r a l s  is r e d u c e d  by t h e  e l i n i n a t i o n  
and  t h e  number o f  non-z reos  r ises on17 s l i g h t l y . "  

F o r  product-mix-models  t h i s  r u l e  s u g g e s t s  t o  u s e  b a l a n c e  equa- 
t i o c s  f o r  p r o d u c t s  which have  more t h a n  o n e  way o f  p r e p a r a t i o n  

( e . g .  make o r  buy;  m a n u f a c t u r i n g  v a r i a n t s )  and more t h a n  o n e  
way o f  u t i l i z a t i o n  ( e . g .  s e l l  o r  p r o c e s s ) .  Thus i f  o p t i o n s  
a r e  a v a i l a b l e  a  "combined" f o r m u l a t i o n  i s  recommended which 
d i f f e r s  f rom b o t h  f o r m u l a t i o c s  compared i n  l i t e r a t u r e .  

I f  t h e  r e s u l t i n g  model i s  s t i l l  t o  l a r g e  t h e  f o l l o w i n g  
a c t i o n s  c o u l d  b e  t a k e n  i n t o  mind: 

- May t h e  problem b e  s o l v e d  e a s i e r  by c o d e s  w i t h  GUB- 

f a c i l i t i e s  and c a n  s u c h  a  code b e  made amenable  ? 



- Should one d e f i n e  i n  t h e  f i r s t  ( i = l )  L P , o n l y  o p t i o n s  

which a r e  expec t ed  t o  be  o p t i m a l  and g e n e r a t e  f o r  
o p t i m i z a t i o n  r u n  i+l new v a r i a b l e s  f o r  o p t i o n s  
which improve t h e  s o l u t i o n  o f  r u n  i ? These  c a n d i d a t e s  

c an  be de t e rmined  by t h e  i - t h  d u a l  s o l u t i o n .  
- Is i t  p o s s i b l e  t o  deve lop  b e t t e r  a l g o r i t h m s  f o r  d e n s e  

LP-problems ? 

If a l l  t h e s e  q u e s t i o n s  have t o  be d e n i e d  t h e r e  i s  a n  e f f e c -  
t i v e  " s o l u t i o n  c o n s t r a i n t w  on  t h e  LP o r i g i n a l l y  proposed .  I n  

t h i s  c a s e  one must t a k e  i n t o  accoun t  t h e  p o t e n t i a l  b e n e f i t s  
o f  d i f f e r e n t l y  a c c u r a t e  models and  j udge  whether  a  l e s s  accu-  
r a t e  model w i l l  a l l o w  enough i n s i g h t  i n t o  t h e  r ea l -wor ld -  

problem t h a t  i t  pays t o  d e v e l o p  t h i s  l e s s  a c c u r a t e  model. 

MAIN SYMBOLS 

DF Degree s  o f  freedom 
ESTHYP CPU-time p r e d i c t e d  by t h e  e s t a b l i s h e d  h y p o t h e s i s  ( 4 )  
m number o f  rows 
M 1 s e t  o f  i n d i c e s  i w i t h  b  0  
M2 s e t  o f  i n d i c e s  i w i t h  b f - 0  ( b a l a n c e  e q u a t i o n s )  
M21 S M2 s e t  o f  i n d i c e s  i f o r  b a l a n c e  e q u a t i o n s  n o t  e l i m i n a t e d  
M22cM2 s e t  o f  i n d i c e s  i f o r  b a l a n c e  e q u a t i o n s  e l i m i n a t e d  
n  number of  s t r u c t u r a l s  
n  z  number o f  non-zeros 
NEG(k) s e t  o f  i n d i c e s  j w i t h  a  .<O 
NEWHYP CPU-time p r e d i c t e d  by t h g  new a s sumpt ion  (5) 
OBSCPU Observed CPU-time 
POS(k) set o f  i n d i c e s  j w i t h  akj>O 
PFDCPU P r e d i c t e d  CPU-time 
R C o e f f i c i e n t  o f  d e t e r m i n a t i o n  
RFL 3eques t ed  F i e l d  Length 
/SET ( number of  e l emen t s  i n  a SET 
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PROBLEMS OF SYMBOLOGY AND RECENT EXPERIENCE 
(Or, Where Improvements Won't and May Come From) 

William Orchard-Hays 

Energy Information Administration 
U.S. Department of Energy 
Washington, D.C. 

Significant improvements in use of standard largescale LP, and related modeling which 
depends essentially on generated LP approximations or submodels, will not result from 
improvements in optimizing algorithms or even directly from improved computer imple- 
mentations, only slightly from improved inversion and transformation schemes, and pos- 
sibly somewhat from decomposition techniques applied a t  a high level. This will be true 
for a t  least several years. 

While these statements are made.emphatically and must be taken with appropriate qualifi- 
cation, this paper discusses the background and results of its author's reflections along 
these lines, as presented to the Workshop. 



INTRODUCTION 

It  had been my i n t e n t i o n  t o  begin wi th  a somewhat brash 
s ta tement  and then proceed t o  defend it. The purpose of such 
an approach is, of course ,  t o  t r y  t o  push a s i d e  convent ional  
wisdom and h a b i t u a l  p a t t e r n s  i n  o rder  t o  p resen t  a f r e s h  
viewpoint more c l e a r l y  and f o r c e f u l l y .  Had I been one of t h e  
f i r s t  speakers ,  I would have done so and it would have been 
unfor tunate .  The d i f f e r e n c e s  i n  a r e a s  of i n t e r e s t ,  which 
have thus  f a r  been presented a t  t h i s  meeting under t h e  head- 
ing  o f  Large-Scale Linear Programming, show how d i v e r s e  t h e  
s u b j e c t  a c t u a l l y  is. One can on ly  make broad s ta tements ,  
b rash  o r  otherwise ,  wi th in  very c a r e f u l l y  def ined l i m i t s .  

A l l  t h i s  is on ly  a long way of saying t h a t  I have a l ready  
l ea rned ,  o r  a t  l e a s t  been reminded o f ,  a good d e a l  a t  t h i s  
Workshop. I t  may be h e l p f u l  t o  o t h e r s  t o  summarize one s e t  
of obse rva t ions .  I b e l i e v e  t h e  a t t endees  a r e  a r epresen ta -  
t i v e  c ross - sec t ion  o f  t h e  f i e l d  and it is c l e a r  t h a t  w e  
r e p r e s e n t  a t  least four major a r e a s  o f  i n t e r e s t .  (Of course ,  
some of u s  wear d i f f e r e n t  h a t s  a t  d i f f e r e n t  t imes. )  

U) The t h e o r e t i c i a n s .  This is t h e  l a r g e s t  i n t e r e s t  
group represented.  I do n o t  mean t o  i n t i m a t e  t h a t  t h e  sub- 
j e c t s  and techniques discussed have no p r a c t i c a l  a p p l i c a t i o n .  
However, t h e  o r i e n t a t i o n  has  a t r a d i t i o n a l l y  mathematical and 
academic f l a v o r .  Much of t h i s  work is fundamental t o  p r a c t i c a l  
a p p l i c a t i o n s  o r  improvements. Some f a l l s  by t h e  wayside. 

( 2 )  The free- lance consu l t an t s .  This  a r e a  has been most 
c l e a r l y  represented h e r e  by Marshall 'F isher ' s  p resen ta t ion .  
My intended remarks would have been c l o s e  t o  i n s u l t i n g  t o  him. 
Conversely, h i s  r epor ted  r e s u l t s  would be i n c r e d i b l e  t o  m e  i f  
I d i d  n o t  p lace  them i n  proper context .  Remarkable r e s u l t s  
can be achieved on some p r o j e c t s  by t h o s e  c l e v e r  enough t o  
pe rce ive  t h e  proper approach. But our  two a r e a s  of i n t e r e s t  
have a very small  i n t e r s e c t i o n .  

(3 )  The algorithmic-system engineers .  Several  presenta-  
t i o n s  r e p r e s e n t  this a r e a  and o t h e r s ,  inc lud ing  myself ,  most 
f requen t ly  work i n  it. We may d i s t i n g u i s h  two sub-classes:  

(a) The in-house p r o j e c t  d i r e c t o r .  This is most 
c l e a r l y  represented by D r .  Aonuma's d i scuss ion  of bu i ld -  
ing  a computational system using MPSX/370 a s  a base.  
Of course ,  t h e o r e t i c a l  and consu l t ing- l ike  work is 
involved bu t  a s p e c i f i c ,  t a i l o r e d  system is t h e  goa l .  



(b )  The general  system bui lder .  Several presenta- 
t i o n s  could be c i t e d  here  but of p a r t i c u l a r  i n t e r e s t  is 
Ho and Loute's work on D-W decomposition using much the 
same approach ae  Aonuma and being extended by Loute t o  
nested decomposition. This a very worthwhile software 
development work, even i f  only f o r  experimental o r  
comparative s tud ies .  

(4)  The model implementers. O t h e r  speakers have addressed 
t h i s  sub j ec t ,  notably Knol, and w e  have y e t  t o  hear  from 
Strazicky and Kallio.  I t  is a l s o  the area I wish t o  address .  
This category may sound presumptuous s ince  most workers i n  the 
f i e l d  would claim t h a t  they implement models. However, not 
a l l  t r e a t  model implementation a s  a d i s c i p l i n e  i n  the  sense 
intended. 

THE DIFFICULTY OF IMPROVING SHEER COMPUTATIONAL PERFORMANCE 

tiaving now set f o r t h  my view of the  main emphases i n  the  
f i e l d ,  l e t  me make my brash statement a f t e r  a l l ,  t r u s t i n g  t h a t  
you w i l l  apply it i n  the  sense intended: 

S ign i f i c an t  improvements i n  use of s tandard 
large-scale  LP, and r e l a t e d  modeling which 
depends e s s e n t i a l l y  on generated LP approxi- 
mations o r  submodels, w i l l  not  r e s u l t  from 
improvements i n  optimizing q o r i t h m s  o r  even 
d i r e c t l y  from improved computer implementa t i ons  , 
only s l i g h t l y  from improved inversion and t rans-  
formation schemes, and possibly somewhat from 
decomposition techniques appl ied a t  a high l e v e l .  
This w i l l  be t r u e  for  a t  l e a s t  severa l  years .  

Let me po in t  ou t  some f a c t s  i n  defense of t he  above statement.  

1. A t  EIA, they a r e  regu la r ly  solving models of about 4500 
cons t r a in t s  i n  15-20,000 va r i ab l e s  with w e l l  over 50,000 
nonzero c o e f f i c i e n t s ,  from an advanced b a s i s ,  more o r  l e s s .  
The WHIZARD optimizer i n  MPS-I11 takes  perhaps 5,000 in te ra -  
t i ons  fo r  t he  f i r s t  optimal which it does i n  l e s s  then f i v e  
minutes. Do you think this can ever be s i g n i f i c a n t l y  re -  
duced? 

2 .  The inversion procedure i n  WHIZARD t akes  l e s s  than . O 1  
minutes f o r  these bases which g ive  no ind ica t ion  of i n s t a -  
b i l i t y .  Do you r e a l l y  think you can bea t  t ha t ?  

3 .  Many of us  here have worked untold days, weeks and months 
t ry ing  t o  improve the  simplex algorithm o r  make fundamental 
changes to it. The most w e  ever succeed i n  doing is coming 
c lose  t o  standard commerical systems. On r a r e  occasions 
when w e  seem t o  g e t  b e t t e r  so lu t ion  times, the  r e a l  reason 
i s  found t o  be i n  spec i a l  knowledge about t he  model. 



4 .  Every few years  someone proposes a d i f f e r e n t  method. On 
c l o s e r  i n v e s t i g a t i o n ,  these  t u r n  o u t  t o  be flawed o r ,  i n  
a t  l e a s t  one case  I know, t o  approximate t h e  e f f i c i e n c y  
of t h e  simplex algor i thm on a l imi ted  number of m a l l  
t e s t  models. 

But I can go f u r t h e r .  What about matr ix  and r e p o r t  generat ion? 
The MEMM model a t  EIA is generated from r e s u l t s  of about 14 
upstream models and produces a l a r g e  s e t  of formal r e p o r t s .  
In add i t ion  t o  f i l e s  from upstream models, t h e r e  is another  
l a r g e  f i l e  of t a b l e s  def in ing  r e p o r t  l a y o u t s ,  a f i l e  of t a b l e s  
def in ing  model s t r u c t u r e ,  a f i l e  f o r  i n i t i a l  matr ix  genera t ion ,  
another  f o r  a major rev i s ion ,  p lus  s e v e r a l  o t h e r  r e l a t e d  
inpu ts  and outputs .  Haverly's OMNI chunks through a l l  t h i s  i n  
four  o r  f i v e  minutes. Do you th ink  you can improve on t h a t ?  
(Note t h a t  t h e  quest ion is not  whether MR4M could be improved.) 

Decomposition has been around f o r  over twenty years .  Early 
bad exper ience with  D-W a lgor i thms led me t o  develop the block 
product form which so lves  t h e  same s t r u c t u r e  with a p a r t i -  
t ion ing  technique. It is  very c l o s e  t o  what has been known a s  
generalized-GUB. It was f i r s t  implemented i n  1967 i n  t h e  
LP/600 system which s t i l l  e x i s t s  i n  updated form i n  t h e  cur- 
r e n t  Honeywell MPS. I implemented it again i n  1968 f o r  t h e  
OPTIMA system. CDC threw t h e  l a t t e r  away, b u t  Honeywell still  
cla ims t h e  block product a lgor i thm should be used f o r  l a r g e  
problems with proper s t r u c t u r e .  I know of no one using it. 
The r e c e n t  work by Etienne Loute a t  CORE is  more promising 
b u t  it is doubtful  whether he b e a t s  t h e  s tandard system. A 
r e a l l y  l a r g e  problem with,  say,  t e n  per iods  with  1,000 con- 
s t r a i n t s  each and running on a 3033 ins tead  of a 158 might give 
r e a l l y  impressive r e s u l t s .  But a s  ~ i m  Ho i n d i c a t e d ,  t h e i r  
system depends on s tandard MPSX/370 modules with  t h e i r  super- 
s t r u c t u r e  a t  a r e l a t i v e l y  high l e v e l .  

George Dantzig s a i d  t h e  o ther  day t h a t  GUB had been highly 
successful .  That is t r u e  only i n  a l imi ted  context .  I t  was I 
t h a t  r e a l l y  implemented GUB i n  a commercial system and made 
it highly e f f i c i e n t ;  it was t h e  o r i g i n a l  t h r u s t  of MPs-111. 
I t  d i d  have some spec tacu la r  successes ,  maybe a dozen o r  so .  
( A  couple  it should have had w e r e  denied it due t o  vested 
i n t e r e s t s . )  These app l ica t ion  e s s e n t i a l l y  s a t u r a t e d  t h e  market. 
IBM pu t  GUB i n  MPSX and dropped it from MPSX/370 because 
t h e  number of u s e r s  d i d  no t  j u s t i f y  t h e  c o s t .  I have no t  
encountered a r e a l  CUB problem i n  my own work f o r  over f i v e  
years .  

Dennis Rarick b u i l t  WBIZARD and he was a very c l e v e r  p r o g r a m e r .  
Jim Welch now works f o r  Ketron who took over MPS-I11 and he is 
a l s o  a very c lever  progranrmer. H e  has  r e c e n t l y  gone through 



Rar ick ' s  code and th inks  he may have made a  20-25 percen t  
improvement. I am a l s o  a  very good programmer bu t  i f  Welch 
says  he has done a l l  he can,  I would n o t  cha l l enge  him, p a r t i -  
c u l a r l y  s i n c e  he now has John Tomlin t o  back him up on theory.  
I doubt i f  anyone here  w i l l  c la im they can do b e t t e r .  

WHERE WILL MODELING IMPROVEMENTS BE MADE? 

One might conclude from t h e  foregoing d i scuss ion  t h a t  I am 
s a t i s f i e d  w i t h  c u r r e n t  modeling p r a c t i c e s  and do n o t  th ink  
f u r t h e r  improvements a r e  poss ib le .  This is n o t  a t  a l l  t h e  
case .  The MEMU model r e f e r r e d  t o  e a r l i e r  i s  a  t e r r i b l e  mess 
o p e r a t i o n a l l y  i n  s p i t e  of t h e  impressive execut ive  t imes 
c i t e d .  This  does no t  a t  a l l  imply t h a t  r e s u l t s  obta ined a r e  
i n v a l i d  but  only  t h a t  t h e  e f f o r t  expended t o  g e t  them is  
inord ina te .  This should n o t  be i n t e r p r e t e d  a s  a  c r i t i c i s m  of 
the  E I A  s t a f f .  They i n h e r i t e d  models and p a r t s  from var ious  
sources  and had t o  i n t e g r a t e  them under cond i t ions  of extreme 
pressure .  The p o i n t  is t h a t  accepted modeling and computational 
p r a c t i c e s  do n o t  permit such a c t i v i t i e s  t o  proceed smoothly 
and exped i t ious ly ,  and t h i s  has  almost nothing t o  do w i t h  t h e  
b a s i c  e f f i c i e n c y  of a v a i l a b l e  op t imizers  and r e l a t e d  d a t a  
management systems f o r  mat r ix  and r e p o r t  generat ion.  

There a r e  a c t u a l l y  two main problems involved which I w i l l  
s t a t e  but  only  d i scuse  one. The o t h e r  w i l l  have t o  awai t  t h e  
outcome of work which I am j u s t  launching i n t o .  

The f i r s t  d i f f i c u l t y  has been a l luded  t o  by s e v e r a l  speakers 
a t  t h i s  Workshop though n o t  very s u c c i n c t l y  o r  p r e c i s e l y .  
Perhaps t h e  most meaningful words t o  p o i n t  a t  t h e  problem a r e  
" a d a p t a b i l i t y w  and " f l e x i b i l i t y " ,  o r  r a t h e r  t h e i r  l ack .  The 
b e s t  sof tware  components a r e  o f t e n  no t  a v a i l a b l e  s e p a r a t e l y  
bu t ,  even when they a r e ,  they a r e  n o t  very adap tab le  t o  new 
environments o r  requirements.  I B M ' s  modularizing of MPSX/370 
i s  a  s t e p  i n  t h e  r i g h t  d i r e c t i o n  but  it does n o t  go f a r  enough. 
The l a r g e  commercial MPSs, i n  s p i t e  of t h e i r  impress ive  com- 
pu t ing  power and range of f e a t u r e s ,  a r e  a c t u a l l y  no t  f l e x i b l e .  
In  f a c t ,  they seem t o  have followed t h e  evo lu t ion  of dinosaurs .  
I cannot go f u r t h e r  i n t o  this s u b j e c t  i n  t h i s  d i scuss ion .  I t  
is  a  problem I w i l l  be address ing over t h e  nex t  s e v e r a l  months. 
I t  has a s p e c t s  which transcend merely t h e  t e c h n i c a l ;  f o r  example, 
t h e r e  a r e  l e g a l  and p r o p r i e t a r y  impediments t o  a  f u l l  r e s o l u t i o n .  

The second d i f f i c u l t y  i s  t h a t  very few model implementere know 
how t o  use  proper ly  t h e  t o o l s  t h a t  a r e  a v a i l a b l e  and, i n  some 
i n s t a n c e s ,  s t rong ly  r e e i s t  o r  e l s e  ignore  c a p a b i l i t i e s  t h a t  
have been designed t o  he lp  them. 



I have c a l l e d  t h i s  the problem of  s o l o  , which may be  too  
smal l  a word t o  convey t h e  scope o ~ p o r t a n c e .  The 
f a i l u r e  t o  p rope r ly  symbolize t h i n g s  causes  confus ion and 
e x t r a  work a t  many p o i n t s ,  a l l  t h e  way from LP model i d e n t i -  
f e r s  (row and column "names") t o  d a t a  set names i n  a run  
stream a t  t h e  o p e r a t i n g  system l e v e l .  To make some approach 
t o  t h e  s u b j e c t ,  l e t  m e  pose t h e  q u e s t i o n  heading t h e  nex t  
s e c t i o n .  

WHAT IS A MODEL? 

The term model is used i n  many senses ,  a l l  t h e  way from con- 
c e p t u a l i z a t i o n  t o  a p a r t i c u l a r i z e d  ma t r ix .  In  r e a l i t y ,  a n  LP 
model undergoes s e v e r a l  s t a g e s  of development and use .  (The 
same is t r u e  of o t h e r  t y p e s  o f  mathematical  models.)  Like t h e  
word " f i l e " ,  it is imposs ible  t o  g e t  people  t o  be  p r e c i s e  w i t h  
t h e  use  o f  "model". Unfor tuna te ly ,  "model" can  be used i n  
even more d i s p a r a t e  senses  s o  t h a t  d i f f e r e n t  types  o f  s p e c i a l -  
is ts  on t h e  same p r o j e c t  have complete ly  d i f f e r e n t  views of 
what t h e  model is. 

It is  p o s s i b l e  t o  list t h e  v a r i o u s  s t a g e s  o f  modeling and this 
w i l l  be done h e r e  b r i e f l y .  Even s o ,  d i f f e r e n t  people  w i l l  
s t i l l  have a d i f f e r e n t  " f e e l "  f o r  what it is. 

( a )  Concep tua l i za t ion :  e x t r a c t i n g  from a rea l -world  
situation c e r t a i n  a b s t r a c t  r e l a t i o n s h i p s  -- impor tant  t o  a 
d e s i r e d  i n v e s t i g a t i o n  -- which a r e  amenable t o  t r ea tmen t  by 
an a v a i l a b l e  modeling technique.  Many assumpt ions ,  s impl i -  
f i c a t i o n s  and compromises a r e  i n v a r i a b l y  necessa ry .  P r a c t i c a l  
c o n s i d e r a t i o n s  must a l s o  b e  t aken  i n t o  accoun t ,  such a s  a v a i l a -  
b i l i t y  of necessary  d a t a ,  so f tware ,  a n a l y t i c  manpower, e t C .  

( b )  Formulation: d e f i n i n g  t h e  v a r i a b l e s ,  c o n s t r a i n t s ,  
n a t u r e  of the c o e f f i c i e n t s ,  l i m i t s ,  u n i t s  (of measurement) ,  
s c a l i n g s ,  etc.  The assumpt ions ,  d e r i v a t i o n s  and expected 
q u a l i t y  of r e s u l t s  must a l s o  be  stated a s  c l e a r l y  a s  p o s s i b l e .  
This  s t e p  invo lves  d e t a i l e d  a n a l y t i c a l  work. 

(c )  Implementation: e s s e n t i a l l y  d a t a  c o l l e c t i o n  and 
a n a l y s i s .  This  is o f t e n  t h e  most d i f f i c u l t  p a r t  of  t h e  whole 
p r o j e c t  and may involve  a number o f  a n c i l l a r y  p r o j e c t s  and 
even models. 

( d )  Computerization : conver t ing  t o  workable computer 
procedures t h e  formulat ion and implementation and t h e i r  impl i -  
c a t i o n s .  I t  a lmost  i n v a r i a b l y  happen t h a t  new c l a s e e s  and 
sets of terminology a r e  in t roduced  i n  t h i s  s t a g e ,  even t o  t h e  
p o i n t  t h a t  t h e  a n a l y s t s  of  the preceding s t a g e s  s c a r c e l y  
r ecogn ize  t h e i r  b r a i n c h i l d .  



( e )  Test ing on l i v e  da ta :  it is only a t  t h i s  s t a g e  t h a t  
t h e  model r e a l l y  begins t o  become " a l i v e "  and a l s o  where many 
d e f e c t s  appear.  These u s u a l l y  l ead  t o  modif icat ions  of s t a g e s  
( b , c , d )  u n t i l  s a t i s f a c t o r y  r e s u l t s  a r e  obta ined.  

( f )  Exercising t h e  model f o r  " r e a l n  c a s e s .  Note t h a t  
exper ience and e x p e r t i s e  from a l l  t h e  preceding s t a g e s  must be 
brought t o  bear  i f  b e s t  r e s u l t s  a r e  t o  be obtained.  

In a narrower sense ,  a model is one p a r t i c u l a r i z a t i o n  of the 
LP matr ix  f o r  a case ,  perhaps including var ious  a l t e r n a t e  
components o r  t h e  a b i l i t y  t o  r e v i s e  them f o r  v a r i o u s  s t e p s  i n  
a (computer) run o r  coordinated set of runs .  The des igners  
and b u i l d e r s  of a p p l i c a t i o n  sof tware  f o r  LP o f t e n  use  "model" 
i n  t h i s  sense ,  d i s t i n g u i s h i n g  t h i s  from an even more s p e c i a l -  
ized form which i s  used f o r  a c t u a l  c a l c u l a t i o n s .  This termino- 
logy is a l s o  adopted by t h e  u s e r s  of such systems. Note t h a t  
"users  of t h e  model" i n  t h e  broad sense  w i l l  i nc lude  a n a l y s t s  
who may n o t  even be aware of such d i s t i n c t i o n s .  

A CLARIFYING ANALOGY 

Suppose one is going to e r e c t  a s t r u c t u r e  from a s tandardized 
a r c h i t e c t u r a l  des ign.  No two s t r u c t u r e s  w i l l  be  i d e n t i c a l ,  of 
course ,  b u t  each w i l l  have some s p e c i a l i z a t i o n  t o  accomodate 
d i f f e r e n c e s  i n  l o c a t i o n ,  topography, c l imate ,  end-use, and so 
on. What a r e  the major c a t e g o r i e s  of m a t e r i a l s ,  machines, e t c . ,  
which must be taken i n t o  account? The fol lowing l i s t  is  
adequate f o r  our  purposes he re .  ( W e  amit  c o s t s  and investment 
schedule which need no analogy.) 

Plans  and s p e c i f i c a t i o n s .  
B i l l s  of mate r ia l  and l is ts  of equipment. 
Erect ion schedule.  
Specia l ized b l u e p r i n t s  and i n s t r u c t i o n s .  
Preparatory and sca f fo ld ing  m a t e r i a l s .  
Equipment f o r  p repara t ion  and forms. 
S t r u c t u r a l  m a t e r i a l s .  
Equipment f o r  a c t u a l  cons t ruc t ion .  
Removal of sca f fo ld ing  and d e b r i s .  
Finishing work, which depends on s t r u c t u r a l  d e t a i l s .  

Overseeing a l l  t h i s  is a management and admin i s t ra t ive  func- 
t i o n ,  a c t u a l l y  s e v e r a l  a t  va r ious  l e v e l s .  

Now, it is  our  t h e s i s  t h a t  t h e  use  of a complex system of 
models to produce f i n a l  r e s u l t s  is analoguous t o  e r e c t i n g  a 
s t r u c t u r e .  Indeed, t h e r e  a r e  tw s t a g e s :  t h e  c r e a t i o n  of t h e  
modeling system i t s e l f ,  and i t s  use  f o r  a s p e c i f i c  case  o r  
run. For t h e  f i r s t  s t a g e ,  each of t h e  t e n  items above, p l u s  
management and admin i s t ra t ion  can be analogized a s  follows. 



1. Concep tua l i za t ion  of t h e  modeling framework, i d e n t i -  
f i c a t i o n  o f  r e l a t i o n s h i p s  t o  be  taken  i n t o  accoun t ,  r e c o g n i t i o n  
of assumpt ions  and l i m i t a t i o n s ,  formal s t a t e m e n t  of  t h e  modeling 
scheme (wi th  review and p r o f e s s i o n a l  o p i n i o n ) ,  e s t i m a t e s  of  
t h e  r e s u l t s  o b t a i n a b l e  ( " a r c h i t e c t u r a l  r e n d e r i n g s  "1  , formula-  
t i o n  of  symbology and r e p r e s e n t a t i o n s ,  and o v e r a l l  f l o w c h a r t s  
of  t h e  a c t u a l  execu t ion  of  model r u n s .  A l l  o f  t h i s  should  
e x i s t  i n  one  o r  more volumes o f  formal  documenta t ion .  Although 
t h e s e  may seldom be  r e f e r e n c e d  by exper ienced u s e r s  of t h e  
modeling system d u r i n g  p e r i o d s  o f  i n t e n s e  a c t i v i t y ,  t h e i r  
c o n t e n t s ,  o r  c o u r s e ,  a r e  fundamental  t o  t h e  whole e x e r c i s e .  

2 .  S p e c i f i c a t i o n s  o f  a c t u a l  d a t a s e t s  which c o n t a i n  
neces sa ry  d a t a  i n p u t s  f o r  implementing the model,  and t h e  
programs o r  a p p l i c a t i o n s  sys tems which w i l l  p r o c e s s  them. 

3 .  Formula t ion  o f  t h e  run  s t r eam and o t h e r  c o n t r o l  pro- 
grams neces sa ry  t o  c a r r y  o u t  a  run.  Numerous t ime-dependencies 
and o t h e r  s u b t l e t i e s  must be  t aken  i n t o  accoun t .  

4 .  Ac tua l  p r o g r m i n g  and checkout  of p r e p r o c e s s o r ,  
g e n e r a t i o n  and a w i l i a r y  programs s p e c i a l i z e d  t o  t h e  c u r r e n t  
c l a s s  of  c a s e s .  

5. There i s  i n v a r i a b l y  a c o n s i d e r a b l e  amount of  u t i l i t y  
s o f t w a r e  and a u x i l i a r y  d a t a  r e q u i r e d  t o  c a r r y  o u t  tne o v e r a l l  
scheme of  execu t ion .  For example, temporary and s c r a t c h  
d a t a s e t s  a r e  needed and,  among o t h e r  t h i n g s ,  a r rangements  f o r  
t h e i r  r e s i d e n c y  and l i f e - s p a n  must be  made. 

6. The neces sa ry  u t i l i t y  programs o r  sys tems must be  
a c c u r a t e l y  i d e n t i f i e d  a r e  t h e i r  a v a i l a b i l i t y  a s s u r e d .  

7 .  The a c t u a l  i n p u t  d a t a  must be acces sed  a t  t h e  p r e c i s e  
t i m e  needed. 

8 .  The neces sa ry  a p p l i c a t i o n  sys tems o r  o t h e r  s o f t w a r e  
must be a c c e s s i b l e  and l o g i c a l l y  compa t ib l e  w i t h  o t h e r  com- 
ponents .  

9 .  Temporary f i l e s  must be  purged.  A l so ,  most r u n s  
produce a l a r g e  volume of  u n i n t e r e s t i n g  o u t p u t  wnich should  be 
d i sposed  of e x p e d i t i o u s l y .  

10.  F i n a l  r e p o r t s  must be p repa red  i n  p r e s e n t a b l e  
f a s h i o n ,  u n c l u t t e r e d  by ex t r aneous  in fo rma t ion .  Th i s  n e a r l y  
a lways  r e q u i r e  c a r e f u l  prear rangements  s t a r t i n g  a t  i tem 3 and 
c o n s t i t u t i n g  a major p o r t i o n  of i t em 4 .  



For t h e  second s t a g e  -- making an a c t u a l  run -- it  i s  assumed, 
o r  course ,  t h a t  a l l  t h e  above has  been done. S t i l l ,  t h e r e  is 
a  n o t  i n s i g n i f i c a n t  amount of planning and work f o r  each run. 
(Some of t h e  a c t u a l  work may be scheduled d i f f e r e n t l y ,  such a s  
" p r e f a b r i c a t i o n "  of inpu t  v a r i a n t s . )  W e  run through t h e  t e n  
items again f o r  t h e  second s t a g e .  

1. A t  l e a s t  some thought must be given t o  whether t h e  
d e s i r e d  case  is wi th in  t h e  c a p a b i l i t i e s  of t h e  models. 

2. The exac t  inpu t  d a t a s e t s  and t h e i r  s u b s e t s  must be 
spec i f  i ed  . 

3. The run stream must be s p e c i a l i z e d  p r e c i s e l y .  

4 .  Scenar io  parameters must be s p e c i f i e d .  (Here, t h i s  
may come before  2 ) .  

5. Impl icat ions  f o r  temporary d a t a s e t s  must be taken 
i n t o  account.  

6 .  Impl icat ions  f o r  c o n t r o l  programs must be ad jus ted .  

7. It is d e s i r a b l e  t o  check beforehand t h a t  t h e  spec i -  
f i e d  inpu t  d a t a s e t s  r e a l l y  e x i s t  i n  a a c c e s s i b l e  s t a t e .  

8. I f  s p e c i a l  sof tware  is a f f e c t e d ,  t h e  necessary module 
l i b r a r i e s  must be arranged f o r .  

9. and 10. Same a s  be fore  b u t  a c t u a l l y ,  n o t  j u s t  plan- 
ned. 

I t  hardly  seems necessary t o  comment on t h e  management and ad- 
m i n i s t r a t i v e  overs igh t  which must go along wi th  a l l  t h i s .  

I f  t h e  foregoing analogy is  v a l i d ,  a  number of impl ica t ions  
can be der ived.  These a r e  t h e  s u b j e c t  of t h e  next  s e c t i o n .  

A FEW PRECEPTS 

One always h e s i t a t e s  t o  be dogmatic and p a r t i c u l a r l y  with 
r e s p e c t  of how computing and a n a l y t i c a l  work should be done. 
Di f fe ren t  people g e t  good r e s u l t s  wi th  d i f f e r e n t  s t y l e s  and 
work h a b i t s .  Nevertheless,  when one is  working wi th in  a  
complex system of a c t i v i t i e s ,  he cannot be judged on h i s  
personal  r e s u l t s  a lone,  b u t  almost equa l ly  on how w e l l  they 
mesh wi th  surrounding a c t i v i t i e s .  I n c o m p a t i b i l i t i e s  l ead  no t  
only  t o  e x t r a  i n t e r f a c i n g  work b u t  a l s o  t o  i n f l e x i b i l i t y  and 
the i n a b i l i t y  t o  t r a c e  e a s i l y  t h e  e f f e c t  of changes. 



One of t h e  t h i n g s  l a r g e l y  miss ing  i n  t h e  computing f i e l d ,  and 
found i n  a lmost  eve ry  o t h e r  d i s c i p l i n e ,  is  s t a n d a r d i z a t i o n  of  
symbology. Some d e  f a c t o  s t a n d a r d i z a t i o n  e x i s t s ,  due mainly t o  
such t h i n g s  a s  JCL which manufacturers  can  d i c t a t e  i n  t h e i r  
b a s i c  sof tware .  (Even t h i s  i s  n o t  always c o n s i s t e n t . )  I n  
modeling work invo lv ing  l a r g e  a r r a y s  o f  v a l u e s  which must be 
i d e n t i f i e d  i n  d e t a i l ,  t h e  l a c k  o f  s t a n d a r d i z a t i o n  l e a d s  t o  
incomprehens ib i l i t y .  This  may n o t  be t h e  wors t  r e s u l t ;  it 
hampers and even i n h i b i t s  automated p rocess ing  techniques .  
These l a t t e r  a r e  impor tant  t o  s i m p l i f y  s m a r y  and r e p o r t i n g  
s t e p s ,  to make modi f i ca t ions  e f f e c t i v e  a t  a  h igh  l e v e l  of 
s p e c i f i c a t i o n ,  and t o  a s s i s t  a n a l y s t s  i n  d e t a i l e d  i n v e s t i g a -  
t i o n s .  

Refe r r ing  back t o  our  analogy,  suppose each a r c h i t e c t  used h i s  
own terminology,  each draf tman had h i s  own symbols, and each 
s u p p l i e r  quoted m a t e r i a l s  i n  d i f f e r e n t  we igh t s ,  measures and 
packaging. The world would be a  n ightmare  and eve ry  p r o j e c t  an 
horrendous under taking.  Yet something s i m i l a r  occur s  i n  t h e  
a n a l y t i c  use  o f  computers. 

I t  i s  n o t  enough t o  o rgan ize  each p i e c e  of  a  l a r g e  p r o j e c t  -- 
a  form o f  subopt imizat ion.  There should  be an  o v e r a l l  c o n s i s -  
tency even i f  t h i s  imposes s l i g h t l y  awkward arrangements f o r  
p a r t i c u l a r  p a r t s .  Everyone canno t  be l e f t  f r e e  t o  d e v i s e  h i s  
pe r sona l  schemes, even i f  t hey  a r e  t h e  b e s t  f o r  h i s  p a r t i c u l a r  
t a sk .  Th i s  p r i n c i p l e  r eaches  down t o  t h e  lowes t  l e v e l  of 
d e t a i l ,  perhaps p a r t i c u l a r l y  s o .  I t  is  s t a n d a r d i z a t i o n  a t  t h e  
lowes t  l e v e l s  which pe rmi t s  f l e x i b l e  manipula t ion a t  h igh  
l e v e l s ,  n o t  t h e  o t h e r  way around. A t  one t i m e ,  each r a i l r o a d  
d e f i n e d  i t s  own t r a c k  gauge and des igned i t s  own wheel f l a n g e s .  
It was much more impor tant  t h a t  t h e s e  be s t andard ized  t h a n ,  
s a y ,  r a i l r o a d  management. S i m i l a r  c a s e s  have occur red  i n  
computing, i n  a  ve ry  broad c o n t e x t .  A t  one t ime ,  eve ry  manu- 
f a c t u r e r  claimed s u p e r i o r i t y  f o r  h i s  r ecord ing  scheme f o r  
magnetic t apes .  IBM's method f i n a l l y  won o u t  due  t o  t h e i r  
dominance i n  t h e  f i e l d .  I t  may be t h a t  t h e i r  method is no t  
t e c h n i c a l l y  t h e  b e s t  b u t  it is much more impor tan t  t h a t  today 
one can  c a r r y  a  t a p e  a l l  around t h e  world and have it r e a d a b l e  
i n  a lmost  any computer f a c i l i t y .  

Whenever a  r e q u i r e d  change a t  one l e v e l  imposes changes a t  
lower l e v e l s ,  d i f f i c u l t i e s  a r e  s u r e  t o  ensue.  ( I t  is o f t e n  
cheaper  t o  b u i l d  a  new s t r u c t u r e  than  t o  remodel a n  o l d  one.)  
Sometimes, lower l w e l  changes a r e  unavoidable  and/or  d e s i r a -  
b l e ,  bu t  they  should be made w i t h  g r e a t  c a r e ,  n o t  i n v a l i d a t i n g  
o r  bypass ing t h e  o r i g i n a l  des ign .  The a b i l i t y  which i n t e r -  
a c t i v e  computing t echn iques  g i v e  u s  t o  d i d d l e  wi th  a lmost  any 
p a r t  o f  a  system should  n o t  be used i n d i s c r i m i n a t e l y .  I n  a 
word, some d i s c i p l i n e  should be mainta ined.  



The above a l so  implies t h a t  low l eve l  rou t ines  inappropriate  t o  
t he  task should no t  be used j u s t  because they a r e  "standard 
system gear"  and avai lable .  Sometimes whole appl ica t ion  
systems a r e  used this way. One should no t  f o rge t  t h a t  sub- 
s t a n t i a l  co s t s  a r e  involved i n  bringing a l l  this machinery i n t o  
place t o  do a t r i v i a l  job. In genera l ,  it is advantageous t o  
think of software and da t a se t s  a s  machinery and mater ia l s ,  and 
consider whether t he  ends j u s t i f y  t h e  means. A good cont rac tor  
would t r y  t o  ge t  inc identa l  jobs done while machinery is i n  
place f o r  some la rger  purpose. Consider, f o r  example, t he  s i z e  
of t he  JCL and PCL decks required t o  a c t i v a t e  an MPS, and t h e  
prescanning of the  JCL and compilation of the  PCL which is 
necessary. 

A DETAILED EXAMPLE 

Let me now turn  from the  general and analogous t o  the  de t a i l ed  
and spec i f ic .  During 1979 here a t  IIASA, I implemented a 
generator f o r  a generalized regional  ag r i cu l t u r a l  model, o r  
GRAM. The formal de f in i t i on  of GRAM, i . e . ,  i n  mathematical- 
l i k e  no ta t ion ,  was t he  work of Professor M. Albegov and some 
assoc ia tes .  My task was t o  devise a computerized scheme t o  
make GRAM a working r e a l i t y .  Another IIASA s t a f f  member, A. 
Por, a l s o  contributed heavily t o  t h i s  e f f o r t ,  pa r t i cu l a r l y  i n  
devis ing,  implementing and ge t t i ng  o the r s  t o  use a scheme f o r  
i n i t i t a l  da ta  spec i f ica t ion  and transformation. This was 
c r i t i c a l  s ince  we had rea l ized  from the  o u t s e t  t h a t  properly 
arranged and formatted da ta  from a va r i e ty  of government 
agencies i n  d i f f e r e n t  count r ies  would never be forthcoming 
without a r e l a t i v e l y  simple but f l e x i b l e  and e a s i l y  processable 
format t o  which da ta  o r ig ina to r s  could and would conform. This 
subjec t  alone is worth 30-40 minutes of discussion which we 
w i l l  have t o  forego. 

The GRAM generator was completed while I was a t  IIASA - although 
the  report ing s ide  needed fu r the r  work - and was applied t o  a 
study of t he  Notec region of Poland. I was p leasan t ly  sur-  
pr ised a t  the  a b i l i t y  of our colleagues from Poland t o  provide 
ample da t a  i n  appropriate  format, t he  only h i t c h  being t he  
physical format of the  t r ansmi t t a l  tape which caused some 
i n t i a l  t rouble.  A heavy cont r ibu tor  t o  t he  p ro j ec t  was Janos 
Kacprzyk who deserves much c r e d i t  f o r  h i s  dedicated and in- 
s i gh t fu l  e f f o r t s .  

Since GRAM was being b u i l t  from the  ground up a s  an experi- 
mental system, I was ab le  t o  put i n to  e f f e c t  without any 
c o n f l i c t s  some ideas t h a t  I had been t ry ing  t o  promote for  some 
time pas t  but  with l i t t l e  success. These have t o  do spec i f i c a l l y  
with LP naming conventions, i . e . ,  symbology. Without claiming 
t h a t  my scheme is the  be s t  poss ib le ,  l e t  me present  it t o  



illustrate what such an approach can accomplish. Such ideas 
are not new but are seldom applied consistently. The best 
previous work I know of is that of Ken Palmer at Esso in 
London which dates back to at least 1970 and actually goes 
much further, for somewhat different purposes, than mine. 

As we all know, LP rows and columns must have identifiers, and 
for practical reasons, these are limited to 8 characters. 
These are not properly regarded as names or even mnemonics but 
as encodings. The ability to use both letters and numbers is 
not for readibility but to extend the character sets and thus 
the number of usable combinations. In fact, a well-designed 
scheme does have considerable mnemonic quality but that is a 
side effect, not a goal. 

The pieces, usually single but sometimes double characters, of 
which an identifier is composed are members of sets. These 
are mainly indexing sets. An LP model is essentially combina- 
torial in nature and this is reflected in the various combinations 
occurring in its identifets. But to be fully meaningful, the 
index sets must be assigned positions in the identifiers. 
Since a large model will involve more than eight index sets, 
considerable thought must be given to devising the most useful 
arrangement. This point is often handled in a very slipshod 
manner by model implementers which gets them into awkward 
messes later when they want to extract information or summarize 
over a set or sets. 

Let us interrupt this line of thought a moment to consider what 
parts go into the construction of an LP model. First of all 
there are indexing sets or, in Haverly's terminology used in 
Magen and OMNI and perhaps elsewhere, classes. However, I 
prefer to reserve the word classes for a different purpose. 
Until one knows something about the categories of items to be 
considered, represented by index sets, there is very little one 
can say about a model. 

Second, there are the main LP (primal structural) variables 
and these are usually divided into classes, say production, 
construction, inventory, sales, etc. Hence one needs a special 
index set called variable class designators to distinguish 
these. Further differentiation usually depends on regular 
index sets. 

Third, there are the constraints in the variables and here 
four considerations come into play: 

(a) The type of constraints; 
(b) The constraint class, similar to variable class: 
(c) The indexing which is to apply; and 
(d) What data values are to be used. 



Note t h a t  it is only here  t h a t  numbers have been mentioned and 
w e  do n o t  y e t  c a r e  what t h e  va lues  a c t u a l l y  a r e .  

Fourth,  t h e r e  a r e  t h e  d a t a  t a b l e s  of which two kinds  a r e  
p r i n c i p a l l y  involved: t a b l e s  of s t r u c t u r a l  c o e f f i c i e n t s ,  and 
t a b l e s  of l i m i t  va lues  (RIIS, ranges ,  upper and lower bounds). 
These d i f f e r  i n  their own indexing and naming requirements.  

F i f t h ,  and f i n a l l y ,  a r e  the  s p e c i f i c a t i o n s  f o r  t h e  o b j e c t i v e  
funct ion o r  func t ions .  Although depending on v a r i a b l e  index- 
ing  and c o e f f i c i e n t  t a b l e s ,  these  f requen t ly  do n o t  f i t  n e a t l y  
wi th  t h e  rest of the model. This was t h e  c a s e  i n  t h e  Notec 
model and it is t h e  primary reason f o r  c e r t a i n  s p e c i a l  pro- 
c e s s i n g  i n  generat ing MEMM. This i s  too  l a r g e  a s u b j e c t  t o  be  
f u r t h e r  developed here  bu t  needed t o  be mentioned. It is a 
ch ie f  cause o f  awkwardness i n  genera t ing  s tandard MPS i n p u t  
f i l e s .  

Returning now t o  index s e t s ,  one must be c a r e f u l  t o  d i s t i n g u i s h  
between t h e  name of a set, u s u a l l y  on ly  one c h a r a c t e r  i t s e l f ,  
and t h e  v a l u e  a member of the set. Thus one might have a 
set c a l l e d d e f i n e d  = { I ,  1, J, K ,  L]. (This  is  n o t  a 
r e c u r s i v e  d e f i n i t i o n . )  To make this d i s t i n c t i o n ,  an upper 
c a s e  letter can be used t o  denote a set name and t h e  lower 
c a s e  one of i ts members. Thus I = { i l  where i is understood 
t o  run over symbolic, n o t  numeric va lues  even i f  the symbols 
a r e  d i g i t s .  

Since GRAM i s  a general ized system, f u r t h e r  l e v e l s  of a b s t r a c -  
t i o n  a r e  required.  For example, v a r i a b l e  c l a s s e s  must be 
spec i f i ed .  We do n o t  know how many ( c a r d i n a l i t y  of t h e  v a r i a b l e  
c l a s s  des igna to r  set) o r  t h e i r  symbols (values  i n  t h e  set) but  
some such set much be s p e c i f i e d .  Since it i s  a master o r  
primary set, values  must be presented i n  two t a b l e s ,  one with  t h e  
f ixed  name H:VAR.TYPE which g i v e s  t h e i r  meaning a g a i n s t  t h e i r  
c l a s s  des igna to r  and t h e  o t h e r  wi th  t h e  f ixed  name M:VIDSTRUC 
which s p e c i f i e s  t h e i r  indexing s t r u c t u r e .  

