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FOREWORD

The I[nternational Institute for Applied Systems Analysis is a nongovernmental, multi-
disciplinary, international research institution whose goal is to bring together scientists
from around the world to work on problems of common interest.

IHASA pursues this goal, not only by pursuing a research program at the Institute in col-
laboration with many other institutions, but also by holding a wide variety of scientific
and technical meetings. Often the interest in these meetings extends beyond the concerns
of the participants, and proceedings are issued. Carefully edited and reviewed proceedings
occasionally appear in the /nternational Series on Applied Systems Analysis (published by
John Wiley and Sons Limited, Chichester, England); edited proceedings appear in the
1IASA Proceedings Series {published by Pergamon Press Limited, Oxford, England).

When relatively quick publication is desired, unedited and only lightly reviewed proceed-
ings reproduced from manuscripts provided by the authors of the papers appear in this
new //ASA Collaborative Proceedings Series. Volumes in this series are available from the
Institute at moderate cost.







PREFACE

During the week of June 2—6, 1980, the System and Decision Sciences Area of the Inter-
national Institute for Applied Systems Analysis organized a workshop on large-scale linear
programming in collaboration with the Systems Optimization Labaratory (SOL) of Stan-
ford University, and cosponsored by the Mathematical Programming Society (MPS). The
participants in the meeting were invited from amongst those who actively contribute to
research in large-scale linear programming methodology (including development of algo-
rithms and software). Although primarily methodologically oriented scientists attended
the workshop, its theme was the improvement of the long range applicability of linear pro-
gramming (LP) techniques. Besides the exchange of ideas and experience — and sugges-
tions for future research directions and international cooperation — fostered by the meet-
ing, it was a general feeling of the participants that a proceedings would reflect the current
state of large-scale linear programming in both East and West.

To this end, it was considered important to produce the proceedings volumes in a lecture
note format as quickly as possible, so as to secure a complete record of the papers presented
at the workshop — including those destined for publication elsewhere — together with
several papers solicited by the editors in order to extend coverage. In some cases, papers
presented at [IASA have been revised by their authors in the two months following the
meeting; in others, no revisions have been made. Although a standard title page format
has been used, the papers have been largely reproduced from camera-ready copy supplied
by theirauthors.Most have not been refereed, edited or proofread for typographical errors.
Papers are grouped together in chapters by topic and are listed in alphabetical order by
author in each chapter.

The first volume of these Proceedings contains five chapters. The first is an historical
review by George B. Dantzig of his own and related research in time-staged linear program-
ming problems. Chapter 2 contains five papers which address various techniques for exploit-
ing sparsity and degeneracy in the now standard LU decomposition of the basis used with
the simplex algorithm for standard {(unstructured) probiems. The six papers of Chapter 3
concern aspects of variants of the simplex method which take into account through basis
factorization the specific block-angular structure of constraint matrices generated by
dynamic and/or stochastic linear programs. By means of these techniques it is hoped to
extend the size of soivable LP’s beyond the range of current commercial codes for specific
problems in the fields of energy, resource and macro/economic modeling {including eco-
nomic planning models). In Chapter 4, five papers address extensions of the original
Dantzig—Wolfe procedure for utilizing the structure of planning problems by decomposing
the original LP into LP subproblems coordinated by a relatively simple LP master problem
of a certain type. Two of these papers concern the recent idea of applying this approach re-
cursively to the subproblems themselves. Chapter 5 contains four papers which constitute a
mini-symposium on the now famous Shor-Khachian ellipsoidal method applied to both real
and integer linear programs. This completes the description of the contents of Volume 1.




The first chapter of Volume 2 contains three papers on non-simplex methods for linear
programming. This chapter concludes reports in the mainstream of current research on
solution algorithms in large-scale linear programming. The remaining chapters of Volume
2 concern more peripheral — but no less important — topics of present interest in the field.
Techniques for exploiting network structure in LP problems are the topic of the three
papers of Chapter 7. In the next chapter, the emphasis turns to the practically crucial and
inter-related issues of automatic LP model generation and structure identification. The
seven papers of this chapter discuss software both for model and matrix generation and
for model reduction through detection of imbedded special constraint structure. The final
chapter, 9, contains a number of applications of large-scale LP techniques to practical
probiems in industrial and agricultural production and economic planning. Some of these
involve multi-criteria optimization, and two of the eight papers deal explicitly with imple-
mentations of new approaches to the multi-criteria problem. A bibliography of large-scale
linear programming research completes Volume 2.

The editors wish to take this opportunity on behalf of the participants to thank IIASA,
SOL and MPS for their cooperation and to thank |!ASA as well as various Academies of
Sciences and governmental agencies of several countries for making the resources available
to hold the Large-scale Linear Programming Workshop and to publish these Proceedings.
In particular, we are grateful to the Communications Department at [|ASA for their cheer-
ful cooperation in expediting publication of this record of an important and memorable
international meeting.