The p r e f i x e s  t o  t h e  above t a b l e  names r e f l e c t  the f a c t  t h a t  
GRAH was implemented i n  DATAMAT, t h e  d a t a  management extension 
t o  t h e  SESAME i n t e r a c t i v e  MPS. DATAMAT u t i l i z e s  t h r e e  forms 
of  t a b l e s :  

numeric t a b l e s ,  names pref ixed G:  
symbolic t a b l e s ,  names pref ixed M: 
t e x t - s t r i n g  tables, names pref ixed H: 

They a l l  u t i l i z e  the same form of symbolic s t u b s  and heads 
except  H:table heads which a r e  convent ional ized f o r  format t ing 
purposes. Since o t h e r  heads and s t u b s  themselves c o n s t i t u t e  



s e t s ,  void t a b l e s  a r e  sometimes s u f f i c i e n t  f o r  d e f i n i n g  a s e t .  
In t h e  above c a s e ,  t h e  s tubs  of t h e  two t a b l e s  a r e  i d e n t i c a l  
b u t  t h e  bodies se rve  d i f f e r e n t  purposes and hence u t i l i z e  
d i f f e r e n t  t a b l e  forms. (Some systems, f o r  example O M N I ,  
permit  a l l  t h r e e  forms t o  be combined i n  one t a b l e .  Whether 
o r  n o t  this c o n s t i t u t e s  a s i m p l i f i c a t i o n  is  a moot p o i n t . )  

For r e g u l a r  indexing s e t s ,  even t h e i r  number and names a r e  
unknown a p r i o r i .  When it is necessary t o  r e f e r  t o  t h e  names 
of some indexing set whose name is unknown, an underlined 
u p p e a s e  can be used, f o r  example, A is  t h e  name of some s e t  
which m i  h t  be A - ( a } .  In f a c t ,  a l l - r egu la r  indexing s e t s  
a r e  nam*n t h e  s t u b  of a t a b l e  c a l l e d  8:INDICES. s i m i l a r  t o  
H:VAR.TYPE. The bodies  of these  H:tables a r e  used only f o r  
auto-documentation. 

For each member of t h e  s t u b  of H:INDICES, another  8 : t a b l e  must 
be s p e c i f i e d  (by that name) whose s t u b  s p e c i f i e s  t h e  members 
of t h e  s e t  and whose body g ives  t h e i r  meaning. For example, 
one l i n e  of H:INDICES is  

I = 'ALL CROPS CONSIDERED' 

which shows what index s e t  I r e f e r s  t o .  There is then another  
t a b l e  H:I which has e n t z s  

W a 'WHEAT' 
R = 'RYE' 
8 = 'BARLEY' 

e t c .  

which shows w h a t  members of s e t  I r e f e r  t o .  

Unfortunately,  every group of models has  some s p e c i a l  cond i t ions  
t o  be taken i n t o  account.  These a r e . o f t e n  expressed w i t h  
"FOR" and "EXCEPT" phrases .  Another technique was a l s o  used 
i n  GRAM f o r  subse t s  of c rops  which had t o  be t r e a t e d  d i f f e -  
r e n t l y .  Another t a b l e  c a l l e d  H:CROPS has 2-character  s t u b s ,  
f o r  example, 

I G  = 'GRAINS' 
I 1  = ' INDUSTRIAL CROPS' 

e t c .  

Corresponding t o  these  s t u b s  a r e  void M:tables l i s t i n g  t h e  
subse t s  i n  t h e i r  heads,  f o r  example: 



( t he  rows of do ts  terminate a t ab l e  de f in i t i on . )  Such 
spec i f i c a t i ons  a r e  easy t o  devise bu t  requi re  t h a t  spec ia l  
processing code be i n s t a l l e d  i n  the  generator .  Further design 
e f f o r t  i s  needed i n  t h i s  area and the foregoing is more an 
example of what not t o  do than of c lean,  general capabi l i ty .  
Nevertheless, a few spec ia l  gimmicks always seem necessary i n  
pa r t i cu l a r  cases  and it is perhaps more important t h a t  t he  
generator be e a s i l y  modifiable. 

Let us now see how LP column i d e n t i f i e r s  a r e  put  together.  
These a r e  members of va r i ab l e  c l a s se s  (or ,  f o r  p u r i s t s ,  a r e  
surrogates  fo r  them). The f i r s t  var iab le  c l a s s  i n  GRAM is 
named X and represents  growing of prFmary crops. The f i r s t  
pos i t ion  i n  an LP column i d e n t i f i e r  always represents  the 
var iab le  c l a s s .  The following en t ry  appears i n  t ab l e  
M:VIDSTRUC 

X = X I .  PRSA 

The do t  ind ica tes  t h a t  t he  t h i rd  pos i t ion  is not  used but is 
held by t he  dot. Any unused pos i t ions  through t h e  seventh a r e  
so held. The eighth was not used but  l e f t  ava i lab le ,  f o r  
example, i f  t h e  periods were introduced. 

The f i v e  l e t t e r s  a f t e r  X a r e  names of index s e t s  and show t h a t  
X-class i d e n t i f i e r s  a r e  constructed by running over a l l  combina- 
t i ons  of members of these s e t s ,  subject  t o  t he  provision t h a t  
a nonzero coe f f i c i en t  appear i n  some cons t r a in t  for  each 
combination. An assembly language subroutine is used t o  run 
over a l l  combinations, l i k e  a mixed radix counter.  (An analogy 
is a d i g i t a l  clock showing days, hours, minutes and seconds.) 

Another en t ry  i n  M:VIDSTRUC is  

U = U J K P R T .  

No c o n f l i c t s  a r i s e  s ince  s e t s  I and J a r e  never used i n  the  
same var iab les ,  and s imi l a r l y  fo r  S and T. The placement of 
t he  P and R s e t s  was d i c t a t ed  by the  f a c t  t h a t  they appear i n  
a l l  var iab le  c l a s se s  and most cons t r a in t s  c l a s se s .  Only the 
fourth and f i f t h  pos i t ions  l e f t  enough pos i t ions  on each s ide  
fo r  o rder ly  assignments. This kind of pre-analysis m>u be 
made before specifying i d e n t i f i e r  s t ruc ture .  

A d i f f e r e n t  s o r t  of c o n f l i c t  d id  a r i s e  with Y-variables which 
have the  same s t ruc tu re  a s  X-variables but  which involve a 
subset of the I s e t  i n  t he  same cons t r a in t s  as  X-variables. 
This was resolved by defining a Y s e t  and i n s t a l l i n g  spec ia l  
processing code. This was the  mostwkward s i t u a t i o n  i n  GRAM 
and resu l ted  from a formulation compromise with respec t  t o  
secondary crops which a r e  not adequately handled by LP. 
Again, some spec ia l  gimmick always seems t o  a r i s e .  



S p e c i f i c a t i o n  o f  c o n s t r a i n t  ( i . e . ,  LP row) i d e n t i f i e r s  is  
d i f f e r e n t  from t h a t  o f  column i d e n t i f i e r s  and i n h e r e n t l y  more 
d i f f i c u l t .  One may n o t e  t h e  fo l lowing  d i f f e r e n c e s  immediately: 

(1) There a r e  g e n e r a l l y  more index combinations f o r  
columns b u t  fewer c l a s s e s .  As a r e s u l t ,  column i d e n t i f i e r s  a r e  
more s t r a i g h t f o w a r d  though t h e  number gene ra ted  o r  examined 
may be very  l a r g e .  

( 2 )  Index s e t s  d i sappea r  from t h o s e  c o n s t r a i n t s  in  which 
they  a r e  summed over .  The fewer index s e t s  appea r ing ,  the 
fewer c o n s t r a i n t s  b u t  t h e  t o t a l  number o f  c o e f f i c i e n t s  may be 
abou t  t h e  same due t o  impl ied  aggrega t ions .  For example, a 
c o n s t r a i n t  over  a t o t a l  r eg ion  may i n c l u d e  a l l  t h e  c o e f f i c i e n t s  
o f  c o n t r a i n t s  ove r  its subregione,  

( 3 )  C o n s t r a i n t  c l a s s e s  and index sets may no t  be s u f f i -  
c i e n t  t o  i n s u r e  nonambiguity, due  t o  m u l t i p l e  o r  s p e c i a l  
c o n s t r a i n t s  ove r  t h e  same i tems.  Conversely,  index s e t s  may 
appear  which do n o t  occur  f o r  columns. 

( 4 )  I t  is  u s e f u l  t o  a s e i g n  one p o s i t i o n  ( t h e  f i r s t )  t o  
d e s i g n a t e  LP c o n s t r a i n t  t y p e ,  independent ly  o f  c o n s t r a i n t  
c l a s s  v is -a-vis  the model. (This  may h e l p  a l l e v i a t e  t h e  
problem of  ambiguity b u t  does  n o t  gua ran tee  t o  e l i m i n a t e  it.) 

15) C o n s t r a i n t  indexing must match l i m i t  t a b l e  indexing 
and be c o n s i s t e n t  w i t h  c o e f f i c i e n t  t a b l e  indexing.  Universa l  
s e t  members "any" and "none" may a l s o  be necessa ry .  

A l l  t h e s e  s i t u a t i o n s  occurred i n  o r  were imposed on GRRM and 
it must be admit ted  t h a t  f u r t h e r  work is needed i n  g e n e r a l i z i n g  
c o n s t r a i n t  s p e c i f i c a t i o n .  Never theless ,  t h e  scheme used 
proved q u i t e  workable and its main p o i n t s  w i l l  be i n d i c a t e d  
here .  

The f i r s t  p o s i t i o n  o f  a c o n s t r a i n t  i d e n t i f i e r  is  as s igned  t o  
LP type.  These a r e  l i s t e d  i n  a t a b l e  H:CON.TYPE which is  
g e n e r a l  t o  LP formulat ion Lor in tended t o  b e )  and n o t  s p e c i f i c  
t o  a c l a s s  o r  models. These types  i n c l u d e  s imple  upper bounds 
and GUB s e t s  a l though ,  i n  f a c t ,  these f e a t u r e s  were n o t  used 
a s  such.  The main types  were a s  fo l lows:  

A = 'AVAILABILITY, NO M I N  REQUIRMENT: 
B = 'BOUNDED ABOVE AND BELOW (RANGED) 
C + 'INEQUALITY CONDITN, NO CONSTANT' 
D = ' D E W i N D ,  NO UPPER LIMIT' 
E = 'EQUALITY, GENEWL' 
F = 'FUNCTIONAL FORM' 
K = ' GUB INEQUALITY, (NO ACTUAL GUB) ' 
L = 'BALANCE EQUALITY, NO CONSTANT' 



The second p o s i t i o n  s p e c i f i e s  c o n s t r a i n t  c l a s s  and i s  s p e c i f i c  
t o  t h e  s e t  of models. These c l a s s e s  a r e  l i s t e d  i n  H:CONCLASS 
and included,  f o r  example: 

B = ' LABOR' 
C = 'CAPITAL' 
D = 'WATER' ... 
L r 'LAND' 

. . . 
W = 'WAGES ' 
$ = 'COST OR PROFIT' 

The l a s t  was used f o r  f u n c t i o n a l  d e f i n i t i o n s  f o r  which a 
s p e c i a l  technique w a s  used which w i l l  n o t  be f u r t h e r  d i s c u s s e d .  

The a c t u a l  c o n s t r a i n t  i d e n t i f i e r  s t r u c t u r e s  appear  on ly  i n  t h e  
s t u b  o f  a master  t a b l e  c a l l e d  M:CON which is ,  i n  f a c t ,  an 
abbrev ia t ed  d e f i n i t i o n  or " p i c t u r e "  o f  t h e  e n t i r e  model. 
Table  M:CON is t h e  p r imia ry  d r i v e r  f o r  t h e  g e n e r a t o r  and ties 
t o g e t h e r  a l l  t h e  v a r i o u s  p a r t s ,  showing t h e i r  r e l a t i o n s h i p s .  

One i d e n t i f i e r  appear ing i n  t h e  M:CON s t u b  i s  

BFFPR. 

which i n d i c a t e s  a set of double  i n e q u a l i t i e s  on f e r t i l i z e r ,  
indexed over  s e t  F ( f e r t i l i z e r  types ,  n o t  appea r ing  i n  column 
i d e n t i f i e r s ) ,  P ( type  o f  economy) and R ( s u b r e g i o n ) ,  where P 
i s  r e s t r i c t e d  t o  v a l u e s  ' 2 '  and ' 3 '  ( coopera t ive  and p r i v a t e ) .  
The v a r i a b l e  c l a s s e s  involved a r e  X ,  Y and U which i n c l u d e  
index sets I ,  P, R ,  A ,  J, K and T ( a l s o  t h e  Y s u b s e t  of I ) .  
Hence summation i s  over  I (and Y )  , S,  A ,  J ,  K and T f o r  each 
FPR combination. This  was t h e  l a r g e s t  set o f  c o n s t r a i n t s  i n  
t h e  model. 

The head of M:CON and t h e  row f o r  BFFPR. are shown below. 

M:CON = M I N ,  RHS, SUM, MSUM, ISET, PSET, NO. - - -  
BFFPR. = GPPRN, GTPR, AXAY, FU, ALL, ' 23 ' ,  '23 '  

This  is  read fo l lows.  Lower l i m i t s  (MINI f o r  t h e s e  c o n s t r a i n t s  
a r e  g iven i n  t a b l e  G:GFPRN. Upper limits (RHS) a r e  i n  t a b l e  
G:GFPR. Var i ab le  c l a s s e s  X and Y both  appea r ,  w i t h  c o e f f i -  
c i e n t s  from G:A taken p o s i t i v e l y  (SUM). Var i ab le  c l a s s  U 
appears  wi th  c o e f f i c i e n t s  from G:F taken n e g a t i v e l y  (MSUM). 
A l l  members of s e t  I  a r e  used b u t  only  '2 and ' 3 '  from set 
P. Th i s  i s  c o n s t r a i n t  set number 23. (The I and P s e t s  a r e  
s p e c i a l i z e d  i n  s e v e r a l  c o n s t r a i n t s  and hence have columns i n  
M:CON.) 



Another s e t  of cons t ra in ts  has the i den t i f e r  BFF... and hence 
only one cons t ra in t  fo r  each f e r t i l i z e r  type. Summation is  
over P and R s e t s  i n  addit ion t o  those previously noted. A l l  
the same coe f f i c i en t s  occur but the  M I N  and RHS t ab l e s  a r e  
smaller and d i f f e r en t .  

Since the GRAM generator i s  wr i t ten  i n  DATAMAT, it is eas i l y  
modified. However, the DATAMAT processor i s  not very e f f i c i -  
en t  for  t h i s  kind of applicat ion on models a s  dense a s  t h a t  
for  the  Notec region. (It had approximately 50,000 nonzero 
values. ) 
Essential ly,  DATAMAT was used l i k e  a compiler f o r  which it was 
not designed. Nevertheless, once generated, the model was 
e a s i l y  worked with and the  general approach seems eminently 
su i t ab l e  fo r  automated model generation. 

The important point  we wish t o  make, however, is t h a t  carefu l  
design and cont ro l  of symbology is a s ine  qua non fo r  well- 
managed modeling systems. Much the same approaches could be 
used with other  systems such a s  DATAFORM (very c l o s e  to  DATAMAT 
i n  language) o r  OMNI which has d i r e c t  d e f i n i t i o n  of s e t s  
( c l a s se s ) .  Both the l a t t e r  u t i l i z e  compilers and a r e  designed 
fo r  batch processing whereas SESAME is an in t e r ac t ive  system 
and DATAMAT is la rge ly  in te rpre t ive .  (A spec i a l  version of 
DATAMAT was implemented fo r  GRAM which uses a kind of "half- 
compiler" and t h i s  g r ea t ly  improved throughput.) The impor- 
t a n t  task seems t o  be t o  convince LP modelers t o  use ex is t ing  
too l s  e f fec t ive ly  and t o  demand fur ther  improvements i n  the 
fu ture ,  ra ther  than forever f a l l i n g  back on ad hoc FORTRAN 
programs and sloppy nomenclature. 
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This paper examines a practical aspect of our decomposition method for dual angular lin- 
ear programs(51 in applying it to a planning system as a means of coordination. We often 
recognize in real planning systems that a "feasible solution" to a large-scale planning prob- 
lem isobtained by solving a sequence of subproblems and composing their solutions rather 
than formulating it as a single large-scale model to be optimized. In the decomposed mod- 
els, the planning staff can control the solutions through the modification of the succeeding 
models so as to be more desirable with respect to their criterion. We consider how to im- 
prove the present planning system leaving its basic planning method unchanged. In partic- 
ular, we tacitly assume that we shall be interested in considering a manner of computeriza- 
tion of the planning system from a practical viewpoint. We emphasize the need for a prac- 
tical coordination method in order to improve the plans obtained separately from the sub- 
models toward an overall objective. It i s  supposed that most of the models for such coor- 
dination will actually be formulated in dual angular form involving the submodels as part 
of their entire structure. Based on computational experience with our experimental codes, 
MULPS/FORTRAN[71 and MULPS/APL[Gl, we shall present one direction of applica- 
tion of our algorithm to a coordination method. 



1.  Introduction 

We sha l l  e d e  a pract ical  aspect of our decomposition method for  dual 

angular l inear  programs[5] i n  applying it  t o  a planning system aa a meaus of 

coordination. We oftau recognize in rea l  planning sys tem that  a "feasible 

solution" t o  a large-acale planning problem is obtained by solving a sequence 

of subproblem md composing t h e i r  solutiorrs rather  than formulating it  as a 

s ingle  large-scale d e l  t o  be optimized. In such cases. there seame t o  be 

persuasive and legitimate reasons why ouch a pluming mOIIp4r has been adopted 

in the r e a l  syr tam. The reasons n r m  d o e a l y  related to  the existence of 

intaugible factors  under rea l  planning circuuutaucee and the subject ivi ty  of 

the planning s t a f f ' s  c r i t e r ion  t o  evaluate the plans. It m y  be too d i f f i c u l t  

to formdate those in a form of a aingle model. In the decomposed models, the 

p l w i n g  s t a f f  can control the solut ions through the modification of the suc- 

ceeding models so  an t o  be more desirable v i t h  rerpect  to t h e i r  c r i t e r ion .  

We slull coluider h w  t o  *rove the present planning system leaving its 

basic manner of planning unchanged. In part icular ,  we t a c i t l y  ossrrma tha t  we 

W be interested in considering a manner of computerization of the plann- 

ing system from a pract ical  viewpoint. For tha t  purpose. we s h a l l  emphasize 

the need for  a pract ical  coordination lllethod i n  order t o  improve the plans 

obtained separately f r w  the submodels toward aa overal l  objective, even i f  i t  

is a minor al terat ion.  It ia supposed tha t  most of the models fo r  such coor- 

dination w i l l  be actual ly formulated aa a dual angular type of model involving 

those submodels i n  its e n t i r e  structure. 

Based on our computational experience i n  using our experimental codes, 

PaTLSS/FORTRAN[7] and NDLPS/APL[L], we sha l l  present one direct ion of applica- 

tion of our algorithm to a coordination method, i n  which the algorithm may 

not be necessarily used for performing a global o p t b i z a t i o n  of large-scale 



l inear  program. Rather. we intend t o  replace the "experimce-baaed" cwrd i -  

nation in an actual  planning syacem by a pract ical  decompoait ion-coord~tion 

mthod when va computerize the planning syrtem. 

In Section 2 a d a c o m p o s i t i o n - c o o r ~ ~ t i m  mthod dll be described as one 

of the future d i n c t l o r u  of l a r p - s c a l e  1- progrmdng research. In Section 

3 ch. feature. of our algorithm and the r e l a t i o m  v i t h  other a lgor l thp .  w i l l  be 

mnrionmd, a d  the conc lwiow from the computational expmriance VFU ba given. In 

t!m lut sect ion um .hall  introduce au uuraple of a h i . r u c h i u l  decoapomition 

approach t o  r u l  prcduction mehaduling in a Japanese o i l  coq.ny,  which vill be 

n g u & d  u ch. f i r a t  s tep  t w u d  m r p p l i u t i o a  of our decompo8itlon-coordination 

mrhod. 

2. The Need for  a Deco~nposition-Coordination Uethod 

It i8 vall-known that h l a r a r c h i u l  mthoda ham barn adopted in largtrcali 

i n d u s t r i a l  plaming symtams for  p r r c t i u l  plauning [14]. By introdncing a hier- 

archical  s t m c t u r e  in to  a plaoaing rymta ,  um can formulate a vagru overall 

planning problem am a umber of more concrete 8ubproblmm on var low kipdm of 

hierarchical  18~818 ; h a r u f t e r  we d l l  n f e r  t o  the taminology of hierarchical  

.gatem theory of Xa8arovic e t  al. (141. 

For axtmple, the planning symtem in a Japanesa o i l  eompany,which la reputed 

t o  be one of the most intennivr w e r a  of l inear  prop-, h u  the f o l l d g  

h l a r a r c h i c d  r t ructura b u i c a l l y  : 

Lave1 1 (8ighemc) : Long-term planning ; f a c i l i t y  md i n a s t m m t  plann- 

ing, curdes select ion and contracts,  e tc .  

L e v e l 2  : Short-tern planning for  mix month8 or  one year ; 

p r o f i t  md 1088 plaoaing, supplydemand pl.nning,ecc. 

Lave1 3 : Production planning f o r  evary one m t h  in the term. 

Lave1 4 (Lowest) : O p o r a c i o d  planning and schmdullng f o r  one month. 

A l l  planning ac t iv i t i e8  except on Level 4 a re  perforrmd in the head off ice.  

but tho88 on Lave1 4 am performed a t  the refinery-eitem. 

We may regard thin h i a r a r c h i t r l  planning syatem am a prac t ica l  Wpa of 

decomporition method t o  solve a largm vague planning problem so tha t  a larga 

a h t r a c t  model in deccnpomed in to  a nmuber of concrete rubmodels and each is 

sequentially solved in a givuu hierarchical  order. We should notice tha t ,  a8 a 

simple pract ical  way to obtain an approximate solution t o  a large-scale plonning 



problem on a hierarchical l eve l ,  a s imilar  approach is also rued. on vhich ve 

ahal l  focus our at tent ion h e r e a f t e r .  In p u t i c u l a r ,  t h i s  simple way h.s been 

much w r e  favourable in planning on 1-r lavela than on higher levels .  because 

thore a m  mauy timo-dep.nd.nt a c t i v i t i e s  having d i f fe ran t  p r i o r i t i e s  and weer-  

t-ty a t  the opera t ioad  f i d d s  m d  t h e n  & th. w d e l  too big. This rgpe 

of h k r a r c h i c a l  n t h o d  t o  solve large-scale problem6 is 4 e d  the h i e m h i m 2  

d o c a n p 4 e i h  mUlod [11,[21,[31,Il21, [131. 

lsong th. s u b d o l a  c r u u d  by the hiarmrchicll  decomposition n t h o d ,  there  

u e  hro kinds of liakqes, olu be- =&la oo the d i f fe ren t  level. d 

plother b ~ M m  t h o u  an the ram 1-1. fn th. h k r u c h i c a l  doc-i th ,  

chore linkages u m  mguded  u the bouuduy cooditions of the  subproblams. and 

each problem is solvad h a  a given order f o r  us-d values t o  t h o u  boundaries. 

& r c N  u m p l e  of h i e r u c h i c a l  &collposition w i l l  be described in Saction 4. 

Om of the vuk p o i n u  in the h i . ruch ic r l  docomposition mrthod id that i t .  

l.ck an uplicit-r t o  word3aate the  s o l u t i o ~  t o  the submodels toward su 

o r n r d l  objectiva. Such coordinrrtiorr mmy m a r l y  be prfo-d InforPrl ly  by 

nuu of information u & m p  among ths planners o r  b e t v n n  un i t s  i n  the organ- 

iutim. A set of the solution8 t o  the submodds by thid approach m y  be no w r e  

t h m  a "feasible  solution" to the e n t i r e  plandug pmblm.  I f  a p rac t ica l  coordi- 

nr t ion n t h o d  could be r u l i z e d  i n  vhich the ansumd v a l w a  g i w n  f o r  the linkages 

could be adjusted ao u t o  Improve the overall p.rformnce, we vill be able t o  

design an s f f i c i e n t  wmputerized planning s y s t e m  vhich could s e t  up a be t te r  

plan v i t h  d y  a d e r  -unt of e f f o r t  t h m  in the present syscsm. W e  s h a l l  

dl the h i % r r c h i u l  d e c q r i t i o n  approach having an u p l i c i t  coordination 

procena the &mnpmtiuneonIination method. 

h c h  e f for r  h a  be- o.& so f u  for  dovaloping mathematical p r o g r e g  

d e l s  of pract ical  w, in such industr ies  of Japan a s  o i l  and stsol, on higher 

levala of planning. Oa the other haadsthe omdelo m d  the solut ion =thodo f o r  

planning m d  scheduling problema on the l w e r ( o p r a t i o n a l )  l e w l a  have been l e f t  

ui& sxcept f o r  the optimal control problemm of physical processes. Rather, 

the a m 1  of e r p e r i a n u d  s t a f f  h.s been mgudad  u being fmportmt. Ewever, 

th is  tsndency v l l l  be chmging in the m a r  future t o  a w m  computerized log ica l  

-er than presently because of the appaarence of high-level d l  cmputers  

and the remarkable progress in management decision support syatema. Tha personal 

computers vill b e a m  popular and v i l l  be rued a t  the operational f i e l d s  fo r  

generatiog data  fo r  models and analyzing tha r e s u l t s ,  l inking it v i th  the main 



computer very soon. 

It seems t h a t  the fo l loving tvo.points  on large-scale  mathematical pro- 

g r d g  w i l l  be important in the near fu tu re  f o r  computerization of the  plann- 

ing systems : 

1)  On the higher Z.evele o f  p k i n g  ByEt8WI8,a coordination method and 

its r e l a t e d  models useful  f o r  l i nk ing  together  the  var ious  kinds of planning 

models on two d i f f e r e n t  h i e ra rch ica l  l e v e l s  and f o r  coordiaat ing them tovard an 

mrall object ive .  

2) On the h a t  hwl, a p r a c t i c a l  approach f o r  solving large-scale 

problems on the  s m  hie ra rch ica l  l e v e l ,  in p a r t i c u l a r ,  scheduling problem : 

f o r  example, m e t  production scheduling models are too l a r g e  t o  be d i r e c t l y  

solved by a computer i n s t a l l e d  a t  the opera t ional  f i e l d s .  To install a l a rge  

computer only f o r  its purpose w i l l  no t  be economical. Therefore, t he  h i e r a r c h i c a l  

&composition mmthod is of t en  adopted f o r  so lv ing  t h e m .  Any p r a c t i c a l  coordina- 

t i o n  method will be  rLso very useful  e m n  f o r  solving a l a r g o c a l e  opera t ional  

problem so  t h a t  the mmthod may praLs i t  poss ible  t o  improve the present  so lu t ions  

t o  so- ex ten t .  

Two Types o f  Algorithms Required. 

Ua s h a l l  n w  emphasize t h a t  two types of  a l g o r i t h m  should be developed f o r  

large-acala linear programma f o r  the  purpose of r e a l i z i n g  the  above mentioned 

points.  

1 )  Algorithm an an E f f h k n t  Sof- : This a rea  is in l i ne  with the 

t r a d i t i o n a l  d i r e c t i o n  of developing nev a l g o r i t h m .  which a r e  t o  so lve  the  large- 

scale problems d i r e c t l y  and e f f i c i e n t l y .  This may be regarded aa f inding another 

" s b p l e x  method" f o r  large-scale problems. 

2) Algorithm as a Coozdinution h t h o d  : A c e r t a i n  type of algorithm 

uaeful  f o r  computerizing a r e a l  plarming proceas f o r  obta ining an improved 

so lu t ion  w i l l  be needed. P i r a t l y ,  t h i s  algorithm should have a mechanism adapted 

fo r  expresaing a t  l e a s t  tvo  typ ica l  opera t ions  of decomposition and coordinat ion 

which o f t e n  e x i s t  in r e a l  planning proceaaes f o r  large-scale  problems. It w i l l  be 

of a two-level scheme which means both solving subproblems in sequence and coordi- 

na t ing  them f o r  an improvcd aolut ion.  Secondly. t h i s  algorithm should have a 

c e r t a i n  type of a lgor i thmic  s t r u c t u r e  ao aa t o  be ab le  t o  be e a s i l y  r ea l i zed  as 

a u s e r ' s  ova mathematical programming system i n  a simple way; i t  w i l l  be des i r ab le  

f o r  t h i s  purpose t h a t  the system can be e a s i l y  w r i t t e n  by the users  thamselves as  



a "Hathematical Programing Systems Complex" b u i l t  up by using advanced 

comerc ia1  codes. 

There is soma coordination i n  the  r e a l  h i e ra rch ica l  decomposition approach. 

It may be performsd on the baais  of the planning s t a f f ' s  experience, vhich ve 

s h a l l  c a l l  the ecperienco-based caodinatia. It has been shown in papers on 

organizat ional  theory, e.g. .[8].[9],  t h a t  the umber  of information exchanges 

be tmen  the u n i t s  in an organization fo r  coordination is only a few. u it i a  

l imi ted mafnly by coat and t h o .  We shall need a coordinat ion mchao im.  in the  

algorithm, which la close  t o  a r e d  coordination manner. 

In the  c w  of cmnputerization of a r e a l  planning system. ue s h a l l  need t o  

wr i t e  our ovn computer program involving a . m t r I x  generation from mahtained 

data  bases ,  m d i f i c a t i o n  of input  data and various aubwdels ,  t he  f a c i l i t i e s  f o r  

checking the  overa l l  accep tab i l i ty  of the r e s u l t s ,  a repeated opt imizat ion of 

subproblems, and the  composition of the solut ione t o  the  var ious  subproblems. . 

Y. rhrll c a l l  i t  the  NnthmnxticaZ R q p w d n g  Syetoms CanpZe (MPS Complex). 

For a m p l e .  the Extended Control Langrup (ECL) of the MPSX/370 h a  t h e  

f a c i l i t i e s  appropr ia te  f o r  t h i s  purpose. by vhich we can w r i t e  a PIPS Complex i n  

such a -er t h a t  the poverful WSX can be used an a too l  f o r  the  optimization 

of the var ious  problema in the  MPS Complex. The devclopmnt of t h i s  type of 

algorithm seema t o  br ing us a wider clasr of advanced tQS app l i ca t ions  i n  the  

future.  

3. Our Decomposltlon Algorlthm as a Coordlnatlon Method 

An o r i g i n r l  form of our decompositioa algorithm (31 van dweloped as a 

coordination method f o r  solving tvo-stage l i n e a r  programs in the nested tvo-level 

approach t o  multi-period planning. ca l l ed  the PAIRDP syatem(21. and then the 

idea  vne f u r t h e r  extended t o  the  present algorithm[5] f o r  solving dual angular 

l i n e a r  programs. Therefore. the  algorithm haa the  f ea tu res  convenient f o r  

using i t  a s  a c o o r d i ~ t i o n  method. I n  addi t ion,  we have obsetved from our  

computational experience [4].[5].[7] t h a t  the  computational behaviour is 

a l s o  des i r ab le  to  a decomposition-coordination approach. The fea tu res  of our 

algorithm a r e  sumanrized as  follows : 

The features of the atgorithm. 

1) The algorithm is of a resource-directive decomposition and can make use of 

"good" i n i t i a l  values f o r  l ink ing  var iables  e a s i l y ,  such an those obtained by 



the planner from experience. The ocher advantageous proper t ies  inherent  in the  

resource-directive decomposition such a s  claimed i n  Burton e t  a l . [8 ]  a r e  a l s o  

found. 

2) A number of l i n e a r  programs a re  solved throughout the e n t i r e  algorithm. 

An e f f i c i e n t  computer program can be e a s i l y  wr i t t en  by use r s  an long as an 

advanced l i n e a r  prograudng subroutine is avai lable .  

3) The optimizing s t r a t egy  i n  the  presant algorithm is e a s i l y  modified f o r  

the purpose of taking accormt of a planner 's impl i c i t  u t i l i t y  funct ion defined 

on tho object ive  functions of the subproblema, s ince  the  s t ruc tu re  of the sub- 

problems is preserved throughout the opt iPizat ion[3] .  

4) The number of coordination cycles  required f o r  opt imol i ty  is r d a t i v a l y  

small and does not  aacessa r i ly  increase along with sn inc-e i n  the n m b e r  of 

subproblems. Rather, it s t a y s  a t  a r e l a t i v e l y  small number. We may roughly 

es t imate  it  a t  the  rider of subproblame o r  even less, though i t  usually depends 

on t he  i n i t i a l  valuas f o r  the  l inking var iables .  

5) k the  so lu t ion  a t t a ined  a t  tho f i r s t  o r  e a r l i e r  cycles  of coordination is 

c lose  t o  the optimum point ,  i t  may be e f f e c t i m  t o  s t o p  computing a f t e r  a few 

cycles  before  the  exact opt imal i ty  is obtained. an it is in the experience- 

breed coordination. 

Ihe re'etations with other atgoritlmrs. 

Lately,  we have noticed t h a t  our algorithm is b a s i c a l l y  along the  same llme 

re Gasm' a lgor i thm[l l ] .  and, therefore ,  is expressed i n  terms of WinLler's GBBP 

simplex method[l7] specif ied by a spec ia l  solut ion s t r a t egy .  Eovever. the  basic  

idea  underlying Winkler's algorithm can be regarded aa a simplex method based on 

a bas i s  f ac to r i za t ion  method, i . e . ,  h i s  algorithm belongs t o  the  f i r s t  type of 

algorithm mantioned in Section 2. 

The main di f ferences  between Cass' algorithm and ours  a re  sunmaarized as 

f o l l w s :  

1) In order t o  f ind an improved bas i s  f o r  a non-optimal subproblem, we 

employ a direction-finding problem. vhich in defined aa a small l i n e a r  program. 

Ue have a l ready reported i n  [3] ,  although it  is i n  the case  of NO-stage l i n e a r  

programs, t h a t  the  CPU the and the  nlrmber of coordination cycles  required f o r  

opt imal i ty  i n  our mathod a r e  l e s s  than those when employing Cass' type of 

se l ec t ion  r u l e  t o  f ind a new bas i s .  In our method more than one basic  va r i ab les  

a t  a time a r e  exchanged by solving the direction-finding problem. On the other  

hand, only one basic  var iable  in the  non-optimat subproblem i s  exchanged i n  C a s s '  



algorithm. Thia d i f ference  makes the  number of coordination cycles  smal ler  in 

our mthod.  

2) In our algorithm tha non-optimal subproblem is  solved i n  a c w p l e t e  

form only i f  the d i rec t ion-f inding problem can not  be defined o r  i t  can not 

br ing ua a new basia.  G u s '  algorithm alvaya solves  i t  in a complete form. 

3) In tha  coordination problem of our algorithm, f r e a  v a r b b l a s  a r e  

defined a t  evary cycla in ordar t o  inp rom the  p r a a m t  values of tha l i nk ing  

var iables .  Tha v a l w a  of tha l h k i n g  va r i ab la s  a ra  a d j w t e d  a r o d  the  present 

v a l w a  through tha f m a  v u i . b l e a .  On t he  o tha r  h.nd..tha o r i g i n a l  non-negative 

l inking va r i ab la s  u e  r w d  f o r  thi. purpoaa in C u a '  algorithm, b e c a u a  tha re  

i. no concept of coordination in h i .  algorithm. Thia inp l i aa  t h a t  tha  coordi- 

nat ion problem in Gaaa' algorithm is defined from the  o r i g i n a l  l h k i n g  matrices.  

In our algorithm it in defined from the  l iniring matr ix  updated with reapact  t o  

tba pmaen t  bas i a  m t r i c e a  of the  aubproblarm. 

Tho mluo ions  j%n tho canptttatwnal ozpolieneo. 

According t o  our computational exparlance in w i n g  m o  experimental codee. 

MlLPS/FOETRAN f o r  a = d i m - a i u  coaputer[7] and HfJLPS/APL f o r  a minicomputar[6], 

n c.n conclude tha following: 

1 )  The s i z e  of the coordination problem o f t en  r a a t r i c t s  the w e  of our 

algorithm. The number of r w a  i n  the  coordination problem is equal t o  t h a t  of 

the l ink ing  varinblas.and th. number of colmna is l a r g e r  than the  t o t a l  number 

of r w a  i n  tha a n t i r e  problem. Both of these  numbera a r e  very l a r g e  i n  r e a l  

problems. Therefore, va  muat develop an e f f i c i e n t  ache- t o  de+l wi th  aa 

l a rge  a coordination problem aa posaible.  

2) The coordination problem i t s e l f  has  q u i t e  o f t en  a s p e c i a l  s t r u c t u r e  

in case of r e a l  p r o b l m .  We s h a l l  propoee t h a t  commercial MPS packages to  be 

h l o p e d  in the  fu tu re  ahould have only a etandard LP subroutine but  a l ao  

various ones f o r  s t ruc tu red  l i n e a r  programs. Such an MPS could make i t  poss ible  

t o  br ing us more advanced EIPS appli&qtione than the present  ECL does, i n  the case 

of the  computerization of planning syetems. For example. the  coordination 

problem f o r  dynamic models ham a s t a i r c a s e  a t ruc tu re .  I f  v e  could employ an 

e f f i c i e n t  a lgor i thm[l6]  t o  make w e  of i t ,  it vould be poasible  t o  solve  much 

l a r g e r  problem more e f f i c i e n t l y  than ve do now. Such an attempt is under way. 

3) For the  optimization of subproblems i n  sequence, a t  the f i r a t  s t age  of 

the MILPS, ve had b e t t e r  make f u l l  w e  of the  opt imrl  b u i s  a l ready obtained i n  

the p a s t  sequence of optimization of the  subproblems a s  a s t a r t i n g  b a s i s  fo r  the 



subsequent subproblem t o  be  optimized. Ve have found t h a t  the  computing time 

i a  reduced considerably,  i f  we use the  optimal b a s i s  a l ready obtained t o  the  

o the r  subproblem. This is because t h e  subproblema i n  moat a c t u a l  problems 

a r e  very s i m i l u  t o  each o the r  in  s t ruc tu re .  To take  our  3-scage dynamic 

planning model f m n  a red o i l  r e f ine ry .  the  time needed f o r  computing the 

second and t h i r d  subproblems a r e  near ly  a s  hal f  an f o r  the  f i r s t  subproblem, 

when the optlmal bas i s  t o  the  f i r s t  is used an tho s t m t i n g  b a s i s  f o r  the  o the r  

NO. 

4) 'Iba most t--consumhg j ob ' in  the  MLPS c w u t a t i o n  is tha t  of s e t t -  

ing up and solving tho coordiuuticm problem(61. This tlme g r e a t l y  depends upon 

the  s k i l l  of f i l e  management an wel l  am tho  perfomauco of the  linear p r o g r m -  

ing subrout lna  adopted. We should consider developing e f f i c i e n t  methods f o r  

f i l e  management appropr ia te  f o r  designing a WS Complex. 

4. An Example o f  a Hierarchical Decomposltlon Approach 

L e t  ue in t roduce an example of tho h i e ra rch ica l  decomposition approach in 

production-scheduling baaed on the  seme idea  aa  i n  (21, which is n w  vorking 

very success fu l ly  in a Japanese o i l  compaay (151. The planning and scheduling 

problem is on the loves t (opera t iona1)  l e v e l  in the  h i e r a r c h i c a l  planning system 

mentioned in Section 2. The r e f ine ry  makes a production schedule f o r  t h e  next 

month a t  the end of every -nth on the b a s i s  of a production plan given by the  

head o f f i c e .  The production-scheduling problem may b e  formulated a s  three  l i n e a r  

program which respect ively  correspond t o  a production schedule f o r  every 10 days 

A& those may be l inked by l ink ing  va r i ab le s  represent ing inventory-levels a t  the  

end of a per iod of 10 b p s .  The length  of a period has been decided according 

t o  the  ope ra t iona l  experience. 

Each submodel han t h e  s i z e  of about 200 x 600, where the re  a r e  near ly  f o r t y  

d i f f e r e n t  k inds  of semi-products and t h i r t y  kinds of products t o  be  blended. 

The hierarchicaldecomposition approach t o  t h i s  problem is described as f o l l w a :  

F i r s t ,  a crude-charge-schedule is obtained by the  planning s t a f f .  Then, on the 

b s s i s  of the  schedule, those subproblem a r e  sequen t i a l ly  optimized Fn such a 

h i e r a r c h i c a l  manner as shovn i n  Fig.1. After  t h e  th ree  subproblem a r e  solved. 

then the  "experience-based coordination" s t a r t s .  The planning s t a f f  checks the  

ove ra l l  accep tab i l i t y  of the solut ions .  e.g.. t h e i r  f e a s i b i l i t y  and performance. 

on the  b a s i s  of t h e i r  opera t ional  experience. The crude-charge-schedule aad the 



t h ree  blending problems a re  modified s o  tha t  an Fmproved schedule and blending 

plan may be obtained, and then the rmdif ied  problems a r e  r e o p t h i z e d .  Sa t i s f ac -  

t o ry  so lu t ions  a r e  mostly obtained a f t e r  the f i r s t  coordinat ion,  i .e . ,  t he  

d i f i c a t i o n  of problems is  usual ly  performed only once. 

The reasons why the  problem in solved by the  h i e r a r c h i c a l  decomposition 

method may be s-rized an f o l l m e  : 

1 )  The blending ope ra t iom obtained by t h i s  approach a r e  more accept&le  

t h m  those obtained when solved simultaneoluly,  s ince  the  more accurate  f igu res  

of p rope r t i e s  of the blending s tock .  than t he  -8-d h a  befora obta inlag 

them can be  recalcula ted  befora solvlag the  problem fo r  the  next per iod,  which 

m y  considerably vary from t h e i r  values  ass-d a t  the beginning, d e p s d i n g  

upon the  ope ra t iom adopted f o r  t he  p rev iow periods.  

2) The suboptimization is rmre tl.m-sorring f o r  the  purpose of obta ining 

a p r a c t i c a l  schedule than when the e n t i r e  >s tage  model is solved a t  the  same . 

ti- by the  computer a t  the opera t ional  f i e l d .  The modification of the  problem 

and the reoptimization of them vill be rmre tima-consuming and complicated f o r  

the  e n t i r e  rmdel than f o r  t h e  decaaposed model. In pa r t i cu la r .  the remarkable 

n r r i t  of the  decomposition method is t o  be ab le  t o  use a good s t a r t i n g  basin 

f o r  the second and t h i r d  problemcl, which is der ived from the  optimal b a s i s  of 

the  previous problem. For example, the  computlag time f o r  the  succeedlag 

problems rued t o  be  l e s s  than a hal f  of t h a t  f o r  the  f i r s t  problem by t h i s  ru le .  

3) I t is necessary t o  avoid a s t rong  e f f e c t  on the  schedule f o r  the f i r s t  

ha l f  of the -nth f r m  the  opera t ions  f o r  the l a t t e r  h a l f ,  because usual ly  

t h e m  is more uucer ta in ty  la the da ta  f o r  the l a t t e r  ha l f  than f o r  t he  f i r s t  

h a l f .  It sesnur t h a t  the planning s t a f f  uses i ts  own i m p l i c i t  u t i l i t y  funct ion 

rn the  th ree  ob jec t ive  functions of t he  subproblems fo r  the  purpose of cms ide r -  

ing the  uncer ta in ty  in the planning process. The experienced s t a f f ' s  sub jec t ive  

judgement Fa regarded a s  very Fmportant i n  r e a l  s i t u a t i o n s .  

The &composi tia-Coordination Apprwoir  . 
An attempt t o  apply the  decomposition-coordination approach t o  the  present 

system is now being made v i t h  the i n t e n t i o n  of computerizing the experience- 

based coordinat ion aa much aa poss ible .  The system w i l l  be v r i t t e n  a s  a PIPS 

Complex based on our decomposition method by w i n g  the  Extended Control Language 

of MPSX/370. In p a r t i c u l a r ,  the  f o l l w i n g  f ea tu res  of the  system w i l l  be 

emphasized : 



1 )  The subproblems a r e  sequent ia l ly  generated and optimized from the 

f i r s t  period t o  the t h i r d  period. The system haa the  f a c i l i t i e s  t o  determine 

the initial values of the  l i nk ing  va r i ab le s  and to  generate a p a r t  of a matrix 

of the succeeding problem from the  so lu t ion  t o  the  previoua problem. 

2) The system has  the f a c i l i t i e s  t o  generate the  coordination problem 

which ia p a r t l y  based on the planning s t a f f ' s  judgemnt .  

3) The optimization of the  coordination problem is performad in such an 

In te rac t ive  mpnnar t h a t  the  plnnning s t a f f  can maaura ,  by i t s e l f ,  i t n  i q l i c i t  

u t i l i t y  functdon oo the t h ree  ob jec t ive  f u n c t i m  of the  subproblame [3] .  
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OPTIMAL DAILY SCHEDULING OF ELECTRICITY PRODUCTION IIV 
HUNGARY* 

I. Deak,t J. Hoffer,tt J. Mayer,tt A. Nimeth,tt B. Potecz,tt A. Prekopa,t 
and 0. Strazickyt 

t Compu ter and Automation Institu re, Hungarian Academy of Sciences, Budapest 
t tHunganan Electric Energy Industry 

Given: 

a piecewise constant function approximating the country's total demand on elec- 
trical energy in 27 time-periods spanning 25 hours forward, 
the set of applicable production technologies for each power station in the coun- 
try, and 
the actual network of power lines. 

we must determine the method of production to be applied and i t s  capacity level in each 
power station in each period of the day, so that the cost of production should be minimal, 
thedemand should be met in each period, and the capacity and network constraints should 
be fulfilled. 

The model of this problem is a large, but structured, mixed 0-1 programming problem, 
with a t  most 5 coupling constraints and a ven/ special connection between the 0--1 vari- 
ables. It i s  solved on a CDC 3300 computer. The method of solution is  heuristic, involving 
Benders' decomposition method for subproblems. 

*The problem treated in this paper has been modelled under the directorship of Prof. A. Prekopa in 
the O.R. Depanment of the Computer and Automation Institute of the H.A.S. jointly with special- 
isn of the Hungarian Electric Energy Industry. 



A t  t he  Ccerat ions  3esesrck. 3e9zr tnent  of t h e  

:oniyater and A u t o ~ a t i o n  I n s t i t u t e  o f  the Eunzarian 

ncadory or' Sciences t h e r e  :?as 3een f o r  s e v e r a l  y e a s  

a work I n  a rogress  toge ther  v i t h  =he axper t s  of 2 . s  

3 ~ g ~ i a . n  I l e c t r i c i *  3oards mst t o  app l7  

opera t ions  resea rch  i n  the  e l e c t r i c i w  ?ewer industry .  

In ',he course of *.is work ;he ~ o d e l  and c o ~ u t e r  

program sys ten  t o  be descr ibed i n  t h i s  paDer j?rhici: 

can be consickred as a case  study/ >as been c o n p l e ~ e d .  

S t a r t i n g  f r o n  tke  verbal  s ta tement  of the  problem -:re 

have a r r i v e d ,  through a l a r q e  number of s t e ~ s  a t  t5e  

s o l u t i o n  of the  r e a l  ?roblen with r e a l  data.  These 

s t e p s  3re:  c l a r i f i c a t i o n  of every d e t a i l  of t h e  

?%aica l  p rob le r ,  aaecuate  n a t h e n a t i c a l  ~ o d e l l i n g  



q f  t5e ~ r o j l e n ,  ';uildin; u? t:-e 6 a ~ a  sjszer! requi:?d 

f o r  the mathenaticai no te l ,  ?repar?tign of a grr3r;rm 

systen, usL?g the 7ermnent  data  base, sui$able f c r  

9 r o d u c i q  the numerics1 data  O D  the ac tua l  ~ r r~b le rn  

$0 be solved. In t::e course of tke ~ o d e l l a ,  a 'And 

of groblem f ornulation, d e s c r i b i n ~  the r e a l i t y  :fell  

enough had t o  be found, snabling a t  the saze t i r e  

the problem to  be handled computaticnall7. 31e 

coz~yleted nod-l leads to  a large-scale  3Fxed ~ r i a b i e  

l i n e a r  p r o g r a m i ~  problem :&ere tke in teger  -rariables 

a re  of 6-1 @?e. -1 netkod had t o  be vorked 3ut an 

the :3C 3500 conouter t b t  gives a nearly opt indl  

so lu t ion  to  the ?roolem in an acceptable t h e .  3 e  

computer >rotpan system Ims  requized to  ?resent  the 

r e s u l t s  i n  the form ?rescribed by the user.  

Zarac tar i s t ic  f o r  the el l t i re  vork has keen +he 

cons-t co-operstion amcng 'he ex3erts of the %o 

LnstiVutes r e s u i t i q  i n  a 7 e r m e n t  correct ive 

a c z i v i v  in the ~ ~ b s e q u e n t  stages. 

2.1. ?he overa l l  e l e c t r i c  ?owe= denand of the 

country a s  COnsLdered :'or each day separate17 z s  2 



?unction of the t i ~ e  i s  i l l u s t r a t e d  on 'ig.1. -.rnerp 

t h e  shape of the c u n e  i s  cha rac t e r i s t i c .  Zce t i n e  

cor respondiq  t o  the i n i t i a l  po in t  of $he curve I s  

the so-called evening peak load tirye. This i e  

followed by a  t i n e  i n t e r v a l  -.~i'&. decreasing load,  

thereaf te r  by some hours when tine value of the 4emand 

d i f f e r s  from the mininun value t o  a  l i t t l e  extent  

only, t he r ea f t e r  a  s tage with increasing load - and 

the whole i s  repeated once xore. %e shage of the curre  

i s  in every case of t h i s  type, but f i e  l ensh t  of the 

i n t e r v a l s  a s  wel l  a3 the denand values change dai ly.  

Big. 1. 

.i m i c a l  da i l y  e l e c f r i c  power dmand funct icn 



'he e l e c t r i c  power denand o l  each day can Se 

forecasted i n  advance v i t n  an  accuracy of 1-2 % on 

the b a s i s  of the  d a t a  a v a i l a b l e  on the day before.  

:le i n v e s t i g a t e  always the 25 hours per iod fol lowing 

the evening peak, t h i s  i s  sujdiveded i n t o  23 one 

hour and 4 half-hour per iods  i n  which per iods  the  

demand can be assumed constant .  ?he demand con ta ins  

the  es t imated values  of t h e  power p l a n t ' s  own 

consumption and of the  network losses .  

2.2. ,?he e l e c l x i c  power demand i s  s t a i s f i e d  by 

'he e l e c t r i c  power generated i n  the  country's Dower 

p l a n t s  m d  Sron the neigkbouring count r ies  inported 

?over. I n  our country +&ere are about 20 such gower 

p l a n t s  ';hat a r e  consizered in 'he nodsl. ?he e l e c t r i c  

?over Lzgorted from abroad i n  international co-operaeon 

is considered a s  one gower Dlant v i t h  cons tan t  

y o d u c t i o n .  

In the power p l a n t s  t h s  Dower is generate? by 

the  combined ogeral ion of va r ious  a g p e g a t e s  i n  

d i f f e r e n t  mocles of ogeration. 3 a c i  node of opera t ion  

Lrvolves the combined work of c e r t a i n  ag,pegates. 

3 e  a ~ g l i c a b l e  =odes of o ~ e r a t i o n  and t h e  physical  

,quan t i t i e s  charac te r iz ing  then a r e  given f o r  each 

?ov~er g l z r t  . 



-?le given !?ode of oaerat ion of 2 ?OTler ? l an t  c m  

run :.ri t h i n  giv~en ?ewer l i m i t s  and she ~ r o d u c t i o n  cos t ,  

a s  a funct ion of the aower l eve l ,  i s  a fu..ction 

i l l u s t r a t e d  on Zfg.2. %is can f a i r l y  !re11 be 

a a ~ r  oxinased by a piece!dse l i ne=  r'unction (?ig. 3 .) 

where f o r  the slopes the r e l a t i o n s  

cl( C 2  ( C k  

always hold. 

"ig.2. 

?rcduc$ion cost  -*ction 
Piecewise l i n e a r  a p p r o ~ i n a t i o n  

of the ?raduction cos t  r h ~ c t F ~ n  



,Z?e change-over song zodes of operation - start 

w or shut  off a t  l e a s t  one of generators - causes the  

turn of a mode of operation. Thus the change-over 

i s  not allowed among a l l  possible nodes of operation 

of a power plant ,  viz. not  among those working with 

e n t i r e l y  d i f f e ren t  devices, An accidental  f a i l u r e  

o r  maintenance of the equipment can r e s u l t  in the 

da i ly  ch&- of the modes of operation in +he power 

plant.  fig.4. shows an example of the mdes  of 

operation, and in irig.5. we can see IAe function 

of s t i l l  stand cost,  

1-2-3-4-5 denote 

generators, 

A-3-C-3-Z a r e  gossible 
4. 2. 3. 4. 5. 

nodes of operations, 

1 I 1 I 4 where the -ow8 

indicate the generators 

t h a t  wo-=!r in fAe given 

node of operation. 

r'ig.4. 

An e x a q l e  f o r  the 

d e i i d t i o n  of t2e 

nodes of operation 

A d i r e c t  change f o r  example 

between the nodes C and 3 

is not  allowed, but from C 

t o  3 /it is a start of 

generator 5/ ~ n d  from 2 to 

D a d i r ec t  change i s  possible 

/shut off of generator 3./. 



?he e l e c t r i c  neY.ior4 of the  countr'j i s  a s e t  

of nodes and t 'nnches.  I t s  nodes a r e  e i t h e r  ?ewer 

p l an t s  s r  po in t s  i n  :ihich the Dower l e n a d s  occur,  

and i t s  branches o v e r  t r an sc i s s i on  l i n e s  and 

t r an s fomer s  *:ri t n  given ?P,y s i c i l  c.harac t e r i s t i c s .  

Some of t'ne neD,iorkPs nodes can be connected to  bower 

s t a t i o n s  and from a h o s t  a l l  t h e  consumer's denands 

a r e  supplied. Also the e l e c t r i c a l  networ!~ can /and 

does/ da i l y  charge on account of aaintenance,  

f a i l u r e  e tc .  Chage neans sere t h a t  cer ta i r?  braxches 

or  nodes do not  belong t o  t he  syster,  on a $-sen day, 

or  the  value of t h e i r  physical  c h a r a c t e r i s t i c s  l i l ' ze r  

f ron  those i n  case TI' nornal  operation. 

2.3. 'fith r,?lis lao-.ileCge sur t ask  i s  to  i e t e m i n e  

f o r  each e r i o d .  s f  the f3llc:ri.rg 25 >our Aurazion 2:le 

nodes o f  operation TO be agpl iee  i n  %e d i f f e r e n t  

power g l a a t s  and t h e i r  production l e v e l s  so t h a t  'ke 

power Cer?and si:ould be s a t i s f i e d  i n  each ~ e r i o d ,  ?he 

physical  r e s t r i c t i o n s  on the  a c t u a l  cemqorlr ?old, 

aoreover the so-salled f i e 1  c o n s 2 a i n t s  be s a t i s f i e d  

i i i th  a  r ? + n i m  golrer broduction cost .  Y e  A e l  

cons t r a in t s  requ i re  t h a t  i n  some ?ewer p l a n t s  the  

value o f  the t a i l y  overa l l  production - d i r e c t l y  

connected :ii';!l =\el c o n q t i o n  - shoul? d i f f e r  from 



3 ziven value 0nl7 t o  the exten-L of a given v e 7  

snall percentage. ?he reason of t h i s  restriccAon 

can be t h a t  we cannot c o n m e  more than the ex i s t i ng  

anount of f u e l  o r  that c e r t a i n  amount of f u e l  is 

expected t o  e r r i v e  on the  next day and the s torage 

capacity is Un i t ed .  

Fig. 5. 

S t i l l s t a n d  c o s t  funct ion 

The power y o d u c t i o n  cos t  contains  the actual  

production cos t ,  the  cbange-over co s t  r e su l t i ng  e o n  

the switchiry of sodes of operat ion resp. s t a n d s t i l l  

and r e s t a r t  of the machhes, a s  wel l  a s  the c o s t  of 

l o s s  of power i n  the neharorlc. 



aecause of the sophis t i ca ted  nature  of the 

whole power system to  be optimized we had t o  make 

some assuzpt ions / s impl i f ica t ions /  i n  order to  obtain 

a nodel t ha t  can be :handled. 

3.1. 3y knowing the  shape of the denand ,function 

we agree t h a t  i n  t!!e f i r s t  periods when W.e n l u e  of 

the denand does not  increase we allovr oonly such a  

change of the lode of goerat ion v~hic? caz be z e d i z e d  

5y shut t ing  off 2 generator  3r generztor  , ~ o u . ~ s .  3.ese 

per iods together  a r e  c a l l ed  s tou or  shu t  3ff  FLases, 

Bo change i n  the  mode of opers t ion  is  allowed in the  

a l t oge the r  4 periods around the period viCi  Lqi-mn 

denand / ~ h a s e  of s t a g a t i o n / ;  only the ?roducfio:: 

i s ~ e l  of the ziven aode of o ~ e r a t i o n  can 3e charged. 

-m >er iods  of increasing de~anc? only suck change or' 

node of o ~ e z a z i o n  i s  dillowed where a t  l e a s t  one c f  

the generators  i s  turned 2n / s t a r t  ?er icds/ .  Xie 

investiga?sd ?bases a r e  therefore:  s to?,  s t a w t i o n ,  

s t a r t  and once nore s top,  s t a g a t i o n  and ;tar: ghases. 

c o ~ e c t i o ? l  :vith t h i s  :.re a q e e  3-zt 2' eve71 

? 1 m t  we a s s i g e  subscr i? t s  / iri tegers/  to  e v e n  code 

of  operation star ti.^ ??on 1 and go* up t o  t h e  



n u b e r  of possible modes of operation a t  the ziven 

plant. We do i t  in such a *ay t h a t  whenever Ype 

t r ans i t ion  from node j-k (j<4) i s  possible then 

f r o m  mode j t o  mode k we axrive by shutt ing off 

a t  l e a s t  one generator. ?Tote tha t  a  t r ans i t ion  J+4 

is not always possible. 

3.2. A s  a r e s u l t  of physical considerations we 

have agreed t o  prescribe 'he requirements linitirg 

the physical s t a t e  of the e l e c t r i c  network only 

i n  the three periods with extreme denands /the f i r s t  

period, the f i r s t  period of the f i r s t  stagnation 

phase and the. l a s t  period of the f i r s t  start ghaee; 

these w i l l  be referred t o  as voltage check periods/. 

That is, we assume tha t  i f  Fn these 2eriods the 

?hgsical r e s t r i c t i o n s  of the network are  s a t i s f i e d ,  

then in periods of nFntemediaten demand with the 

applicat ion of modes of operation 

/cf. assumption 3.1./ the physical res tx ic t ions  a re  

a lso  sa t i s f ied .  

3.3. In order to  determine the cost  of power 

production the following simplification w i l l  be 

made. 

a./ The cost  functions of the par t icular  nodes of 



opezation : f i l l  be a~?ro::3a$ed 3y piecewise 

l i n e a r  funct ions .  

b./ Syznetr ic  r e s t a r t -  l : f i l l  be assumed f o r  t h e  

c a l c u l a t i o n  of the s t i l l  s tand  c o s t  = i s i n ?  

Croz tine chazge of nodes of ooaration. This rieans 

t h a t  i9 we shut  o f f  a  generator  a t  C 7er iods  

before  the  f i r s t  period of the  s tagna t ion  ~ h a s e ,  

then the r e s t a r t  takes  place a t  (. per iods  a f t e r  

the  l a s t  per iod of the  s tagna t ion  phase, t h a t  i s  

the s t i l l  s tand l a s t s  d i 2 1  periods.  The dir 'ference 

between t h e  ac%l s t i l l  s tand c o s t  and tke  

aoprcx ima~e  value of i t  w i l l  be neglected. ?!ze 

t o t a l  c o s t  in the 4+2e ger iods  i s  subdivided i n t o  

4+2e ? a r t s  a d  a r e  zssigned t o  these  periods.  

:./ 3 e  c o s t  a r i s i r g  from the n e w o r 4  l o s s  , . r i l l  be 

c a l c u l a t e d  from the d i f f e r e n c e  3eV.,reen t h e  l o s s  

value taken a l ready  i n t o  account in tke derand 

P m c t i o n  a d  the ca lcu la ted  value of the  a c t u a l  

l o s s  depending on the  network. 

4.1. -arJabl~q ~f +&a. 3enote 5y 3 

the  nunber of power ? l u l t s  z?d l e t  n( i )  be the  



n m b e r  of t k e  sodes  ci operat ion apo l icab le  i n  the 

i t h  power p l a n t  i=1,2,...,3. Zereirzkster s u p e r s c r i g t  

t w i l l  always r e f e r  t o  the per iod,  t=1,2,...,27. 

4.1.1. :,:ode oZ omeration var iab le .  Let rt 
i j 

be 0-1 v a r i a b l e  defined a8 fol lows,  where 

1=1,2, ... E* j=1*2* .. .*n(i)- 1: 

I period t t h e  j t h  node of 

I opera t ion  o r  one with  a  

I s u b s c r i p t  1.39 than j works, 

1 i f  i n  power p l a n t  L in 

I ?eriod t a  aode of o a e r s t i s n  

4. 

In the  sequel we s h a l l  use t h e  n o t a t i o n s  I' and 
t i 0 

2 too and d e f h e  them so t h a t  xt  = 1 
in (1) i o  

and x = 0. Xote t h a t  
im i 

t t 
1. s U-l - xiJ = 1 i f  a n i o n l y  i f  i n  power 

p l a n t  i in period t j u s t  tt?e j t k  node of 



t ogerztion Y O Z ~ S  ( j=1,2, .  . . ,x (i)) , e l s e  x' - x  = G .  
4J-1 i J  

2. According t o  the above de f in i t i on  the 

var iab les  belonging to the nodes of operat ion of a  

f ixed power p lan t  can take in one 3eriod only the 

values (. . .1,1,13,0. . . ) where the 0 s tanding 

h the 1.0 value exchange i s  Ln the J t h  ?lace 

i f  jus t  the j t h  mode of operation :~orks. Among 

d i f f e r e n t  periods the right-'nand s h i f t  of the value 

exchange 1 , O  corresponds t o  a node of operat ion 

exchange reacked by a shut  off  while the left-hand 

s h i z t  of the same corrres~onds t o  a  s t a r t .  

3.  In  the periods b e l o n g i ? ~  to the s tagna t i sn  
to-' 1 to i 7- to 3 

~ ~ h a s e  we have xto = z = x I :C 9 

i j  i j  i j  i j  

where to is  the f i r s t  period of the s tagnat ion 
L 

phase, therefore i t  is  s u l f l c i e n t  fo :lave only I 
" 0 

i j 
anom the var iab les  of the xodel. - - + I  . t L 3  

Xe well  use, however, the s p b o l s  x "" ,..., x 0. . 
i i i 

?oma l l3  in soce r e l a t i o n s  linere 

3Iagl ici2,of  the e q r e s s i o n s  requi res  then. 

4.1.2. kcduc t ion- leve l  var iable ,  Denote 

r(i, J )  the number of tLe aoproxhet ing  l i n e s  i n  the 



approxination of the cost  -^ur,ction ~ e l g n g i ~  to  the 

jtli =lode of oberation of ?ewer planr, i, and Fijmin 

and Pij- the minimum and aa3izmm production 

l eve l  of the node of operation respectively. Denote 

k 
F pk the power l eve l s  belonging t o  the 
i jninp i jmax 

terninal points  of the k th  approxi=rating l i n e  of the 

cos t  function, where iL k 
= P , k = 1. .. . , r ( i , j )  -1, 

i j n i n  i jmax 

and F' = P , 9 Q 9 j ) = ?  hold. 
ijmin i jn5n i j m  i jnar 

3enote E~ the operation l eve l  in oeriod t of the 
i j 

j t h  node of operation of power ? l an t  i. In  order 

t o  deternine i t  l e t  u s  introduce the var iab les  

tk t L  
4.1.2.3. P 7 0 ,  only i f  P 5 E  - 2  

e 
i j i j  m i j n i n  

i o r  a l l  L c k ,  a d  xL 
L 

- x  = I .  
- 1  i s  



I . e .  ir' ?'ant L :~or:rs 33 :kc .j th zeds 05 3 p e r a t i o n  

in ? e r i a d  t. 

33 u s i . ~  t h e s e  v a r i a b l e  s t b e  above cen  ti one3 

l e v e l  i s  g i v e n  by t h e  f o l l o w i , ~  sum: 

3 e  ?roductiOn of power ? l a n t  i in the  / ez iod  t is  

equa l  t o  

3 - e  d a i l y  p roduc t ion  e q u a l s  



rhere  a = 0,5 o r  1 , C  de~endir.g on the  durat ion of 
t 

7er iod t. 

4.1.3. Voltage =riaSle .  aenote s the number 

of the nodes of t he  network with ad ius tab le  volLkge 
1 2 3  

and v , v , v , i , 2 , . . . ,  s the  vol tage l e v e l s  
i i i  

of +hese nodes in the  th ree  ber iods with extreme 

demanda /~o l t a . ge  check periods/.  

4.2. Cons t ra in t s  of t h e  2odel. 

t 
4.2.1. Supn1.y conditiona. Denote P t he  

dem 
value of the power demand in period t. We r equ i r e  

that t h e  power demand be s a t i s f i e d  Fn each period, i.e. 

4.2.2. 3ounds on the Dower leve l s ,  



T:e v a r i c b l e  c o u r l i ~ y  ccndi t f  ons requ i re  

t h a t  the  power l e v e l  in ?er iod t of the  .jth maze 

of cpera t ion  of pouer a l a n t  i skculd be between the 

bounds ? and P , i.e. 
i jnin i j m & ~  

Tating I n t o  account 4.1.2.4. we g e t  the condi t ions:  

5.2.4. S t a r t  an6 s t o ~  condl$ions. 3 e s e  condi t ions  
t t+l 

ensure the  impl ica t ion  I =l+ :: = l i n  the shut  
i J  i s  

of? j e r i o d s  and the  i n p l i c a t i o a  
t t c l  

x = Q*:: = C i n  t h e  start 3eriods.  
i j i j 

3enote tl &the  l a s t  ?eriod rreceeding the 

examined da7, xbl the  r e a l i z e d  value a i  t h e  node 
I 2  
A J 

of o p e r a t i m  in the above yer iod,  t2 the s e r i a l  

nunber of the beginning of the second s h u t  d v ~  yhase, 

- a d  t4 'he s e r i a l  n m b e r s  of t h e  beginning of the  
3 



r ' irs t  and second s t a r t i n g  >has8 r e s p . ,  4 , C , , & 
1 2 ' 3  4 

the  lengths o f  the corresponding phases /in periods /  

in t i e  previous  sequence. 

X g . 6 .  

Structure  o f  t h e  s t o p  and start c o n d i t i o n s  



7- -.:e sku< off co3di;ions L-e: 

I?le start conditions are the Sollovrhg: 



Pig.6. shms  the s t rac tnre  of the a a t r i s  of *ese conditions. 

4.2.5. Fuel constraints .  a e s e  a r e  cons t ra in ts  with 

lower and upper bounds, wescr ibed  f o r  the da i ly  ~ r o d u c t i o n  

of some pwbrer plants. U s i n g  4.1.2.6. we can wri te  then a s  

f ollowe: 

:.rhere 3 3 a r e  the given bounds, the i ' s a r e  
Frnin' Fmax 

the subscripts  of the power p lants  with f u e l  constraints .  

4.2.6. :?etwork conditions. 

dccordirq to the agreement in 3.2.. the r e s t r i c t i o n s  

r e su l t i ng  from the e i e c t r i a a l  propert ies  of the newor4  

will be taken in to  account i n  the three voltage check 

periods of the day. ,These conditions a re  the branch- 



loafi, t'le -roltaqe znS the reac t ive  ?over ssmce 

conditions. :le descriSe only the content =ad :om 

of these, the coef f ic ien ts  i n  the conditions depend 

on the network /which can be d i f f e ren t  during the 

three invest igate2 ?eriods/ a d  a w t i c u l a r  grogran 

system was designed fo r  t h e i r  determineion.  

The 'srwch-load conditions ensure t h a t  the power 

transmission l i nes ,  cables and transformers foming 

tpe meshed system which t r ansn i t s  the power f ron  the 

power p lants  t o  the consumers should not be over 

loaded. These conditions define *e load caused by 

the ef fec t ive  power, ~ i z .  w i t 5  tke :?el? of l i n e a r  

a?proximation of Yne exact ~ u a c k a t i c  e - ~ r e s s i o n s  

vhic t  y ie ld  a VeT good a-oproxination i n  tine solut ion 

domah characterizing tke s tab le  operation of the power 

Bystens. The f o m  of the condition system i s  

where -1 i s  the n a t r i ~  of the coeff icients .  T3e nunber 

or' i ts rows is equal to t ha t  of the branctes, the 

number of i t s  colunns equals t ha t  of the sum of the 

power and aode of operation var iab les  taken in to  

account in the relevant  period. C contzins the 
T 



loadabi l i tg  of '3.e l ines.  

The number of these cons t ra in ts  is very large. 

Me may, however, delete  nazly of then and keep only 

a few that correspond to  c r i t i c a l  branches. 

The voltane conditions enaure the voltage 

staying within prescribed l im i t8  at  the nodes of the 

network. These inu~lv, a lso  quadratic formrlas where 

again l i n e a r  approximation is used r e su l t i ng  in a 

prooerly accurate solut ion in the domain of operation. 

The forn  of these conditions is: 

where 3 is  the ziatrh of the derived coell ' icients 

having a s  saw rows a3 the number of the nodes o i  +Ae 

network, while the number of its co~ui!m3 e q d s  t h a t  

of the vol-e variables. 3 contains a unit matrix, 

V and 7 a r e  the allowed m i n i &  and slaxhal 
d n  m a x  

vol'tage thresholds of the nodes r e s p e c t i ~ e l ~ .  i c b a l l y  

the system of cons t ra in ts  son+ains a11 c o n d i t i o ~ s  

correspondhg t o  nodes w i t h  adjustable voltage, however 

f o r  the renaCning nodes it is s u f i i c i e n t  t o  'ake in to  

account on17 a few c r i t i c a l  constraints .  



3eac ' i~e  szk-ce conciitions ensure tbe react ive 

power of +Le react ive souzces /nerforning '&e voltage 

control/ not exceeding the allowed leading l a g g i w  

power maxima, =es?ectiveig. ,%e react ive powers of 

the react ive sources are  espressed by the voltages 

of the relevant  nodes Ahat we l inear ize  around a given 

basepoint. This condition has the form 

4.2.6.3. Q + AQ . H f c . v + Q f 
min min const 

where Q , Q l imi t  tke allowed leading and 
nin =lax 

lagging power, r ~ s p e c t i v e l j  in s nodes, A Q  , 
=in 

A .; contain the reac t ive  o w e r  threshol i  changes 
nax 

resul t ing  from the node o i  operation change, C i s  

the sxs matrh def- fhe change of tine reac t ive  

supplies, Q i s  a constant vector with s 
cons t 

elements , these elements being the react ive power 

s u ~ y l i e s  of the sources defined by the Fn i t i a l  s t a t e  

of the vector. 



3ig.7. 

Structure of the coefficient matrix of the whole model, 

q:fhere @ and @ have the structures given in Sig.8.and 7ig.5. 



4.3. 3 e f i n i 5  on of t h e  ob.lecti7z I~mc+inn.  3 e  

o b j e c t i ~ e  funct ion t o  3e z in in ized  cons i s t s  of th ree  

where X is  the c o s t  of power production, ii the  
1 2 

c o s t  of s t i l l - s t a n 8  and Z t i e  co s t  en t a i l ed  by ;he 
1 
J 

network lose .  

4.3.1. & f i n i t i o n  of iZ . 3enote C .  . the  sloge 
1 1 J 

of the kfh l i a e a r  sec t ion  of +he ,knction a ? p r o z h a t i r g  

the one-%our 3roduction cos t  cu-me of tke jt;l s ode o f  
0 

operat ion of power ? l an t  i , and C the  nroducticn 

c o s t  of the  l e v e l  2 
i j 

i jmin 

Yith these nota$ions tho cos t  of producticn on 
t 

'2.e l e v e l  O ancunts t o  
i j 

i f  i n  t he  i - t h  cower p l an t  j u s t  the j-th node of 

operat ion worlcs . 3x1s 



1 2  
Xote t h a t  C < 2 . .. <C rUj)  a l m y s  holds ,  h o n  

i j  i d  13 

which the  f a l f i l n e n t  of the  requirement 4.1.2.3. 

fol lows f o r  such a s o l u t i o n  which s a t i a f i e e  t h e  

coupling condi t ion  4.2.3. and f o r  which Z i s  nininal. 
1 

4.3.2. Def in i t ion  of K . Fig.5. shows t h e  c o s t  
2 

func t ion  of t h e  s t i n ~ a t a n d  /or  r e s t a r t i n g /  of t h e  

j-th mode of operat ion of power p l a n  i a s  t h e  

func t ion  of the dura t ion  of t h e  s t i l l  stand. The 

funct ion can be descr ibed by the  formula 

where g (01, g S )  and C are the  cons tan t s  
i j i j 

charac te r iz ing  the p w e r  p lan t  and the  mode of 

o o e r a t i o n ,  g ( 0 )  denotes t h e  coat  of stBting 
J 
A J  

without s t i l l - a t a n d ,  and g (-)the c o s t  of  t h e  
i d  

so-called cold starting. 

In accordance wi+h t h e  a s s u q t i o n  3.3.b, if a 

node of operat ion is stopped wi th  per iods  

before  the  beginning of the  s tagna t ion  p h s e ,  then 

i t s  e f z e c t  in the c o s t  funct ion w i l l  be taken i n t o  

account with  t h e  n l u e  g(.j+2t). Tie corremonding 



c k s e n  c o e l z i c i e n t s  2-3 a S;UP consis t in;  or' t e n s  

co.--es-,oxding t o  the  d u r a t i s n  of the s t i l l - s t a n 8 ,  

- and the  complete s t i l l - s t a n d  c o s t  w i l l  t&e the f o n  

i s  the  pro?erly chosen c o e f I i c i e n t  dei-ned 
W.. 1 j 
5 3  $he u t i l i z a t i o n  of the  ?unction $6 

where t r m s  f l - x o q h  the i z d i c e s  of the  $Fee -rolt%e 

check 3er iods .  
t 

, 3 e  d e t e r l i n a t i o n  of the  conoonents of T - i.e. 
3 

of the c o e f f i c i e n t s  p a r t i c i ; a $ i x  L? i t s  d e f i n i t i o n , -  

i s  2 > a r t  of the  procedure s e n i n g  507 the t e t e ~ z n a t i o n  

of the neb ,~ork  condi t ions .  '%Ye d i s regard  i t s  descr i? t ion ,  

a d  z ive  only the  formulae : 



3ig.7. is the schematical representation of the 

above described model. In its survey we point out that 

the conditions of the model have the follawFn& properties: 

1. The  el constraints contain besides the 

vol'age variables all variables belonging to the given 

m e r  plants and so practically they connect the 

7ariables of all the 27 periods. 

2. The start-stoy conditions contaia +he node 

of oyeration variables of the corresponding ~>ase, - 
'Aeae conditions connect the aeriods belonging to :he 

given >hasea. 

3. The connection among the particular phases 

is realized 5y the node of operation variables belonging 

to the stagnation phase, these at the sane tine 

connect the periods belonging to the stagnation phase. 

4. M t h e r  conditions of tke nodel contzin 

variables belonging to single periods only, the 



3-.22-.-,3 ,, , , --a ?r' :;:ese C C ) ~ ~ ~ ~ ; : C I ? . S  .. . ?.re s:.=.ri'r~ i n  ? i~s . . ' .  

s n l  ?., Yespectirel;', - i e ? e n l i y  -2 ' ; l o  z o z ~ e s ~ c n . 7 i n ,  

?e r i3?  3 e i X  one w i  ?.but net-:/or? :;r.?.i>ions. 

s i z e  of 'he 2od?l - i n  c!-.oosi-5 e-:eyr.kers 

r ( i j ) =  1 f 3 r  the  arproxiza:ior 2 . I  th c c s t  : k c t i o n  

a d  t a k i r g  t h e  r e a l  s i z e  cf tke  power oysi-en i n t o  
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In order to complete our work we had t o  wr i te  

a c o q u t e r  program f o r  the CDC 3300 computer of the 

Zugar ian  Acadeny of Sciences ?or the so lu t ion  of 

the problem. *on among the possible ways we had 

the idea t o  apply the Benders decomposition method 

to  6olve the whole problem. This waa re jec ted  because, 
\ 

on one hand, i t  can happen tha t  we w i l l  obtain a 

fea6ible solut ion only i n  the last step,  so t h a t  if 

on account of computer time l imi ta t ion  the run had 

t o  be interrupted,  the r e s u l t s  till then would not 

contain the necessary information. On the other  hand, 

*ere is  a la rge  nuuber of var iab les  of the pure 0-1 

problem6 to  be solved in the i t e r a t i o n s  of the 

decompoaition and t h e i r  conatraints  do not '?save 

favourable spec ia l  s tructure.  We thought of a version 

of the branch-and-bound algorithm in which the 

re levant  l i nea r  proa~anmbg problem could have been 

solved by the Dantzig-Volfe decomposition, but 

because of the large number of the 0-1 var iab les  we 

have re jec ted  t h i s  idea, too. 

P ina l ly  we have accepted the following algorithm: 

l./ 'Je disregard the  el constraints .  

2. / Ye solve the r e n a i n i w  large-scale mixed 



in teger  ~ o ~ ~ i n g  _~roblem - i n  which the connections 

among the periods a re  ensured by the s ta r t - s top  

conditions and the mode of operation variables of 

the  s tagnat ion phases - the following way(Fig.10.) : 

Ye solve succeaaively the three nixed in teger  

prograGlming problems corresponding to  the vol tage 

check perioda. We allow in the so lu t ion  of the f i r s t  

problem every mode of operation applicable on the 

given day. I n  the solut ion of the second problea we 

a l l o w  only t h a t  modee of operations which a r e  

r ea l i zab l e  from the modes of operat ions in the 

so lu t ion  of +he flrst problem by shut  off.  ?or the 

t h i r d  problem we allow t h a t  nodes of operations, 

r ea l i zab l e  from the solut ion of the second problem 

by s t a r t i ng .  

Thereafter we soLva the intermediate problems 

and the problems corresponding t o  the following 

periods successively, by taking always the m r i a b l e s  

of 'he nodes of operation of the neighbouring, 

already solved problems and the connections of the 

periods t o  the s ta r t - s top  phases i n t o  account. 

In every case the Benders decomposition method 

w i l l  Se a ~ p l i e d  f o r  the so lu t ion  of the problem 

corresponding t o  one period. 



Fig.10. 

,The auccessive mode of solving the mired-integer 

programing problem without fuel-conditions, where the 

numbers in circle indicate the order of the sxecntions 

of com?utations 

3./ We check whether.the fcel constraints are 

satisfied for the obtained solution. If yes, then the 

algorithm ends, else the -Pollowing iterative procedure 

will Se applied. 



$./ If in a poq:rer glant the daily power 

production is lees then what is prescribed then the 

production coat aoefficients of the given power 

plant will be multiplied by a multiplier less than 

1, and if the daily power production is greater than 

what is prescribed, then they will be multiplied by 

a multiplier greater than 1. The valuee of the mode 

of operation variables v i U  be fixed and t he  

corresponding linear programing problem will be 

solved. If in the course of the solution the ,%el 

constraints are satisfied by the new outputs obtained, 

the iteration ends. 

Otherwise tha& are %o cases: i/ if in the 

course of the iteration processes we bhve already 

found solutions indicating underproduction and over- 

production, too, then we will proceed according to 

-graph 5; ii/ else we will a o d i e  again the cost 

coefficients and repeat the solution of the linear 

p r o ~ e ~  groblem. 

5./ m e  mode of operation values of the solution 

accepted as optfmum are the fixed modes of operation 

and the production level will be defined by such a 

linear combination of any particular solution 

indicating the underproduction and o~erprodu~tion 

wKich satisfies the fuel conetrailt. 



Iienark: ?he r ~ h y s i c a l  background and t k e  

prel iminary surrey of the  d a t a  ensures  t h a t  tine 

descr ibed algor i thm works wel l ,  i.e. i t  cannot occur 

t h a t  a mixed problem corresponding t o  a per iod h a s  

no f e a s i b l e  s o l u t i o n  o r  t h a t  we ob ta in  only such 

s o l u t i o n s  in t h e  4-th etq:, which v i o l a t e  t h i s  

c o n s t r a i n t  only in the same d i rec t ion .  

This paper givea only a s h o r t  survey of t h e  

nos t  i n p o r t a n t  f e a t u r e s  of the  model, without a ~ y  

claim t o  completeness. A b r i e f  sketch of the  whole 

computer program system i s  shown 9n ? i g . l l ,  and a 

s tudy covering a l s o  d e t a i l s  no t  discussed Fn t h i s  

paper /e.g. computation of l o s s ,  a e t e r n i n a t i o n  of 

the  network condi t ions  etc./ i s  under preparat ion.  
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A MATHEMATICAL MODEL FOR THE DETERMINATION OF OPTIMAL 
CROP PRODUCTION STRUCTURES 

Bumau for S y m s  Andysis 
of the Start? Office for Technkal Development 

Budapest 

In assessment of the agrotrcological potential, the main goal was to determine the maxi- 
mal amount of plant production in a r m  of optimal utilization of the pmsibilitles offered 
by the natural environment and to invertignte the consequences of such a policy. 

A two level hierarchical model was constructed for the analysis of crop production. 

The models are described by syrtems of inequalities paramarized in the right hand side. 

The constraints can be gouped as follows: 

area constraints, 
constraints of the production structure, 
crop rotation conditions ensuring the continuity of production, 
constraints regulating the extent of land reclamation and irrigation investment. 

The solutions are special Pareto optimal points of the feasibility set. 



Dur ing recent  years, throughout the  wor ld ,  i n c reas i ng  

a t t e n t i o n  has been p a i d  toward assessing n a t u r a l  

resources, ,working out p o s s i b i l i t i e s  f o r  t h e i r  u t i l i z a t i o n .  

Today t h i s  assessment inc ludes  no t  on l y  the  energy resources, 

raw ma te r i a l s  but a l so  the so c a l l e d  " b i o l o g i c a l  resources'. 

I t  i s  e x p e c i a l l y  impor tant  t o  be f a m i l i a r  w i t h  the  i n t e r a c t i o n  

between t he  n a t u r a l  environment and p l a n t  and animal p roduc t ion  

t o  d iscover  the  hidden reserves i n  b i o l o g i c a l  resources, t h e  

p o s s i b i l i t i e s  and l i m i t s  o f  t h e i r  u t i l i z a t i o n .  

I n  Hungary, work on t he  es t ima t i on  o f  ag roeco log ica l  

p o t e n t i a l s  s t a r t e d  i n  1978 a t  the i n i t i a t i v e  o f  the  Hungarian 

Academy o f  Sciences and was f i n i s h e d  i n  t he  sp r i ng  o f  t h i s  

year. 

A t  the assessment o f  the  agroeco log ica l  po ten t i a1 , t he  main 

goa l  was t o  determine the  maximal amount o f  p l a n t  p roduc t ion  

as a r e s u l t  o f  op t ima l  u t i l i z a t i o n  o f  the  p o s s i b i l i t i e s  

o f f e r e d  by the  n a t u r a l  environment and t o  i n v e s t i g a t e  the  

consequences o f  such a po l i c y .  

I n  concrete terms, t h i s  meant t he  de te rmina t ion  o f  l and  use 

pa t t e rns  o p t i m a l l y  u t i l i z i n g  the a c o l o g i c a l  cond i t i ons  t h a t  

- can be r e a l i z e d  i n  p r i n c i p l e ,  

- meet the  requirements o f  the  soc i e t y ,  

- and are op t ima l  w i t h  respect  t o  some goal. 

R e a l i z a b i l i t y  means the  use o f  data and hypotheses i n  the 

model t ha t  can be expected by reasonable standards t o  be 

v a l i d  a t  the  t u r n  o f  the  mi l lennary.  



t,leeting the  requirements o f  the soc i e t y  means, the c a p o b l l i t y  

t o  supply the  soc i e t y  w i t h  a l l  the products  determined by the  

p ro j ec ted  s t r u c t u r e  oC consumption. 

O p t i m a l i t y  means an i n  some senee op t ima l  compliance o f  the  

land  uee e t r u c t u r e  w i t h  the  e c o l o g i c a l  condi t ions.  

A f t e r  t h i s  sho r t  i n t r o d u c t i o n ,  the  p resen ta t i on  o f  the  model 

desc r i b i ng  c rop  p roduc t ion  f o l l owe ,  w i t h  the  s t r u c t u r e  o f  tho  

model shown i n  the  f i g u r e  below. 

d e s c r i p t i o n  o f  a c o l o g i c a l  f a c t o r s  

1 
e c o l o g i c a l  y i e l d  prognosis  - c h a r a c t e r i z a t i o n  r e f l e c t i n g  e c o l o g i c a l  
o f  avable l and  . f a c t o r s  

i 
1 m o d i f i c a t i o n  1 

p o e e i b i l i  t i e s  
o f  e c o l o g i c a l  
cond i t i ons  I - 
/ i r r i g a t i o n ,  
me l io ra  t i o n /  U 1 ----(requirements o f  1 

s u i t a b l e  
e c o l o g i c a l  
mosaice 

1 cond i t i ons  o f  
i r r i g a t i o n  and 
m e l i o r a t i o n  

weather e e n s i t i v i t y  energy balance I 0  



The f i r s t  problem was t o  de te rm ine  t h e  a t t a i n a b l e  l e v e l  o f  

y i e l d s  i n  20GO g i v e n  t h e  n a t u r a l  env i ronment  o f  Hungary 

/ p r e c i p i t a t i o n ,  tempera ture ,  s o i l ,  r e l i e f ,  h y d r o l o g y  etc./ 

an t h e  g e n e t i c  p o t e n t i a l  o f  t h e  species.  F o r  t h i s  end a  

y i e l d  p r o g n o s i s  was p repa red ,  t h e  s t r u c t u r e  o f  t h e  r e s u l t i n g  

d a t a  b a e i s  i s  shown i n  Tab le  1. 

The methodology and d e t a i l e d n e s s  i s  d e s c r i b e d  i n  t h e  f o l l o w i n g  

papers  131, 191. 
The model d e s c r i b i n g  c r o p  p r o d u c t i o n  i s  based on t h i s  d a t a  

bas is .  

The main g o a l s  o f  t h e  compu ta t i ons  were:  

- t h e  assessment o f  p r o d u c t i o n  c a p a c i t y  o f  c r o p  

p r o d u c t i o n  under  d i f f e r e n t  c i r cums tances ,  

- t h e  a n a l y s i s  o f  t h e  re1ationsh;ps between l a n d  

use p a t t e r n s  comply ing  w i t h  t h e  n a t u r a l  c o n d i t i o n s  

and the  r e q u i r e d  t o t a l  p r o d u c t i o n  / s o c i a l  demand/, 

- t h e  a n a l y s i s  o f  t h e  development o f  l a n d  use p a t t e r n  

and t o t a l  p r o d u c t i o n  as f u n c t i o n s  o f  t h e  q u a n t i t y  

and q u a l i t y  o f  a v a i l a b l e  l a n d ,  

- t h e  a n a l y s i s  o f  t h e  dependence c f  l a n d  use p a t t e r n s  

and t o t a l  p r o d u c t i o n  on t h e  amount o f  i n v e s t m e n t s  

i n t o  l a n d  r e c l a m a t i o n  and on t h e i r  way o f  r e a l i z a t i o n ,  

- t h e  a n a l y s i s  o f  t h e  r e l a t i o n s h i p s  bet:veen i r r i g a t i o n  

and l a n d  use p a t t e r n s  

e tc .  

The l a r g e  number o f  c rops  and h a b i t a t s  cons ide red  

r e s u l t e d  i n  about 5000 v a r i a b l e s .  T h i s  s i t u a t i o n ,  i n  f a c t ,  

de termined t h e  method; as t h e  o n l y  s o l v a b l e  prob lem i n  t h i s  

case i s  t h e  one u s i n g  l i n e a r  programming techn iques ,  t h e  sane 

b e i n g  t r u e  even a f t e r  excess i ve  aggregat ion .  



A two l e v e l  h i e r a r c h i c  node1 nas c o n s t r u c t e d  f o r  t h e  

a n a l y s i s  o f  c r o p  p roduc t i on .  

The f i r s t  so c a l l e d  r e g i o n a l  model d e e c r i b e s  t h e  

prob lem i n  an aggregated form. The so c a l l e d  e c o l o g i c a l  

r e g i o n s  c o n s t i t u t e  t h e  l a n d  u n i t s  here. /See F i g u r e  2./ 

The requ i remen ts  o f  t h e  s o c i e t y  w i t h  respec t  t o  t h e  

p r o d u c t i o n  s t r u c t u r e  and l a n d  r e c l a m a t i o n  i nves tmen t  

c o n d i t i o n e  and o t h e r s  a r e  f o r m u l a t e d  i n  t h e  c o n s t r a i n t s  o f  

t h i s  model. 

The r ~ s u l t  g i v e e  a  rough, r e g i o n a l  a l l o c a t i o n  o f  t h e  

i nvee tmen ts  and l a n d  use. The g l o b a l  a n a l y e i s  o f  t h e  c r o p  

p r o d u c t i o n  system and t h a t  o f  t h e  dependence o f  l a n d  uee 

and p r o d u c t  s t r u c t u r e  on t h e  c o n d i t i o n s  and t h e  g o a l s  i s  

c a r r i e d  o u t  b y  u s i n g  t h i s  model. 

D e t a i l e d  computa t ione c o n s i d e r i n g  e c o l o g i c a l  mosaics a r e  

c a r r i e d  o u t  on t h e  o t h e r  l e v e l .  

The whole o f  t h e  c o u n t r y  was d i v i d e d  i n t o  f o u r  l a r g e  r e g i o n s  

as i s  shown i n  F i g u r e  2., and t h e  c r o p  p r o d u c t i o n  a c t i v i t y  

i n  them a r e  desc r i bed  b y  s e p a r a t e  problems. The s t r u c t u r e  

o f  these models i e  s i m i l a r  t o  t h a t  o f  t h e  r e g i o n a l  model 

wh ich  w i l l  be o u t l i n e d  i n  t h e  sequel .  I t  i s  t h e  r e g i o n e  a r e  

c o n s i d e r e d  homogeneous i n  t h e  r e g i o n a l  model w h i l e  t h e  same 

i s  t r u e  o n l y  f o r  t h e  e c o l o g i c a l  mosaics i n  t h e  o the rs .  

The c o n s t r a i n t s  o f  t h e  d e t a i l e d  models /ae f a r  as t h e  p roduc t  

s t r u c t u r e ,  t h e  a l l o c a t i o n  o f  l a n d  r e c l a m a t i o n  i n v e s t m e n t s  

and even t h e  g o a l  f u n c t i o n  a r e  concerned/ were f o r m u l a t e d  

on t h e  b a s i s  o f  t h e  r e s u l t s  o f  t h e  r e g i o n a l  model. 

Our computa t ione g i v e  d e t a i l e d  i n f o r m a t i o n  about t h e  

l a n d  use p a t t e r n  be ing  i n  good compl iance w i t h  t h e  e c o l o g i c a l  

c o n d i t i o n s  and about t h e  a l l o c a t i o n  b o t h  i n  space and t i n e  

o r d e r  o f  l a n d  r e c l a m a t i o n  inves tments .  

Be fo re  g o i n g  i n t o  t h e  d e t a i l s  o f  t h e  c o n s t r e i n t s  o f  t h e  

r e g i o n a l  mgdel we s h o r t l y  g i v e  a  f o r m a l  d e f i n i t i o n  o f  t h e  

model system. 



The r e g i o n a l  model i s  d e s c r i b e d  by a s y s t e m  o f  

i n e q u a l i t i e s  p a r a m e t r i z e d  i n  t h e  r i g h t  hand  s i d e :  

L e t  u s  d e n o t e  t h e  set o f  t h e  s o l u t i o n s  o f  t h e  a b o v e  s y s t e m  

by fi. 
Our t a s k  i s  t o  d e t e r m i n e  a n  x M c f i ,  w i t h  a l l  t h e  g o a l  

f u n c t i o n s  

r e a c h i n g  t h e i r  o p t i m a ,  t h a t  is  

T h i s  o p t i m i z a t i o n  p r o b l e m ,  however ,  h a s  no s o l u t i o n  i n  

g e n e r a l  [4 j  , and  f o r  t h i s  r e a s o n  we h a v e  t o  f i n d  s p e c i a l  

P a r e t o - o p t i m a ,  t h a t  is  s u c h  zH€ fi f o r  ~ h i c h  

9(zM)= maxi  I y : y = y ; x ) ,  x ~ f i j  

The maximum h e r e  i s  t a k e n  o v e r  ,R' w i t h  r e s p e c t  t o  t h e  

o r d e r i n g  i n d u c e d  by t h e  n a t u r a l  p o s i t i v e  c o n e  ,R$. 

T h a t  i a  t o  s a y :  

Two, s o  c a l l e d  compromise s o l u t i o n s  were d e t e r m i n e d  from 

t h e  set o f  P a r e t o  o p t i m a l  p o i n t s .  



I n  t h e  f i r s t  s t e p  the  u t o p i a  p o i n t  i n  : R ~  was determined 

f o r  t ho  prob lem / 1 /. ' p) The,  i - t h  c o o r d i n a t e  o f  t h e  u t o p i a  p o i n t  i s  Pi = yi\- , 
where t h e  s o l u t i o n  o f  t h e  prob lem:  

1 E [O , 1] 

yiiI! )- max 

8e cons ide red  two new g o a l  f u n c t i o n s  by  u s i n g  t h e  u t o p i a  p o i n t ,  

p o i n t ,  

and 

then  we m in im ized  them on t h e  s e t  n. 
These s o l u t i o n s  a r e  P a r e t o - o p t i m a l  p o i n t s  o f  t h e  system / 1 /. 
The s o l u t i o n s  o f  t h e  r e g i o n a l  model p roduced l a n d  use p a t t e r n s  

on t h e  r e g i o n a l  l e v e l .  By t h e i r  use, t h e  p r o d u c t i o n  s t r u c t u r e  

and t h e  e x t e n t  o f  l a n d  r e c l a m a t i o n  and i r r i g a t i o n  were 

determined. 

Tak ing  them as c o n s t r a i n t s  and t a k i n g  t h e i r  co r respond ing  

g o a l  f u n c t i o n e ,  t h e  l i n e a r  programming prob lem d e s c r i b i n g  

t h e  c r o p  p r o d u c t i o n  o f  t h e  f o u r  l a r g e  r e g i o n s  were solved.  



NOW we a r r i v e d  t o  t h e  d e s c r i p t i o n  o f  t h e  main 

r e l a t i o n s h i p e  and t o  t h e  e x p l a n a t i o n  o f  o u r  c h o i c e  o f  

methodology. 

The c o n s t r a i n t s  can be grouped ae f o l l o w e :  

- area c o n e t r s i n t s ,  

- c o n s t r a i n t s  o f  t h e  p r o d u c t  s t r u c t u r e ,  

- c r o p  r o t a t i o n  c o n d i t i o n e  eneu r ing  t h e  c o n t i n u i t y  

o f  p r o d u c t i o n ,  

- c o n s t r a i n t e  r e g u l a t i n g  t h e  e x t e n t  o f  l a n d  r e c l a m a t i o n  

and i r r i g a t i o n  inveetment .  

Crop land waa cona ide red  t o  be homogeneoue i n  t h e  r e g i o n a l  

model, w i t h  t h r e e  k i n d s  o f  p o s a i b l e  a c t i v i t y :  

- p r o d u c t i o n  co r reapond ing  t h e  p r e s e n t  s i t u a t i o n ,  

- p r o d u c t i o n  co r reepond ing  t o  t h e  s i t u a t i o n  a f t e r  

l a n d  r e c l a m a t i o n  / m e l i o r a t i o n / ,  

- p r o d u c t i o n  on b o t h  rec la imed  and i r r i g a t e d  land.  

The a rea  o f  i r r i g a b l e  and r e c l a i m e d  l a n d  was i i n i t e d  

i n  each reg ion.  

The t o t a l  a rea  c u l t i v a t e d  i n  t h e  t h r e e  p o s e i b l e  ways had t o  

be e q u a l  t o  t h e  t o t a l  c r o p l a n d  i n  t h e  reg ion.  The t o t a i  

a v a i l a b l e  c r o p l a n d  i n  t h e  r e g i o n s  was changed acco rd ing  t o  

t h e  amount o f  l a n d  unde r  non a g r i c u l t u r a l  use. 

The demand t h a t  c r o p  p r o d u c t i o n  had t o  meet c o n s i s t e d  

o f  two p a r t s :  

- home consumpt ion,  

- expor ts .  



A t  fo rmu la t ing  the demand, the f o l l o a i n g  p o i n t s  were 

t o  be considered: 

- immediate p u b l i c  consumption, 

- consumption ensur ing the  c o n t i n u i t y  o f  p roduc t ion  

and reproduct ion. 

The p u b l i c  consumption i s  the  f u n c t i o n  o f  t he  number o f  the  

popu la t i on  and ea t ing  h a b i t s ,  i n  the  f i r t s  place. 

Three d i f f e r e n t  consumption s t r u c t u r e s  were considered : 

consumption corresponding t o  the  present  Hungarian, 

West-European and p h y s i o l o g i c a l l y  r i g h t  n u t r i t i o n .  

Th is  i s  the  p o i n t  where animal husbandry i s  l i n k e d  i n t o  the 

system. 

The fodder needs o f  an appropr ia te  s tock  o f  c a t t l e  and 

sowing seed f o r  keeping the  l e / e l  o f  p roduc t ion  had t o  be 

reckoned w i t h  t o  ensure the c o n t i n u i t y  o f  food product ion.  

Th is  consumption model served ae the  bae is  f o r  the  

de te rmina t ion  o f  the  min imal  amount o f  products  t o  be 

produced. Upper bounds were g iven f o r  crops t h a t  cannot be 

expor ted end home coneumption i s  a l so  l i m i t e d .  

The t h i r d  group o f  c o n s t r a i n t s  i s  f o r  the c o n t r o l  o f  the  

t e r r i t o r i a l  s t r u c t u r e  o f  the  product ion. I s  i t  the  t e r r i t o r i a l  

c o n s t r a i n t s  determined f o r  each r eg i on  t h a t  ensure the  

r e a l i z i b i l i t y  o f  the  r o t a t i o n  plan. 

These a re  o f  two k inds  : 

- those g iven i n  the form o f  a  l i m i t  f o r  the r a t i o  

between the area occupied by the crops o r  groups 

of  crops,  r espec t i ve l y  



- those l i m i t i n g  the area occupied by c e r t a i n  crops 

o r  groups o f  crops from above o r  below. 

S i m i l a r  cond i t i ons  were formulated f o r  i r r i g a t e d  o r  reclaimed 

l and  and f o r  the  r a t i o  between i r r i g a t e d  and d r y  c u l t i v a t i o n .  

A l l  the above mentioned parameters were expressed i n  n a t u r a l  

u n i t s  and the  same i s  t r u e  f o r  the c o n s t r a i n t s ,  a r  wel l .  

There was, i n  f a c t ,  one s i n g l e  c o n d i t i o n  o f  a non e c o l o g i c a l  

character ,  and t h i s  war the ex ten t  o f  l and  rec lamat ion 

inveetaent r .  

Th i s  i e  a  e i g n i f i c a n t  meane f o r  i n c reas i ng  y i e l d ,  bu t  i t  

cannot be expected t h a t  a l l  the rec lamat ion work w i l l  have 

been f i n i s h e d  i n  the near fu ture.  

I n  the course o f  our  i n v e e t i g a t i o n s ,  more than 20 

d i f f e r e n t  forms o f  l and  rec lamst ion  vtere considered, w i t h  

d i f f e r e n t  inves tnen t  requirements. The r i s e  o f  y i e l d  due t o  

l and  rec lamat ion be ing known, inves tnen t  coete i n  cu r ren t  

p r i c e s  vtere s u f f i c i e n t  t o  determine the  op t ima l  a l l o c a t i o n  

and t i n e  o rder  o f  l and  rec lamat ion p ro jec ts .  The volume o f  

m a t e r i a l  investment was l i m i t e d .  The s o l u t i o n e  under the 

d i f f e r e n t  investment c o n s t r a i n t s  gave the oppo r t un i t y  t o  

determine the expedient l o c a t i o n  and t ime o rder  o f  l and  

rec lamat ion  p ro jec ts .  

The s t r u c t u r e  o f  t he  o u t l i n e d  model can be seen i n  

the  f i g u r e  below: 



Some o f  t h e  l ower  bounds e q u a l  t o  zero  w h i l e  some o f  t h e  

upper bounds may be i n f i n i t e ,  meaning t h a t  t h e r e  i s  no 

l i m i t a t i o n .  The system o f  i n e q u a l i t i e s  means a  s e r i e s  o f  

problems o f  an ever  growing s i z e  b u t  o f  c o n s t a n t  s t r u c t u r e .  

The m a t r i c e s  At and A  were t h e  same i n  a l l  cases w h i l e  
Y 

i n  t h e  m a t r i c e s  Ak , r e l a t i o n s h i p s  c o n t r o l l i n g  t h e  l a n d  

use p a t t e r n  were g r a d u a l l y  extended. The s o l u t i o n  i n  t h e  

l e s s  const  r a i n e d  cases made g r e a t  d i f f e r e n c e s  between t h e  

p r o d u c t i o n  area6 o f  t he  i n d i v i d u a l  crops. 9y t h e  g r a d u a l  

e x t e n s i o n  o f  t h e  c o n d i t i o n s ,  however, t h e  l a n d  use p a t t e r n  

reached a  s t a b l e  form, t h a t  i s  from a  c e r t a i n  s t e p  onwards 

the d i f f e r e n t  g o a l s  d i d  n o t  made the  l a n d  use p a t t e r n  change 

s i g n i f i c a n t l y .  

The knowledge o f  such s t a b l e  systems i s  i m p o r t a n t ,  

because t h e  p roduc t  mix can be changed w i t h o u t  s u b s t a n t i a l  

m o d i f i c a t i o n s  o f  t h e  s t r u c t u r e  of  t h e  a g r i c u l t u r a l  p r o d u c t i o n .  

and hence the  p lann ing  o f  t he  a g r i c u l t u r a l  i n f r a s t r u c t u r e  

can be brought  i n t o  harmony w i t h  the  s t a b l e  - though 

v e r s a t i l e  - l a n d  use p a t t e r n .  

The d e s c r i p t i o n  o f  t h e  parameters s e r v i n g  as a  b a s i s  o f  t h e  

p r o d u c t i o n  and o f  t he  main forms o f  t h e  f a c t o r s  i n f l u e n c i n g  

p r o d u c t i o n  i s  h e r e w i t h  f i n i s h e d .  

T h i s  i s  desc r ibed  i n  a  conc i se  form by the  i n e q u a l i t y  system 



The p o s s i b l e  l a n d  use p a t t e r n e  a r e  rep resen ted  by  t h e  

s o l u t i o n s  o f  t h i s  system. 

The main prob lem he re  i s  t o  choose t h e  c r i t e r i o n  o f  

o p t i m a l i t y .  

The u s u a l  g o a l s  i n  economic p l a n n i n g  - l i k e  t h e  max im iza t i on  

o f  n e t  income, t h e  m i n i m i z a t i o n  o f  c o s t s  - were n o t  s u i t a b l e  

ae b o t h  the  c o e t s  / i n p u t s /  and t h e  p r o d u c t s  were counted 

i n  n a t u r a l  u n i t e .  

Hence, g o a l e  c o u l d  be f o r m u l a t e d  by t h e  way o f  some f i c t i v e  

p r i c e  eyetem, and so we used a  number o f  compara t i ve  v a l u e  

syeteme. ' P r i c e  syetems', i n  t h i s  case,  were needed o n l y  

f o r  t h e  a n a l y s i e  o f  s e n s i t i v i t y  o f  t h e  system and n o t  f o r  

t h e  d e t e r m i n a t i o n  o f  some s o r t  o f  p r o f i t .  

The compara t i ve  v a l u e  syeteme were based on some i n d i c a t o r  

o f  t h e  i n t e r n a l  c o n t e n t  o f  t h e  p r o d u c t s  l i k e  e.g. p r o t e i n  

c o n t e n t ,  energy  c o n t e n t ,  g r a i n  u n i t  and so f o r t h ,  and t h e n  

t h e  o p t i m a l  p r o d u c t  and l a n d  uee s t r u c t u r e  under  t he  d i f f e r e n t  

l i m i t a t i o n  l e v e l s  were ana l i zed .  

Obv ious l y ,  because o f  t h e  extreme c h a r a c t e r i s t i c s  o f  such 

v a l u e  syeteme, an economy cannot  adapt a  p r o d u c t i o n  

s t r u c t u r e  b e i n g  o p t i m a l  w i t h  r e s p e c t  t o  them, b u t  t h e  r e s u l t s  

themeelves e r e  i n t e r e s t i n g  as  they  show t h e  maximal  

p o e s i b i l i t i e e  i n  some d i r e c t i o n s .  

Knowing theee nax ima l  p o s e i b i l i t i e e ,  compromioe s o l u t i o n e  

w i t h  r e s p e c t  t o  c e r t a i n  groups o f  t h e  g o a l  f u n c t i o n s  o r  t o  

a l l  o f  them were a l s o  determined. 
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with t h e  advent of high speed d i g i t a l  computers and sophis t ica ted  

implementation of t h e  simplex method, l i n e a r  programming (LP) [43 

has become one of t h e  most powerful algori thmic t oo l s  i n  operat ions 

research and management science. Using LP, decision makers can 

determine optimal so lu t ions  from among a l l  f e a s i b l e  so lu t ions  i n  

a decision process t h a t  can be mathematically modelled a s  t he  op- 

t imiza t ion  of  a  l i nea r  funct ion i n  t h e  dec is ion  var iab les  sub jec t  

t o  a  set of l i n e a r  inequal i ty  cons t r a in t s .  

Y e t  one of t he  major l im i t a t i ons  to t h e  u t i l i t y  of t h e  wel l  

developed LP approach is t h a t  only a  s i n g l e  objec t ive  funct ion can 

be optimized a t  a  time. I n  p rac t i ce ,  most decis ion processes involve 

necessar i ly  a  multitude of con f l i c t i ng  c r i t e r i a .  For example, i n  

t h e  planning o r  cont ro l  of any operat ion,  minimal cos t ,  m a x i m a l  r e -  

l i a b i l i t y  and optimal performance a r e  a l l  de s i r ab l e  objec t ives .  How- 

ever ,  such c r i t e r i a  cannot i n  general  be  optimized simultaneously, 

and the  b e s t  compromise so lu t ion ,  i n  some appropriate  sense,  is sought. 

The mul t ip le  c r i t e r i a  l i nea r  programming (McLP) problem is then 

"maximize" c  x ,  k= l ,  . ..,X 
k 

subjec t  t o  3 b 

x z o  

where 



and t h e  quotat ion marks ind ica te  t h a t  t h e  meaning of opt imali ty has 

y e t  t o  be spec i f ied .  

Many methods have been proposed i n  recent  years .  For a  survey, 

t h e  reader is r e f e r r ed  t o  C31 and [141. Some methods (eg. [31) a r e  

based d i r e c t l y  onLP and a r e  t he re fo re  easy t o  implement and deploy. 

Others such as  [2] have i n t u i t i v e  appeal t o  t h e  decision maker. S t i l l  

o the r s ,  such a s  [ll], have a  w r e  r igorous t h e o r e t i c a l  bas i s .  To be 

opera t iona l  they a l l  depend on various assumptions t h a t  l i m i t  t h e i r  

robustness in deal ing with d iverse ,  r e a l - l i f e  problems. To da t e ,  no 

proposed method s e e m  t o  be a t t r a c t i v e  enough by a l l  t h e  above standards 
1 

t o  become an i n t e g r a l  p a r t  of t h e  p r a c t i c e  of l i n e a r  programming. 

I n  t h i s  paper, a  method is presented t o  extend the  algorithmic 

t oo l s  of LP f o r  MCLP. Section 2 reviews the  concepts of u t i l i t y ,  

preferences,  p r i o r i t i e s  and e f f i c i ency  t h a t  a r e  usefu l  i n  defining 

opt imali ty f o r  mult iple  c r i t e r i a  decision processes. The conceptual 

bases a s  wel l  a s  l im i t a t i ons  of ex i s t i ng  approaches: d i r e c t  assessment 

[a], goal programming C3) and mult iobject ive programming [14] can b e  

viewed i n  a  unified framework. For a  de t a i l ed  discussion,  t h e  reader  

is r e f e r r ed  t o  L12]. I n  Section 3, a  unifying approach which w i l l  

be termed Ho l i s t i c  Preference Evaluation and abbreviated a s  HOPE 

is developed. It is shorn t h a t  HOPE combines many advantages of 

ex i s t i ng  approaches while circumventing some of t h e i r  d i f f i c u l t i e s .  

' I ronical ly,  t h i s  begins t o  sound l i k e  a  mul t ip le  c r i t e r i a  problem 
i n  i t s e l f .  



After  a  discussion of t he  bas ic  assumptions, an algorithm fo r  HOPL 

is presented in Section 4. A s  it is based simply on the i t e r a t i v e  

appl ica t ion  of parametric LP, t h e  HOPE algorithm can be  implement^;. 

q u i t e  ea s i l y .  Convergence is f i n i t e ,  and although h e u r i s t i c  i n  

na ture ,  j u s t i f i c a t i o n  fo r  i t s  robustness is given i n  Sect ion 5. 

Numerical examples a r e  presented in Section 6 t o  demonstrate how 

t h e  HOPE procedure works in r e a l i s t i c  s i t ua t ions .  The simple num- 

e r i c a l  example i n  [201, t h e  f o r e s t  management model i n  [16], and 

the  academic department planning model i n  [ll] a r e  used. The r e s u l t s  

provide ample evidence t h a t  HOPE can be a  robus t  method fo r  MCLP. 

Concluding remarks and an o u t l i n e  of fu r the r  development a r e  given 

i n  Sect ion 7. The t e s t  problems and re levant  da ta  f o r  t he  la rger  

examples a r e  included in Appendices A and B. 



2. U t i l i t y ,  Preferences and P r i o r i t i e s  

To de f i ne  op t imal i ty  f o r  MCLP, it i s  assumed t h a t  t h e  decis ion 

maker's (DM) value judgnent can be  expressed by an add i t i ve  u t i l i t y  

func t ion  

u  : RK + R such t h a t  

K 
u  3 C \ where, f o r  e a c h b l , . . . ,  K ,  

k= 1 

\ : R + R is monotone increasing.  

Indeed, \ ( c  X) is in t e rp r e t ed  a s  t h e  u t i l i t y  L71 t o  t h e  DM a t t a i ned  
k  

by t h e  kth c r i t e r i o n  whi le  u(clx, .  . . , c  x) is t h e  o v e r a l l  u t i l i t y  K 

when x  is chosen. Often, each uk is f u r t h e r  assumed t o  be  l i n e a r ,  

concave o r  a t  l e a s t  quasi-concave. 

Let X ~ ( X C R ~ X ~ ( A J F ~ , X ~ O ]  be t he  set of  f e a s i b l e  so lu t i ons  t o  

K 
MCLP, assumed bounded f o r  s imp l i c i t y ,  and V=[VCR lv=(v l , . . . , ~ K ) ;  

v  =C x , k = l ,  . . . ,K, XCX] be  t h e  corresponding f e a s i b l e  set i n  c r i t e r i a  
k k  

space. 

Def in i t ion .  For a  DM with u t i l i t y  funct ion u, X*CX is an optimal 

s o l u t i o n  t o  MCLP i f  u(clx*, . . . , c  x*) 2 u(clx,.  . . , c  x) VXSX. 
K K 

A necessary condi t ion  f o r  x  t o  be  opt imal  is t h a t  of e f f i c i ency  [lo]. 

( a l s o  known i n  t h e  l i t e r a t u r e  a s  nondoninance c181, Pare to  op t imal i ty ,  

non in f e r i o r i t y  o r  a d m i s s i b i l i t y ) .  

0  1 1 
Def in i t ion .  x  E X  is e f f i c i e n t  i f  3 x E X  3 c x0 c  x  , k= l ,  . . . ,K 

k k  
with s t r i c t  i nequa l i t y  f o r  a t  l e a s t  one k. 

A s o l u t i o n  is e f f i c i e n t  i f  it is not pos s ib l e  t o  increase  t h e  value 

of  any c r i t e r i o n  without  diminishing t h a t  of a t  l e a s e  one o ther .  



L e t  E = [ X C X ( X  is e f f i c i e n t ]  be  t h e  s e t  of a l l  e f f i c i e n t  s o l u t i o n s  

t o  MCLF'. 

f 
P r o p o s i t i o n  1. I f  xf is opt imal ,  then x cE. 

Proof .  Follows from monotonicity of each u and a d d i t i v i t y  o f  u. 
k 

There fore ,  on ly  e f f i c i e n t  s o l u t i o n s  need b e  considered i n  t h e  op- 

t i m i z a t i o n  of MCLP. The fol lowing p r o p o s i t i o n  p rov ides  a ve ry  u s e f u l  

c h a r a c t e r i z a t i o n  of e f f i c i e n c y .  

0 P r o p o s i t i o n  2. x cE i f  and o n l y  i f  it maximizes 

- K 
u a C Ak\x over X 

k=l 

f o r  some A >O, k = l , . .  ..K. 
k 

Proof .  See  [ lo]  o r  C131. 

Without l o s s  of g e n e r a l i t y ,  b k )  is normalized s o  t h a t  

There  is c o n s i d e r a b l e  mathematical i n t e r e s t  t o  develop enumeration 

methods t h a t  seek  t o  determine a l l  e f f i c i e n t  s o l u t i o n s  [13]. However, 

MCLF' cannot  b e  optimized without  f u r t h e r  knowledge abou t  u. I n  g e n e r a l ,  

it is q u i t e  d i f f i c u l t  t o  assess u e x p l i c i t l y .  See,  e.g., [s], [a] and 

L151. I n  f a c t ,  t h e  e x p l i c i t  form of  u is i r r e l e v a n t  i f  t h e  weak 

o rder ing  o f  xcX induced by u is assumed. See e-g., [l] and C61. This  

means t h a t  g iven two s o l u t i o n s ,  t h e  DM can determine by h i s  p r e f e r e n c e  

judgment whether h e  p r e f e r s  one t o  t h e  o t h e r  o r  that h e  is i n d i f f e r e n t  

about  t h e  two. It is then  p o s s i b l e  t o  d e r i v e  a lgor i thms  t h a t  i t e r a t e  



from one so lu t ion  t o  another t h a t  is prefer red  by the  DM. This is 

t h e  preference programming approach discussed i n  [12]. Examples 

a r e  t h e  mult iobject ive programming methods proposed i n  [ l l ] ,  [ l6]  

and C Z O ] .  Shortcomings of t h i s  approach a r i s e  from its r e l i ance  on 

l o c a l  (e.g., adjacent  so lu t ions)  o r  marginal preference (e-g., t rade-  

o f f s )  ana lys is  t h a t  may c a l l  f o r  i n f i n i t e  s e n s i t i v i t y  i n  t h e  DM'S 

preference judgment. To a l l e v i a t e  t h i s  d i f f i c u l t y  more e l l abo ra t e  

techniques have been introduced, e.g. in h 6 1 .  

A d i f f e r e n t  assumption about t he  DM'S value judgment is of ten  

va l id  i n  p r a c t i c e ,  namely h i s  p r i o r i t i e s .  I n t u i t i v e l y ,  it means t h a t  

t h e  DM considers  some c r i t e r i a  more important than others .  Formally, 

an o rd ina l  ranking of t h e  c r i t e r i a  is considered. For s impl ic i ty ,  

suppose c 1 , ~ 2 , . . . , ~  a r e  given indescending order  of p r i o r i t y  ( i m -  
K 

portance) .  By appropr ia te  sca l ing ,  t he  underlying u t i l i t y  funct ion 

u can be assumed t o  s a t i s f y  

u l  (y)  zu2 (y) 2 . .  . 2uK(y)Vy=R- 

I f  in addi t ion ,  t h e  DM can est imate h i s  ca rd ina l  ranking (or  degree 

of p r i o r i t y )  of t he  c r i t e r i a ,  the  p r i o r i t y  programing approach d is -  

cussed i n  L121 can be applied t o  MCLP. Examples include the  whole 

c l a s s  of goa l  programing methods 131 a s  well ae t he  method in [Z]. 

Shortcomings of t h i s  approach a r i s e  from t h e  need t o  quan t i t y  p r i o r i t y :  

a s  penal ty weights i n  goal  programming and a s  concession l eve l s  i n  C21. 

A uni f ied  framework is prescn ted i n  [12] f o r  t he  above approaches 

t o  MCLP. I n  summary, given an MCLP, i f  t h e  DM'S u t i l i t y  funct ion is 



known e x p l i c i t l y ,  it can be optimized d i r ec t ly .  I f  r e l i a b l e  tech- 

niques a r e  ava i lab le  t o  assess  t h i s  funct ion,  they can be used before 

optimization. I f  t he  DM can weakly order the  so lu t ions ,  preference 

programming can be applied. I f  t h e  DM can rank the  c r i t a r i a ,  prin;-L *:! 

programming can be used. I f  none of t he  above assumptions holds,  t h e  

b e s t  one can do is t o  enumerate a l l  t h e  e f f i c i e n t  so lu t ions .  Within 

t h i s  framework, another case is possible ,  t h a t  i n  which both p r i o s i r i e , ~  

and preferences a r e  assumed. This  forms t h e  bas i s  of t he  h o l i s t i c  

preference evaluation approach presented in  t h e  following sec t ions .  



3. H o l i s t i c  P re fe rence  

D e f i n i t i o n .  When a DM is a b l e  t o  

( i )  weakly o rder  t h e  s o l u t i o n s  of an MCLP by h i s  

p r e f e r e n c e  judgment and 

( i i )  rank t h e  c r i t e r i a  according t o  o r d i n a l  p r i o r i t y ,  

we s a y  t h a t  h i s  h o l i s t i c  p r e f e r e n c e  can be  assessed.  

I n  t h i s  s e n s e ,  h o l i s t i c  p r e f e r e n c e  is i n t e r p r e t e d  as a va lue  

judgment t h a t  extends  from t h e  p a i r w i s e  comparison of s o l u t i o n s  t o  

t h e  p a i r w i s e  comparison o f  c r i t e r i a  a s  a whole. However, t h e  a b i l i t y  

t o  do ( i )  and ( i i )  i n  t h e  above d e f i n i t i o n  does n o t  n e c e s s a r i l y  mean 

t h a t  t h e  o v e r a l l  v a l u e  judgment w i l l  b e  c o n s i s t e n t .  For example, 

suppose a p r i o r i t y  ranking impl ies  t h a t  

The u t i l i t y  f u n c t i o n  ur 1 \ induces on X a weak o rder ing  by t h e  

1 
k= 1 

d e f i n i t i o n s  x 4 x2 i f  

L e t  v v be  such t h a t  u1(v1)=u2(v2). By (1)  and monotonicity of 
1, 2 

uk, we have 

1 
Hence, u (vl, v2,  v3, . . . , V  ) u (v2, v2 ,v3, . . . , .' Let  x and x 

2 
K vK) 

correspond t o  (v  1 . ~ 2 . ~ 3 , . . . , ~  and (v2 ,v2 .v3 , . . - ,V  ) respec t ive ly .  K K 



I f  t h e  DM prefers  x1 t o  x 2  when ac tua l ly  asked t o  compare the  two, 

h i s  preference judgment is  incons is ten t  with h i s  p r i o r i t y  ranking. 

When t h i s  happens, h i s  h o l i s t i c  preference is sa id  t o  be inconsistent .  

In  prac t ice ,  while it is p l aus ib l e  t o  expect preference and 

p r i o r i t y  judgment by t h e  DM, t h e  a p r i o r i  assumption of consistency 

w i l l  i n  genera l  be  too r e s t r i c t i v e .  This i s  by no means a r e f l ec t i on  

on t h e  i n t e g r i t y ,  i n t e l l i gence  or  competence of t h e  DM. Inconsistency 

may a r i s e  na tu ra l l y  from imcomplete information about t h e  problem. 

I f  t h e  MCLP is non t r iv i a l  a t  a l l ,  the  DM may have l i t t l e  o r  no a p r i o r i  

knowledge about t h e  variance of ind iv idua l  c r i t e r i o n  over t he  f e a s i b l e  

s e t  o r  t h e  convariance (interdepndence) among d i f f e r e n t  c r i t e r i a .  He 

may assign high p r i o r i t y  t o  two of t h e  c r i t e r i a  t o  make s u r e  t h a t  they 

a t t a i n  acceptable values. I f  t h e  two c r i t e r i a  tu rn  out  t o  be highly 

cor re la ted ,  h i s  preference judgment should revea l  t h a t  one of the  

c r i t e r i a  could have been assigned a lower p r i o r i t y .  Moreover, in 

a repeated -choice s i t u a t i o n ,  a s  is typ i ca l  of i t e r a t i v e  procedures 

i n  preference programming, it is not  uncommon f o r  a DM to  be  incons is ten t  

by changing h i s  mind a s  he l ea rns  more about t h e  a l t e rna t ives .  For 

example, given two i n i t i a l  so lu t ions ,  he may p re fe r  t h e  one t h a t  ex- 

aggerates h i s  p r i o r i t i e s  with t h e  hope of achieving fu r the r  improvement. 

As t h e  i t e r a t i v e  process evolves he learns  t h a t  those  a r e  ac tua l ly  

t h e  most a t t r a c t i v e  a l t e rna t ives .  So he may end up choosing t h e  l e s s  

r a d i c a l  so lu t ion .  For a discussion of t he  adaptive displacement of 

preferences,  t h e  reader is r e f e r r ed  t o  C191. For these  reasons, i f  



any o p e r a t i o n a l  method t o  s o l v e  MCLP by eva lua t ion  of  t h e  DM'S 

h o l i s t i c  p re fe rence  is t o  be  r o b u s t ,  it must a l low t h e  DM t o  uncover 

incons i s tency  i n  h i s  judgment and make a p p r o p r i a t e  adjustments .  This  

way t h e  exper ience of so lv ing  an MCLP can be i n t e r p r e t e d  a s  a  l ea rn ing  

p rocess  f o r  t h e  DM. As he  acc rues  informat ion abou t  h i s  a l t e r n a t i v e s ,  

h e  may r e f i n e  h i s  p r e f e r e n c e  and p r i o r i t y  judgment, n o t  u n l i k e  acqu i r ing  

s k i l l  in p lay ing  a game. 

The h o l i s t i c  p re fe rence  e v a l u a t i o n  (HOPE) procedure  t o  b e  de- 

veloped i n  t h i s  paper assumes ( i )  and ( i i )  o n l y  in an o p e r a t i o n a l  

sense .  As long a s  t h e  DM b e l i e v e s  t h a t  h e  can perform t h e s e  t a s k s ,  

HOPE m y  b e  used. Of course ,  h e  is  e v e n t u a l l y  expected t o  settle f o r  

a  c o n s i s t e n t  va lue  judgment i n  o r d e r  f o r  t h e  s o l u t i o n  t h u s  ob ta ined  

t o  b e  meaningful. 

Next we cons ide r  s c a l i n g .  

D e f i n i t i o n .  An MCLP wi th  t h e  c r i t e r i a  ( c  l , . . . ,c  ) ordered in 
K 

descending p r i o r i t y  (importance) is s a i d  t o  b e  p roper ly  

s c a l e d  i f  t h e  op t imal  s o l u t i o n  x  maximizes 

f o r  some X s a t i s f y i n g  
k  



Again, we assume proper  s c a l i n g  o p e r a t i o n a l l y .  I f  it ho lds ,  HOPE 

proceeds t o  determine [ A  1 and hence x*. When it f a i l s ,  t h e  DM'S 
k 

h o l i s t i c  p r e f e r e n c e  should r e v e a l  t h a t  it is t h e  c a s e  and i n d i c a t e  

t h e  proper  d i r e c t i o n s  f o r  resealing. I n  g e n e r a l ,  [kL] is n o t  uniqus 

* 
and a c t u a l l y  provides  a s u f f i c i e n t  degree  o f  freedom s o  t h a t  x can 

be determined by HOPE over  a r easonab ly  wide range  o f  s c a l i n g .  



4. Holist ic Preference Evaluation (HOPE): An Alqorithm 

Given an MCLP it is assumed that  

(I) t h e  DM'S h o l i s t i c  preference can be assessed; 

(11) the  DM can learn to be consistent;  and 

(111) the DM can learn to discover improper scaling. 

To solve MCLP, it suff ices  to  determine a s e t  of weights tha t  

correspond t o  the  optimal solution x*. Let (cl,  . . .c ) be the  c r i t e r i a  
K 

ordared in descending p r io r i ty .  Then proper scaling i m p l i e s  the  

existence of ( A *  3 such tha t  
k 

The HOPE algorithm determines successively A:, . . . , A:, in tha t  

order. Each i t e ra t ion  of the  a l g o r i t h  involves a number o f L P ' s  

defined on X with parametric objective functions based on (C l , . . . ,~  
K). 

The parametric solutions generated a t  each i t e ra t ion  a r e  presented 

t o  the  DM who then se lec t s  the one he prefers most. This choice w i l l  

be used t o  define the  s e t  of parametrizatiorsin the followitq i tera t ion.  

The algorithm is centered around the idea of probing the  d is t r ibut ion 

of weights while enforcing conditions (3) and (4 ) .  I n i t i a l l y ,  a l l  

c r i t e r i a  a r e  divided in to  two groups: high p r i o r i t y  and low pr ior i ty .  

For each possible division,  e f f i c i e n t  solutions a r e  generated by 

parametrizing a complementary p a i r  of high and law pr io r i ty  weights 



assigned t o  each c r i t e r i o n  i n  t h e  corresponding groups. Since only 

one parameter is involved, s tandard  parametr ic  LP techniques can be  

appl ied.  The DM i s  asked t o  choose t h e  most p r e f e r r ed  so lu t i on  from 

t h i s  f i r s t  and probably r a t h e r  c rude  approximation. Next, t h e  high 

p r i o r i t y  weights of t h i s  s o l u t i o n  a r e  temporarily f ixed  while  t h e  

above process  is appl ied  t o  r e f i n e  t h e  low p r i o r i t y  weights u n t i l  

t h e  lowest p r i o r i t y  weight is determined. The l a t t e r  is then f i x e a  

and t h e  algori thm is repeated with one less weight t o  be  resolved. 

I n  each paramet r iza t ion ,  t h e  c r i t e r i a  whose weights a r e  being 

parameter ized a r e  c a l l e d  act ive.  The i r  ind ices  w i l l  b e  consecut ive,  

say  i ,  i + l ,  ..., k. The weights A l,...,Ai-l w i l l  be  temporar i ly  f ixed  

a t  values ass igned i n  previous i t e r a t i o n s .  The weights A k+l, - -  '1 
K 

w i l l  b e  permanently f ixed  a t  A;+~,  -.. , A *  s i n c e  they  have a l ready  
K 

been determined. The a c t i v e  c r i t e r i a  a r e  p a r t i t i o n e d  i n t o  two con- 

t iguous groups: t h e  head and t h e  t a i l .  For example, i f  ( C ~ , C ~ + ~ ,  . -. ,C  ,) 
3 

is t h e  head, then (C j+l, . . . , ck) is t h e  ta i l .  The head is t h e  group 

with h igher  p r i o r i t i e s .  c w i l l  b e  c a l l e d  t h e  vedet te .  It i d e n t i f i e s  
j 

t h e  head- ta i l  p a r t i t i o n i n g .  Every c r i t e r i o n  i n  t h e  head is assigned 

equal  weight: Ah, and every c r i t e r i o n  i n  t h e  t a i l :  A Bounds f o r  
t' - 

A h  and it a r e  determined i n  t h e  previous i t e r a t i o n  a s  A h  and A 
t 

r e spec t i ve ly .  The parametr izat ion involves  decreasing A whi le  
tL 

inc reas ing  h t  u n t i l  they a r e  equal.  It is i d e n t i f i e d  a s  



meaning t h a t  

(i) A k  is  t o  b e  determined next ;  

( i i )  A1,A2, .. . ,Ai-l a r e  temporar i ly  f i x e d ;  

( i i i )  . .. ,A have been determined and hence f i x e d ;  
K  

( i v )  c is t h e  vede t te ;  
j 

(v)  ( C ~ , C ~ + ~ .  . . . , C  ) is t h e  head; and 
j 

( v i )  ( c ~ + ~ ,  . . . ,ck.) is t h e  t a i l .  

F igure  1 g i v e s  a schematic r e p r e s e n t a t i o n  of a parametr izat ion.  The 

parametr ic  o b j e c t i v e  func t ion  f o r  t h e  LP is 

where 
- 
A 10 

k l ,  . . . , i -1 ,  a r e  computed i n  previous i t e r a t i o n s  : 

A;, LPk+l,. . . , K, a r e  computed i n  previous i t e r a t i o n s ;  

A is t h e  lower bound f o r  t h e  weight on t h e  t a i l ;  
t - 
A is t h e  upper bound f o r  t h e  weight on t h e  head; 

h 

= A  +B is t h e  parametr ized weight on t h e  t a i l ;  At t - 
Ah=Xh-p is t h e  parametrized weight on t h e  head; and 

CO.F] is t h e  range of t h e  paramet r iza t ion .  

The bounds and range i n  c(B) a r e  computed a s  fol lows.  
i-1 - k * K  

Let  w l a  C 1 -  'Z k1 - Z 
L=1 



I A = w  
-t 2 

o therwise  - h h = r  . 
i-1 

( 1, = *tl 

The two cases a r e  n e c e s a r y t o  e n s u r e  t h a t  c o n d i t i o n  (3) holds .  In 
- 

e i t h e r  c a s e ,  is givens  by 

then 

- 
0 = (r -A ) / 2 .  

h - t  

- : 
X h  = W 

1 

The paramet r i c  LP f o r  P Ck. l , 2 ,  . . . , i-1, j 1 is t h e n  

(7) maximize c (8 )  , o ~ B ~ B .  
XCX 

The op t imal  s o l u t i o n  t o  (7)  is p iecewise  c o n s t a n t  over  i n t e r v a l s  o f  

B i n  t h e  range  c0,81, and can  b e  so lved  by s t a n d a r d  pa ramet r i c  LP 

methods [41. 

At  i t e r a t i o n  n ,  i f  X k  is t o  b e  deteumined n e x t ,  pn pa ramet r i c  

LP'S cf the  form (7) w i l l  b e  considered.  Depending on t h e  outcome of  

i t e r a t i o n  n-1, p may vary  from 1 t o  k-1. S o l u t i o n s  from t h e s e  pn 
n 

problems are presen ted  t o  t h e  DM who must t h e n  i d e n t i f y  h i s  most 

p r e f e r r e d  s o l u t i o n  i n  t h e  set. As t h i s  s o l u t i o n  corresponds to an 

i n t e r v a l  o f  v a l u e  f o r  t h e  parameter  8 ,  t h e  DM may d e c i d e  on t h e  

p a r t i c u l a r  v a l u e  of B* with in  t h i s  i n t e r v a l  that w i l l  b e  used i n  

i t e r a t i o n  m t l .  I f  he has no p a r t i c u l a r  p re fe rence ,  t h e  midpoint  o f  



t h e  i n t e r v a l  w i l l  be used. I n  a d d i t i o n ,  h i s  most p r e f e r r e d  s o l u t i o n  

i n  i t e r a t i o n  n may appear i n  more than one paramet r iza t ion .  I n  

t h i s  c a s e ,  t h e  DM should e x e r c i s e  h i s  h o l i s t i c  p re fe rence  judgment 

t o  choose t h e  p r e f e r r e d  conf igura t ion  a s  w e l l .  Otherwise,  h i s  

previous d e c i s i o n s  may b e  examined t o  i n f e r  a choice.  I f  none is 

a v a i l a b l e ,  t h e  a lgor i thm w i l l  choose t h e  paramet r iza t ion  wi th  t h e  

most even d i s t r i b u t i o n  o f  weights.  This is a l o g i c a l  cho ice  a s  the 

absense of  p re fe rence  implies  t h a t  t h e  DM'S p r i o r i t i e s  cannot  b e  

very d i s t i n c t .  I n  any case ,  a t  t h e  end of  i t e r a t i o n  n, a 0' is 

determined. I f  the corresponding paramet r iza t ion  has a s i n g l e  c r i t e r i o n  

i n  t h e  t a i l ,  namely c then $ i s  determined by 
k' 

(8) 1.; - %+s'. 
Otherwise,  each c in t h e  head w i l l  b e  ass igned t h e  weight 

I 

- - 
(9) X I  = kh-8+ 

which w i l l  t hen  b e  temporar i ly  f i x e d  in i t e r a t i o n  n+l. 

The a lgor i thm can now b e  s t a t e d .  



The HOPE Algorithm. 

S t e p  0. I n i t i a l i z e :  s e t  k = ~ ,  n=O, A:+~=O. 

S t e p  1. Free  a l l  undetermined weights:  set i=l. 

S t e p  2. Update i t e r a t i o n  count: set n=n+l, number of pa ramet r i za t ions  

pn=k-i. I n i t i a l i z e :  set j=i-1,  S=8. 

S t e p  3. Choose vedet te :  set j = j + l .  I f  j=k, go t o  S t e p  5. 

S t e p  4. s o l v e  pa ramet r i c  l i n e a r  program (7) f o r  P C ~ ,  l , 2 , .  . . , i-1,  j] 

Enter  s o l u t i o n s  i n  S. 

Return t o  S t e p  3. 

S t e p  5. E l i c i t  DM'S h o l i s t i c  preference:  s e l e c t  m o a t  p r e f e r r e d  

s o l u t i o n  x i n  S and corresponding va lue  o f  parameter  B*.  
n 

Also, v e r i f y  s c a l i n g  and p r i o r i t i e s .  

S t e p  6. Analyze xn: i f  on ly  one c r i t e r i o n  i n  tail, go t o  S t e p  7. 

Otherwise,  set X =X -a*  f o r  each of t h e  h c r i t e r i a  in head 
I h  

( h - 1  Update number of weights t o  b e  temporar i ly  f ixed:  

set i= i+h .  Return to S t e p  2. 

S t e p  7. A *  is determined: set \2&+8*. S e t  k=k-1. I f  b l ,  s top .  
k 

Otherwise,  r e t u r n  t o  S t e p  1. 

A flow diagram f o r  t h e  HOPE a lgor i thm is g iven  in F i g u r e  2. An 

i l l u s t r a t i o n  of a l l  p o s s i b l e  outcomes f o r  K=4 is g iven  i n  F igure  3. 

The number o f  i t e r a t i o n s  r e q u i r e d  by t h e  a lgor i thm is bounded 

The t o t a l  number o f  p a r a m e t r i z a t i o n s  examined is bounded by 

K-1 
(11) = C j(K-1). 



The a c t u a l  number of pa ramet r i za t ions  r e q u i r e d  is  u s u a l l y  much l e s s  

and can be  made s o ,  e s p e c i a l l y  when K is l a r g e  ( say ,  0 5 )  by t h e  

fol lowing c o n s i d e r a t i o n .  For p e r f e c t  g e n e r a l i t y ,  t h e  a lgor i thm is 

s t a t e d  i n  such a way t h a t  each t ime  it r e t u r n s  from S tep  7 t o  S t e p  1, 

a l l  p o s s i b l e  d i s t r i b u t i o n s  f o r  t h e  undetermined weights  a r e  considered 

t o  b e  of p o t e n t i a l  i n t e r e s t .  I n  p r a c t i c e ,  outcomes i n  previous  

i t e r a t i o n s  can u s u a l l y  b e  used t o  r u l e  o u t  f u r t h e r  c o n s i d e r a t i o n s  

o f  va r ious  pa ramet r i za t ions .  For  example, r e f e r r i n g  t o  F i g u r e  3, 

suppose P 142 1 and P 1431 produce s o l u t i o n s  t h a t  are s i g n i f  i c a n t l y  

i n f e r i o r  t o  ~ 1 4 1 1 .  Then, a f t e r  A4 is determined, PC321 is extremely 

u n l i k e l y  t o  produce a t t r a c t i v e  s o l u t i o n s  and may t h e r e f o r e  b e  suppressed. 

F i n a l l y ,  a d i s c u s s i o n  o f  s c a l i n g  and p r i o r i t y  checks w i l l  complete 

t h e  d e s c r i p t i o n  o f  t h e  HOPE algor i thm.  Whenever t h e  DM has  reasons  

t o  s u s p e c t  t h a t  t h e  values  o f  c e r t a i n  c r i t e r i a  a r e  c o n s i s t e n t l y  t o o  

high o r  t o o  low, a s c a l i p g  and p r i o r i t y  check should b e  s i g n a l l e d .  Th i s  

happens i f  t h e  DM'S p re fe rences  seem t o  l i e  beyond t h e  range C O , ~ ) ]  

f o r  t h e  parameter  B i n  a l l  pa ramet r i za t ions  i n  an i t e r a t i o n .  I f  

a p a i r w i s e  p r i o r i t y  in te rchange  can be i d e n t i f i e d  and approved by 

t h e  DM, it should b e  executed and t h e  a lgor i thm r e s t a r t e d .  Otherwise,  

a u n i l a t e r a l  s c a l i n g  w i l l  be  performed on s p e c i f i e d  criteria. Sca l ing  

is recommended on ly  when o r d e r  o f  magnitude changes deem necessary.  
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I HOPE: K=4 

X 4  DETERMINED I 

I DETERMINED I 
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J, 
A 2 ,  k1  DETERMINED I 

F i g u r e  3 .  HOPE i l l u s t r a t e d  for K=4. 



5. J u s t i f i c a t i o n  of HOPE 

The HOPE algorithm is a f i n i t e  procedure t o  parametrize condit ions 

(3)  and (4) i n  order t o  discover t h e  optimal so lu t ion  t o  MCLP, defined 

a s  t h e  one most prefer red  by t h e  DM. A s  pointed out  i n  [9], t h e  exact ,  

f u l l  parametr izat ion of a l l  poss ib le  combinations of t h e  weights be- 

comes very d i f f i c u l t  f o r  K>2. HOPE is e s s e n t i a l l y  a method of nested 

b i c r i t e r i o n  programming t h a t  allows t h e  successive refinement of crude 

i n i t i a l  approximations. The main argument f o r  t h e  robustness of 

HOPE r e l i e s  on t h e  f a c t  t h a t  t he  weights X *  a r e  i n  general  not unique, 

regardless  of whether t h e  corresponding x* is the  unique optimal 

so lu t ion  t o  MCLP o r  not. This can be seen from the  following proposi t ions 

Let  
K e = ( l , l ,  ..., 1)cR , yeR , c =  [:I 1. ~ R ~ x R ~ .  

0 
Proposi t ion 3. x cE i f  and only i f  t h e  LP 

(12) maximize e y  

subjec t  t o  I y -  Cx = -Cx 
0 

A x = b  

has an optimal so lu t ion  with y o .  

Proof. Follows from t h e  de f in i t i on  of e f f ic iency .  

Proposi t ion 4. Let (XO,rrO) be a dual optimal so lu t ion  t o  (12). 

0 
Then X >O and xo sol;es 

0 
maximize X Cx 

xox 



0 0 
Proof .  Dual op t imal i ty  of ( A  ,n ) = 

(13) e-A0 s 0 

(14) AOC-?OA s 0 

0 0 0 
(15) -A Cx +rr b = max ey = 0 

Now x0 is pr imal  f e a s i b l e  to (16) by d e f i n i t i o n .  TI' is dua l  f e a s i b l e  

t o  (16) by (14) .  By (15) .  complementary s lackness  holds.  T h e r e f o r e  

0 0 (x ,TI  ) is a n  opt imal  primal-dual p a i r  of s o l u t i o n  t o  (16) .  A I I ~  (13) 

0 
impl ies  A >O. 

0 
Hence, i0 from (12) may b e  used to c h a r a c t e r i z e  x 6E. Now cons ider  

x* and (12) wi th  xO=x*. x * c ~  impl ies  y=O and t h e  opt imal  b a s i s  i n  

(12) w i l l  i n  g e n e r a l  b e  degenerate.  T h i s  i s  c e r t a i n l y  t r u e  i f ,  f o r  

* .  
example, x is an  extreme p o i n t  of  X. Consequently, t h e r e  e x i s t s  i n  

g e n e r a l  a mul t i tude  of ( l i n e a r l y  independent) A* t h a t  s a t i s f y  

P r o p o s i t i o n  2 f o r  x* a s  wel l  a s  condi t ion  ( 4 ) .  C a l l  t h i s  set A. 

L e t  A b e  i ts r e s t r i c t i o n  to A K .  Reca l l ing  t h a t  c has  lowest 
K K 

p r i o r i t y ,  A- is expected t o  be smal l  (<<1) s o  t h a t  r e l a t i v e l y  l a r g e  
K 

p e r t u r b a t i o n s  would s t i l l  be i n s i g n i f i c a n t .  T h i s  implies  t h a t  even 

c rude  approximationsof A should i n t e r s e c t  \. The HOPE algori thm does 

e x a c t l y  t h a t .  The s e r i e s  of P C K  . . . I  pa ramet r iza t ions  seek A € A  
K K' 

Once t h i s  h o l d s ,  t h e  above argument can b e  repea ted  induc t ive ly .  Note 

t h a t  a s  t h e  r e l a t i v e  margin of e r r o r  decreases  f o r  t h e  higher  p r i o r i t y  

weights ,  t h e  p r e c i s i o n  of t h e  paramet r ic  approximation inc reases .  For 

ins tance ,  once A3,...,AKtA have been determined, ~ [ 2 1 ]  determines e x a c t l y  

t h e  corresponding and A1. 



Another argument fo r  t h e  robustness of HOPE is t h a t  no spec ia l  

assumption about t h e  underlying u t i l i t y  function is made. Of course, 

caution must be exercised in  the  general case  t o  take  i n t o  account 

of nonextremal a s  well a s  l oca l  optima. I n  t h e  f i r s t  instarlte,  a l l  

optimal so lu t ions to  (16) fo r  a given l o  should be  examined. Similarly,  

f o r  non-unimodal u t i l i t y ,  t h e  DM can choose seve ra l  so lu t ions  a t  any 

s t a g e  of HOPE and branch out  t he  refinement procedure f o r  l oca l  optimal 

solut ions.  

I n  terms of implementation, HOPE involves simply the  i t e r a t i v e  

appl ica t ion  of parametric l i nea r  programming. It can therefore  be 

incorporated a s  a na tura l  extension of t he  algorithmic too l s  of well  

devploped IS technology. To the  DM t h e  bas i c  concepts of  HOPE a r e  

easy t o  understand and maybe even t o  accept. I n  ac tua l  use, t he  DM 

has only t o  examine e f f i c i e n t  solut ions.  Moreover, s t a r t i n g  from 

i t e r a t i o n  1 on the  DM is offered a h o l i s t i c  view of t h e  a l t e rna t ives  

which becomes more and more c l ea r  a s  the  process evolves. This is 

i n  cont ras t  t o  most preference programing methods t h a t  r e l y  on local  

o r  marginal u t i l i t y  analysis .  

F ina l ly ,  it should be remarked t h a t  t h e  primary purpose of 

HOPE is t o  iden t i fy  the  optimal so lu t ion  x* t o  an MCIS. This is 

done by approximating t h e  weights [A*] t h a t  charac ter ize  x*. However, 
k 

I a r e  not  meant t o  be  an evaluation of t h e  DM'S u t i l i t y  function 

1 (except i n  t he  spec ia l  case where it is known to be l i nea r  ) .  

1 .  
ThlS spec ia l  case  is  exploited i n  t he  numerical examples in  Section 6 
fo r  t h e  s o l e  purpose of simplifying t h e  simulation of the  DM'S response. 
The reader should not be confused about t h e  s igni f icance  of t h e  u t i l i t y  
function. 



This  func t ion  u i s  i n  g e n e r a l  t o o  complicated t o  b e  meaningfully 

* 
represen ted  by X ' k  ck. I n  p r a c t i c e ,  a p a r t  from assuming its 

s e p a r a b l e  a d d i t i v i t y  and monotonicity,  t h i s  au thor  p r e f e r s  to leave  

u o u t  of t h e  p i c t u r e .  Nonetheless,  t h e  DM may s t i l l  a t t a c h  whatever 

i n t u i t i v e  i n t e r p r e t a t i o n  he  chooses t o  X . Thus HOPE can b e  regarded 

a s  a l e a r n i n g  process  f o r  t h e  DM t o  'weigh" h i s  c r i t e r i a .  Or i f  one 

dec ides  on using k* ae a measure of t h e  DM'S h o l i s t i c  p re fe rence  then 

HOPE is t r u l y  a procedure f o r  h o l i s t i c  p re fe rence  eva lua t ion .  



6. Numerical Examples 

In  t h i s  sec t ion ,  t he  r e s u l t s  of t he  appl ica t ion  of HOPE 

t o  four t e s t  problems a r e  reported. Although they a r e  not based 

on experience involving decision makers i n  ac tua l  appl ica t ions ,  

they should s t i l l  be very useful  a s  a demonstration of t he  eff icacy 

of t he  algorithm. This is especia l ly  t r u e  s ince  &he l a s t  t h ree  

problems a r e  drawn from r e a l - l i f e  mult iple  c r i t e r i a  decision processes 

reported in the  l i t e r a t u r e .  Problem I is t h e  simple numerical example 

used by Zionts and Wallenius i n  [20]. Problem I1 is t h e  academic 

department planning model formulated by Geoffrion, Dyer and Peinberg 

i n  L111. As [11] did  not  provide s u f f i c i e n t  da ta  t o  reconstruct  t he  

problem the re in ,  f i c t i t i o u s  but  r e a l i s t i c  values of t he  parameters 

a r e  used here. These a r e  recorded in  Appendix A. Problems I11 and 

I V  a r e  two cases of t he  fo re s t  management model s tudied by Steuer 

and Schuler i n  (161. The da ta  a r e  given i n  Appendix B. Each of t h e  

four problems makes a pa r t i cu l a r  poin t  about HOPE and together  they 

provide considerable ins ight  i n t o  the  approach. 

AS t he  algorithm has not  yet  been implemented a s  a f u l l y  automatic 

and in t e rac t ive  computer program, the  tesfswere run by batching each 

parametric LP a s  a separa te  job on a CSC 7600 a t  Brookhaven National 

Laboratory. The LP code used was CDC'c APEX I11 with parametric 

opt  ions. 

To simplify the  t e s t  runs and t o  ensure t h e i r  reproducib i l i ty ,  a 

l i n e a r  u t i l i t y  function is spec i f ied  in each case  t o  s imulate preference 

judgment by a DM. The reader is reminded t h a t  l i n e a r i t y  assumptions a r e  

n o t  necessary i n  prac t ice .  



Problem I. Example i n  :20]. 

The e n t i r e  s e t  of extreme poin t  so lu t ions  a r e  l i s t e d  i n  Table 1. The 

ones i n  parenthes is  a r e  i ne f f i c i en t .  AS i n  (201, it is assumed t h a t  

t h e  DM'S ( imp l i c i t )  u t i l i t y  funct ion 'is 

which is maximal a t  so lu t ion  B with a  value of 42.96. Applying 

HOPE, t h e  DM f i r &  ranks ( c  1 , ~ 2 , ~ 3 )  in descending order  of p r i o r i t y .  

The r e s u l t s  a r e  surmnarized in Table 2. Note t h a t  t h e  so lu t ion  on 

each l i n e  is achieved by t h e  value of B on t h a t  l i n e  up t o  bu t  

excluding t h e  value of ,9 on t h e  following l i n e ,  The f i r s t  i t e r a t i o n  

involves parametrizations P [31] and P [32]. The DM'S p refer red  

so lu t ion  appears i n  both cases. H i s  h o l i s t i c  preference implies 

t h a t  c2  and c3 a r e  considered equal and l e s s  important than c  1' 



There fo re ,  he chooses s o l u t i o n  B i n  ~ [ 3 1 ]  and B*= 0.21, t h e  midpoint 

o f  t h e  i n t e r v a l  corresponding t o  B. Next, PC3121 is considered.  AS 

no  improvement r e s u l t s  from s h i f t i n g  weight  from c t o  c t h e  DM 
3 2' 

concludes  t h a t  c and c shou ld  have aqua1 weight  and chooses 
2 3 

A; - 6' = 0.21. PC211 p rov ides  a f i n a l  check by s h i f t i n g  weight  

from cl  t o  c 2  f o r  p o s s i b l e  improvement. None r e s u l t s ,  and s o  

8*=0.0 i2 = 0.21 and A; = 0-58. 

T h i s  s imple  warnple i l l u s t r a t e s  t h e  fundamental  concept  o f  HOPE. 

Because t h e r e  a r e  s o  few a l t e r n a t i v e s ,  d i v e r s e  combination8 of weights 

g i v e  rise t o  t h e  s a n e s o l u t i o n .  I d e n t i f i c a t i o n  of t h e  most p r e f e r r e d  

s o l u t i o n  i n  an  i t e r a t i o n  does n o t  s u f f i c e .  P r i o r i t i e s  and hence 

h o l i s t i c  p r e f e r e n c e  must b e  c a l l e d  i n t o  p lay .  I n  t h i s  c a s e ,  p r i o r i t i e s  

a c t u a l l y  p l a y  t h e  major r o l e .  I n  complex problems w i t h  abundant 

a l t e r n a t i v e s  t h e  6 i n t e r v a l s  w i l l  d iminish  and t h e  e f f e c t  of p re fe rences  

w i l l  become more s i g n i f i c a n t  . 



TABLE 1. PROBLEM I:  A l l  extreme point solutions 



TABLE 2. PROBLEH I: Solution by HOPE 

- 
r 
n 

1 

2 

3 

P 

C31] 

C321 

[312] 

[2l] 

6 

0.00 

0.20 

0.22 

0.33 

0.00 

0.13 

0.16 

0.33 

0.00 

0.21 

0.00 

0.04 
0.19 

Solution 

A 

B 

D 
I 

B 

H 

D 
I 

B 
II 

B 

D 

u 

42.06 

42.96 

41.64 
I 

42.96 

36.80 

41.64 
I 

42.96 
II 

42.96 

41.64 
" 

8 * 

+ 0.21 

+ 0.21 

+ 0.00 

X3=0.21 

X2=0.21 

X1=0.58 

%*=B 



Problem XI. Academic Department Planning Model i n  [ i l l .  

This  is a  planning problem f o r  t h e  opera t ion  of a  s i n g l e  academic 

department on a  l a r g e  u n i v e r s i t y  campus. The c o n s t r a i n t s  r e f l e c t  

work ba lance ,  budget ba lance ,  man-power c e i l i n g ,  p o l i c i e s  and 

commitments of t h e  department. The c r i t e r i a  have t h e  fol lawing 

meaning. 

f l :  course  s e c t i o n s  o f f e r e d  - g r a d u a t e  d i v i s i o n ,  

f 2 :  course  s e c t i o n s  o f f e r e d  - lcwer d i v i s i o n ,  

f3:  course  s e c t i o n s  o f f e r e d  - upper d i v i s i o n ,  

f4 :  t each ing  a s s i s t a n t  t i m e  used f o r  suppor t .  

f5:  r e l e a s e s  f o r  depar tmental  s e r v i c e  du ty ,  

f6:  a d d i t i o n a l  a c t i v i t i e s  of  t h e  r e g u l a r  f a c u l t y .  

DM'S p r i o r i t i e s :  (C1' C 2 '  C3'  C4' C5' ~ 6 )  = ( f 5 r  f 4 #  f 6 #  f l #  f 3 ,  f 2 )  

DM'S u t i l i t y  funct ion:  

u  = 0 . 4 ~  + 0 . 3 ~ ~  + 0 . 2 ~  + 0 . 0 7 ~  + 0 . 0 2 ~  + 0 . 0 1 ~  
1 3  4  5  6  

which is maximized a t  v* = (68.25, 20.0, 1.08, 100, 30, 20) 

wi th  t h e  va lue  u(v*) = 41.3. 

Tab le  3  con ta ins  t h e  s o l u t i o n s  t o  Problem I1 examined by ROPE. To 

s i m p l i f y  p r e s e n t a t i o n ,  only  pa ramet r i za t ions  g i v i n g  t h e  p r e f e r r e d  

s o l u t i o n  i n  each i t e r a t i o n  have been en te red  i n  Tab le  4. The opt imal  

v* is determined c o r r e c t l y  by HOPE i n  7 i t e r a t i o n s  wi th  t h e  weights 



P, = (0.395, 0.295, 0.185, 0.085, 0.025, 0.015) which is a  very good 

approximation of t h e  i m p l i c i t l y  assumed l i n e a r  u t i l i t y  f u n c t i o n  u.' 

This  example i l l u s t r a t e s  t h a t  even wi th  six c r i t e r i a ,  t h e  number of 

i t e r a t i o n s  r e q u i r e d  may s t i l l  b e  r e l a t i v e l y  low. The upper bound 

f o r  K=6 is 15. 

'see remark a t  end of Sec t ion  5. 



TABLE 3 .  PROBLEM 11: Solut ions  examined 



TABLE 4. PROBLEM 11: Solution by HOPE 

- - 



Problem 111. Forest Management Model i n  [16]. 

K E 5 ,  X E  R31, ACR13XR31 

The problem is t o  optimize management plans for  t h e  multitude of 

goods and serv ices  obtainable from public  f o r e s t  land. There a r e  

e ight  acreage l imi t a t ion  equal i ty  cons t r a in t s ,  one budget l imi ta t ion  

inequal i ty  cons t ra in t  and four sus ta in ing  timber y ie ld  inequali ty 

cons t ra in ts  i n  t h e  model. The c r i t e r i a  represent  a c t i v i t y  leve ls  

i n  

timber production ( z l ) ,  

dispersed recrea t ion  (z  ) ,  
2 

hunting f o r e s t  species (z3) ,  

hunting open land species ( z 4 ) ,  and 

grazing ( z5 ) .  

A s  reported i n  [16], t h e  r e a l  DM i n  t h i s  case ranked the c r i t e r i a  

(z2,  Z3, z4, zl, z  ) in descending order. The method i n  C16] led t o  
5 

1 
t h e  determination of so lu t ion  J i n  Table 5 a s  t h e  optimal solut ion.  

Applying HOPE with t h e  above p r i o r i t y  ranking of t h e  c r i t e r i a ,  t h e  

DM w i l l  discover t h a t  the  value of z3 never exceeds t h a t  i n  so lu t ion  

N. I f  he switches the  p r i o r i t i e s  of z2 and z3 d t  any s t age  of HOPE 

(even down t o  ~ c 2 1 ' J )  and continues, he can s t i l l  discover so lu t ion  J. 

However: we present  t h e  r e s u l t s  of a  complete run of HOPE a f t e r  t he  switch 

 here a r e  s l i g h t  discrepencies between the  numerical values i n  [16] 
and those i n  Table 5. This is caused by the  f a c t  t h a t  we s t a r t e d  with 
da ta  presented i n  t h e  Appendix of [16] which have been rounded off  O r  

truncated t o  two decimal places. 



The DM'S new p r i o r i t i e s :  

S o l u t i o n  J corresponds (among o t h e r  p o s s i b i l i t i e s )  t o  t h e  u t i l i t y  

func t ion  

u  = 0 . 5 0 ~ ~  + 0 . 2 5 ~ ~  + 0 . 1 2 ~  + 0 . 0 8 ~  + 0 . 0 5 ~  
3  4 5 '  

which is maximized a t  a  va lue  of  19735 by s o l u t i o n  J. HOPE e s t a b l i s h e s  

t h e  o p t i m a l i t y  of J i n  10 i t e r a t i o n s  wi th  t h e  weights A = (0.53, 0.23, 

0.13, 0.08, 0.03).  

This  example i l l u s t r a t e s  how HOPE can b e  used t o  d i scover  

incons i s tency  i n  t h e  DM'S h o l i s t i c  p re fe rences  and haw t h e  DM can 

regard  HOPE a s  a  l e a r n i n g  process  t o  e v a l u a t e  h i s  own va lue  judgment. 



- 1 0 1 4 -  

TABLE 5 .  PROBLEM 111: Solutions examined 
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TABLE 6. PROBLEMIrI: Solution by HOPE 

n P 3 u 8 a 



Problem IV. Fores t  Management Model i n  L16:. 

This  is t h e  same a s  Problem I11 with  a  d i f f e r e n t  l i n e a r  u t i l i t y  

f u n c t i o n  t o  s i m u l a t e  t h e  DM'S p re fe rences .  I n  each of t h e  f i r s t  

t h r e e  problems, t h e  opt imal  s o l u t i o n  a c t u a l l y  appears i n  t h e  r e s u l t s  

of  t h e  f i r s t  i t e r a t i o n .  Subsequent i t e r a t i o n s  s e r v e  p r i m a r i l y  a s  

a  v e r i f i c a t i o n  t h a t  no improvement can b e  made. Th i s  is t y p i c a l  

when t h e  MCLP is n o t  ve ry  complex t h e  DM'S u t i l i t y  f u n c t i o n  i s  

l i n e a r .  Problem IV i l l u s t r a t e s  t h a t  even in t h e  l i n e a r  c a s e ,  it 

may r e q u i r e  more than  one i t e r a t i o n  t o  uncover t h e  opt imal  s o l u t i o n .  

DM'S u t i l i t y  funct ion:  

which has a  maximum a t  22771. 

HOPE g e n e r a t e s  t h e  opt imal  s o l u t i o n  i n  i t e r a t i o n  2  and e s t a b l i s h e s  

i ts o p t i m a l i t y  i n  s i x  i t e r a t i o n s .  The p rocess  is summarized i n  

Tab le  7. 



-1017- 

TABLE 7 .  PROBLEM IV: S o l u t i o n  by HOPE 

n P B u 8 a 



7 .  Conclusions 

I n  t h i s  paper, a  parametric l i nea r  programming method is 

proposed t o  so lve  the mul t ip le  c r i t e r i a  optimization problem. 

The approach uses the  decision maker's preference judgement a s  

well a s  h i s  p r i o r i t y  ranking of t h e  c r i t e r i a .  Based on h e u r i s t i c  

arguments and empir ical  evidence, t h e  algorithm is observed t o  be 

robus t  i n  terms of 

i) implementation: requi res  only parametric LP software: 

ii) user  f r iendl iness :  easy t o  understand, requi res  only 

mul t ip le  choice response:. 

iii) general  app l i cab i l i t y :  requi res  no spec i a l  assumptions 

about t he  DM'S u t i l i t y  function; 

i v )  i n t u i t i v e  appeal: may be i n t e rp re t ed  a s  h o l i s t i c  preference 

evaluat ion,  o r  a  learn ing  process i n  "weighing" t h e  c r i t e r i a .  

Further  development involves: 

i) implementation a s  an extension of the c a p a b i l i t y  of ex i s t i ng  

algori thmic t oo l s  i n  LP; 

ii) experimentation i n  d iverse ,  r e a l  dec is ion  processes,  e.g. 

energy pol icy  ana lys i s ,  where the con f l i c t i ng  c r i t e r i a  may 

be costs  , resource deple t ion ,  environmental impact, nuclear 

p r o l i f e r a t i o n ,  e t c .  ; 

iii) genera l iza t ion  t o  nonlinear  c r i t e r i a ,  e.g. concave objec t ive  

funct ions,  using r e s u l t s  i n  191; and 

i v )  comparison with o ther  methods [17]. 



Appendix A 

Data fo r  Problem I1 i n  U P S  format. 

The model is described i n  ell]. The values of t h e  parameters 

used i n  Problem I1 are tabulated a s  follows. 

The bounds implied by (15) i n  [ll] a r e  dropped. Note a l s o  t h a t  

t he  summation in  inequa l i t i e s  (9) and (10) i n  [ll] should be over 

l*r5. In  t he  following, R i  is the  ith cons t ra in t .  

PROBLEM I 1  



. ,- - \ -. -. . LL 

.'-. r.cc 

)',>E 
xc':3 
X23 
xes 
X24 
xe 4 
XZ5 
XE5 
X3 1 
X3 1 
X32 
X32 
X33 
X33 
x:34 
X34 
X35 
X'35 
X4 1 
X4 1 
'44 2 
:<42 
:<43 
x43 
X 4 4  
X45 

?HZ 
DH S 
RHS 
RHS 
RHC; 
EHS 

BOIJNDS 
LO E l  
LO E l  
LO B1 
FX B1 
UP E l  
UP B1 
UP B1 
UP 21  

3 I D A T A  

X I 1  
X I 2  
X I 3  
X2 1 
xee 
xz3 
X24 
X25 
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Appendix B 

YfiME 
901.j:s 
3 7 1  
N 22 
N 23 
N 24 
N 25 
L R 1  
L R 2  
L R3  
L R4 
L R 5  
L R 6  
L R 7  
L R e  
L R 9  
L R l O  
L R i l  
L R 1 E  
DL R 1 3  

COLUMNS 
X i  
X 1 
X 1  
XE 
x2 
x2 

Data for Problem I11 in MPS format 

PROBLEM I 1 1  



;: 1 3 
' 1  1 3 
>: 14 
X 1 4  
X I 5  
X 1 5  
X l r j  
X l r j  
X I 7  
X 1 7  
X I 8  
X I 9  
X 1 9  
X 1 9  
X 2  0 
X 2  0 
X 2  1 
X 2  1  
X 2  1  
X 2 2  
X 2 2  
X 2 2  
:<2:> 
X 2 3  
X 2 3  
xe4 
XZ4 
XE4 
X 2 5  
:<25 
X 2 6  
K26 
X 2 7  . e X i 7  
X 2 8  
XE:3 
X 2 8  
x2a 
X2-3  
X 3  0 
X 3  0 
X3 0 
X 3  1  
X 3  1  

RHS 
RHS 
RHS 
R H f  
RH3 
RH:2 
RHS 
RH5 

EtiDHTH 
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AN IMPLEMENTATION OF THE REFERENCE POINT APPROACH FOR 
MULTIOBJECTIVE OPTIMIZATION 

M. Kallio,' A. Lewandowski,' W. Orchard-Hays*' 

"System and Decision Sciences, IlASA 
' Energy Systems Program, IIASA t 

This paper studies the reference point approach of Wierzbicki for multiobjective optimiza- 
tion. The method does not necessarily aim a t  finding an optimum under any utility func- 
tion but rather it isused to generate a sequence of efficient solutions which are interesting 
from thedecision maker's point of view. The user can interfere via suggestions of reference 
values for the vector of objectives. The optimization system is used to find (in a certain 
sense) the nearest Pareto solution to each reference objective. 

The approach is expanded for adaptation of information which may accumulate on the 
decision maker's preferences in the course of the interactive process. In this case any Pareto 
point is excluded from consideration if it i s  not optimal under any linear utility function 
consistent with the information obtained. Thus, the Pareto points being generated are the 
"nearest" ones among the rest of the Pareto points. 

Wierzbicki's approach i s  implemented on an interactive mathematical programming sys- 
tem called SESAME and developed by Orchard-Hays. It i s  now capable of handling large 
practical multicriteria linear programs with up to 99 objectives and 1000 to 2000 con- 
straints. The method i s  tested using a forest sector model which is a moderate sized dy- 
namic linear program with twenty criteria (two for each of the ten time periods). The ap- 
proach i s  generally found very satisfactory. This is partly due to the simplicity of the basic 
idea which makes it easy to implement and use. 
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1 . INTRODUCTION 

In many practical decision situations there is a need to 

find a compromise between a number of conflicting objectives. 
Furthermore, the decision may involve several decision makers in 

partly conflicting, partly cooperative situations. Hathematically 

such decision problems can often be formulated as a multiobjective 

optimization problem or in the framework of game theory. In this 

paper we concentrate on the former approach for developing deci- 

sion aid techniques for the problem. For an overview on various 

approaches, see, for instance Bell et al. (1977), Starr and 

Zeleny (1977), and Wierzbicki (1979 b). 

In our opinion, the reference point optimization method with 

penalty function scalarization (Wierzbicki 1979a) is an appropriate 

tool for studying such problems. This approach has several 

desirable properties: 

-- it applies to convex and nonconvex cases 
-- it can easily check Pareto-optimality of a given decision 
-- it can be easily supplemented by an a posteriori computa- 

tion of trade-off coefficients for the objectives 
-- it is numerically well-conditioned and easy for imple- 

mentation 



-- the concept of reference point optimization makes it 
possible to take into account the desires of a decision 

maker directly, without necessarily asking him questions 

about his preferences. 

In this paper we will focus on the interactive use of ref- 

erence point optimization for multiobjective linear programming 

with a single decision maker. However, we believe that the same 

approach proves to be useful for group decision problems as well 

The reference point optimization will be reviewed first and some 

preliminary results will be given. Thereafter, we develop an 

approach for employing information which may be revealed on the 

decision maker's preferences in the course of the interactive 

process. The multiobjective method has been computerized in the 

SESAME-system, a large interactive mathematical programming 

system designed for IBM 370 under VM/CMS (Orchard-Hays 1978). 

A sample of numerical experiments will be reported at the end 

of the paper. 

2. REFERENCE POINT OPTIMIZATION 

Let A be in RmXn, C in RPXn, and b in R~ and consider the 

multlcriteria linear program (MCLP): 

(MCLP .l) Cx = q 

(MCLP. 2) A x = b  

where the decision problem is to determine an n-vector x of 

decision variables satisfying (MCLP.2-3) and taking into account 

the p-vector q of objectives defined by (MCLP.1). We will assume 

that each component of q is desired to be as large as possible. 

An objective vector value q = q is z t t a < n a $ L e  if there is a 
feasible x for which Cx = q. Let qT, for i = 1,2, ..., p, be the 

A 
largest attainable value for qi; i.e., qi = sup {qilq attainable). 

The point q* 5 (q,, q2,. . . , q:)T is the u t o p i a  p o i n t .  If q* is 



a t t a i n a b l e ,  it is  a  s o l u t i o n  f o r  t h e  d e c i s i o n  problem. However, 

u s u a l l y  q  is n o t  a t t a i n a b l e .  A p o i n t  q is s t r i c t L y  P a r e t o  i n -  

f e r i o r  i f  t h e r e  is an  a t t a i n a b l e  p o i n t  q  f o r  which q  > G .  I f  t h e r e  

i s  a n  a t t a i n a b l e  q  f o r  which q,G and t h e  i n e q u a l i t y  i s  s t r i c t  

a t  l e a s t  i n  one component, t h e n  q is  P a r e t o  i n f e r i o r .  An a t t a i n a b l e  

p o i n t  q i s  weakLy P a r e s o - o p t i m a t  i f  it is  n o t  s t r i c t l y  P a r e t o  i n -  

f e r i o r  and it is Pare to -op t imaL i f  t h e r e  i s  no a t t a i n a b l e  p o i n t  q  

such t h a t  q  q w i t h  a  s t r i c t  i n e q u a l i t y  f o r  a t  l e a s t  one component. 

Thus a  P a r e t o  op t ima l  p o i n t  is a l s o  weakly P a r e t o  op t ima l ,  and a  

weakly P a r e t o  op t ima l  p o i n t  may be P a r e t o  i n f e r i o r .  Fo r  b r e v i t y ,  

w e  s h a l l  c a l l  a  P a r e t o  o p t i m a l  p o i n t  sometimes a  P a r e t o  p o i n t  and 

t h e  set  of  a l l  such p o i n t s  t h e  P a r e t o  s e t .  

What w e  c a l l  a  r e f e r e n c e  p o i n t  o r  r e f e r e n c e  o b j e c t i v e  i s  a  

s u g g e s t i o n  q by t h e  d e c i s i o n  maker ( o r  t h e  group o f  them) r e f l e c t i n g  

i n  some s e n s e  an  a s p i r a t i o n  l e v e l  f o r  t h e  o b j e c t i v e s .  According 

t o  Wie rzb ick i  (1979 a  ) ,  we c o n s i d e r  f o r  a  r e f e r e n c e  p o i n t  q a  pen- 

a l t y  s c a l a r i z i n g  f u n c t i o n  s(q-:) d e f i n e d  ove r  t h e  set  of  o b j e c t i v e  

v e c t o r s  q.  C h a r a c t e r i z a t i o n  of  f u n c t i o n s  s ,  which r e s u l t  i n  P a r e t o  

op t ima l  ( o r  weakly P a r e t o  o p t i m a l )  minimizers  o f  s o v e r  a t t a i n a b l e  

p o i n t s  q  is g i v e n  by Wie rzb ick i  (1979 b ) .  See  a l s o  Wie rzb ick i  (1980) 

when t h e  r e l a t i o n s  of r e f e r e n c e  p o i n t  o p t i m i z a t i o n  t o  s a t i s f i c i n g  

d e c i s i o n  making a r e  d i s c u s s e d .  

I f  w e  r e g a r d  t h e  f u n c t i o n  s ( q - q )  a s  t h e  " d i s t a n c e "  between t h e  

p o i n t s  q  and q, t h e n ,  i n t u i t i v e l y ,  t h e  problem of  f i n d i n g  such  a  

minimum p o i n t  means f i n d i n g  among t h e  P a r e t o  set t h e  n e a r e s t  p o i n t  

4 t o  t h e  r e f e r e n c e  p o i n t  q. However, a s  it w i l l  be c l e a r  l a t e r ,  o u r  

f u n c t i o n  s is  n o t  n e c e s s a r i l y  r e l a t e d  t o  t h e  u s u a l  n o t i o n  of  d i s t a n c e .  

Having t h i s  i n t e r p r e t a t i o n  i n  mind, t h e  u s e  of  r e f e r e n c e  p o i n t s  
-k o p t i m i z a t i o n  may be  viewed a s  a  way of  g u i d i n g  a  sequence  ( q  1  of  

-k P a r e t o  p o i n t s  g e n e r a t e d  from t h e  sequence  ( q  } of  r e f e r e n c e  o b j e c t -  

i v e s .  These sequences  w i l l  be g e n e r a t e d  i n  a n  i n t e r a c t i v e  p r o c e s s  

and such  i n t e r f e r e n c e  should  r e s u l t  i n  an  i n t e r e s t i n g  set of  a t -  

t a i n a b l e  p o i n t s  4k. I f  t h e  sequence  { q k )  converges ,  t h e  l i m i t  p o i n t  

may be s e e n  a s  a  s o l u t i o n  t o  t h e  d e c i s i o n  problem. 

I n i t i a l  i n fo rma t ion  t o  t h e  d e c i s i o n  maker may be  provided  by 

maximising a l l  o b j e c t i v e s  s e p a r a t e l y .  Le t  qi = (q;) be  t h e  



v e c t o r  of o b j e c t i v e s  ob ta ined  when t h e  ith o b j e c t i v e  i s  maxi- 
i 

mized f o r  a l l  i. Then t h e  ma t r ix  ( q j )  , i ,  j  , = 1 , .  . . , p ,  y i e l d s  

in fo rmat ion  on t h e  range o f  numerica l  v a l u e s  of  o b j e c t i v e  func- 
i 

t i o n s ,  and t h e  v e c t o r  q* = (qi) i s  t h e  u t o p i a  p o i n t .  I t  should  

be s t r e s s e d ,  however, t h a t  such i n i t i a l  i n fo rmat ion  i s  n o t  a  

necessa ry  p a r t  of t h e  procedure and i n  no sense  l i m i t s  t h e  f r e e -  

dom of  t h e  d e c i s i o n  maker. 
- 

We denote  w i q  - q ,  f o r  b r e v i t y .  Then, a  p r a c t i c a l  form 

of  t h e  p e n a l t y  s c a l a r i z i n g  f u n c t i o n  s ( w ) ,  where minimizat ion 

r e s u l t s  i n  a  l i n e a r  programming formulation,. i s  g iven  a s  fo l lows:  

S ( W )  = -minIp min wi, 1 wi} - E W  . 
i 

Here P i s  an a r b i t r a r y  p e n a l t y  c o e f f i c i e n t  which is  g r e a t e r  than  

o r  equa l  t o  p  and E = ( E ~ , E ~ ,  ..., E ) is  a  nonnegat ive  v e c t o r  of 
P  

parameters .  I n  t h e  s p e c i a l  c a s e  of p = p ,  ( 1 )  reduces  t o  

s ( w )  = - p  min w. - EW . (2 )  
i 

So f a r  i n  ou r  exper i ence ,  form ( 1 )  of t h e  p e n a l t y  s c a l a r i z i n g  

f u n c t i o n  has  proven t o  be most s u i t a b l e .  Other  p r a c t i c a l  forms 

have been given i n  Wierzbicki (1979a) .  

For any s c a l a r  2 t h e  s e t  Sg (q )  Z {q 1 s ( w )  2 3 ,  w = q  - q }  
i s  c a l l e d  a  l e v e l  s e t .  Such s e t s  have been i l l u s t r a t e d  f o r  

f u n c t i o n  ( 1 )  w i t h  E = 0 i n  Figure  1  f o r  p = p ,  f o r  0 > p  and f o r  a  

very  l a r g e  va lue  f o r  p .  I n  each c a s e ,  i f  w i O ,  t hen  s ( w )  is  g iven  

by ( 2 ) ;  i . e . ,  t h e  f u n c t i o n a l  va lue  i s  p r o p o r t i o n a l  t o  t h e  wors t  

component of w i f  E = 0 .  I f  p = p, t h e  same i s  t r u e  f o r  w 1 0  a s  w e l l .  

~ f  w > 0 ,  t hen  f o r  l a r g e  enough p ( s e e  t h e  c a s e  p>>p)  s ( w )  i s  

g iven  by 1 wi. I n  t h e  g e n e r a l  c a s e ,  when o > p ,  t h e  s i t u a t i o n  
i s  shown i n  t h e  middle of  Figure  1.  When w 1 0  and i t s  components 

a r e  c l o s e  enough t o  each o t h e r  ( t h a t  i s ,  ( p - l ) w l  2 w2 and 

(p-1 ) w 2  2 w l ,  f o r  p  = 21, then s ( w )  is  g iven  by 1 wi. Otherwise ,  
formula ( 2 )  a p p l i e s  again .  

For E 10 ,  s c a l a r i z i n g  f u n c t i o n  ( 1 )  gua ran tees  o n l y  weak 

P a r e t o  o p t i m a l i t y  f o r  i t s  minimizer.  However, a s  w i l l  be shown 

i n  Lemma 1 below, i f  E > 3 ,  then P a r e t o  o p t i m a l i t y  w i l l  be guar-  

anteed.  



Figure 1. Level sets for penalty scalarizing functions (1) and 
(2) for E = 0. 

The problem of minimizing ~ ( ~ - q )  defined by (1) over the 

attainable points q, can be formulated as a linear programming - - 
problem. In particular, if we again denote w = q - q = Cx - q 
and introduce an auxiliary decision variable y, this minimization 

problem can be stated as the following problem (P): 

find y, w, and x to 

(P. 1 ) min y - ;w 



where E and D are appropriate vectors and matrices. Furtner- 

more, D ( 0, and if w = Q and y = 9 are optimal for (PI, then 
S = 9 - EQ is the minimum value attained for the penalty function 

s. The detailed formulation of (PI is given in the Appendix. 

The optimal solution for (P) will be characterized by the fol- 

lowing result: 

LEMMA 1 .  Let  ( y , w , x )  = (ij,13,2) be an op t ima l  s o l u t i o n  and 

6, u, and n t h e  corresponding  dual  v e c t o r s  r e l a t e d  t o  c o n s t r a i n t s  

( P . Z ) ,  ( P . 3 ) ,  and ( P . 0 ,  r e s p e c t i v e l y .  Denote b y  $ .I Ci? t h e  

c ~ r r e s p o n d i n g  o b j e c t i v e  v e c t o r ,  and by 6 = y^ - ED t h z  op t ima l  

va lue  for  t h e  pena l t y  f u n c t i o n ,  and by Q t h e  a t t a i n a b l e  s e t  o f  

o b j e c t i v e  v e c t o r s  q .  Then 4 € Q n ~ ~ ( 7 )  and t h e  hgperpiane  

H = {ql u(G-7)  = 0 )  separates Q and ~ ~ ( 7 ) .  Furthermo:-e, u 2 E 
and q = j maximizes  ~q over  q € Q; i . z . ,  4 i s P a r e t o  op t ima l  

.',: E > 0, and $ i s  weakly Pareto opt imal  i f  E 2 0 .  

Remark. As illustrated in Figure 2 ,  the hyperplane H 

approximates thePareto set in the neighborhood of 4. Thus the 

dual vector u may be viewed as a vector of trade-off coefficients 

which tells roughly how much we have to give up in one objective 

in order to gain (a given small amount) in another objective. As 

seen in Figure 2, the assumptions of Leima 1 might be satisfied 

provided € 2 0  is sufficiently small. 

Proo j. Clearly 4 is attainable (i.e., 4 E Q) and by def ini- 

tion 6 S ( q ) .  In order to prove the separability assertion 3 
we show that (i) 6 minimizes uq over Sg(q) and that (ii) 4 
maximizes uq over Q. Noting that q = w + q = Cx, these two 

problems may be stated as follows: 

minimize uw + u q  
St. 

P (i) 

and 

maximize uCx 

st. 

Ax = b 

x,o 



F i g u r e  2 .  An i l l u s t r a t i o n  o f  Lemma 1 .  

L e t t i n g  t h e  d u a l  m u l t i p l i e r s  f o r  t h e  f i r s t  c o n s t r a i n t  o f  P ( i )  

be  e q u a l  t o  -1 ,  w e  c an  r e a d i l y  check ,  ba sed  o n  t h e  o p t i m a l i t y  

c o n d i t i o n s  f o r  ( P )  , t h a t  9 ,  Q ,  2 ,  6 ,  u, and  - 3  s a t i s f y  t h e  

o p t i m a l i t y  c o n d i t i o n s  f o r  P ( i )  and  P ( i i ) .  Based on d u a l  f e a s i -  

b i l i t y ,  we have u = E - 6 0  and  6 2 0.  Because  D ( 0 ,  we have  

u L E .  Thus. i f  E > 0 ( E  ) 0 ) .  t h e n  $ is  (weakly)  P a r e t o  o p t i m a l . / /  

3. EMPLOYING INFORMATIOiJ ON PREFERENCES 

While a p p l y i n g  t h e  r e f e r e n c e  p o i n t  o p t i m i z a t i o n  a  sequence  
k  i q k )  o f  r e f e r e n c e  p o i n t s  and t h e  c o r r e s p o n d i n g  s equence  {$  f 

P a r e t o p o i n t s  w i l l  be g e n e r a t e d .  Usua l l y  t h e s e  s equences  r e v e a l  

p a r t i a l l y  t h e  d e c i s i o n  makers  p r e f e r e n c e s .  Fo r  i n s t a n c e ,  a f t e r  
k- 1 o b t a i n i n g  a  P a r e t o  p o i n t  , a  new r e f e r e n c e  p o i n t  2 may be  

chosen  s o  t h a t  ck i s  p r e f e r r e d  t o  Q~-'. I n  t h e  f o l l o w i n g  we 

i n t e n d  t o  e x p l o i t  such  i n f o r m a t i o n .  I n  such  a  p rocedu re  w e  

s h a l l  n o t  n e c e s s a r i l y  g e n e r a t e  t h e  n e a r e s t  P a r e t o  p o i n t  t o  a  

r e f e r e n c e  p o i n t .  W e  w i l l  restrict t h e  P a r e t o  p o i n t s  b e i n g  

g e n e r a t e d  t o  t h o s e  which a r e  c o n s i s t e n t  ( i n  t h e  s e n s e  d e f i n e d  

below) w i t h  t h e  i n f o r m a t i o n  g a i n e d  from t h e  i n t e r a c t i v e  p r o c e s s .  

I n i t i a l l y ,  we w i l l  assume a  l i n e a r  u t i l i t y  f u n c t i o n  h e q ,  

where A *  is a  v e c t o r  such  t h a t  q  i s  p r e f e r r e d  t o  q '  i f  and  o n l y i f  

i * q  > A*¶',  f o r  a l l  q and  q'. The v e c t o r  A* i s  n o t  known ex- 

p l i c i t l y .  However, because  e a c h  o b j e c t i v e  q i  is t o  be  maximized,  



i 
w e  have A* 2 0 ;  i . e . ,  X*di - > 0 f o r  each u n i t  v e c t o r  d  . Fur the r -  

more, o t h e r  i n fo rma t ion  concerning X may be o b t a i n e d  d u r i n g  t h e  

i n t e r a c t i v e  procedure.  A s  above,  i f  t h e  d e c i s i o n  maker 
-k -k *k-1 p r e f e r s  y  t o  pk-', t hen ,  deno t ing  d  = y - y , w e  have Xd > 0 .  

I n  g e n e r a l  l e t  d i ,  f o r  i = 1 , 2 , .  . . , Ik, be  t h e  v e c t o r s  of  pre-  

f e r r e d  d t r e c t i o n s  ( i n c l u d i n g  t h e  u n i t  v e c t o r s )  be ing  r evea led  

by i t e r a t i o n  k  of t h e  procedure .  T h i s  i m p l i e s  t h a t  

A* E ~k z C X I X ~ ~  2 o , f o r  i = 1 , 2 , . - . ,  I k )  , ( 3 )  

. 
i .e. ,  X i s  i n  t h e  d u a l  cone of  t h e  cone spanned by t h e  v e c t o r s  

di. (Ac tua l ly ,  A *  is  i n  t h e  i n t e r i o r  of A k . )  See  a l s o  Z ion t s  and 

Wal lenius  (1976) .  

k  Let  Q be  t h e  s e t  of  P a r e t o  p o i n t s  which a r e  c c n s i s t e n t  

w i t h  r e s p e c t  t o  hk i n  t h e  s e n s e  t h a t  4 E Qk i f  and o n l y  i f  

t h e r e  is X E Ak such t h a t  XQ 2 Xq, f o r  a l l  a t t a i n a b l e  q  E Q.  

W e  s h a l l  now d i s c u s s  an approach t o  p rov ide  a P a r e t o  p o i n t  
k  4 E Q r e l a t e d  t o  a  r e f e r e n c e  p o i n t  q. For  t h i s  purpose  w e  

rewrite (P.3) a s  

where t h e  s c a l a r s  zi a r e  nonnegat ive  d e c i s i o n  v a r i a b l e s .  T h i s  

r e v i s e d  problem w i l l  be r e f e r r e d  t o  a s  problem ( P I .  An i n t e r -  

p r e t a t i o n  of t h i s  problem is  t o  f i n d  t h e  n e a r e s t ? a r e t o  p o i n t  

(among a l l p a r e t o  p o i n t s )  t o  t h e  cone,  which i s  spanned by t h e  
i v e c t o r s  d  of p r e f e r r e d  d i r e c t i o n s  and whose v e r t e x  i s  a t  t h e  

r e f e r e n c e  p o i n t  q. Another c h a r a c t e r i z a t i o n  o f  t h e  r e v i s e d  

problem (F) is g iven  a s  fo l lows :  

LEMMA 2. LJ! E > 0, jl = S i s  o p z i m c l  f o r  t h e  r e v i s e d  prgb lem 
- (F), Lznd 4 = q + 3, t h e n  4 E Q'; i . e . ,  4 i e  1 P a r e t o  poinr; w h t c h  

k ie c o n s i s t e n t  w i t h  r e s p e c t  t o  t h e  i n f c J r m a t i o n  o b t a i n e d  i n  A . 
P r o o f .  Let  (y ,w,x ,z i )  = (9,Q,11,2i) be op t ima l  f o r  (?TI and,  

a s  b e f o r e ,  6 ,  v ,  and n t h e  op t ima l  d u a l  s o l u t i o n .  Def ine  
= - 
q = q + 1 diz. Then t h e  above a l s o  s o l v e s  (P) w i t h  t h e  r e f e r e n c e  

i 

p o i n t  t. Thus, by Lemma 1 ,  u ,E  > 0 and $ maximizes uq ove r  



a t t a i n a b l e  p o i n t s  q .  By t h e  o p t i m a l i t y  c o n d i t i o n  f o r  z . ,  we have 

pdi - , 0 ,  f o r  a l l  i. Thus p E h k ,  and t h e r e f o r e ,  4 is  a l p a r e t o  
k  

p o i n t  c o n s i s t e n t  wi th  h . I /  

I n  p r a c t i c e ,  t h e  d e c i s i o n  makers u t i l i t y  f u n c t i o n  is u s u a l l y  

not  l i n e a r .  However, i n  t h e  neighborhood of h i s  most d e s i r e d  
s o l u t i o n  t h e  u t i l i t y  f u n c t i o n  has u s u a l l y  a  s a t i s f a c t o r y  l i n e a r  

approximation and,  t h e r e f o r e ,  t h e  above procedure  may s t i l l  be 

u s e f u l .  Because of n o n l i n e a r i t y ,  t h e  v e c t o r s  di  of p r e f e r r e d  

d i r e c t i o n s  may appear c o n f l i c t i n g f o r  a  l i n e a r  u t i l i t y  f u n c t i o n ;  

i . e . ,  t h e  s e t  hk reduces  t o  a  s i n g l e  p o i n t  ( t h e  o r i g i n )  and t h e  

v e c t o r s  di span t h e  whole space.  Of course ,  t h i s  may occur  

a l s o  f o r  reasons  o t h e r  than t h e  n o n l i n e a r i t y .  For i n s t a n c e ,  

l a c k  of t r a i n i n g  i n  us ing t h e  approach may e a s i l y  r e s u l t  i n  

c o n f l i c t i n g  s t a t emen t s  on p re fe rences .  In  e i t h e r  c a s e ,  such 

c o n f l i c t  r e s u l t s  i n  an unbounded op t ima l  s o l u t i o n  f o r  t h e  r e -  

v i sed  problem ( F ) .  In  such a  c a s e ,  we sugges t  t h a t  t h e  o l d e s t  

v e c t o r s  di ( t h e  ones gene ra ted  f i r s t )  w i l l  be d e l e t e d  a s  long 

a s  boundedness f o r  (F) i s  obta ined.  Th i s  approach seems appea l ing  

i n  account ing both f o r  t h e  l e a r n i n g  p rocess  of  t h e  u s e r  ( d e c i s i o n  

maker) and f o r  h i s  p o s s i b l e  non l inea r  u t i l i t y  f u n c t i o n .  

4.  COMPUTER IMPLEMENTATION 

A package of SESAME/DATAMAT programs has  been prepared f o r  

automating t h e  use of t h e  m u l t i c r i t e r i a  op t imiza t ion  technique 

u t i l i z i n g  use r - spec i f i ed  r e f e r e n c e  p o i n t s .  The s c a l a r i z i n g f u n c -  

t i o n  d e f i n e d  i n  ( 1 )  was adopted f o r  t h i s  implementation.  A model 

r e v i s i o n  i n t o  t h e  form of (P)  is  c a r r i e d  o u t  and a  n e u t r a L  8 0 Z u t i o n  

corresponding t o  a  r e f e r e n c e  p o i n t  q = O  i s  computed and recorded 

f i r s t .  Each time a  new r e f e r e n c e  p o i n t  q i s  g iven ,  t h e  opt imal  
s o l u t i o n  f o r  (P )  i s  found s t a r t i n g  wi th  t h e  n e u t r a l  s o l u t i o n  and 

us ing parametr ic  programming, t h a t  i s  pa ramet r i z ing  t h e  r e f e r e n c e  

p o i n t  a s  4 q  wi th  4 i n c r e a s i n g  from 0 t o  1 .  Some o p t i o n a l  a l g o r i t h -  
mic  d e v i s e s  have been implemented t o  f o r c e  t h e  sequence of P a r e t o  
p o i n t s  t o  converge. A s  i t  w i l l  be c l e a r  l a t e r ,  such a  procedure 

does  no t  gua ran tee  an opt imal  s o l u t i o n  (under any u t i l i t y  f u n c t i o n )  



but  o f t e n  it is expected t o  be u s e f u l  f o r  g e n e r a t i n g  i n t e r e s t i n g  

Pare to  po in t s .  There is no e x p l i c i t  l i m i t  t o  t h e  s i z e  of  model 

which can be  handled except  t h a t  t h e  number of o b j e c t i v e s  cannot 

exceed 99. 

The package of programs is  r e f e r r e d  t o  a s  t h e  MOCRIT 

Package, o r  simply MOCRIT. The s t andard  package c o n s i s t s  of 

t h r e e  f i l e s :  a  SESAME RUN f i l e ,  a  DATIU.nT program f i l e ,  and a  

dummy d a t a  f i l e  which e x i s t s  merely f o r  t e c h n i c a l  reasons .  

There a r e  e s s e n t i a l l y  four  programs i n  I4OCRIT: ( 1 )  REVISION, 

which re fo rmula tes  t h e  model i n t o  t h e  form of (P)  and c r e a t e s  

t h e  n e u t r a l  s o l u t i o n ,  ( 2 )  START, which i n i t i a l i z e s  t h e  system 

f o r  a  i n t e r a c t i v e  s e s s i o n ,  (3 )  SESSION, which u t i l i z e s  t h e  

s t andard  technique of r e fe rence  p o i n t  op t imiza t ion ,  and ( 4 )  

CONVERGE, which f o r c e s  t h e  sequence o f p a r e t o  p o i n t s  t o  converge 

The use of REVISION and SESSION is  mandatory. START is a  con- 

venience t o  obv ia te  t h e  need t o  e n t e r  va r ious  SESAME parameters  

f o r  each sess ion .  CONVERGE i s  an op t ion :  it cannot  be used 

meaningfully be fo re  SESSION has  been executed a t  l e a s t  once. 

CONVERGE i s  a c t u a l l y  a  prologue t o  SESSION which it a c t i v a t e s  

a s  a  t e rmina l  s t e p .  

These "programs" a r e  r e a l l y  RUN decks c o n s i s t i n g  of  appro- 

p r i a t e  SESAME commands. There a r e  corresponding decks (DATAMAT 

programs) which a r e  executed au tomat ica l ly  by t h e  RUN decks.  

A l l  f o u r  t.lOCRIT programs t e rmina te  by r e t u r n i n g  t o  t h e  SESAME 

environment i n  manual mode. Regular SESAME commands and pro- 

cedures  can be  i n t e r s p e r s e d  manually from t h e  t e rmina l  a t  such 

t imes.  (For d e t a i l s ,  s e e  Orchard-Hays 1977).  

4 .1  The REVISION Program 

The purpose of t h l s  program is  t o  r e v i s e  an e x i s t i n g  l i n e a r  

programming model con ta in ing  two o r  more f u n c t i o n a l  rows i n t o  

a  form s u i t a b l e  f o r  m u l t i o b j e c t i v e  op t imiza t ion .  The e x i s t i n g  

model f i l e  must have been p rev ious ly  c r e a t e d  wi th  DATAMAT ( o r  

CONVERT) i n  s t andard  fashion.  Th i s  f i l e  is n o t  a l t e r e d :  a  new 

f i l e  con ta in ing  t h e  r e v i s e d  model i s  c r e a t e d  i n s t e a d .  



A f t e r  c r e a t i n g  t h e  new model, REVISION f u r t h e r  s o l v e s  t h e  

model w i t h  a  r e f e r e n c e  p o i n t  of  a l l  z e r o ,  and o b t a i n s  the reby  

t h e  n e u t r a l  s o l u t i o n .  Th i s  i n i t i a l  s o l u t i o n  must be ob ta ined  

on ly  once and t h e  op t ima l  b a s i s  i s  recorded on a  d i s k  f i l e  f o r  

f u r t h e r  use .  

REVISION a l s o  c r e a t e s  a n o t h e r  f i l e  c o n t a i n i n g  two t a b l e s .  

One is used t o  r eco rd  s e l e c t e d  r e s u l t s  form t h e  n e u t r a l  s o l u t i o n .  

The o t h e r  i s  used by t h e  START program t o  set t h e  v a r i o u s  SESAME 

parameters  f o r  t h e  r e v i s e d  model, i . e . ,  model name, model f i l e  

name, RHS name, name of RANGE set i f  any ,  and name of BOUND s e t .  

Thus i t  i s  unnecessary  t o  set t h e s e  f o r  subsequent  s e s s i o n s .  

The r e f e r e n c e  p o i n t  q a s  w e l l  a s  t h e  model parameters  depen- 

d e n t  on  t h e  c o e f f i c i e n t s  p and E a r e  s p e c i f i e d  i n i t i a l l y  i n  t h e  

r e v i s e d  model a s  symbol ic  names. When t h e i r  v a l u e s  a r e  decided 

on,  t hey  a r e  s p e c i f i e d  numer i ca l ly  a t  run  time wi thou t  g e n e r a t i n g  

t h e  whole model ove r  aga in .  For  i n s t a n c e ,  t o  o b t a i n  t h e  n e u t r a l  

s o l u t i o n ,  REVISION r e q u i r e s  c o e f f i c i e n t s  p and E .  T h e i r  v a l u e s  

a r e  ob ta ined  v i a  a n  i n t e r a c t i v e  response .  I f  i t  i s  subsequen t ly  

changed (see t h e  SESSION program) t h e  n e u t r a l  s o l u t i o n  w i l l ,  i n  

g e n e r a l ,  no longer  be f e a s i b l e .  T h i s  may n o t  be done normally 

b u t ,  i f  necessa ry ,  a  new n e u t r a l  s o l u t i o n  can  be o b t a i n e d  a s  shown 

i n  Orchard-Hays ( 1  979) . 
A u s e r - s p e c i f i e d  number of  columns w i l l  be r e se rved  f o r  t h e  

p r e f e r r e d  d i r e c t i o n s  di  ; i . e . ,  f o r  t h e  d e c i s i o n  v a r i a b l e s  zi .  

Also t h e  di  v e c t o r s  a r e  s p e c i f i e d  i n i t i a l l y  i n  t h e  r e v i s e d  model 

a s  symbolic names. The i r  v a l u e s  a r e  i n i t i a l l y  s e t  s t r i c t l y  pos i -  

t i v e  s o  t h a t  t h e  zi v a r i a b l e s  d o  n o t  appea r  a t  a  p o s i t i v e  l e v e l  

i n  an op t ima l  s o l u t i o n  of  (P). Afterwards ,  t h e s e  p o s i t i v e  v e c t o r s  

w i l l  be ( c y c l i c a l l y )  r ep laced  by p r e f e r r e d  d i r e c t i o n s  whenever 

t h e y  a r e  gene ra t ed  i n  t h e  c o u r s e  of  t h e  i n t e r a c t i v e  p rocess .  



4.2 The START and SESSION Programs 

A f t e r  a model has been r e v i s e d  and t h e  n e u t r a l  s o l u t i o n  ob- 

t a i n e d  and recorded,  t h e  model i s  ready f o r  u s e  wi th  t h e  i n t e r -  

a c t i v e  m u l t i o b j e c t i v e  procedure.  Such use  is r e f e r r e d  t o  a s  a 

8 e s s i o n .  A s e s s i o n  is i n i t i a t e d  by execu t ing  t h e  START program. 

A l l  t h i s  does is d e f i n e  t h e  necessa ry  SESAME parameters  unique t o  

t h e  model. 

A f t e r  execu t ing  START b u t  b e f o r e  execu t ing  SESSION, t h e  r e -  

f e r e n c e  p o i n t  must be de f ined .  T h i s  i s  done w i t h  t h e  SESAME pro- 

cedure  VALUES which is  q u i t e  f l e x i b l e  wi th  r e s p e c t  t o  formats  and 

f u n c t i o n s .  I f  necessa ry ,  a l s o  t h e  v a l u e  of t h e  c o e f f i c i e n t s  p and 

E may be changed a t  t h i s  po in t .  A f t e r  t h e  r e f e r e n c e  p o i n t  has  

been de f ined ,  execut ion of SESSION r e s u l t s  i n  t h e  fo l lowing  se- 

quence of even t s .  

Any e x i s t i n g  s o l u t i o n  f i l e  is e rased .  

The problem set -up procedure  is c a l l e d  and t h e  e x i s t i n g  

r e f e r e n c e  p o i n t  i s  incorpora ted  f o r  use  i n  pa ramet r i c  

programming. 

The b a s i s  o f  t h e  n e u t r a l  s o l u t i o n  is r e c a l l e d .  

The simplex procedure  i s  c a l l e d .  A f t e r  a b a s i s  inve r -  

s i o n  and check of t h e  s o l u t i o n ,  t h e  n e u t r a l  s o l u t i o n  

is  recovered.  

The pa ramet r i c  programming procedure  i s  c a l l e d  t o  para- 

m e t r i z e  t h e  r e f e r e n c e  p o i n t  €): over  t h e  parameter 

v a l u e s  13 E [ 0 , 1 ] .  

A SESAME procedure  is  c a l l e d  t o  r ecord  s e l e c t e d  por- 

t i o n s  of t h e  s o l u t i o n .  

DATAMAT is c a l l e d  t o  execu te  a program t o  d i s p l a y  

r e s u l t s  a t  t h e  t e rmina l  (and t o  p r i n t  o f f - l i n e )  and 

a l s o  t o  r ecord  necessary  informat ion f o r  p o s s i b l e  

subsequent u s e  by CONVERGE. 

The c o n t r o l  is r e t u r n e d  t o  SESAME i n  manual mode. 



I f  i t  is d e s i r e d  t o  t r y  a n o t h e r  r e f e r e n c e  p o i n t ,  we c a l l  

t h e  p r o c e d u r e  VALUES a g a i n  and t h e n  r e r u n  SESSION. T h i s  may b e  

d o n e  r e p e a t e d l y .  

I f  i t  is  d e s i r e d  t o  g e t  a p r i n t - o u t  o f  t h e  f u l l  s o l u t i o n  

( o r  s e l e c t e d  p o r t i o n s )  i n  s t a n d a r d  LP s o l u t i o n  f o r m a t  a f t e r  re- 
t u r n  f rom SESSION, it c a n  b e  o b t a i n e d  u s i n g  t h e  SESAME p r o c e d u r e s  

i n  t h e  u s u a l  way ( s e e o r c h a r d - H a y s  1 9 7 7 ) .  An example o f  p a r t  o f  

t h e  r e s u l t s  d i s p l a y e d  a t  t h e  t e r m i n a l  i s  g i v e n  i n  F i g u r e  3. Each 

row c a r r y i n g  u s e r - d e f i n e d  l a b e l s  F1 t o  I 1 0  r e f e r s  t o  a n  o b j e c t i v e .  

The column REFER.PT d e f i n e s  t h e  r e f e r e n c e  p o i n t  q, column SUB.FN 

y i e l d s  t h e  P a r e t o  p o i n t  4 o b t a i n e d ,  and  column W is j u s t  t h e  

d i f f e r e n c e  4 - q o f  t h e  above  two columns.  Column DUAL is t h e  

( n e g a t i v e  o f  t h e )  v e c t o r  u o f  t r a d e  o f f  c o e f f i c i e n t s  d e f i n e d  

i n  Lemma 1 .  

REFER. PT SUB. FN W DUAL 

F i g u r e  3. An example o f  r e s u l t s  d i s p l a y e d  i n  a s e s s i o n  
r e f e r e n c e  p o i n t  is q 5  o f  S e c t i o n  5 . 2 ) .  

(The 



4 . 3  The COVERGE Program 

The CONVERGE program may be used i n s t e a d  of S E S S I O N  a f t e r  

t h e  l a t t e r  has been executed a t  l e a s t  once. The VALUES procedure 

must be executed f i r s t ,  a s  usua l ,  t o  d e f i n e  a new re fe rence  

po in t .  However, t h i s  r e fe rence  p o i n t ,  denoted by G, is  no t  

a c t u a l l y  used. Let ak be t h e  l a s t  Pa re to  p o i n t  obta ined (by 

e i t h e r  S E S S I O N  o r  CONVERGE). A new re fe rence  p o i n t  is computed 

from i n  two s t a g e s  a s  fol lows.  F i r s t  is pro jec ted  on t h e  

hyperplane H def ined i n  Lemma 1 ,  pass ing  through qk and or thogonal  

t o  t h e  dual  vec to r  u. This  p r o j e c t i o n  q* is  given by 

The new r e f e r e n c e  p o i n t  F ~ + '  is then chosen from t h e  l i n e  seg- 

ment [q* ,ak l ;  i - e . ,  a po in t  qk+' = q* + 8($k-q*) is chosen f o r  

some 0 E [ 0 , 1 ] .  The following op t ions  have been considered: 

(i) choose 0 = 0 ( i . e . ,  choose qk+' a s  t h e  p r o j e c t i o n  q*) , o r  
k k (ii) choose t h e  s m a l l e s t  0 E [O, l ]  s o  t h a t  max(ck+'-pi) 5 y , 

i 
where yk is a use r - spec i f i ed  t o l e r a n c e .  The value f o r  y may e i t h e r  

be e n t e r e d  d i r e c t l y  o r  i t  may be s p e c i f i e d  a s  a percentage of 

t h e  "d i s tance"  between t h e  previous  re fe rence  p o i n t  qk and t h e  
k -k k 

Pareto p o i n t  ak; i . e . ,  yk = 8 max (qi-qi) , where ak i s  a coef f i -  
i 

c i e n t  e n t e r e d  by t h e  use r .  Th i s  l a t t e r  op t ion  may be used 

meaningfully only i f  t h e  re fe rence  p o i n t  i s  not  a P a r e t o  

i n f e r i o r  po in t ,  f o r  ins tance ,  a p o i n t  ob ta ined  by CONVERGE i n  

t h e  preceeding sess ion .  For an i l l u s t r a t i o n  of t h e  modiTied 

re fe rence  p o i n t ,  s e e  Figure  4 .  



Figure 4. Modification of the reference point in CONVERGE. 

Note that 

k Thus, if yk 2 0 and the sequence {y 1 converges to zero, then the 
sequence of optimal values for (P) converges to zero. 

,?ernark. A limit point of {fjkl is not necessarily a solution 

to the multicriteria optimization problem, because the convergence 

is mechanically forced without taking the decision maker's 

preferences properly into account. The only purpose of the 

CONVERGENCE routine is to provide some algorithmic help to con- 

verge to a, hopefully, interesting Pareto point. 

5 .  COMPUTATIONAL EXPERIENCE 

For testing purposes we used a ten period dynamic linear 

programming model developed for studying long-range development 

alternatives of forestry and forest based industries in Finland 

(Kallio et al. 1978). This model comprises two subsystems, 



the forestry and the industrial subsystem, which are linked to 

each other through raw wood supply. The forestry submodel 

describes the development of the volume of different types of 

wood and the age distribution of different types of trees in 

the forests within the nation. In the industrial submodel 

various production activities, such as saw mill, panels pro- 

duction, pulp and paper mills, as well as further processing 

of primary wood products, are considered. For a single product, 

alternative technologies may be employed so that the production 

process is described by a small Leontief model with substitu- 

tion. Besides supply of raw wood and demand for wood products, 

production is restricted through labor availability, production 

capacity, and financial resources. All production activities 

are grouped into one financial unit and the investments are 

made within the financial resources of this unit. Similarly, 

the forestry is considered as a single financial unit. 

A key issue between forestry and industry is the income 

distribution which is determined through raw Wood price. Conse- 

quently, we have chosen two criteria: (i) the profit of the wood 

processing industries, and (ii) the income of forestry from 

selling the raw wood to industry. These objectives are con- 

sidered separately for each time period of the model. Thus, 

the problem in consideration has 20 criteria altogether. 

Of course, both the average raw wood price and quantity 

of wood sold must be implicit in such a model. In order to 

handle this in a linear programming framework, we use inter- 

polation. We consider two exogeneously given wood prices for 

each type of raw wood and for each period. The quantities sold 

at each price are endogeneous and the average wood price results 

from the ratio of these quantities. The complete model after 

REVISION consists of 712 rows and 913 columns. 

We experiment first with different values for the penalty 

coefficient p .  Then, fixing p = p (the number of objectives) 

we generate a sequence {qk1 of reference points and compute the 
k 

corresponding sequence {G 1 of pareto points as solutions to (P). 
The influence of accumulated information on preferences will be 



experimented wi th  t h e r e a f t e r .  Experience wi th  CONVERGE w i l l  t hen  

be repor ted  b r i e f l y .  A l l  t h e s e  experiments have been c a r r i e d  ou t  

with an e a r l y  ve rs ion  of MOCRIT f o r  which E = 0. A sample of runs  

wi th  our c u r r e n t  ve r s ion  f o r  which E > 0 w i l l  be repor ted  f i n a l l y .  

5 . 1  Inf luence of t h e  Penal ty  C o e f f i c i e n t  

Using t h e  s c a l a r i z i n g  func t ion  ( 1 )  we experimented with  

d i f f e r e n t  va lues  of t h e  penal ty  c o e f f i c i e n t  o and with  d i f f e r e n t  

r e fe rence  p o i n t s  c. A s  pointed o u t  i n  Sect ion 2, un less  t h e  

re fe rence  p o i n t  is pare to  i n f e r i o r ,  t h e  Pare to  p o i n t  4 obtained 

a s  a s o l u t i o n  of (PI is independent of 0 ,  namely t h e  one cor re -  

sponding t o  t h e  max min c r i t e r i o n  of t h e  s c a l a r i z i n g ~ f u n c t i o n  ( 2 ) .  

On t h e  o t h e r  hand, i f  is Pareto  i n f e r i o r ,  then 4 i n  genera l  

depends on 0 .  I n  t h e  extreme case  of 0 = p, we again  o b t a i n  t h e  

max min s o l u t i o n .  

Figure  5 .  Experiments wi th  d i f f e r e n t  penal ty  c o e f f i c i e n t s  and 
with  t h e  re fe rence  p o i n t  about 90 percent  of a pa re to  
po in t .  



In  an experiment i l l u s t r a t e d  i n  F igure  5  an a t t a i n a b l e  r e -  

f e r e n c e  p o i n t  : has  been chosen and t h e  v a l u e s  2 0 ( = p ) ,  25, 50 and 

100 have been app l i ed  t o  0. A s  : now i s  P a r e t o  i n f e r i o r  t h e  P a r e t o  

t r a j e c t o r i e s  ob ta ined  a r e  dependant on 0. For o = p, a  c o n s t a n t  

d e v i a t i o n  9.  = zi- G i =  0.4 i s  ob ta ined  f o r  each o b j e c t i v e  i. When 

o i n c r e a s e s  t h e  minimum guaranteed f o r  each wi dec reases .  Simul- 

t aneous ly  a s  0 i n c r e a s e s ,  t h e  behavior  of t h e  P a r e t o - t r a g e c t o r i e s  

6 g e t s  worse i n  t h a t  l a r g e  s p i k e s  appear  i n  t h e s e  t r a j e c t o r i e s .  

I n  t h i s  example a c t u a l l y  i s  about  90 pe rcen t  of a  Pare to-  

s o l u t i o n .  When a  ( P a r e t o - i n f e r i o r )  r e f e r e n c e  p o i n t  i s  moved f u r -  

t h e r  from t h e  Pa reo t - se t  accord ing  t o  our  exper i ence ,  t h e  behavior  

o f  t h e  P a r e t o - t r a j e c t o r i e s  g e t  more s e n s i t i v e  t o  t h e  va lue  o f  0 ;  

i . e . ,  s p i k e s  appear  a l r e a d y  wi th  va lues  of o r e l a t i v e l y  c l o s e  t o  

p,  and f o r  a g iven  p > p ,  t h e  s p i k e s  grow worse when q moves f u r t h e r  

from t h e  pa re to - se t .  

5.2 Experiments wi th  a  Sample o f  Reference P o i n t s  

For f u r t h e r  tests w e  set o = p, genera ted  a  sequence of n i n e  

-k r e f e r e n c e  p o i n t s  q , k  = 0 , 1 , , . . ,  8 ,  and t h e  corresponding P a r e t o  

s o l u t i o n s .  The r e s u l t s  have been i l l u s t r a t e d  i n  F igures  6 and 7 ,  

f o r  3, k  = 3,U,. . . , 8 .  The cont inuous  t r a j e c t o r i e s  r e f e r  t o  t h e  

r e f e r e n c e  p o i n t ,  and those  drawn i n  broken l i n e s  r e f e r  t o  t h e  Par-  

e t o  p o i n t .  A s  an  o v e r a l l  obse rva t ion  w e  may conclude,  t h a t  t h e  

t r a j e c t o r y  of t h e  p a r e t o  s o l u t i o n  t ends  t o  be  t h e  r e f e r e n c e  t r a -  

j e c t o r y  s h i f t e d  up o r  down. (See a l s o  F i g u r e  5  f o r  o ~ 2 0 . )  However, 

t h i s  i s  n o t  always t h e  case .  I n  F igure  6 ( a )  t h e  Pa re to  t r a j e c t o r y  

h a s a v e r y  l a r g e  sp ike .  Such u n d e s i r a b l e  unsmoothness may be due 

t o  a  m u l t i p l i c i t y  of opt imal  s o l u t i o n  which a r e  ve ry  d i f f e r e n t  

from each o t h e r .  I n  our  dynamic c a s e ,  f o r  i n s t a n c e ,  t h e  f i r s t  



Figure 6 A sample of sessions 

periods may totally determine the optimal objective function valne 

for (P) and the multiple optimal solutions result from the variety 

of alternatives left for the later periods. 

Next, the influence of the accumulated information on pre- 

f erences was experimented. Again, let q^k be the Pareto-traeectory 
-k corresponding to the reference trajectory q , k = 0,1,...,8. For 

the purpose of our numerical tests we assume that the differences 

dk = $ - nk-1 q reveal the decision makers preferences in a way that 

k .  k d 1s a preferred direction, for k =  1,2,...,8. All vedtors d , 
for i 2 k, will be made available when applying the reference point 
-k 
q in the revised problem (PI. Thus, all information gained on 

preferences is being used. ThePareto points resulting as optimal 
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solutions for (P) have been illustrated in dotted lines in Figures 

6 and 7. For k = 1,2, and 3, the additional information did not 

have any influence on the Pareto point; i.e., the same solutions 

k 4 were obtained as before. However, thereafter a significant 

change was observed in most cases, and in addition, the obtained 

revised Pareto wint seems more appealing than the one obtained from 

problem (P) (see Figures 6 (b) , 7 (b), and 7 (c) , for instance). On 

the other hand, we may observe that the revised trajectories us- 

aally resemble the shape of the reference trajectory to a ieseer 

degree than do the trajectories obtained form problem (P). These 

observations suggest that perhaps in practice both Pareto traject- 

ories ought to be computed in each session. 

5.3 Forcing Convergence 

In Section 4 we developed procedures for modifying the users 

suggested sequence of reference points in such a way that the ?a=- 

eto points obtained are forced to converge. One of these procedures 
k 

was controlled by a sequence ( 8  of percentages, and another by 

k 
a sequence {y 1 of tolerances. Both of them were tested using the 

4 8  same sequence {q iIO of reference points of section 5.2 . 
First we discuss the case of using the 0-factors. After ob- 

hO taining the initial solution q , the CONVERGE program was applied 
-k for each suggestion q . The results obtained when a constant value 

gk = - 5  (for all k) was used, indicate that practically no change in 

ek occurs after k 2 2 . The same phenomenon was discovered for 

gk = .9 (for all k) . Thus the convergence proved to be extremely 

fast. An explanation for this phenomenon may be found from the 

fact that the hyperplane (on which the reference points are pro- 

jected) is close to the Pareto set in the neighborhood of the last 



Pareto point obtained. This in turn is likely to result in a se- 

quence of objective function values for (PI, which converges fast 

to zero. 

k 
For the other procedure, we chose the bounds yk as yk = 10/2 . 

The converge appeared to be now reasonably fast, but not too fast. 

Thus, the user has a fair chance to control the sequence of Par- 

eto points being generated. 

5.4 A sample of runs with E > 0 .  

All the previous runs were made with the parameter vector 

E = O .  As indicated by Lemma 1, this may not guarantee Pareto- 

optimality for the trajectories G ~ .  However, even then, a suffi- 

cient but not a necessary condition for Pareto-optimalit7 is that 

the dual vector u is strictly positive. This condition in fact 

was satisfied in many cases of the previous runs, and it is likely 

that most other cases (which did not satisfy this sufficient con- 

dition) resulted in a Pareto optimal trajectory as well. In any 

event, more recently we have experimented also with our current 

version of MOCRIT to see whether the main qualitative results ob- 

tained in Section 5 .2  hold also when E > O  (i.e., when Pareto- 

optimality for the 4 trajectories is guaranteid). 
Figure 8 shows a sample of reference trajectories and the 

respective Pareto trajectories when p = p  each component of E is 

set to 1 o - ~ .  Similarly as observed in Section 5.2, the Pareto 

trajectories tend now to result from a shift in the reference tra- 

jectories. More importantly, sharp spikes, which occasionally were 

obtained in Section 5.2 (see Figure 6 (a), for instance), did not 

result in our four examples of Figure 8 nor in other experiments 

which we did with E > 0. 
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Figure 8 A sample of sessions with E > O .  



Naturally, it would be desirable to repeat the experiments 

of Section 5.2 with E >O. However, these runs were made half a 

year earlier with a slightly different version of the model, and 

this version is no longer available. Nevertheless, the authors 

feel that no drastic new conclusions can be expected from further 

testing, and therefore,additional extensive and resource consuming 
experimenting has been neglected. 

6. SUMMARY AND CONCLUSIONS 

In this paper we have investigated the reference point ap- 

proach for linear multiobjective optimization (Wierzbicki 1979a, 

b). In our opinion, the basic concept proves to be very useful, 

in particular, because of its simplicity. The method does not 

necessarily aim at finding an optimum under any utility function, 

but rather it is used to generate a sequence of interesting 

Pareto points. In order to guarantee usefulness of the infor- 

mation being generated, we let the decision maker interfere with 

the model system. In the course of such an interactive process 

he suggests reference objectives which normally reflect his de- 

sired levels of various objectives. The optimization system is 

used to find, in some sense, the nearest Pareto point to each 

reference objective. 

As a measure of distance between the reference points and 

the Pareto set we use the penalty scalarizing function (1) which 

in our experience has very favorable properties: first. the prob- 

lem of finding the nearest Pareto point to a reference point amounts 

to linear programming problem, and second, it allows the user a 

reasonable control over the sequence of Pareto points generated, 

given that the penalty coefficient p is close to the number of 

objectives p and a small E > 0 is chosen. To clarify the latter 

point we have observed that, if p>>p and E = 0, the scalarizing 

function has an undesirable property of favoring arbitrarily one 

or a few components of the objective vector. In such a case, the 

objective levels at the Pareto point and at the reference objective 

may be close to each other in all except one component where the 

Pareto point is far superior to the reference objective. In dyn- 

amic cases this phenomenon usually causes spikes in trajectories 

of the objectives (see Figure 5 for large values of the penalty 

coefficient p). However, this phenomenon has not been observed 

if p a p  and E > O .  



We have expanded the reference point approach for the adap- 

tation of information which accumulates on the decision maker's 

preferences in the course of the interactive process. In this 

case we exclude from consideration every Pareto point which is not 

optimal under any linear utility function consistent with the in- 

formation obtained so far. Thus the Pareto point being generated 

is the nearest one among the rest of the Pareto points. 

We have implemented the reference point approach using the 

interactive mathematical programming system, called SESAME 

(Orchard-Hays 1978). The package of programs consists of .essen- 

tially two parts: first, a DATAMAT program which reformulates a 

linear progrming model in the form (B) of reference point op- 
timization, and second, a routine to carry out an interactive it- 

eration (i.e., to insert a reference objective, and to compute 

and display the pareto point). The current implementation employs 

the scalarizing function (1) with the components of vector E being 

4.1 equal. The system is now capable of handling large practical 

multicriteria linear programs with up to 99 objectives and one or 

two thousand constraints. 

For computational experimentation we used a dynamic LP 

model of a forest sector with about 700 rows and 900 columns. 

There are two objectives defined for each of the ten time periods 

of the model, i.e., there are twenty objectives in total. We 

experimented first with different values of the penalty coeffi- 

cient p .  The results suggest that for p one should use a value 

which is equal to or slightly larger than p, the number of ob- 

jectives. Based on this observation, we set p = p = 2 0  for 

further numerical test rune. Samples of reference points have been 

tried out and the overall performance of the method has been found 

to be satisfactory. For E = O ,  however, we observed occasional unde- 

sirable unsmoothness in the computed trajectories of the two object- 

ives (see Figure 6(a)). This may be due to the fact that only weak 

Pareto optimality is guaranteed, for E = O  (see Lemma 1). Indeed, 

as discussed in Section 5.4, this problem seems to disappear when 

E > 0  (and pareto optimality is guaranteed). 

A general observation is that the Pareto trajectories tend to 

agree with the reference objectives shifted up or down. This prop- 

erty was found not to be valid when experimenting with the extension 



of employing cumulative information on preferences. However, 
after this information began to influence the solution the Pareto 

trajectories generally appeared more appealing than those obtained 

disregarding this information (see Figures 7 (b) and 7 (c) ) . 
A reader familiar with the goal programming approach might 

observe the similarity of the algorithm discuaaed in this paper, 

to goal progrming algorithma. In fact, the algorithm has been 

derived from the reference point approach to multiobjective opti- 

mization which is a generalization of goal programming: in par- 

ticular, the algorithm works as well for Pareto-dominated reference 
objective points which cause difficulties in typical goal program- 

ming. Moreover, the questions of eliminating weakly Pareto-optimal 

solutions and of employing cumulative information on users prefer- 

ences have not been considered in typical goal programming. 



APPENDIX 

Derivation of Problem (P) 

Denote by W E {wl-w+cx=~, Ax=br x,O} the feasible set for 

vector w. Then the reference point optimization problem, when 

the scalarizing function (1) is applied, is as follows: 

mint-mint0 min wi, 
w€W i 

miniz)z,-pwi-~w, tor all i, z 2 -1 wi - ewf 
w€w i 

where we have substituted y = z + EW. 
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tem, which are linked to each other through the wood supply. The forestry submodel de- 
scribes the development of thevolumeand age distribution of different tree species within 
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1 . INTRODUCTION 

As is the case with several natural resources, many regions 

of the world are now at the transition period from ample to scarce 

wood resources. Because the forest sector plays an important 

role in the economy of some countries, long-term policy analysis 

of the forest sector, i.e., forestry and forest industries, is 

becoming an important issue for these countries. 

We may single out two basic approaches for analyzing long- 

range development of the forest sector: simulation and optimi- 

zation. Simulation techniques (e.g., system dynamics) allow 

us to understand and to quantify basic relationships influencing 

the development of the forest sector (see Jegr et al. 1978, 

Randers 1976, Seppala et al. forthcoming). Hence, using a simu- 

lation technique we can evaluate the consequences of a specific 

policy. However, using only simulation it is difficult to find 

a "proper" (or in some sense optimal) policy. The reason for 

this is that the forest sector is in fact a large-scale dynamic 

system and, on the basis of simulation alone, it is difficult to 

select an appropriate policy which should satisfy a large number 

of conditions and requirements. For this we need an optimization 

technique. Because of the complexity of the system in question, 



linear programming (Dantzig 1963) may be considered as the most 

appropriate technique for this case. It is worthwhile to note 

that the optimization technique itself should be used on some 

simulation basis: i.e., different numerical runs based on dif- 

ferent assumptions and objective functions should be carried 

out to aid the selection of an appropriate policy. Specific 

applications of such an approach for planning an integrated 

system of forestry and forest industries have been presented, 

for instance, by Jackson (1974) and Barros and Weintraub (1979) . 
Already because of the nature of growth of the forests, 

the model should necessarily be dynamic. Therefore, in this 

paper we consider a dynamic linear programming (DLP) model for 

the forest sector. In this approach the planning horizon (e.g., 

a 50-year period) is partitioned into a (finite) number of time 

periods (e.g., 5-year periods) and for each of these shorter 

periods we consider a static linear programing model. A dynamic 

LP is then just a linear program comprising of such static models 

which are interlinked via various state variables (i.e., different 

types of "inventories", such as wood in the forests, production 

capacity, assets, liabilities, etc., at the end of a given period 

are equal to those at the beginning of the following period). 

In our forest sector model, each such static model comprises 

two basic submodels: a forestry submodel, and an industrial 

model of production, marketing and financing. The forestry 

submodel describes also ecological and land availability con- 

straints for the forest, as well as labor and machinery constraints 

for harvesting and planting activities. 

The industrial submodel is described by a small input-out- 

put model with both mechanical (e.g., sawmill and plywood) and 

chemical (e.g., pulp and paper) production activities. Also 

secondary processing of the primary products will be included 

in the model, in particular, because of the expected importance 

Of such activities in the future. 

The rate of production is restricted by wood supply (which 

is one of the major links between the submodels), by final demand 

for wood products, by labor force supply, by production capacity 

availability, and finally, by financial considerations. 



The evaluation criterion in comparing alternative policies 

for the forest sector is highly multiobjective: while selecting 

a reasonable long-term policy, preferences of different interest 

groups (such as government, industry, labor, and forest owners) 

have to be taken simultaneously into account. It should also 

be noted that forestry and industry submodels have different 

transient times: a forest normally requires a growing period of 

at least 40 to 60 years whereas a major structural change in the 

industry may be carried out within a much shorter period. Because 

of the complexity of the system, it is sometimes desirable to 

coneider the forestry and the industries on some independent 

basis, each with its own objective(s), and to analyze an inte- 

grated model thereafter (see Kallio et al. 1979). 

The paper is divided into two parts. In the first part 

(Sections 2-4) we describe the methodological approach. In the 

second part (Section 5) a specific in~plementation for the Finnish 
forest sector is described and illustrated with somewhat hypo- 

thetical numerical exam?les. 

2. THE FORESTRY SUBSYSTEM 

Mathematical programming is a widely applied technique for 

operations management and planning in forestry (e-g., Navon 1971, 

Dantzig 1974. Kilkki et al. 1977, Newnham 1975, ~aslund 1969, 

Wardle 1965, Ware and Clutter 1971, Weintraub and Navon 1976, 

Williams 1976). In this section we follow a traditional formu- 

lation of the forests' tree population into a dynamic linear 

programming system. We describe the forestry submodel, where 

the decision variables (control activities) are harvesting and 

planting activities, and where the state of the forests is 

represented by the volume of trees in different species and 

age groups. Because the model is formulated in the DLP frame- 

work, we single out the following: (i) state equations which 

describe the development of the system, (ii) constraints which 

restrict feasible trajectories of the forest development, (iii) 

planning horizon, and (iv) objective function(s). 



2.1 State Equations 

Each tree in the forest is assigned to a class of trees 

specifying the age and the species of the tree. A tree belongs 

to age group a (a = I,..., N-1) if its age is at least (a-1)A 

but less than aA, where A is a given time interval (for example, 

five years). In the highest age group a = N all trees are in- 

cluded which have an age of at least (N-1)A. (Instead of age 

groups, we might alternatively assign trees to size groups speci- 

fied by the trees' diameter. ) We denote by wsa (t) the number of 

trees of species s, s = 1,2,3, ..., (e.g., pine, spruce, birch, 

etc.) in age group a at the beginning of time period t, 

t = O,l,..., T. 

Let a:,, (t) show the ratio of trees of species s and in age 

group a that will proceed to the age group a' during time period 

t. We shall consider a model formulation where the length of 

each time period is A. Therefore, we may assume that a:., (t) 

is independent of t and equal to zero unless a' is equal to a+l 
s (or a for the highest age group). We denote then CI:~, (t) = aa 

with 0 2 a: 2 1. The ratio 1 - a: may then be called the attri- 

tion rate corresponding to time interval A and tree species s in 

age group a. We introduce a subvector wS(t) = {wSa(t)}, speci- 

fying the age distribution of trees (number of trees) for each 

tree species s at the beginning of time period t. Assuming neither 

harvesting nor planting, the age distribution of trees at the 

beginning of the next time period t+l will then be given by 

sSwS (t) where as is the square N x N growth matrix, describing 

aging and death of the trees resulting from natural causes. By 

our definition, it has the form 



In t roduc ing  a vec to r  w ( t )  = I w s ( t )  ) = I w S a ( t )  ), d e s c r i b i n g  

t r e e  s p e c i e s  and age d i s t r i b u t i o n  and a block-diagonal m a t r i x  a 

wi th  submatr ices  as on i ts  diagonal ,  t h e  s p e c i e s  and age d i s t r i -  

bu t ion  a t  t h e  beginning o f  pe r iod  t + l  w i l l  b e  g iven  by a w ( t ) .  
+ 

W e  denote  by u ( t )  and u - ( t )  t h e  v e c t o r s  of p l a n t i n g  and har-  

v e s t i n g  a c t i v i t i e s  a t  t i m e  pe r iod  t. The s t a t e  equa t ion  desc r ib -  

i n g  t h e  lavelooment of t h e  f o r e s t  w i l l  t hen  be  

where m a t r i c e s  rl and w s p e c i f y  p l a n t i n g  and h a r v e s t i n g  
+ - 

a c t i v i t i e s  i n  such a way t h a t  qu ( t)  and -wu ( t )  a r e  t h e  inc re -  

mental  change i n  numbers of t r e e s  r e s u l t i n g  from p l a n t i n g  and 

h a r v e s t i n g  a c t i v i t i e s ,  r e s p e c t i v e l y .  

A p l a n t i n g  a c t i v i t y  n may be s p e c i f i e d  t o  mean p l a n t i n g  of 

one tree of s p e c i e s  s  which e n t e r s  t h e  f i r s t  age group ( a  = 1 )  

du r ing  pe r iod  t. Thus, m a t r i x  has  one u n i t  column v e c t o r  

f o r  each t r e e  s p e c i e s  s. The nonzero element o f  such a column 

is on t h e  row of t h e  f i r s t  age group f o r  tree s p e c i e s  s  i n  equa- 

t i o n  ( l ) . 
A h a r v e s t i n g  a c t i v i t y  h is  s p e c i f i e d  by v a r i a b l e s  u h ( t )  

which determine t h e  l e v e l  o f  t h i s  a c t i v i t y  ( e .g . ,  f i n a l  h a r v e s t -  

i ng ,  t h i n n i n g ,  e t c .  ) . The c o e f f i c i e n t s  wk of m a t r i x  i;i 

a r e  de f ined  s o  t h a t  wk<(t) i s  t h e  number of trees of s p e c i e s  

s from age group a ha rves ted  when a c t i v i t y  h i s  a p p l i e d  a t  l e v e l  

u h ( t ) .  Thus, t h e s e  c o e f f i c i e n t s  show t h e  age and s p e c i e s  d i s -  

t r i b u t i o n  of t r e e s  ha rves ted  when a c t i v i t y  h i s  app l i ed .  

Sometimes t h e  h a r v e s t i n g  a c t i v i t i e s  can be s p e c i f i e d  simply 

by the numbers o f  trees o f  s p e c i e s  s  and age  a ha rves ted  dur ing  

t ime p e r i o d  t. There i s  some danger i n  t h i s  s p e c i f i c a t i o n ,  however, 

because t h e  s o l u t i o n  o f  t h e  model may sugges t  t h a t  on ly  one o r  
very few age groups w i l l  be ha rves ted  a t  each time per iod  t. 

Th i s  would of course  be u n r e a l i s t i c  i n  p r a c t i c e .  Therefore ,  it 

is recornended t h a t  each h a r v e s t i n g  a c t i v i t y  is  de f ined  through 

a tree d i s t r i b u t i o n  corresponding t o  a c t u a l  o p e r a t i o n s .  



2.2 Constraints 

Land. Let H(t) be the vector of total acreage of different - 
types d of land available for forests at time period t. A land 

type d may refer, for instance, to a soil type. Let ~z~ be the 
area of land species d required by one tree of species s and age 

group a. We assume that each tree species uses only one type 
s of land d; i.e., only one of the elements Gd, d = 1 ,  2, ..., 

is nonzero. Thus, if we consider more than one land type, then 

the tree species s may also refer to the soil. Defining the 

matrix G = (G:), we have the land availability restriction 

In this formulation we assume that the land area H(t) is 

exogenously given. Alternatively, we may endogenize vector H(t) 

by introducing activities and a state equation for changing the 

area of different types of land. Such a formulation is justi- 

fied if changes in soil type over time is considered or if some 

other land intensive activities, such as- agriculture, are included 

in the model. 

Besides land availability constraints, requirements for 

allocating land for certain purposes (such as preserving the 

forest as a water shed or as a recreational area) may be stated 

in the form of inequality (2). In such a case (the negative of) 

a component of ~ ( t )  would define a lower bound on such an alloca- 

tion, while the left hand side would yield the (negative of) 

land allocated in a solution of the model. 

Sometimes constraints on land availability may be given 

in the form of equalities which require that all land which is 

made available through harvesting at a time period should be 

used in the same time period for planting new trees of the type 

appropriate for the soil. Forest laws in many countries even 

require following this type of pattern. 

Labor and other resources. Harvesting and planting acti- 

vities require resources such as machinery and labor. Let 

R+ (t) and R- (t) be the usage of resource g at the unit level 
gn gh 



of planting activity n and harvesting activity h, respectively. 

Defining the matrices ~'(t) = (R' (t) 1 and R-(t) = (Rih(t) 1 , 
9n 

and vector R(t) = ( ~ ~ ( t ) }  of available resources during period 

t, we may write the resource availability constraint as follows: 

Wood supply. The requirements for wood supply from forestry 

to industries can be given in the form: 

where vector y(t) = (yk(t)} specifies the requirements for dif- 

ferent timber assortments k (e-g., pine log, spruce pulpwood, 

etc.), and matrix S(t) transforms quantities of harvested trees 

of different species and age into the volume of different timber 

assortments. Note that the volume of any given tree being har- 

vested is assigned in ( 4 )  to log and pulpwood in a ratio which 

depends on the species and age group of the tree. 

2.3 Planning Horizon 

The forest as a system has a very long transient time: one 

rotation of the forest may in extreme conditions require more 

than one hundred years. Naturally, various uncertainties make 

it difficult to plan for such a long time horizon. On the other 

hand, if the planning horizon is too short we cannot take into 

account all the consequences of activities implemented at the 

beginning of the planning horizon. As a compromise we may think 

of a planning horizon of 50 to.80 years. Thus, if one period 

represents an interval of five years, the model will constitute 

10 to 16 stages. It should be noted that such a planning horizon 

is unnecessarily long for the industrial subsystem and too short 

for the forestry subsystem. In order to eliminate the latter 

difficulty, it is desirable to analyze a stationary regime for 

the forests. In this case we set w(t+l) = w(t) = w, for all t. 

Similarly planting and harvesting activities are taken indepen- 
+ 

dent of time; i.e., u'(t) = u and u-(t) = u-, for all t. The 

state equation ( 1 )  can then be restated as 



+ 
Imposing constraints (2) through (4) on variables w, u , 

and u-, we can solve the static linear programming problem and 

find an optimal stationary state w* of the forest (and corre- 

sponding harvesting and planting activities). This approach 

has been used, for instance, by Rorres (1978) for finding the . 
stationary maximum yield of a harvest. The solution of a dynamic 

linear program with terminal constraints 

yields the optimal transition to this stationary state. 

Another way of introducing a stationary state is to consider 

an infinite period formulation and to impose constraints w(t) = 

w(t+l), u-(t) = u-(t+l) and u+(t) = u+(t+l), for a11 t ) T. If 

the model parameters for period t are assumed independent of time 

for all t 2 T, then the dynamic infinite horizon linear program- 
ming model may be formulated as a T+l period problem where the 

last period represents a stationary solution for periods t 2 T, 
and the first T periods represent the transition from the ini- 

tial state to the stationary solution. 

There is a certain difference in these two approaches of 

handling the stationary state. In the first approach, when ( 5 )  

is applied, we first find the optimal stationary solution in- 

dependently of the transition period, and thereafter we deter- 

mine the optimal transition to this stationary state. In the 

latter approach we link the transition period with the period 

corresponding to the stationary solution. The linkage takes 

place in the stationary state variables which are determined 

in an optimal way taking into account both time periods simul- 

taneously. 

2.4 Objective Functions 

The forest management described above, has a very multi- 

objective nature. For example, the following objectives have 

been mentioned (Dantzig 197U, Steuer and Schuler 1978): 



1) obtaining higher yields of round wood; 2) preserving the 

watershed; 3) preserving the forest as a recreational area; 

4) making the forest resilient to diseaees, fire, droughts, etc. 

Some of these objectives may be included in objective function(s), 

while others can be given as constraints. In Section 2.2 we 

considered some of these types of objectives as constraints. 

A common objective which is also used as an objective 

function is the discounted sum of net income in forestry. This 

profit Nay be expressed as a linear combination of the decision 

variables: 

Here J-(t) accounts for the mill price of the wood less trans- 

portation and harvesting costs at unit level. Vector ~ + ( t )  

refers to planting costs at unit level and B(t) is a discounting 

factor. For illustrative purposes we shall use this objective 

function for forestry. 

2.5 Forestry Model 

In summary. our forestry model may now be stated as 

follows. Given state equation ( 1 ) , an initial state w (0) = w 0 
and a terminal state w(T) = w , find such nonnegative controls 
{u-(t)) and ~u+(t)l (t = 0,l.. .., T-l), which satisfy con- 
straints ( 2 )  through (4). yield nonnegative state vectors w(t) 

and maximize the aggregated profit defined in (6). 

In this problem the vector y (t) of wood supply, the (vec- 

tor of) available land H(t), and the availability of labor and 

other resources R(t) are given exogenously. Therefore, policy 

analysis for forestry on the basis of only this submodel is very 

limited in its possibilities. We shall link below this submodel 

with an industrial submodel describing transformation of 

wood raw material into products. 



Note that our formulation may also be considered as a 

regionalized forestry model. In this case we only have to 

extend the meaning of various indices (tree species s, planting 

activity n, harvesting activity h, land type d, resource g, and 

timber assortment k) to refer, in addition to the above, also 

to various subregions within the nation. 

3. THE INDUSTRIAL SUBSYSTEM 

We will now consider the industrial subsystem of the forest 

sector. Again the formulation is a dynamic linear programming 

model. We discuss first the section related to production and 

final demend of wood products, then the financial considerations 

and the complete industrial submodel thereafter. 

3.1 Production and Demand 

Let x(t) be the vector (levels of) of production activities 

for period t, for t = 0, I , . . . ,  T-1. Such an activity i may 

include production of sawn wood, panels, pulp, paper, converted 

products, etc. For each single product j, there may exist 

several alternative production activities i which are specified 

through alternative uses of raw material, technology, etc. Let 

U be the matrix of wood usage per unit of production activity 

so that the wood processed by industries during period t is given 

by vector Ux(t). Note that matrix U has one row corresponding 

to each timber assortment k (corresponding to the components 

of supply vector y(t) in the forestry model). Some of the 

elements in U may be negative. For instance, saw milling con- 

sumes logs but produces raw material (industrial residuals) for 

pulp mills. This byproduct appears as a negative component in 

matrix U. We denote by r (t) = (rk (t) 1 the vector of wood raw 
material inventories at the beginning of period t (i.e., wood 

harvested but not processed by the industry) . As above, let 

y(t) be the amount of wood harvested in different timber assort- 

ments, and z+(t) and z-(t) the (vectors of) import and export 

of different assortments of wood, respectively during period t. 

Then we have the following state equation for the wood raw ma- 

terial inventory: 



In other words, the wood inventory at the end of period t is 

the inventory at the beginning of that period plus wood harvested 

and imported less wood consumed and exported (during that period). 

Note that if there is no storage (change), and no import nor export 

of wood, then (7) reduces to y (t) = Ux (t) ; i. e. , wood harvested 
equals the consumption of wood. For wood import and export we 

+ 
assume upper limits Z (t) and ~-(t), respectively: 

The production process may be described by a simple input- 

output model with substitution. Let A(t) be an input-output 

matrix having one row for each product j and one column for each 

production activity i so that A(t) x (t) is the (vector of ) net 

production when production activity levels are given by x(t). 

Let m (t) = {mj (t) and e (t) = (e . (t) j be the vectors of import 
3 

from and export to the forest sector, respectively, for products 

j. Then, excluding from consideration a possible change in the 

product inventory, we have 

Both for export and for import we assume externally given bounds 

E (t) and !*(t) , respectively: 

Production activities are further restricted through labor 

and mill capacities. Let L(t) be the vector of different types 

of labor available for the forest industries. Labor may be 

classified in different ways taking into account, for instance, type 

of production, and the type of responsibilities in the produc- 

tion process (e.g., work force, management, etc.). Let ~ ( t )  



be a  c o e f f i c i e n t  ma t r ix  s o  t h a t  p ( t ) x ( t )  i s  t h e  ( v e c t o r  o f )  

demand f o r  d i f f e r e n t  t y p e s  o f  l a b o r  g iven product ion a c t i v i t y  

l e v e l s  x ( t )  . Thus we have 

We w i l l  cons ide r  t h e  product ion ( m i l l )  c a p a c i t y  a s  an en- 

dogenous s t a t e  v a r i a b l e .  Let  q ( t )  be t h e  v e c t o r  o f  t h e  amount 

o f  d i f f e r e n t  t y p e s  o f  such c a p a c i t y  a t  t h e  beginning o f  pe r iod  

t. Such types  may be d i s t i n g u i s h e d  by r eg ion  (where t h e  capac- 

i t y  is  l o c a t e d ) ,  by type  o f  product  f o r  which it i s  used and by 

d i f f e r e n t  t echno log ies  t o  produce a  g iven  p roduc t .  Le t  Q(t) be 

a  c o e f f i c i e n t  ma t r ix  s o  t h a t  Q ( t ) x ( t )  is  t h e  demand ( v e c t o r )  

f o r  t h e s e  types  o f  capac i ty .  Such a  m a t r i x  h a s  nonzero e lements  

on ly  when t h e  region-product-technology combination o f  a  produc- 

t i o n  a c t i v i t y  matches wi th  t h a t  of t h e  type  o f  c a p a c i t y .  The 

p roduc t ion  c a p a c i t y  r e s t r i c t i o n  i s  then  g iven  a s  

The development of t h e  c a p a c i t y  i s  g iven  by a  s t a t e  equa- 

t ion  

where 6 i s  a  d iagona l  ma t r ix  account ing f o r  ( p h y s i c a l )  depre- 

c a t i o n  and v ( t )  i s  a  v e c t o r  o f  inves tments  ( i n  p h y s i c a l  u n i t s ) .  

Capaci ty  expansions  a r e  r e s t r i c t e d  through f i n a n c i a l  r e sources .  

We do n o t  cons ide r  p o s s i b l e  c o n s t r a i n t s  o f  o t h e r  s e c t o r s ,  such 

a s  heavy machinery o r  b u i l d i n g  i n d u s t r y ,  whose c a p a c i t y  may be 

employed i n  inves tments  of t h e  f o r e s t  s e c t o r .  

3 .2  Finance 

W e  w i l l  now t u r n  our  d i s c u s s i o n  t o  t h e  f i n a n c i a l  a s p e c t s .  

We p a r t i t i o n  t h e  s e t  of p roduc t ion  a c t i v i t i e s  i i n t o  f i n a n c i a l  

u n i t s  ( s o  t h a t  each a c t i v i t y  belongs  uniquely  t o  one f i n a n c i a l  

u n i t ) .  Furthermore,  we assume t h a t  each p roduc t ion  c a p a c i t y  



is assigned to a financial unit so that each production activity 

employs only capacities assigned to the same financial unit as 

the activity itself. 

Production capacity in (14) is given in physical units. 

For financial calculations (such as determining taxation) we 

define a vector q(t) of fixed assets. Each component of this 

vector determines fixed assets (in monetary units) for a finan- 

cial unit related to the capacity assigned to that unit. Thus, 

fixed assets are aggregated according to the grouping of pro- 

duction activities into financial units, for instance, by region, 

by industry, or by groups of industries. 

Financial and physical depreciation may differ from each 

other; for instance, when the former is defined by law. We 

define a diagonal matrix (I-z(t) ) so that (~-x(t) ) <(t) is 

the vector of fixed assets left at the end of period t when 

investments are not taken into account. Let K(t) be a matrix 

where each component determines the increase in fixed assets 

(of a certain financial unit) per (physical) unit of an invest- 

ment activity. Thus the components of vector K(t)v(t) determine 

the increase in fixed assets (in monetary units) for the finan- 

cial units when investment activities are applied (in physical 

units) at a level determined by vector v (t) . Then we have the 

following state equation for fixed assets: 

For each financial unit we consider external financing 

(long-term debt) as an endogenous state variable. Let L (t) 

be the (vector of) beginning balance of external financing for 

different financial units in period t. Similarly, let k+(t) 

and k-(t) be the (vectors of) drawings of debt and the repayments 

made during period t. In this notation, the state equation for 

long-term debt is as follows: 



We will restrict the total amount for long-term debt through 

a measure which may be considered as a realization value of a 

financial unit. This measure is a given percentage of the total 

assets less short-term liabilities. Let u(t) be a diagonal 

matrix of such percentages, let b(t) be the (endogenous vector 

of) total stockholders equity (including cumulative profit and 

stock). Then the upper limit on loans is given as 

Alternatively, external financing may be limited, for in- 

stance, to a percentage of a theoretical annual revenue (based 

on available production capacity and on assumed prices of pro- 

ducts). Note that no repayment schedule has been introduced in 

our formulation, because an increase in repayment can always be 

compensated by an increase of drawings in the state equation (16). 

Next we will consider the profit (or loss) from period t. 

Let p+(t) and p- (t) be vectors whose components indicate profits 

and losses, respectively, for the financial units. By definition, 

both profit and loss cannot be simultaneously nonzero for any 

financial unit. For a solution of the model, this fact usually 

results from the choice of an objective function. 

Let P(t) be a matrix of prices for products (having one 

column for each product and one. row for each financial unit) 

so that the vector of revenue (for different financial units) 

from sales e(t) outside the forest industry is given by P (t)e(t) 

Let C(t) be a matrix of direct unit production costs, including, 

for instance, wood, energy, and direct labor costs. Each row 

of C(t) refers to a financial unit and each column to a pro- 

duction activity. The (vector) of direct production costs for 

financial units is then given by C(t)x(t). 

The fixed production costs may be assumed proportional to 

the (physical) production capacity. We define a matrix F(x) 

so that the vector F(t)q(t) yields the fixed costs of period t 

for the financial units. According to our notation above, 

(financial) depreciation is given by the vector x(t)q(t). 



W e  assume t h a t  i n t e r e s t  is  pa id  on t h e  beginning ba lance  o f  d e b t .  

Thus, i f  ~ ( t )  is  t h e  d i agona l  m a t r i x  o f  i n t e r e s t  r a t e s ,  t hen  t h e  

v e c t o r  o f  i n t e r e s t  pa id  (by t h e  f i n a n c i a l  u n i t s )  i s  g iven  by 

E ( t )  1 ( t )  . F i n a l l y ,  l e t  D ( t )  be ( a  v e c t o r  o f )  exogeneously g iven  

c a s h  expend i tu re  cove r ing  a l l  o t h e r  c o s t s .  Then t h e  p r o f i t  be- 

f o r e  t a x  ( l o s s )  is  g iven  a s  fo l lows:  

The s tockho lde r  e q u i t y  b ( t ) ,  which w e  a l r e a d y  employed 

above, s a t i s f i e s  now t h e  fo l lowing  s t a t e  equa t ion :  

where ~ ( t )  i s  a  d i agona l  m a t r i x  f o r  t a x a t i o n  and B ( t )  i s  t h e  

(exogenously g iven)  amount o f  s t o c k  i s s u e d  d u r i n g  pe r iod  t. 

F i n a l l y ,  w e  c o n s i d e r  c a s h  (and r e c e i v a b l e s )  f o r  each f inan -  

c i a l  u n i t .  Let  c ( t )  be t h e  v e c t o r  of  c a s h  a t  t h e  beginning o f  

pe r iod  t. The change of c a s h  d u r i n g  pe r iod  t i s  due t o  t h e  

p r o f i t  a f t e r  t a x  ( o r  l o s s ) ,  d e p r e c i a t i o n  ( i . e . ,  noncash expen- 

d i t u r e ) ,  drawing of d e b t ,  repayment, and inves tmen t s .  - ~ h u s  

w e  assume t h a t  t h e  p o s s i b l e  change i n  c a s h  due t o  changes i n  

accoun t s  r e c e i v a b l e ,  i n  i n v e n t o r i e s  (wood, end p roduc t s ,  e tc . )  
and i n  accoun t s  payable  c a n c e l  each o t h e r  ( o r  t h a t  t h e s e  quan- 

t i t i e s  remain unchanged du r ing  t h e  p e r i o d ) .  A l t e r n a t i v e l y ,  such 

changes cou ld  be taken i n t o  account  assuming, f o r  i n s t a n c e ,  t h a t  

t h e  accoun t s  payable  and r e c e i v a b l e ,  and t h e  i n v e n t o r i e s  a r e  

p r o p o r t i o n a l  t o  annual  s a l e s  o f  each f i n a n c i a l  u n i t .  

Using ou r  e a r l i e r  n o t a t i o n ,  t h e  s t a t e  e q u a t i o n  f o r  c a s h  is 

now 



3 . 3  I n i t i a l  S t a t e  and Terminal Condi t ions  

I n  our  i n d u s t r i a l  model, we now have t h e  fo l lowing  s t a t e  

vec to r s :  wood raw m a t e r i a l  i nven to ry  r ( t ) ,  ( p h y s i c a l )  p roduc t ion  

c a p a c i t y  q ( t ) ,  f i x e d  a s s e t s  q ( t ) ,  long-term d e b t  L (t) , cash  c  ( t)  , 
and t o t a l  s tockho lde r s  e q u i t y  b ( t ) .  For a l l  o f  them we have an 

i n i t i a l  va lue  and p o s s i b l y  a  l i m i t  on t h e  t e r m i n a l  va lue .  W e  

s h a l l  r e f e r  t o  t h e  i n i t i a l  and t e r m i n a l  va lues  by s u p e r s c r i p t s  

0 and *, r e s p e c t i v e l y ;  i.e., w e  have t h e  i n i t i a l  s t a t e  g iven  a s  

and a  t e r m i n a l  s t a t e  r e s t r i c t e d ,  f o r  i n s t a n c e ,  a s  fo l lows:  

The i n i t i a l  s t a t e  is determined by t h e  s t a t e  o f  t h e  f o r e s t  i n -  

d u s t r i e s  a t  t h e  beginning o f  t h e  p lanning hor izon.  The t e r m i n a l  

s t a t e  may be determined a s  a  s t a t i o n a r y  s o l u t i o n  s i m i l a r l y  a s  we 

d e s c r i b e d  f o r  t h e  f o r e s t r y  model above. 

I f  w e  cons ide r  t h e  wood supply  y ( t )  be ing  exogenous, we 

now have an i n d u s t r i a l  submodel which may be analyzed indepen- 

d e n t l y  from t h e  f o r e s t r y  submodel. A more complete duscuss ion 

on o b j e c t i v e s  w i l l  be g iven  i n  t h e  nex t  s e c t i o n ,  bu t  f o r  i l l u s -  

t r a t i v e  purposes,  we may choose now t h e  d i scoun ted  sum o f  indus-  

t r i a l  p r o f i t s  ( a f t e r  t a x )  a s  an  o b j e c t i v e  func t ion :  

Here B (t) is a  (row) v e c t o r  where components a r e  t h e  d i scoun t ing  

f a c t o r s  f o r  d i f f e r e n t  f i n a n c i a l  u n i t s  ( f o r  pe r iod  t ) .  



3.U Industrial Model 

We may now summarize the industrial model. Given initial 
+ 

state (21 ) , find nonnegative control vectors x (  t) , z (t) , z-(t) , 
m(t) , e(t), v(t), Lf (t), L-(t) p+(t), and ~ - ( t ) ,  and nonnegative 
state vectors r(t), q(t), g(t), L(t), c(t), and b(t), for all t 

which satisfy constraints and state equations ( 7 )  - (20), the 

terminal requirements (22), and maximize the linear functional 

given in (23). 

As was the case with the forestry model, our industrial 

model may also be considered being regionalized. Again various 

indices (such as production activities, production capacities, 

etc.) should also refer to subregions within the country. Var- 

ious transportation costs will then be included in direct pro- 

duction costs. For instance for a given product being produced 

within a given region there may be alternative production acti- 

vities which differ from each other only in the source region of 

raw material. 

U. THE INTEGRATED SYSTEM 

We will now consider the integrated forestry--forest in- 

dustries model. First we have a general discussion on possible 

formulations of various objective functions for such a model. 

Thereafter, we summarize the model in the canonical form of 

dynamic linear programming. A tableau representation of the 

structure of the integrated model will also be given. 

4.1 Objectives 

The forest sector may be viewed as a system controlled by 

several interest groups or parties. Any given party may have 

several objectives which are in conflict with each other. 

Obviously, the objectives of one party may be in conflict with 

those of another party. For instance, the following parties 

may be taken into account: representatives of industry, govern- 

ment, labor, and forest owners. Objectives for industry may be 

the development of profit of different financial units. Govern- 

ment may be interested in the increment of the forest sector 



to the gross national product, to the balance of payments, and 

to employment. The labor unions are interested in employment 

and total wages earned in forestry and different industries 

within the sector. Objectives for forest owners may be the 

income earned from selling and harvesting wood. Such objec- 

tives refer to different time periods t (of the planning horizon) 

and possibly also to different product lines. We will now give 

simple examples of formulating such objectives into linear 

objective functions. 

Industrial profit. The vector of profits for the industrial 
+ 

financial units was defined above as [I-r(t)]p (t) - p-(t) for 
each period t. If one wants to distinguish between different 

financial units, then actually each component of such a vector 

may be considered' as an objective function. However, of ten 

we aggregate such objectives for practical purposes, for instance, 

summing up discounted profits over all time periods, summing 

over financial units, or as in ( 2 3 1 ,  summing over both time 

periods and financial units. 

Increment to gross national product. For the purpose of 

defining the increment of the forest sector to the GNP we consi- 

der the sector as a "profit center' where no wage is paid to the 

employees within the sector, where no price is paid for raw 

material originating from this sector, and where no taxes exist. 

The increment to the GNP is then theprofit for such a center. 

We will now make a precise statement of such a profit which may 

also be viewed as the valued added in the forest sector. 

Let P' (t) be a price vector so that P' (t)e(t) is the total 

revenue from selling wood products outside the forest sector. 

Let C'(t) be the vector of direct production unit costs ex- 

cluding direct labor cost and cost of raw material which origi- 

nates from the forest sector. Let 3(t) and R(t) be vectors of 

unit cost of planting and harvesting activities, respectively, 

excluding labor costs. For simplicity, we may assume that these 

latter two cost components include both operating and capital 

cost for machinery. The direct operating costs (excluding wages 

and wood based raw material) is then given, for period t, by 



C 1  (t)x(t) + i(t)u+(t) + $(t)u-(t). Also the import and export 

of wood based raw material influence the GNP. Let (t) and i (t) 
be price vectors for imported and exported wood raw material, 

respectively, and let M'(t) be the price vector of imported 

wood based products (to be used as raw material). Thus, the 

following term should be added to the GNP of period t: 

g(t)z-(t) - i(t)z+(t) - M1(t)m(t). The influence of the change 

in the wood inventory may be neglected in our model. For the 

fixed costs all except the labor costs will be taken into account. 

Let F1(t) be the vector of such costs per unit of production 

capacity, let 6'(t) be the vector of depreciation factors, and 

E' (t) the vector of interest rates (for various financial units). 

Then the negative increment of the fixed costs, depreciation 

and interest to the GNP is given by F1(t)q(t) + dl(t)q(t) + 
+ E ' (t) L (t) . Summing up, the increment of the forest sector 

to the GNP of period t is given by the following expression: 

Increment to balance of payments. The increment of the 

forest sector to the balance of payments has a similar expression 

to the one above for the GNP. The changes to be made in this 

expression are, first, to multiply the components of the price 

vector P1(t) by the share of exports in the total sales e(t); 

second, to multiply the components of the cost vectors Ca(t), 

i(t), *R(t), and F' (t) by the share of imported inputs in each 

cost term; third, to multiply each component of ~ ' ( t )  by the 

share of foreign debts (among all long-term debts) of the fi- 

nancial unit; and finally, to replace the depreciation function 

6'(t)q(t) by investment expenditures K1(t)v(t), where K1(t) 

is a vector expressing investments in imported goods (per unit 

of production capacity). 

Employment. Total employment (in man-years per period) for 

each time period t for different types of labor, in different 

activities and regions, has already been expressed in the left 



hand side expressions of inequalities (3) and (12). The expres- 

sion for forestry is given by (part of the component of) the 

vector ~+(t)u+(t) + R-(t)u-(t) and for the industry by the vec- 
tor 0 (t)x(t). 

Wage income. For each group of the work force, the wage 

income for period t is obtained by multiplying the expressions 

for employment above by the annual salary of each such group. 

Stumpage earnings. Besides the wage income for forestry 

(which we already defined above), and an aggregate profit (as 

expressed in ( 6 ) ) ,  one may account for the stumpage earnings; 

i.e., the income related to the wood price prior to harvesting 

the tree. Such income is readily obtained by the timber assort- 

ments if the components of the haNeSting yield vector y(t) are 

multiplied by the respective wood prices. 

4.2 The Integrated Model 

We will now summarize the integrated forestry-industry model 

in the canonical form of dynamic linear programming (Propoi and 

Krivonozhko 1978). Denote by X(t) the vector of all state vari- 

ables (defined above) at the beginning of period t. Its two- 

nents include the trees in the forest, different types of 

production capacity in the industry, wood inventories, exter- 
nal financing, etc. Let Y (t) be the nonnegative vector of 

all controls for period t, that is, the vector of all decision 

variables, such as levels of haNeSting or production activities. 

An upper bound vector for Y (t) is denoted by ? (t) (some of whose 
components may be infinite). We assume that the objective func- 

tion to be maximized is a linear function of the state vectors 

X(t) and the control vectors Y(t), and we denote by y(t) and 

A (t) the coefficient vectors for X(t) and Y (t) , respectively, 
for such an objective function. This function may be, for 

instance, a linear combination of the objectives defined above. 
0 The initial state X(0) is denoted by X , and the terminal re- 

quirement for X(T) by x*. Let T(t) and A(t) be the coefficient 

matrices for X(t) and Y (t) , respectively, and let E (t) be the 
exogenous right hand side vector in the state equation for X(t). 



Let @ ( t ) ,  n ( t ) ,  and @( t )  be t h e  corresponding matr ices  and t h e  

r i g h t  hand s i d e  vector  f o r  t h e  c o n s t r a i n t s .  Then t h e  i n t e g r a t e d  

model can be s t a t e d  i n  t h e  canonical  form of DLP a s  follows: 

f i n d  Y ( t ) ,  f o r  0 < t < T-1 ,  and X ( t ) ,  f o r  1 5 t 5 T ,  t o  - - 

T- 1 
maximize 1 ( y ( t ) X ( t ) + h ( t ) Y ( t ) )  + y(T)X(T) , 

t = O  

s u b j e c t  t o  

x ( t + ~ )  = r ( t ) x ( t )  + A ( t ) ~ ( t )  + ~ ( t )  , f o r  0 5 t 2 T-1 , 

@ ( t ) X ( t )  + n ( t ) Y ( t )  2 $ ( t )  , f o r  o 2 t 2 T-1 , 

0  5 X ( t )  , 0  5 Y ( t )  2 ?( t )  r f o r a l l t  , 

with t h e  i n i t i a l  s t a t e  

and with terminal  requirement 

The no ta t ion  f o r  t h e  c o n s t r a i n t s  and terminal  requirement 

r e f e r s  e i t h e r  t o  =, t o  5 o r  t o  2 , separa te ly  f o r  each c o n s t r a i n t .  

The c o e f f i c i e n t  matrix (corresponding t o  v a r i a b l e s  X ( t )  , Y ( t )  , 
and X ( t + l ) )  and t h e  r i g h t  hand s i d e  vec tor  of t h e  i n t e g r a t e d  

fo res t ry - indus t ry  submodel of per iod t a r e  given a s  

respec t ive ly .  Their s t r u c t u r e  has been i l l u s t r a t e d  i n  Figure  1 

using t h e  no ta t ion  introduced i n  Sect ions  2 and 3. 
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5. APPLICATION TO THE FINNISH FOREST SECTOR 

5.1 Implementation 

Two versions of the integrated model were implemented for 

the SESAME system (Orchard-Hays 1978) (a large interactive mathe- 

matical programming system designed for an IBM/370 and operating 

under VM/CMS). The model generators are written using SESRME's 

data management extension, called DATAMAT. An actual model is 

specified by the data tableaux of the generator programs. 

Our two versions have been designed for the Finnish forest 

sector. Both of them may have at most ten time periods each of 

which is a five year interval. In each case, the country is 

considered as a single region. The main differences between 

our small and large version are in the number of products, 

financial units, and the tree species considered in the forest. 

Table 1 shows the dimensions of the two models. 

For the small version, the seven product groups in consider- 

ation are sawn goods, panels, further processed mechanical wood 

products, mechanical pulp, chemical pulp, paper and board, and 

converted paper products. For each group we consider a separate 

type of production capacity and labor force. In this small 

version, we have aggregated all production into one financial 

unit. Only one type of tree represents all tree species in the 

forests. The trees are classified into 21 age groups. Thus, 

the interval being five years, the oldest group contains trees 

older than 100 years. Two harvesting activities were made avail- 

able: thinning and final harvesting. The main timber assort- 

ments in consideration are log and pulpwood. 

The larger version has the following 17 product groups: 

sawn goods, plywood, particle board, fiberboard, three types of 

further processed mechanical products, mechanical pulp, Si-pulp, 

Sa-pulp, newsprint, printing and writing paper, other papers, 

paperboard, and three types of converted paper products. Again 

for each such group we have a separate type of production capacity 

as well as labor force. The production is aggregated into seven 



Table 1. Characteristic dimensions of the small and the large 
versions of the Finnish forest sector model. 

Small Large 
version version 

Number of time periods * 10 10 

Length of one period in years 5 5 

Number of regions 1 1 

Number of tree species 

Number of age groups for trees* 

Harvesting activities* 

Soil types 1 1 

Harvesting and planting resources 1 1 

Timber assortments 2 6 

Production activities 7 17 

Types of labor in the industry 7 17 

Types of production capacity 

Number of financial units 

Number of rove in a ten period LP 520 2320 

Number of columns in a ten period LP 612 3188 

 he value may be specified arbitrarily by the model data. The 
numbers show the actual values being used. 



financial units: saw mills, panels production (plywood, particle 

board, and fiberboard), further processing of primary mechanical 

wood products, mechanical pulp mills, chemical pulp mills, paper 

and board mills, and production of converted paper goods. 

Three species of trees appear in the larger version: pine, 

spruce, and birch. For each of these we apply the same 21 age 

groups as in the small version. The two harvesting activities 

(thinning and terminal harvesting) and the two main timber 

assortments (log and pulpwood) are now considered separately 

for each of the three tree species. 

The data for both of the versions of the Finnish model was 

provided by the Finnish Forest Research Institute. It is par- 

tially based on the official forest statistics (Yearbook of 

Forest Statistics 1977/1978) published by the same institute. 

Validation runs (which eventually resulted in our current fonnu- 

lation) were carried out by contrasting the model solutions 

with the experience gained in the preceeding simulation study 

of the Finnish forest sector by Seppala, Kuuluvainen and Seppala 

(forthcoming) . 

5.2 Numerical Examples 

For illustrative purposes we will now describe a few test 

runs: two with the small version and one with the larger one. 

Most of the data being used in these experiments corresponds 

approximately to the Finnish forest sector. This is the case, 

for instance, with the initial state; i.e., trees in the forests, 

different types of production capacity, etc. Somewhat hypo- 

thetical scenarios have been used for certain key quantities, 

such as final demand, and price and cost development. Thus, 

the results obtained do not necessarily reflect reality. They 

have been presented only to illustrate a few possible uses of 

the model. 

For each test run a ten (five year) period model was con- 

structed. Labor constraints both for indsutry and for forestry 

were temporarily relaxed. At this stage, no further processing 

activity for mechanical wood products but one activity for 



converted paper products was considered. Both wood import and 

export were excluded, and pulp import to be used for paper pro- 

duction was allowed only in the larger version of the model. 

The assumed demand of wood products is given in Table 2. At 

the end of the planning horizon, we require that in each age 

group there is at least 80 percent of the number of trees ini- 

tially in those groups. For production capacity a similar 

terminal requirement is 50 percent. Initial production capacity 

is given in Table 3 and the initial age distribution of trees 

in Figure 8 below. 

For the first run the discounted sum of industrial profits 

(after tax) was chosen as an objective function. Such an ob- 

jective may reflect the industry's behavior given the cost 

structure, price development, and other parameters. The results 

have been illustrated in Figures 2 through 7. The mechanical 

processing activities are limited almost exclusively by the 

assumed demand of sawn goods and panels. The same is true for 

converted paper products. However, both mechanical and chemical 

pulp produced is almost entirely used in paper mills, and there- 

fore, the potential demand for export has not been exploited. 

Neither have the possibilities for exporting paper been used 

fully. As shown in Figure 5, paper export is declining sharply 

from the level of 5 million ton/year, approaching zero towards 

the end of the planning horizon. This is due to the stongly 

increasing production of converted paper products. The corre- 

sponding structural change of the production capacity of the 

forest industry over the 30 year period from 1980 to 2010 is 

given in Table 3. (The sudden decrease in production of panels 

and converted paper products is a "planning horizon effect" 

which often appears in dynamic LP solutions. Usually it is due 

to inappropriate accounting for the future in terminal conditions. 

For instance, in our case only a reasonable state was required 

at the end of the planning horizon, while an optimal stationary 
state might have been more appropriate.) 



Table 2.  Assumed annual demand of wood products  i n  Rune 1 - 3 .  

per iod Sawn panels Mech. Chem. Paper and Converted 
woqd pulp pulp board paper prod. 
m, /y ~m3/y  Mton/y Mton/y Mton/y Mton/y 

Table 3 .  Production capac i ty  i n i t i a l l y  and i n  2010  according 
t o  Runs 1  - 3. 

Production capac i ty  

Product 
Year 2010  

I n i t i a l  Unit 
Run 1  Run 2  Run 3  

sawn wood 7 . 0  1 0 . 2  10 .2  1 0 . 2  M m3/year 

Panels  1 . 7  3 .6  
3 

3.6  3 . 6  M m /year  

Mechanical pulp  2 .2  1 . 9  2 .2  0 . 5  Mton/year  

Chemical pulp  4 . 0  4 . 3  5 .8  5 . 0  M ton/year 

paper (and board) 6 . 2  6 . 2  7 . 3  8 . 7  M ton/year 

Copverted paper 0 . 5  2 . 9  2 . 9  2 . 9  M ton/year  
and board products  
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The use  of wood has been shown i n  Figure  7 .  A t  t h e  be- 

ginning t h e  i n d u s t r i a l  use  of wood inc reases  from about 40 
3 m i l l i o n  x ~ ~ / ~ e a r  t o  t h e  l e v e l  of 45 m i l l i o n  m /year  and s t a y s  

r a t h e r  s t e a d i l y  the re .  According t o  Figure  6 ,  t h e  i n d u s t r i a l  

p r o f i t  i n c r e a s e s  from t h e  annual  l e v e l  of . 2  b i l l i o n  d o l l a r s  

towards t h e  end o f  t h e  planning horizon t o  around .5 b i l l i o n  

d o l l a r s  per  year.  

For t h e  secondrun w e  have chosen t h e  discounted sum of t h e  

increments of t h e  f o r e s t  s e c t o r  t o  g r o s s n a t i o n a l p r o d u c t  a s  an 

o b j e c t i v e  funct ion.  The r e s u l t s  have been i l l u s t r a t e d  us ing  

do t t ed  l i n e e  i n  t h e  same F igures  2 through 7. 

Compared wi th  t h e  previous  case ,  t h e r e  is no s i g n i f i c a n t  

d i f f e r e n c e  i n  t h e  production of sawn goods, pane l s  and conver ted 

paper products f o r  which expor t  demand again  l i m i t s  t h e  produc- 

t i o n .  However, t h e r e  i s  a  s i g n i f i c a n t  d i f f e r e n c e  i n  pulp and 

paper production. Pulp (both mechanical and chemical)  i s  now 

produced t o  s a t i s f y  f u l l y  t h e  demand f o r  export .  Paper produc- 

t i o n  is now s t e a d i l y  inc reas ing  from 5 m i l l i o n  ton/year  t o  nea r ly  

9 m i l l i o n  ton/year.  Paper expor t  i s  s t i l l  d e c l i n i n g  again  due 

t o  i n c r e a s i n g  use  f o r  t h e  conver t ing processes  of paper products.  

Therefore ,  t h e  expor t  demand f o r  paper i s  not  f u l l y  exp lo i t ed .  

The bo t t l eneck  f o r  paper production now is  t h e  b i o l o g i c a l  

c a p a c i t y  of t h e  f o r e s t s  t o  supply wood. The use  o f  round wood 
3 i n c r e a s e s  from about 40 m i l l i o n  in /year  t o  t h e  l e v e l  o f  65  

3 m i l l i o n  m /year .  The i n c r e a s e  i n  t h e  y i e l d  o f  t h e  f o r e s t s  may 

be explained by t h e  change i n  t h e  age s t r u c t u r e  of t h e  f o r e s t s  

dur ing t h e  planning hor izon.  Such change over  t h e  per iod 1980- 

2010 has  been i l l u s t r a t e d  i n  ~ i g u r e '  8 .  

W e  n o t i c e  a  s i g n i f i c a n t  d i f f e r e n c e  in t h e  wood use  between 

t h e s e  f i r s t  two runs.  W e  may conclude t h a t  i n  t h e  f i r s t  run 

( t h e  p r o f i t  maximization) t h e  n a t i o n a l  wood resources  a r e  being 

used i n  an i n e f f i c i e n t  way; i . e . ,  under t h e  assumed p r i c e  and 

c o s t  s t r u c t u r e  t h e  poor p r o f i t a b i l i t y  o f  the f o r e s t  i n d u s t r y  

r e s u l t s  i n  an investment behavior which does n o t  make f u l l  use  

o f  t h e  f o r e s t  resources .  
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The third run is the same as the first one except that the 

larger version of the model was used and pulp import was allowed 

to be used in paper mills. The production of sawn goods and con- 

verted paper products, as described by broken lines in Figure 2, 

still meet the export demand. However, panel production is 

declining and it fallswell below the level of the previous runs. 

The reason is that panel production is now considered as a sepa- 

rate financial unit which cannot afford to keep up its production 

capacity. Thus, an increase in panels production appears to be 

possible only if it is supported from other product lines. 

Similarly, the use of spruce for mechanical pulp appears unprofit- 

able so that its production is declining. Production of Si-pulp 

(for which spruce pulpwood is used) grows steadily from 5 million 

ton/year to about 10 million ton/year. No spruce is used for 

Sa-pulp but both the use of pine and birch for Sa-pulp increase 

over time so that the total production of chemical pulp increases 

from about 3.5 million ton/year to the level of 7 million ton/ 

year during the planning horizon. Thus chemical pulp production 

somewhat exceeds the amount produced in the first run. 

Paper production in this third run exceeds the level ob- 

tained in both previous runs. The reason is that imported 

pulp is now allowed to be used in paper mills. (Note that in 

the second run, the raw wood supply was the limiting factor for 

paper production.) As a consequence, total paper production 

increased from 5 million ton/year to above 1 1  million ton/year. 

The share of newsprint is about one fifth and the share of 

printing paper one quarter. Only paperboard production appears 

to decline. 

From the production curves of the primary uses of wood, 

i.e., sawn goods, panels and pulp, we may conclude (comparing 

with the second run) that wood resources are again being used 

inefficiently. It appears that, under the assumed price and 

cost structure, fiber (pulp in particular) import to be used 

as raw material in paper mills is more profitable than the use 

of domestic wood raw material. 



6. SUMMARY AND POSSIBLE FURTHER RESEARCH 

We have formulated a dynamic linear programming model of 

a forest sector. Such a model may be used for studying long- 

range development alternatives of forestry and forest based 

industries at a national and regional level. Our model comprises 

of two subsystms, the forestry and industrial subsystem, which 

are linked to each other through the raw wood supply from forest- 

ry to the industries. We may also single out static temporal 

submodels of forestry and industries for each interval (e.g., 

for each five year period) considered for the planning horizon. 

The dynamic model then colnprises of these static submodels 

which are coupled with each other through inventory-type of 

variables; i.e., through state variables. 

The forestry submadel describes the development of the 

volume and the age distribution of different tree species within 

the nation or its subregions. Among others, we account for the 

land available for timber production and the labor available 

for harvesting and planting activities. Also ecological con- 

straints* such as preserving land as a watershed may be taken 

into account. 

In the industrial sutmodel we consider various production 

activities, such as saw milling, panel production, pulp and paper 

milling, as well as further processing of primary products. For 

a single product, alternative production activities employing, 

for instance, different technologies, may be included. Thus, the. 

production process is described by a small beontief model with 

substitution. For the end product demand an exogenously given 

upper limit is assumed. Some products, such as pulp, may also 

be imported into the forest sector for further processing. Be- 

sides biological supply of wood and demand for wood based pro- 

ducts, production is restricted through labor availability, pro- 

duction capacity, and financial resources. Availability of 

different types of labor (by region) is assumed to be given. 

The development of different types of production capacity depends 

on the initial situation in the country and on the investments 

which are endogeneous decisions in the model. The production 



activities are grouped into financial units to which the respec- 

tive production capacities belong. The investments are made 

within the financial resources of such units. External financing 

is made available to each unit up to a limit which is determined 

by the realization value of that unit. Income tax is asswed 
proportional to the net income of each financial unit. 

The structure of the integrated forestry-forest industry 

model is given in the canonical form of dynamic linear programs 

for which special solution techniques may be employed. (See, 

for instance, Kallio and Orchard-Hays 1979, Propoi and Krivonozhko 

1978). Objectives related to gross national product, employment 

and profit for industry as well as for forestry have been formu- 

lated. Terminal conditions (i.e., values for the state variables 

at the end of the planning horizon) have been proposed to be 

determined through an optimal solution of a stationary model 

for the forest sector. 

Two verisons of the Finnish forest sector model have been 

implemented for the interactive mathematical programming system 

called SESAME (Orchard-Hays 1978). Both versions are ten period 

models with each period five years in length. In neither case 

has the country been divided into subregions. The main differ- 

ence between these versions are in the number of production 

activities and in the number of financial units. No distinction 

has been made between the tree species in the smaller version 

whereas pine, spruce, and birch are considered explicitly in 

the larger one. The complete model amounts to 520 rows and 612 

columns in the smaller case, and to 2320 rows and 3188 columns 
for the larger model. 

A few numerical runs have been presented to illustrate 

possible use of the model. Both the discounted industrial 

profit and the discounted increment to the GNP were used as 

objective functions. The results obtained illustrate a case 

where the internal wood price and wage structure results in . 
a rather poor profitability for the forest industries. This 

in turn amounts to an investment behavior which provides insuf- 
ficient capacity for making full use of the wood resources. 



However, because of somewhat hypothetical data used for some 

key parameters, no conclusione based on these runs should be 

made on the Finnish case. 

The purpose of this work has been the formulation, imple- 

mentation and validation of the Finnish forest sector model. 

Natural continuation of this research is to use the model for 

studying some important aspects in the forest sector. For in- 

stance, the influence of alternative scenarios of the energy 

price and the world market prices for wood products would be of 

interest. Furthermore, the studies could concentrate on employ- 

ment and wage rate questions, on labor availability restrictions 

and productivity, on new technology for harvesting and wood 

processing, on the influence of inflation and alternative tax- 

ation schemea, on land use between forestry and agriculture, 

on site improvement, on ecological constraints, on the use of 

wood as a source of energy, etc. Given the required data, such 

studies can be carried out relatively easily. 

Further research requiring a larger modeling effort may con- 

centrate on regional economic aspects, on linking the forest 

sector model for consistency to the national economic model, and 

on studying the inherent graup decision problem for'controlling 

the development of the forest sector. The first of these three 

topics requires a complete revision of our model generating pro- 

gram and, of course, the regionalized data. The second task 

may be carried out either by building in the model a simple input- 

output model for the whole .economy where the non-forest sectors 

are aggregated up to ten sectors. Alternatively, our current 

model may be linked for consistency to an existing national 

economic model. The group decision problem has been proposed 

to be analyzed, for instance, using a multicriteria optimization 

approach (Kallio, Lewandowski, and Orchard-Hays forthcoming) 

wnich is based on the use of reference point optimization 

(Wierzbicki 1979). 



APPENDIX: NOTATION 

Indices 

age group of trees (range 1, ..., N) 
type of forest land 

type of resource for forestry activities 

harvesting activity 

production activity (of the forest industries) 

industrial product 

timber assortment 

planting activity 

tree species 

time period (range I,.. ., T) 

State and control variables 

b(t) stockholders equity at the beginning of period t 

bO = b(0) initial level of stockholders equity 

c (t) cash (and receivableslat the beginning of 
period t 

c0 = c(0) initial amount of cash 

C* terminal requirement for cash 

e(t) = {ej (t) } export (and sales outside the forest sector) of 
forest products during period t 



beginning ba lance  o f  e x t e r n a l  f inan-  
c ing  f o r  p e r i o d  t 

i n i t i a l  ba l ance  o f  e x t e r n a l  f i n a n c i n g  

t e r m i n a l  requi rement  f o r  e x t e r n a l  
f i n a n c i n g  

drawings  o f  d e b t  du r ing  p e r i o d  t 

repayments made du r ing  p e r i o d  t 

import  o f  f o r e s t  p r o d u c t s  du r ing  
p e r i o d  t 

p r o f i t s  o f  p e r i o d  t 

( f i n a n c i a l )  l o s s e s  o f  p e r i o d  t 

p roduc t ion  c a p a c i t y  a t  t h e  beginning 
o f  p e r i o d  t 

i n i t i a l '  l e v e l  o f  p roduc t ion  c a p a c i t y  

t e r m i n a l  requi rement  f o r  p roduc t ion  
c a p a c i t y  

f i x e d  a s s e t s  a t  t h e  beginning of 
p e r i o d  t 

i n i t i a l  v a l u e  o f  f i x e d  a s s e t s  

t e r m i n a l  requi rement  f o r  f i x e d  a s s e t s  

timber asso r tmen t s  i nven to ry  a t  t h e  
beginning o f  p e r i o d  t 

i n i t i a l  l e v e l  o f  t imber  a s s o r t m e n t s  
i nven to ry  

t e r m i n a l  requi rement  f o r  t imber  
a s so r tmen t s  i nven to ry  

l e v e l  o f  h a r v e s t i n g  a c t i v i t i e s  d u r i n g  
p e r i o d  t 

l e v e l  o f  h a r v e s t i n g  i n  a s t a t i o n a r y  
s o l u t i o n  

l e v e l  o f  p l a n t i n g  a c t i v i t i e s  du r ing  
p e r i o d  t 

l e v e l  o f  p l a n t i n g  i n  a s t a t i o n a r y  
s o l u t i o n  

l e v e l  o f  i nves tmen t s  ( i n  p h y s i c a l  
u n i t s )  du r ing  t 

number of trees a t  t h e  beginning o f  
o f  p e r i o d  t 

i n i t i a l  number o f  trees 
t e r m i n a l  requi rement  f o r  t h e  number 
o f  trees 
number o f  trees i n  a s t a t i o n a r y  so lu -  
t i o n  



Parameters  

S 
aaa l  ( t )  

l e v e l  o f  p roduc t ion  a c t i v i t i e s  du r ing  pe r iod  t 

s t a t e  v e c t o r  a t  t h e  beginning of p e r i o d  t 

i n i t i a l  s t a t e  

requirement  f o r  t e r m i n a l  s t a t e  

supply  of t imber  a s so r tmen t s  du r ing  pe r iod  t 

l e v e l  o f  c o n t r o l  a c t i v i t i e s  du r ing  p e r i o d  t 

impor t  o f  t imber  a s so r tmen t s  du r ing  p e r i o d  t 

e x p o r t  o f  t imber  a s so r tmen t s  du r ing  p e r i o d  t 

r a t i o  o f  trees of  s p e c i e s  s and i n  age  group 
a  t h a t  w i l l  proceed t o  age  group a '  du r ing  
p e r i o d  t 

m a t r i c e s  o f  c o e f f i c i e n t s  a:al ( t)  

d i scoun t ing  f a c t o r  

o b j e c t i v e  f u n c t i o n  c o e f f i c i e n t s  f o r  t h e  s t a t e  
v e c t o r  X ( t )  

c o e f f i c i e n t  m a t r i x  f o r  t h e  s t a t e  v e c t o r  X ( t )  
i n  the s t a t e  equa t ion  

p h y s i c a l  d e p r e c i a t i o n  r a t e s  

f i n a n c i a l  d e p r e c i a t i o n  r a t e s  

age i n t e r v a l  i n  an  age group of t r e e s  ( e - g . ,  
f i v e  y e a r s )  

i n t e r e s t  r a t e s  f o r  e x t e r n a l  f inanc ing  

r i g h t  hand s i d e  v e c t o r  o f  c o n s t r a i n t s  f o r  
pe r iod  t 

c o e f f i c i e n t  m a t r i x  f o r  t h e  s t a t e  v e c t o r  X ( t )  
i n  c o n s t r a i n t s  f o r  pe r iod  t 

mat r ix  r e l a t i n g  p l a n t i n g  a c t i v i t i e s  t o  t h e  
i n c r e a s e  i n  t h e  number of t r e e s  

o b j e c t i v e  f u n c t i o n  c o e f f i c i e n t s  f o r  t h e  con- 
t r o l  v e c t o r  Y ( t )  

c o e f f i c i e n t  m a t r i x  f o r  t h e  c o n t r o l  v e c t o r  Y ( t )  
i n  t h e  s t a t e  equa t ion  

ma t r ix  r e l a t i n g  h a r v e s t i n g  a c t i v i t i e s  t o  t h e  
dec rease  i n  t h e  number o f  t r e e s  

c o e f f i c i e n t  m a t r i x  f o r  t h e  c o n t r o l  v e c t o r  Y ( t )  
i n  c o n s t r a i n t s  f o r  p e r i o d  t 

l a b o r  requirement  f o r  d i f f e r e n t  p roduc t ion  
a c t i v i t i e s  

t a x  f a c t o r s  f o r  t h e  i n d u s t r i e s  du r ing  pe r iod  t 



upper l i m i t  t o  e x t e r n a l  f inanc ing  a s  a 
percentage o f  t o t a l  a s s e t s  l e s s  s h o r t  term 
l i a b i l i t i e s  

r i g h t  hand s i d e  vec to r  f o r  t h e  s t a t e  equat ion 
of per iod t 

input-output matr ix  f o r  t h e  f o r e s t  i n d u s t r i e s  

s tock  i s sued  dur ing  per iod t 

d i r e c t  u n i t  product ion c o s t s  

exogeneously given c o s t s  

upper bound on demand of f o r e s t  products  

f i x e d  c o s t s  (per  u n i t  of product ion capac i ty )  

land requirement o f  t h e  s p e c i e s  i n  va r ious  
age groups 

land a v a i l a b l e  f o r  f o r e s t s  

i d e n t i t y  matr ix  

o b j e c t i v e  func t ion  c o e f f i c i e n t s  f o r  ha rves t ing  
a c t i v i t i e s  (an example) 

o b j e c t i v e  func t ion  c o e f f i c i e n t s  f o r  p lan t ing  
a c t i v i t i e s  (an example) 

investment c o s t s  pe r  capac i ty  u n i t  

l abor  a v a i l a b l e  f o r  f o r e s t  i n d u s t r i e s  

upper l i m i t  on import of f o r e s t  products  

number of a g e g r o u p s f o r  t r e e s  

p r i c e s  of f o r e s t  products  

matr ix  o f  capac i ty  requirements f o r  production 
a c t i v i t i e s  

resources  a v a i l a b l e  f o r  f o r e s t r y  a c t i v i t i e s  

resource  usage of p lan t ing  a c t i v i t i e s  

resource  usage of ha rves t ing  a c t i v i t i e s  

matr ix  t ransforming t h e  t r e e s  harvested i n t o  
volumes of t imber assor tments  

number of time per iods  

usage o f  t imber assor tments  by va r ious  pro- 
duc t ion  a c t i v i t i e s  
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OPERATIONAL USE OF MULTlPERlOD LP MODELS FOR PLANNING 
AND SCHEDULING 

A.T. Langeveld 

Koninklijke/Shdl- Laboraton'um, Amstenlam 
(Shell R~~eiwch B. V. ) 

In t h i s  paper we concentrate on the operational use of large multiperiod LP models for the 
planning and scheduling of plant operations, and the problems it poses for the rnethodol- 
ogy of largexale linear programming. A number of requirements from the operational 
environment are listed. On the basis of an example (refinery planning,tcheduling) it i s  
shown that the structure of multiperiod models can be employed to reduce computation 
times. It is argued that modem electronic equipment can facilitate the input and output 
of large LP models, especially for non-LP specialists. An area of algorithmic research is 
indicaard. 



g ~ e r a t i o n a l  environment 

Linear programing can be a very he lp fu l  t o o l  i n  t h e  planning 

and scheduiing o f  p lant  opera t ions .  Multiperiod LP models can be 

construczed t o  express t h e  dynamic r e l a t i o n s h i p s  betveen t h e  opera t ions  

o f  t h e  var ious  processing p l an t s .  i2 a c t u a l  opera t ions  t h e s e  models v i l l  

have t o  be used on a day- today bas i s  by people vho a r e  not f ami l i a r  

with t h e  i n t r i c a c i e s  of large-ecaie P. In such an environment s p e c i a l  

c a p a b i l i t i e s  a r e  required  from t h e  LP p lan t  of t h e  p imning/schedul ing 

systems. Eere ve list a number of these  opera t ional  requirements:  

- input  and output must be understandable t o  t h e  planner/scheduler:  it 

nust  b e  pos s ib i e  f o r  him t o  checir e a s i l y  t h e  input  da t a  and j-e t he  

L? out?ut ,  ? r e fe rab ly  i n  h i s  own language and terminology; 

- t h e r e  i s  a need t o  adapt t h e  L' outcome t o  s a t i s f y  ope ra t iona l  

requirements t h a t  can not be spec i f i ed  v i t h i n  t h e  i? framevork; 



- successive 2 runs are  usually re la ted  t o  each other: e i t he r  the new 

i s  a modification of the previous run; or  the new run covers a 

time in terval  largely overlapping the  time in t e rva l  of t he  previow 

run (moving time frsmc); 

- the turn-around time of the LF' must be short: i n  day-today use 

anavers should be available v i th in  an hour; 

- cost  m a t  be low; 

- the  system vill have t o  be rm on di f ferent  computers. 

Structure of multiperiod LP models 

Eff ic ient  solution of la rge  models requires m analysis of 

t h e i r  character is t ics .  We i l l u s t r a t e  such an analysis fo r  a t yp i ca l  

multiperiod refinery scheduling model. 

For the daily scheduling o f  refinery operatiom use i s  mule 

of refinery models describing the  processing and i n t e m d i a t e  storage 

of hydrocarbons ("msterials") . Rocessing uni ts  transfoxm hydrocarbon 

s t r eam in to  other hydrocarbon s t r e a m  through a number of "modes of 

operation" (see  'J6asdox-p and Van Aes. 1975). each mode being speci f ied  

by i t s  marimurn throughput and the  y ie ld  d is t r ibut ion .  The scheduler 

should dete-mine for  each day and each processing uni t  vhich w d e  i s  

run. k severe r e s t r i c t i on  i n  the  operation of the  processing unit8 i s  

the  l imited ranirage fo r  intermediate hydrocarbon s t r eam.  Variables i n  

the w a e l s  are  the d d l y  throughputs of t he  v a r i o u  wdes  of the  

processing uci ta ;  constraints describe the  tankage l imi ta t ionr  fo r  each 

material  and the  throughput r e s t r i c t i ons  fo r  each w d e  m d  each proces- 

sing .x.it. The resul t ing  multiperiod LF' model then har the  folloving 

s t ructure :  

< %  1 m e r i a l  tankage 
< :3 conrtrainta 



L1 < Bx, < 

L2 < Bx2 
L < Bx 

< 
, u n i t  t h r o w p u t  

3 03 c o n s t r a i n t s  

In t h i s  formulation xt represen ts  t h e  vector  of var iab les  i n  t ime period 

t ;  t h e  matrix A describes t h e  production c a p a b i l i t i e s  of t h e  modes. 

Usually, t h e  ob jec t ives  of  such models r e l a t e  t o  cumulative 'production: 
N 

marimize o r  minimize cT 4, where C i s  a known vector  which is 
t =  1 "T 

constant f o r  each time period; C' denotes t h e  transposed of  C.  

In such models one can introduce cumulative var iab les :  

(defined i n  t h e  usual  way: componentvise ). The model s t r u c t u r e  then 

becomes : 

< Ayl 

l2 < 
Ay2 mater ia l  tankage 

13 < Q3 
I 

c o n s t r a i n t s  

1 < 
-N 

Such a w d e l  might be s i g n i f i c a n t l y  quicker t o  solve,  because t h e  

densi ty af t h e  matrix of t h e  cumulative m d e l  i s  usually l e s s  than t h e  

dens i ty  of  t h e  "standard" formulation. T y p i c d  examples a r e  shown i n  

Table I ,  vhere we have co l lec ted  some of our computational experiments. 

it shows t h a t  t h e  dens i ty  o f  t h e  cumulative model i s  indeed l e s s  than 

L. C By, < Y, 
L? < - a ~ ,  +  BY^ c s '  

U2 
\3 < -ByC + By3 <:3 

I I 

uni t  throughput 

c o n s t r a i n t s  

% <  - B y N - ,  + 3yN < VN 



COPlPARISCN OF ML%TIPDISD HODEL5 WITH NON-CUMILATIVE AND CUMULATIVE VARIABES 

(USE WAS ,MADE OF WSX/370 ON I N  310/168) 

1 Model s i z e  Stmdard formulation Cumulative formulation I 

(minutes 1 

0.37 20 1 0.23 



t h a t  gf t h e  standard formulation. r e s u l t i n g  i n  a reduction of  t h e  compu- 

t a t i o n  time; surpr i s ing ly ,  t h e  number of  i t e r a t i o n s  was of ten  higher f o r  

t h e  emulative m d e l s .  

Another c h a r a c t e r i s t i c  o f  such a mult iperiod LP model is t h a t  

there  e x i s t  many optimal solut ions:  an exchange of  values of non- 

cumulative var iab les  between two periods does not change t h e  value of  

t h e  ob jec t ive  function (due t o  t h e  nature o f  t h i s  func t ion)  and is o f t e n  

allowed by t h e  cons t ra in t s ,  espec ia l ly  vhen t h e  time periodd a r e  adjacent .  

This  obsermt ion  p lays  a c r u c i a l  r o l e  i n  t h e  adaptat ion of t h e  LP out- 

comes, a s  we s h a l l  see l a t e r .  

Use of mdern  equipment 

To s a t i s f y  t h e  f i r s t  opera t iona l  requirement f o r  an LP-based 

scheduling system (user-understandable I/O) we have b u i l t  a  minicomputer 

system t o  handle t h e  input and t h e  output of t h e  LP. This  system has t h e  

fo i lov ing  c o ~ i c a t i o n  s t ruc ture :  

display 

mini- 
d a t a  cen t re  

computer mainframe 
computer 

I h e  sche tu le r  s p e c i f i e s  t h e  i a t a  t o  t h e  minicomputer using t h e  v i s u a l  

d i sp lay  ur.it, e i t h e r  by f i l l i n g  i n  f o r m  on t h e  d i sp lay  o r  by c a l l i n g  

da ta  already s tored  i n  t h e  minicomputer. The information on the  screen 

r e i a t e s  t o  the  scheduler ' s  language, without LP jargon. The schedule 

can e a s i i y  checir t h e  data,  if he f inds  it necessary. using VDU o r  

p r i n t e r .  m.e minicomputer then cons t ruc ts  t h e  A and B matrices,  t h e  

r i g h t  and lef' .  hand s i d e s  of  the  LP matrix and t h e  ob jec t ives  ( i f  any). 

Via telephone l i n e s  t h i s  information i s  sen t  t o  a  d a t a  cen t re  computer 

i t h e  minicomputer a c t s  a s  a  remote batch te rmina l ) .  where t h e  LP matrix 

i s  ~ O n S t ~ c t e d  and t h e  LP run i s  c a r r i e d  out .  The r e s u l t s  a r e  sen t  back 

t o  t h e  minicomputer snd a r e  t r a n s l a t e d  i n t o  t h e  terminology of  t h e  

scheduler and presented on h i s  VDU o r  p r i n t e r .  



Tt.e minicomputer syrtem can thus be seen a s  a tailor-made 

matrix genera tor l repor t  v r i t e r .  We have found t h i s  system very convenient 

f o r  t h e  i n t e r a c t i v e  process of  specifying LP input d a t a  f o r  mult iperiod 

scheduiing models. 

Adaptation of  L? r e s u l t s  

Usually t h e  LP models do not describe all t h e  opera t iona l  

requirements of  t h e  re f inery .  For ins tance ,  one would l i k e  t o  keep t h e  

number of  m d e  switches on a proceasing u n i t  low; o r  a p a r t i c u l a r  

operat ion could b e t t e r  start during t h e  dry than in  t h e  n igh t .  Such 

requirements a r e  not  easy t o  model within t h e  LP framework. 

Fortunately.  a s  explained e a r i i e r ,  these  m i t i p e r i o d  LP m d e l s  

contain m ~ y  ~ p t i m a l  so lu t ions ,  o f  which t h e  LF' code rill only present  a 

few bas ic  optimal solut ions.  In our system t h e  scheduler  can use an 

optimal LP so lu t ion  a s  a start; v i t h i n  t h e  s e t  of op t imr l  LF' s o l u t i a n s  

he can t r y  t o  f ind  another optimal so lu t ion  which he th inks  m a t  appro- 

p r i a t e  i n  view of  t h e  opera t iona l  requirements. On t h e  minicomputer ve 

have developed a l g o r i t h m  t o  allow t h e  scheduler  t o  adapt t h e  LP outcome 

without becoming unfeagible and a l s o  r e t a i n i n g  opt imal i ty .  The f i n a l  

scneduie v i l l  not  necesss r i ly  be a bss ic  so lu t ion ;  on '.he cont ra ry ,  i n  

view of t h e  u n c e c a i n t i e s  o f  t h e  fu ture .  t h e  scheduler  v i l l  p r e f e r  

schedules than can withstand t h e  i n e v i t a b l e  changes in circumstances a s  

much a s  poasib:ef. 

;n t h e  hrll cycle of  input s p e c i f i c a t i o n ,  LP run, output  

checklng, and adaptat ion of LP r e s u l t s  t h e  last a c t i v i t y  t s k e s  most of 

t h e  time : 50  5 ) .  

Almrit'nm research 

The above approach has a number of p r a c t i c a l  d i f f i c u l t i e s :  

- t h e  cost  o f  running l a r g e  LF"s during t h e  day i n  a d a t a  cen t re  i s  high: 

one had t o  run on high p r i o r i t y  o r  ob ta in  a reasonable turn-mound 

t i n e  and t h e r e f o r e  the  highest  t a r i f f s  apply; -- 
Work has been done a t  our l a b o r a t o r i e s  on t h e  f l e x i b i l i t y  proper t ies  

of  so lu t ions  of  LP models. This work i s  reported i n  a Ph.D. Thesis  

!Van der Vet, 1980). 



- lov-priori ty runs are usually carried out during the night;  i f  a run 

f a i l s  (e.g. due t o  wrong input one vould lose a f u l l  24 hours: turn- 

around becomes too long; 

- since data centres have many customers, it v i l l  happen tha t  turn- 

around times exceed the required times despite the  high p r io r i t y ;  

- vhen LP-based systems as  described above are t o  be wed  by di f ferent  

ref iner ies ,  then d i f ferent  data centres vill be used and di f ferent  

mainframe computers v i l l  have t o  be accessed. So f a r  ve have experience 

v i th  IBM computers using KFSX as  LP package, and v i th  Univac computers 

using FMPS. 

The question arose, of course, vhether it vould be poasible t o  solve the  

multiperiod LP on the  on-site minicomputer. In the  current s t a t e  of 

minicomputer technology standard LP codes (based on the  simplex method) 

K e  available vhich are  capable of solving problem up t o  800 variables/  

constraints*.  I t  i s  surprising tha t  there i s  s t i l l  a aeed for  LP codes 

and algorithms for solving relazively big LP problems on r e l a t i ve ly  

small computers: 20 years a f t e r  the  publication of decomposition methods 

the same problem area tha t  generated these methods s t i l l  ex i s t s  despite 

the developments in computer technology. 

3ne of t he  consequences of the day-to-day w e  of these  mdels  

i s  ?hat most runs ~ e ' r e l a t e d  t o  each other ( s l i gh t ly  d i f ferent  data. 

moving timeframel. A t  each nev LP run the  scheduler faces the  s i tua t ion  

in  vhich he has available a sa t i s fy ing schedule [from the  operational 

point of v iev) .  vhich i s  s l i gh t ly  unfeasible i c r  h i s  nev LP run. Use of 

LT brings him back t o  some undesirable basic solution fo r  vhich he has 

again t o  spend a l o t  of time t o  bring it up t o  operational standards. 

Therefore, ve believe that  the  s c i en t i f i c  vcrid should pay a t tent ion  t o  

the  folloving area of algorithmic research: it vould be useful t o  have 

al,-orithns tha t  accept a s l i gh t ly  unfeasible conbasic s t a r t i ng  point and 

f icd  an optimal and feasible soiution in the  "vicinity" of the s t a r t i ng  

~ 0 1 n t .  

ilecently ve became a w e  of a program called LAMPS, developed by 

J. Forrest fo r  32-bit minicomputers. vhicb i s  claimed t o  solve LP 

problems v i t h  severa: thousands of variables nnd constraints v i th in  

tn, tours.  



Ye have s t a r t e d  vork on approximating ( i t e r a t i v e )  techniques 

f o r  soiving LP problems ( A w n ;  Motzkin and Schoenberg; O e t t l i ) .  O u r  

f i r z t  r e s u l t s .  even on sma l l  problems, vere  r a t h e r  disappointing:  

convergence i s  very slov.  Hovever. using simple ex t rapola t ion  techniques 

ve speeded up convergence by a f a c t o r  of t e n ,  but a l o t  of  vork hsp a s  

ye t  t o  be done before t h i n  method can be of  p r a c t i c a l  value. Similarly.  

ve have experimented v i t h  ilhachian's method (1979) and found s i m i l a r  

convergence c h a r a c t e r i s t i c e .  

Conclusions 

A c l s p s  of large-scale l i n e a r  progranming models a r e  multi- 

period models f o r  t h e  planning and scheduling of p lan t  operat ions.  Such 

mult iperiod models have s p e c i a l  c h a r a c t e r i e t i c s  vhich can be employed 

in  t h e i r  solut ion.  Ye have s h o w  t h a t  model formulation (cmrmlative . 
versus non-cumulative v a r i a b l e s )  plays an important r o l e  i n  t h e  so lu t ion  

e f f ic iency .  Further  vork could be done on s p e c i a l  algori thms t o  employ 

t h e  mult iperiod s t ruc ture .  

For opera t iona l  use of large-scale I9 models it is of v i t a l  

impor.ance t h a t  easy means e x i s t  t o  spef icy  and check t h e  LP input and 

t o  judge t h e  LP output. Inetead of  t h e  e x i s t i n g  t m e  of matrix 3enera tc rs l  

repor t  v r i t e r s  use could be made of present-day e l e c t r o n i c  equipment such 

s s  v i sua l  d i sp lay  .anits, minicomputers and d a t a  communication l i n k s .  In 

our exenple of  d t i p e r i o d  2 models f o r  r e f i n e r y  scheduling ve have 

shovn t h a t  t h i s  route is c e r t a i n l y  viable.  

Equally imponanc i n  t h e  operational .use of large-scale LF i s  

che f a c t  chat the  LP r e s u l t  may not be t h e  des i red  aasver t o  t h e  

p r a c t i c a l  question. The LP so lu t ion  i s  very of ten  only a s t a r t i n g  point 

f o r  Further manipulation, and t h e r e f o r e  t h e  LP s t e p  needs t o  be r e l i a b l e  

acd t o  take  a minor porrion of t h e  time f o r  t h e  t o t a l  a c t i v i t y .  

Ye have indicated t h a t  t h e r e  i s  s t i l i  s need f o r  algori thms 

and codes t o  solve L? problem on r e l a t i v e l y  smail  computere. Such codes 

should be a s  machine-independent as poesible.  In t h e  l i g h t  of  t h e  ever- 

increas ing  power of computers one has t o  be prepared f o r  a s i t u a t i o n  i n  

vhich a p a r t i c u l a r  appl ica t ion  nov running on a small dedicated :omputer 



w i l l  eventually be switched t o  a =re  powerful dedicated computer 

in which standard LP techniques can be applied.  This i n d i c a t e s  t h a t  t h e  

input  and output of LP codes need t o  be standardized,  even f o r  spec ia l  

codes on small computers. 

As multiperiod planning models a r e  of ten  run on a regular  

bas i s  v i t h  a s h i f t i n g  timeframe and s l i g h t l y  modified d a t a  (aa more 

prec ise  da ta  on t h e  fu ture  become a v a i l a b l e )  t h e r e  is a need t o  use t h e  

l a s t l y  obtained adapted LP so lu t ion  a s  t h e  b a s i s  f o r  t h e  nev run. 

Currently,  t h e r e  a r e  hardly any techniques t o  dea l  v i t h  s i t u a t i o n s  i n  

which m e  would l i k e  t o  f ind  a non-basic optimal f e a s i b l e  so lu t ion  c l o s e  

t o  an a r b i t r a r y  s l i g h t l y  unfeasible s t a r t i n g  point .  

Our vork on approximating ( i t e r a t i v e )  LP techniques ( A w n ;  

Yotzkin and Schoenberg; O e t t l i ;  Khachian) shovs t h a t  a l o t  o f  work has 

a s  ye t  t o  be done before such methods become of p r a c t i c a l  value. 

June 198C 
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1 MODUCTION 

We consider the  following dynamic input output model 

P r o ~ r a m  P 
T 

U w  z U(dt). 
t-l 

z t + l  - ut + Y t + l -  

T 
where - U(d ) i s  a u t i l i t y  funct ion v i t h  respect  to  t and t 

t-1 
U ia a nondecreasing funct ion of d 

t' 

- A is a matrix of in t e r sec to ra l  technical  c o e f f i c i e n t s ,  

- B is an investment coe f f i c i en t  matrix. 

- X and Y a r e  respect ively  the a c t i v i t y  and investment l e v e l s  
t t 

of t h e d i f f e r e n t  sec to r s  of the  economy i n  period t ,  

- Z is the c a p i t a l  s tock vector  of the  var ious  s e c t o r s  of the  
t 

economy i n  period t. 

Uodels of t h i s  type a r e  v e l l  known and usual ly  take much more 

complicated forms than the one considered here.  I n  t h i s  paper ve 

take up the pa r t i cu la r  case vhere it i s  des i red to  d e t a i l  i n  the  

model the  representa t ion of several  sec to r s  of the economy. This 

problem i s  cormnonly encountered i n  environmental and energy planning 

problems [ 11 [ 41 [ 111 vhere s t r u c t u r a l  changes a r e  expected i n  va- 

r ious  sec to r s  of the  economy. Expanding the representa t ion of some 

sec to r s  of the economy usual ly  leads  t o  r a the r  complex and l a rge  



models which may be d i f f i c u l t  to  solve. It is the purpose of t h i s  

paper to  propose a systematic modeling approach for  t h a t  problem 

as  well as  a special purpose algorithm for  handling the resul t ing 

model. The discussion is presented on a model derived from the 

simple inputloutput model (PI; the reader can eas i ly  convince himaelf 

tha t  the procedure remaim val id for  w r e  complex models including 

various coamtraints such as  import export balance, employment objec- 

t ives ,  saving formation ... . 
In the f o l i w i n g  we s h a l l  assume t h a t  the s o t  of sectors  of 

the economy is partitionned i n  tro subsets E and NE, where E desi- 

gnates the se t  of sectors f o r  vhich we want to adopt a w r e  refined 

tachnological description and NE those fo r  which we accept the input 

output representation. This part i t ioning was already introduced 

and exploited by several authors before ([ 21 [ 91) i n  tho context of 

energy modeling. Ue s h a l l  denote by zNE, xNE and yNE the vectors 

formed by the NE components of 2, X and Y respectively. A detai led 

representation of the E sectors  w i l l  usually require the introduc- 

t ion  of addi t ional  goods compared to  the input output representation. 

Ue sha l l  assume i n  the following tha t  t h i s  extension has been made. 

Ue then define 

as  the matrices of the vectors associated with xKe and yNE rerpec- 

t iva ly .  The submatrices and BNEvNE a re  d i rec t ly  extracted 

from A and B respectively; tho matrices A E v m  and BE** are  obtained 



by expanding the  corresponding submatrices of A and B t o  take  i n t o  

account the  add i t iona l  goods introduced i n  t h e  model when disaggre- 

ga t ing  the  E s ec to r s .  h i s  expansion i s  i l l u s t r a t e d  on f i g u r e  I .  

I n  the  r e s t  of t h i s  paper we s h a l l  adopt t h e  following represen- 

t a t i o n  of the  E subsystems. To each E s e c t o r  i ve a r s o c i a t e  the  s e t  

K.  of the  equipments c o n s t i t u t i n g  the  sec to r .  By d e f i n i t i o n  we s h a l l  

say t h a t  an  equipment i s  character ized by a unique capaci ty  va r i ab le .  

P l an t s  t h a t  do not s a t i s f y  t h a t  condi t ion v i l l  have t o  be disaggrega- 

ted ir. such a vay t h a t  the  a s s q t i o n  i s  v e r i f i e d .  An example of 

NE NE 

NE 

Pig. 1 : Decomposition and expansion of t h e  A and B matr ices  

ANEsNE 

expanded 

matr ix  

NE 

expanded ener- 
gy goods s e t  ' 

B ~ ~ ' ~ ~  

expanded 
&NE 
matrix 



t h i s  s i t u a t i o n  i s  given by pumping s torage i n  pover generation which 

needs to be disaggregated i n  tvo equipments : the  r e se rvo i r  and t h e  

r eve r s ib le  pumps. 

Let S (Z ) denote the  production s e t  corresponding t o  a capa- 
i k  i k  

c i t y  Zik of the  equipment k i n  sector  i. We s h a l l  assume S 
ik('ik) 

t o  be described by a s e t  of l i n e a r  i n e q u a l i t i e s  of the  form 

where Cik and flik a r e  respect ively  a matrix and a vector  and Eik i s  

the vector  of goods (E and NE) produced and consumed by the  equip- 

ments. I n  order  t o  s impl i fy  the  nota t ion,  we assume that the  non- 

nega t iv i ty  cons t ra in t s  on the  E have been included i n  the d e f i n i t i o n  

of Sik(Zik). 

Using t h i s  nota t ion we s h a l l  def ine  the following expanded 

form of the dynamic I10 model. 

Etik E Sik(Ztik). k E Ki and i E E (1.9) 

where - Bik i s  the  vector  of goods (E and NE) conslmed by an inves- 

tment of a un i t  capaci ty  i n  plant  k of sec to r  i and Y t i k  

denotes the quant i ty  invested i n  tha t  p lant  i n  period t. 



- A is a matrix which takes into account the obsolescence of 
the capital stock of the HE sectors and the technical ser- 

vice life of the E sector equipments. 

It may be that for some applications the size of the problem is 

sufficiently large to preclude the treatment of the problem by a 

straight simplex algorithm. In the following we present an algorithm 

for dealing with this situation. 

2. PRELIMINARY REMRKS : A REMIMVEK OF NESTED DECOMPOSITION 

We consider the dynamic problem pC defined precedingly. Aa in 

many plarming models, the variables of the problem can be categori- 

zed in t w  groups namely operations and capacity variables. Opera- 

tions variables relative to a period t only appear in constraints 

(1.8) (1.9) and (1.10) which involve variables of that period. 

Capacity variables appear among other things in constraint (1.11) 

which involve variables of the two successive periods. The set of 

non zero elements of the constraint matrix will thus exhibit a clas- 

sical staircase structure. Denoting by Cl the set represented bjf t 

the constraints (I .O to (I. 10) by rt the vector (rp (ctik; 

k E Ki, i E  E), dt). One can write the problem in the form 

Program SC 

T 
nax z V(xt) 

t- 1 



Several algorithms based on the decomposition principle or on 

particular block factorizations of the basis have been proposed to 

handle ataircase problcmr. Among these approaches, the nested 

decomposition algorithm is certainly the one vhich has received the 

most systeutatic attention : it has been described in several publi- 

cations 151 [ 61 as well as implemented and tested on various dynamic 

linear problems; it has also been extended by O'Ieill [ 81 to non- 

linear problems. 

The principle of the nested decomposition algorithm is to 

replace the solution of a large problem such as SC by the repeated 

solution of a set of T smaller problems. A set of T problems is 

constructed by the algorithm at each major iteration or cycle. We 

shall denote these cycles by an upper index IC. The problems of the 

set are of the following form : 

Problem S P ~  - 



Problems 59: : (defined for t = 2. . . . . T-I) - 
zK t - max V(xt) + P: At + <+, AZt, 

Problem SP; - 

The justification of the procedure is given in 1 51 and [ 81 and 

will not be repeated here. For the clarity of the presentation. we 

shall hwever give an economic interpretation of some of the syabols 

appearing in the statement of the models and in particular of nK 
t 

and Q:. Strictly speaking < and <. t = T - 1. .... 2. are the 

vectors of the dual variables relative to the constraints (2.6) and 

(2.10) of the program 5pK and SP' respectively : for each cycle. 
T t 

JI:+, is obtained from S P ~ ~  and used to construct SP: : this opera- 

tion is performed for t varying from T-1 to I. Intuitively a com- 

ponent of ir the value for the rest of the horizon of a unitary 

capacity of the equipmeat involved in the equation corresponding to 

that component in the constraint (2.3). The idea of program SPK 
t 



ir thur to choose tentative production, conrumption and invertment 

vectors in period t, taking into account the value for the reat of 

the horizon of the capital stock fontarded to futrue periodr. < 
and < have a somevhat different interpretation : for every cycle 
K the problem SPY determiner a vector of capital stock for the E 

t 

and RE rector8 in period t d an evaluation of the utility thot 

can be attained up to that period. Uore precirely the vector q 
K+ 1 
t+ 1 

ir the vector -AZ h e r e  Z ir the optimal Z vector of problem SP'. 
t t t' 

rimilarly pK+' ir the optimal objective function value of SP:. It 
t+ 1 

ir VOrthWile to note for the requel of the paper that, because A 

and Z are by nature nonnegative. q ir a non positive vector. It ir 

reen that each problem SP: determines its optimal capital mix by 

codining different capital structures inherited from the past vith 

nev invertmantr. 

We sh.11 s h w  in the folloving sections t h t  nested decomposi- 

tion. vhen applied to problem PC can be combined with column genera- 

tion to produce rubprobleme that have a number of conrtraints equal 

to the total number of goods produced and consumed in the economy 

plur one, thus allwing one to eliminate the technological constraintr 

describing the equipments and the capital good conservation (1.9) to 

(1.11). In order to proceed tovard that discusrion. ve firrt intro- 

duce some additional notions. 

Let S (I) be the production set of a unit capacity of equip- 
ik 

ment (i.k); ve rhall assuma that this set is bounded and contains 

the origin : it is clear that thin assumption is not really restric- 

tive in practical case. 



A s  w i l l  be seen l a t e r ,  the extreme points of S ( 1 )  w i l l  play a 
i k  

ro le  somewhat analogous to  the columns of the input output matrix. 

For t h i s  reason. we sha l l  write these extreme points, using a simi- 

l a r  notation and define 

(Aike I e E Lik) (2.16) 

as  the s e t  of extreme points of S (1). ik  

We assume tha t  we a re  dealing with problems for  which extreme 

points of the production s e t s  a re  e u y  to obtain. [ 101 shows tha t  

it is indeed the case fo r  energy models where the extreme points of 

the S ( I )  can always be obtained e x p l i c i t l y  by a one pass algorithm. ik  

The fol l 'wing addi t iv i ty  property of the production s e t  will be 

useful l a t e r .  

Lamu 1 : Any production s e t  chamcterized by a miqua capacity 

v a r i a b t  and s d i s f i i n g  the definitCon erpreesed i n  the 

1 2 2 relat ion 11.6) s a t G f i e s  S(Z ) + S(Z ) - S(Z' + Z ) 

Proof : the proof of the c re la t ion  i s  obvious. In order to  prove 

2 
the we consider a point E belonging to S(Z' + Z ). 

Defining 

- - 

1 2 1 2 
It is c lear  tha t  6 and 6 belong respectively to S(Z ) and S(Z ) 

which proves the lemma. 

0 



Before going into the application of the nerted decomporition 

approach to problem PC, it may be useful to ray a feu vordr about 

the rolution procedures chat can be applied to problem S P ~ ,  Variour t 

wthodr can be contemplated for rolving SP:; in thir paper we shall 

arrume that we ure a reduced gradient type approach. We rhall not 

elaborate here on the relative marits of that type of algorithm com- 

pared to other methodr. The use of reduced gradient algorithm for 

rolving sPK ir mainly jurtifiad in our context by the fact that it 
t 

ir compatible with a column generation procedure vhich ir the proce- 

dure chat we shall ure later, to rhow how each problem SP: can be 

tranrformed into a new problem with fewer constraints and a large 

number of colu~mr which are only k n a m  implicitly. Since it ir 

clear that we do not want to enumerate all thore columns they vill 

have to be generated only when required. This is performed natural- 

ly in a rimplex type approach when computing the reduced cost of 

muimal value over the net of those unknown columns. 

3. A COMBINATION OF MESTED DECOMPOSITION AM) COLUIW GENERATIO9 

According to the dircusrion of the preceding section, one can 

vrite the rubproblem generated by the nerted decomposition approach 

applied to PC as followr : 

Problem SP: 
- 



We shall n w  indicate h w  a column generation procedure can be 

applied to this problem in order to transform S P ~  into a nev problem 
t 

that only contains a number of constraints equal to the number of 

goods + I. 

In order to simplify the notation. ve shall drop in the rest 

of the presentation all indices K and t. In particular. the multi- 

pliers and lIK will be denoted as and TI respectively. Let us 
t 

assume that Q contains exactly K columns and let QP denote one of 

these : the subvector of QP corresponding to the NE goods will be 

noted an Q ~ * ~ ~ ,  while the component of QP corresponding to an equip- 

ment k of the energy sector i will be noted QPik. The proposed pro- 

cedure is based on the fact that the Stik belonging to Sik(Zik) 

can be represented very easily as convex combination of vectors 

that are quite easy to obtain. Briefly speaking the sets S 
ik('ik) 

can be replaced by s u m  of the type 

K 
Sit (- Q L  Ap) + Sik(Yik). (3.7) 

P-1 

where the extreme points of each set in the sum are easily to ob- 

tain. In order to discuss this systematically. ve define the pro- 

duction set associated with the capital stock QP. let 



Eik E s~~(-$~); k E K ~ .  i E E). (3.8) 

Program SP: considers convex combinations of different capital 

stock vectors - QP : ve first shov that the same convex combinations 
allows one to mix the production sets DP. This is stated in the 

folloving leuma. 

temrp 2 : OkB ha8 for aLL vector8 X 0 

K 
P D = {n I n - A. wm P + 2 c,; cik E s~~((-~!x)~J; 

PI ik 

K 
Proof : Let r, be an element of Z D ~ X  One can write 

PI p' 

By definition of qP, there exists xPsm and cek such that 

nP - xPsm + P c:k, 
ik 

Combining these relations, one can write 

K K 
with 0 < xpsn < -E QpvNE 1 

D- I D-1 P 
K K K 

and P CP 1 E P s 1 )  - s (- ?k ip) 
P- 1 1k fJ p-1 P-1 



To prove the converse, we consider TI equal to 

for some vector xNE and E such that 

Eik E sir((+) ik). 

Because of 1- 1,  one can find xPvNE and c!~ such that 
0 < xPtrn < -Qp'm, 

The proof follows then trivially. 

In order to proceed tward a new problem equivalent to SP we 

first introduce a few additional notation. We first consider the 

capital vector QP and its associated production sets DP. The ope- 

rations of an economy of capital structure QP can be completely 

described by the extreme points of DP. Since these points will 

roughly play the same role as columns of the A matrix we shall 

denote then using a similar notation A where 11 is a current index 
DP11 

taking its values in a set L We also denote X to be the acti- 
DP' DPL 

vity level of A in the economy. Consider n w  the vector yNE of 
D P ~  

new capacities in the non energy sectors. Ve define vm to be the 



vector  of these  nev capac i t i e s  vhich r a m i n s  i d l e  dur ing the  cu r ren t  

period and x + ' ~ ~  the amount of t h a t  new capaci ty  a l ready operated 

dur ing the  period. To x + ' ~  i e  thus associa ted  a con t r ibu t ion  

t o  the  b i l l  of goods, while vNE only con t r ibu te s  f o r  BaeNE vNE. 

Fina l ly ,  we c r i d e r  the  new c a p a c i t i e s  of t he  energy sect ion.  

Aa already introduced before  Ailrll des ignates  an  axt rene  po in t  of 

Sik(l) .  We l e t  Xikp denote the  a c t i v i t y  l e v e l  associa ted  with Aikp 

and Vik the newly invested capaci ty  t h a t  remains i d l e  dur ing the  

period. The contr ibut ion t o  the  b i l l  of goods due t o  the  new capa- 

c i t y  is then 

m d  the  newly invested capaci ty  

Using t h i s  nota t ion.  ve can then introduce nev equivalent  problem 

spr a s  fo l lovs .  

Let A , II E L the  extreme points  of DP,  one then introduces 
DPII DP 

the  problem SPr vhich s h a l l  be proved t o  be a s u b s t i t u t e  f o r  SP i n  

the  decomposition approach. 

Program Spr 

+ Z x (P-TQ)~ x , 
p-l E L  DpII 

DP 



It is clear that the number of constraints of SPr is equal to 

the number of goods plus one. In the folloving, we shall denote by 

p and a respectively the multipliers associated with the constraints 

(3.11) and (3.12) respectively. 

Before atating any equivalence property between SP and sPr, it 

is necessary to indicate exactly what it meant by that notion in the 

context of the nested decomposition approach. 

It has been recalled at the beginning of this section that the 

implementation of the nested decomposition algorithm requires at 

every cycle and for each problem SPK the vector IIt+, Of multipliers t 

associated to the constraints (3.5) of SP:+,. In order to define 

SP:+' it is also necessary to know the capital stock vector at cycle 

K generated by the problem SP:. More precisely it can be shown on 

the basis of [ 8 ]  that the following elements and conditions are 

required : 

A. The optimal z:, d: and X: of each problem SP:. These elements 

are used to construct pK' t' 
rC 

B .  The optimal z: and A t  of each problem SP:. This vector allows 

one to construct cqK- 
t' 



C. The multipliers !I: and aK arsociated with the constraints (3.5) 
t 

and (3.6). Theso multiplierr satisfy the following optimality 

caditione : 

K K 
C. I. U: - C(zt - Yt) - Pt At - 0 (see relation (12) in [ 71 ). 
c.2. P:+, + li:+, AZ: c a:+), t - I. .... T-I et q K + I 

(ace relation (13) in I71 ) . 
Both C.I. a d  C.2. are used to prove convergence of the method 

181. We rhall not discurr here tha convergence proof but rhply say 

a feu words about there relationr. Condition C.I. rtates the opti- 

K 
mlity conditionr for the variabler in problem SPt. Similarly con- 

dition C.2. rtates that the reduced cost of a variable K muat be n a  

poritive at the optinurn for all rubrequcnt rubproblemr SP:+~. This 

clearly implies thar all generated proporals q are kept in program 
t 

SPt a c e  they have been generated. 

4 .  KECONSTITUlON OF THE OPTlUAL VARlABLES OF THE ORIGINAL PROBLEM 

The following proporition indicates how the optimal variabler 

of the original problem SP can be recovered from the optimal prim1 

variables of SP~. 

Proposition 1 : Ths fol twing retatione between SP and S P ~  hold at 

tho 0pti.wn.m 



grf : The proof i s  obtained by a success ion of t ransformat ions  of 

t he  problem SP. These t ransformat ions  a r e  based on t h e  a d d i t i v i t y  

of t he  production s e t s  on 1- 2. We f i r s t  w r i t e  SP a s  

M ~ X  u(d) + XA - (T~AQ) a + Pa. 

In t roducing the  extreme po in t s  of Sik and DP one g e t s  success ively  

and c p -  A X w i t h Z X  - 1 a n d X  > 0 ,  
PEL Dpe D p e  &ELP- D p e  D p e  

D p. 
where Vik r ep re sen t s  t he  unused capaci ty  inves ted  i n  i k  i n  t he  cu r r en t  

per iod .  This v a r i a b l e  does not  have t o  be introduced i f  { o l  i s  an 

extreme po in t  of S. ( 1 )  : indeed i n  t h a t  ca se  t he  r o l e  of Vik can be 
rk 

taken over  by t h e  XikQ corresponding t o  t h a t  extreme po in t .  Af t e r  

in t roducing a v a r i a b l e  S(E t o  r ep re sen t  the  unused capaci ty  inves ted  

i n  t h e  NE s e c t o r s  dur ing the  cu r r en t  per iod  and s u b s t i t u t i n g  these  

express ions  i n  t he  program j u s t  obtained one a r r i v e s  a t  SP'. The 

express ions  f o r  X Yik,  PE and Z can then be der ived from these  
P'  

t ransformat ions .  

0 



Tho dorivation of tho optimal dual variables asnociatad with tho 

capacity constraints (3.5) is not as clear. Tho following intuitive 

rouoning loads to oxpressiolu for thene variabloa that will be jus- 

tified in the next aoction. 

It ia known that dual variables at the optimum represent the 

dorivativo of the optimal objective function with respect to the 

right-hand ride of tho constrainta. In order to evaluate the dori- 

vative vl consider a mall increaae o of aome capital stock ik. 
ik 

fh. corresponding capital stock balance equation will read 

Zik - Yik + (QAiik - cik (4 .5)  

The resulting incroaae of the objective function value ia tvofold. 

A first contribution to this increue is the valuo of tho additional 

capital stock that will be fonrarded to future poriods : this con- 

tribution is equal to (m)ik cik. A second contribution arises fram 

the enlarged possibilities of the economy due to the additional capi- 

tal stock. In order to evaluate thia aocond element. we consider 

tho e x t r a  point A 
ikL(p) 

of Sik(l) natiafying 

- MikL(p) I mu{- PE I 6 E sik(l)). 
It is clear that the improvement of the objective function due to 

the capital stock increase will be 
ik 

- %u(P) "ik' 
if this term is positive and zero othenrise. 

Intuitively olla can then propone for the values of dual variables !I 



The following sec t ion  shows t h a t  these  express ions  f u l f i l l  t h e  con- 

d i t i o n s  C and C2 defined before .  
1 

Consider an extreme point  A of DP. Because of t h e  de f in i -  
DPll 

t i o n  of DP one can v r i t e  (see s e c t i o n  6 lemma 3) 

where - 6(i.L. DP) is equal t o  zero  i f  t h e  NE vec to r  i. A'  8 i  appear8 

wi th  a c t i v i t y  l e v e l  zero  i n  t he  extreme point  A ; 
DPL - Aik(A ) designate8 the  extreme point  of Sik con t r ibu t ing  

DPll 
t o  t h e  extreme point  A of DP. 

DPL 

In  t h e  following we s h a l l  dea l  v i t h  p o i n t s  of DP t h a t  s a t i r f y  t he  

name type of expresr ion  (5.1) without be ing extreme po in t  of DP. 

Since t h e r e  a r e  only  a  f i n i t e  number of t hese  point8  we s h a l l  denote 

them a8 A , n being the  current  index i d e n t i f y i n g  each of these  
Dpn 

po in t s ;  we can wr i t e .  u r ing  no ta t ion  r i m i l a r  t o  the  one appearing 

Suppose now t h a t  t he  problem SP' is solved u r ing  a  revised  

simplex method and l e t  p and a be the  dual  v a r i a b l e s  a s soc i a t ed  

with t he  c o n s t r a i n t s  (3.11) and (3.12) r e spec t ive ly  a t  some i t e r a -  

t i on .  The reduced c o s t  of the  v a r i a b l e  X i s  then 
D L 



tha t  we s h a l l  designate by RC(A ) i n  the following. Consider n w  
DP1 

a point A aa defined before. One ahal l  define for  each A an 
Dpn DPn 

expression RC(A ) of the same algebraic form as (5.3). Since 
~~n 

A is not a colum of S P ~ ,  =(A ) is no longer a reduced cost.  
~~n ~~n 

It is introduced here fo r  future use i n  the proofs. 

We con now s t a t e  the f o l l w i n g  propositions 

Proposition 2 : For each p, them i s  at m s t  om vector X in tho 
DPE 

Proof : Suppose not and l e t  E' and 9." be two extreme points of DP 

belonging t o  the bar i r ;  onr considers the vector A obtained as 
~~n 

f o l l w s .  

For i E NE l e t  

- p ~ " '  6(i.n.DP) - mar((- P A*" 6(i.1'.DP) ; 

For every ik. i E E. k E Ki, l e t  

It is clear  that  the vector A belongs t o  DP. Moreover rince 
~~n 

A and k are  i n  the basis,  one has 
D ~ E ~  DPQ- 

and hence neglecting the case of degeneracy and taking in to  account 

the nonpositivitp of QP 



Writing A a s  a convex combination of extreme points  of DP,  one 
~ p n  

obta ins  

with 

C v, - I andv, > O  f o r  IIE L 
E L  

which implies 

and hence. t he re  e x i t  extreme points  of DP v i t h  a pos i t i ve  reduced 

cos t .  This con t rad ic t s  the  op t ima l i ty  of SP'. 

B o p o s i t i o n  3 : If  X > 0 i n  the optimal so lut ion,  then om j2PB 
DPE - A..i a ( i , e . ~ ~ )  > o i E NE 

Proof : We f i r s t  s h w  t h a t  D is nonnegative. To see t h i s  we assume 

t h a t  t h e  e q u a l i t y  in  r e l a t i o n  (3.11) i s  replaced by an inequa l i ty  <; 

because each funct ion U i s  nondecreasing i n  d. these  i n e q u a l i t i e s  

w i l l  be t i g h t  a t  t he  optimum and hence the  problem v i t h  t h e  inequa- 

l i t y  s ign  is equivalent  t o  the  o r i g i n a l  program S P ~ .  p i s  then 

nonnegative because i t  i s  the  dual  va r i ab le  vector  of a s e t  of ine- 

q u a l i t y  cons t r a in t s .  

- - 
Suppose n w  t h a t  t he  proposi t ion i s  not t r u e  and l e t  i .  k be 

such t h a t  



Ye l e t  A be the point of DP obtained by replacing kZE-(A ) by 
Dpn Dp% 

the  zero vector  i n  the  expression of A . It i s  c l e a r  t h a t  A 
upn up, 

belongs t o  UP. Xoreover RC(A i s  pos i t i ve .  A con t rad ic t ion  
DP, - -. 

c m  then be obtained a s  i n  the  preceding proposit ion. 

Before s t a t i n g  the  next proposi t ion we r e c a l l  t h a t  A ikll(p) desi- 

gnates the  extreme point  of S t h a t  mximises  - p(on Sik(l) .  
i k  

0 

Proposition 4 : If x > o in tho optimal sotution, then- as h a  
uPll 

- w'*i 6 ( i . ~ . ~ ~ )  - U U X ( - P A " ~  ; 0 )  f o r  i E mi 

Aik(A - ' ikl(p) f o r  k E  Ki and i E  E. 

zrf : The f i r s t  r e l a t i o n  is obtained d i r e c t l y  from the  preceding 

lemma. I n  order  t o  prove the  second r e l a t i o n .  we suppose t h a t  

and def ine  A a s  the  vector  obtained by replacing Aik(A ) by 
upn UP% 

'ika r P) 
i n  the  expression A . Because of the  d e f i n i t i o n  of %(p) 

uPll 
OPI has 

-PA ikL(p) ' - Aik(A UP% 

m d  hence 

which leads again t o  the  same type of contradic t ion a s  precedingly.. 

A s  a co ro l l a ry  of these  proposi t ions  i t  i s  poss ible  t o  prove 

t h a t  i f  A defined by r e l a t i o n  (4.1) is posi t ive .  then one has 
P 



vhich is p a r t  of t he  proper ty  Cl mentioned a t  the  end of s e c t i o n  3. 

This i s  shown i n  t he  f o l l w i n g  proposi t ion .  

Proposition S : kt X be such that 
P - L: x > o  

DP cmd II be the vector  definsd i n  mkztiaru, ( 4 . 6 )  a d  ( 4 . 7 1 .  Then 

Proof : Consider t h e  b a s i c  v a r i a b l e  X . One has 
DPll 

and hence 

Because of the  preceding proposi t ion  one has 

and hence RC(A _ ) can be v r i t t e n  a s  

We now consider  the  op t ima l i t y  condi t ions  f o r  t he  t h a t  a r e  
P 

equal t o  zero  namely those  f o r  which L: X - 0 .  
E L  D P t  

D p 



One can w r i t e  t h i s  following proposi t ion 

A.aposit ion 6 : I f  XDpE - 0 for  aLL E € L 
D 

Prr : Suppose not  and l a t  A ba the  po in t  def ined a s  i n  (5.2) 
~~n 

where 

6(i,n,DP) - 0 i f  max ( - 0 ~ ~ ' ~  ; 0 )  - 0; 

i 6(i ,n.~')  - 1 i f  max (-PA" ; 0 )  > 0 ;  

'iir(*,p,' - 'ikt:p) i f  max (-pAikt(p) ; 0 )  > 0 .  

One has, because we have assumed the  proposi t ion t o  be f a l s e  t h a t  

BC(A ) -BC(A ) > O  
~ ' n  D p t  

h i c h  leads  t o  a contradic t ion a s  i n  proposi t ion 2. 

c o m z l m y  : ~f aP - 0, tkn pP - AQP - a G O  

Proof : This follows d i r e c t l y  from the  preceding proposi t ion.  

We can now show the  v a l i d i t y  of t he  expressions (4.6) and (4.7) 

defined i n  the  preceding sec t ion .  

R o p o s i t i a  7 : ( 4 . 6 )  and ( 4 . 7 )  s a t i s f y  the  w n d i t w n  C s t a t e d  i n  

s e c t i o n  4 .  

Erf : Because of t he  preceding proposi t ion we have t h a t  X > 0 
9 

implies P - I I Q ~  - a - 0 and X - 0 implies pP - T ~ Q ~ - -  a <  0 ,  
P P 



and hence 

Since 

Z - Y + Q A - 0 ,  

OM can wr i t e  

which is property CI. 

I n  order t o  prove C2 note t h a t  one has a t  the  optimum of SP t +  1 

K 
p:+1 - n:+, Q ~ + ~  - aq < o f o r  q > K + 1 .  

t+ l 

C2 follows then t r i v i a l l y  from the f a c t  t h a t  

6. G E M R A T I O N  O F  EXTREME POINTS 

I n  t h i s  sec t ion  we b r i e f l y  discuss  the  modeling approach under- 

ly ing program P' and show how it na tu ra l ly  allows one t o  f ind  the  

extreme points  required by the  algorithmic framework presented i n  

t h i s  paper. The approach was introduced i n  the  context of energy 

modeling but can e a s i l y  be extended t o  o the r  f i e l d .  

In  energy flow w d e l s  ([ 31 [ 71 ) the d i f f e r e n t  energy production 

and consumer sec to r s  a r e  represented as  a graph. Following t h i s  

descr ipt ion.  we s h a l l  assume each process of an E sec to r  t o  be repre- 

sented as  i n  f igu re  2. 



i npu t s  ou tpu t s  

Pig .  2 : Energy flow rep resen ta t ion  of a proceaa 

In  t h i s  representa t ion,  a n  a r c  i s  associa ted  t o  each process.  Various 

inputs  a r e  consumed by the  proceas which a l s o  produces some outputs ;  

bounds a r e  imposed on the  inputs and outputa ind ica t ing  t h a t  they 

cannot be conaumed o r  produced i n  auy proportion. 

I 0 Let  t and 6 be r e spec t ive ly  t h e  vec to r s  of goods consumed and 

produced by the  process. Because of technological c o n s t r a i n t s  the 

inpu t s  and outputs  mwt u s u l l y  remain wi th in  c e r t a i n  muimal  and 

m i n k 1  proportions.  The s e t  of c o n s t r d n t a  describing the  process 

is then a s  follows : 

- a f i r s t  c o n s t r a i n t  expreases a consemat ion p r i n c i p l e  (mater ia l  

o r  energy) 

aO EO - a' C' - 0 (6.1) 

- a second s e t  of cons t r a in t s  expreases maximal and minimal 

propor t ions  on the  input and output  of the  aystem : they can be s t a -  

t ed  aa 

0 0 0  0 4 0 0  
b. a Ei < Ei < bi a E f o r  a l l  output-  i, 
-1 

bf ;I E1 < E T  < i f  a' EI f o r  a l l  input  i; 
-1 1 1  



- t h e  l a s t  c o n s t r a i n t  expresses t he  capaci ty  l i m i t a t i o n  of t h e  

equipment. I f  we assume a u n i t  capaci ty  we can w r i t e  t h i s  c o n s t r a i n t  

a s  

o < r O  (6.4) 

Let us  assume f i r s t  t h a t  t he  equipment opera tes  a t  a cons tant  

l e v e l  throughout a period of t he  planning horizon and l e t  0 be t h e  
E 

subvector  of p cons i s t i ng  of t he  components of p r e l a t e d  t o  t h e  goods 

appearing i n  t he  opera t ion  of t he  equipment. C lea r ly  t he  problem of 

eva lua t ing  a maximal reduced c o s t  f o r  a column as soc i a t ed  t o  an 

equipment of t h i s  type  c m  be formulated a s  

b0 a0 E:< a0 c 0  f o r  a11 output  i. 
-1 

(6.7) 

I I I -I I I 
bi  a E < fC bi a 5 f o r  a l l  input  i. (6.8) 

O < a O  EO < 1  (6.9) 

We f i r s t  no t e  t h a t  an obvious extreme po in t  of t h i s  production s e t  

i s  no t  t o  opera te  t h e  p l an t  a t  a l l ;  t h i s  corresponds t o  a zero  objec- 

t i f  funct ion  value .  I f  t he  p l an t  i s  t o  be operated then it w i l l  be 

a t  f u l l  c apac i ty ,  which impl ies  

aO EO - a 1  E' - 1. (6.10) 

and hence the  preceding problem i s  reduced t o  t h e  following s e t  of 

NO problems 



n i n  P =E 
E 

A' 6' - 1 

b? < 6: < F: f o r  a11 output  i. 
-A 

and 

0 0 - 0  b. < Ei < bi f o r  a l l  input  i, 
1 

f o r  which an e x p l i c i t  so lu t ion  can be found by r- rimple log ic  

(Imnpsack problem i n  continuour va r i ab le s ) .  

Much =re  complex r i t u a t i o n s  can be considered which include 

phewmna  ruch a r  time varying ope ra t ions  and storage. while st i l l  

allowing one to generate extreme po in t s  e x p l i c i t l y .  A syr temat ic  

d i scu r r ion  of the  approach wi th  examples taken from the  energy 

r e c t o r  is p r e r e n t d  i n  [ 101 . 
Ar a fi-1 remark we ind ica t e  how extreme point. of DP can be 

obtained e a r i l y  from the  extrame point. of t he  S ik '  

tsmKl 3 : An e.xtrems point of D' i e  a awn of a+treme points of tho 

' NE 
S,,(-Q;~) for k. K~ i E e of vectors o or  -A''' Oi for 

i E E. 

Proof : Since DP is polyhedral. t he re  e x i s t s  f o r  every extreme point  -- 
E* of DP a vector  p such t h a t  

pE* - max{p E ( E E DP1. 

The le- follows d i r e c t l y  from the  d e f i n i t i o n  of DP. 



CONCLUSIONS 

Because of their size dynamic input output models may be dif- 

ficult to extend so as to include a detailed representation of some 

of the sectors of the economy. In this paper, we propose a general 

formlation of those models that considers a detailed representation 

of some sectors. This representation is based on the assumption 

that the equipments of the sectors of interest are characterized by 

a single capacity variable and that their production set is simple 

enough so as to allow one to construct their extremc points easily. 

These assumptions arc taken from the field of energy flow modeling 

where they are generally satisfied. A special purpose algorithm 

is proposed for the resulting model which takes advantages of the 

aformentioned representation of some of the equipments. The algo- 

rithm is a combination of nested decomposition and column genera- 

tion. Nested decomposition is applied first on the dynamic model 

to transform it into a set of smaller subproblems. A further reduc- 

tion of the number of constraints of each of the resulting subpro- 

blems is then obtained by eliminating the constraints describing 

the operation of the equipments satisfying the assumption. 
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