George B. Dantzig
M.A.H. Dempster
Markku Kallio

Stanford, California
August 1980
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TIME-STAGED METHODS IN LINEAR PROGRAMMING: COMMENTS
AND EARLY HISTORY

George B. Dantzig

Department of Operations Research
Stanford University

The Workshop on Large-scale Linear Programming reflects the active research taking place
in many parts of the world along a very broad front, namely on:

the theory of solution,

software development,

experiments on representative problems,
application to real problems,

matrix input generators,

matrix analyzers,

output report generators,

alternative methods of formulation.

This paper is a historical review of the author’s interest in one important facet of this
field — the solution of time-staged programs. Indeed it was dynamic LP that initiated the
linear programming field back in 1947. Over the years, many good ideas have been pro-
posed, some that still merit serious consideration. This Workshop may provide the answer
to the question whether or not we have begun at last to achieve the efficiency of solution
necessary for successful application.




This paper is a more polished version of the talk which I
delivered opening the International Institute for Applied Systems
Analysis Workshop on Large-Scale Linear Programming at Laxenburg
Austria, June 2-6, 1980. Except for a short review of large-
scale methods also presented, but omitted here, my perspective is
historical.

TIME-STAGED STAIRCASE SYSTEMS

The first formal papers about the new field of linear pro-
gramming (that started in 1947) appeared in Econometrica July -
October 1943. At the very beginning, the emphasis was on solving
time-staged (dynamic) linear programs. That this is so, is clear
from the following guote from [1}]:

This paper is concerned with improved techniques of program
planning, particularly as they apply to the scheduling of
activities over time within an organization or economy in
which the activities must share in the use of limited amounts
of various commodities, The contemplated use of electronic
computers for rapidly computing programs and the assumptions
underlying the mathematical model are discussed. The paper
is concluQed by an illustrative example, [Berlin Airlifc, &
Time-Staged Dynmamic Linear Program].

The Mathematical Model discussed here is a generalization

of the Leontief Inter-Industry Model. It is closely related
to the one found in von Neumann's paper "'A Model of General
Economic Equilibrium". 1Its chief points of difference lie

in its emphasis on dynamic, rather than equilibrium or steady
states. Its purpose is close control of an organization-=-




hence it must be quite detailed; it is designed to handle

highly dynamic problems--hence greater emphasis on time

lags and capital equipment; it takes into consideration the

many different ways of doing things~-hence it explicitly

introduces alternative activities; and it recognizes that

any particular choice of a dynamic program depends on the

"objectives" of the "economy',-~hence the selection and

types of activities are made to depend on the maximization

of an objective function.

In the companion paper {2}, the time staged staircase model

is displayed and its relationship to Leontief Input-Cutput model
and continuous-time models is discussed:
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where the x are vectors of nonnegative elements.

When the matrices u(t) and i(t) (t=1,2,...,T) are square
and nonsingular, a direct solution is possible that may lead,
however, to negative and nonnegative activity levels (in
which case no feasible solution exists).

It should be noted that the general mathematical problem
reduces in the linear programming case to consideration of

a system of equations of nonnegative variables whose matrix
of coefficients is composed mostly of blocks of zeros except
for submatrices along and just off the ''diagomal'. Thus any
good computational technique for solving programs would prob-
ably take advantage of this fact.

Having formulated the time-staged model, it soon became clear
that the techniques at hand at the time were inadeqguate. In a
companion paper [ 3], first presented in 1949, appeared the follow-
ing statement:

Computing techniques are now available for solution of small
linear programming problems. However, for accurate over-all
Alr Force planning, the size of the required model 1is such
that conventional punched card computing equipment, or even
the interim electronic computer being built for the Air Force
by the National Bureau of Standards, is not sufficiently
powerful to cope satisfactorily with the problem of choosing
the optimum activities and activity levels over time.
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In order to obtain a programming procedure which would be
immediacely useful with presently available computing equip-
ment, we have been forced to use a determinate, and hence
less general formulation of the programming problem that
parallels closely the staff procedure.

Aetivities

<t

) () (
1 -2 3

133

) )
Exogenous x z,

t=1
t=2 Initial
t=3
t=4

t=1
t=2
t=3
t=4

t=1
t=2
t=3
t=4

t=1
t=2
t=3
t=4

We have called this a triangular model because in it the
matrix of detached coefficients, when arragned as in the
Table, and omictting the "initial" part, assumes a trian-
gular form, with all coefficients above and to the right
of the principal diagonal being zero. Thus the activities
and items are so ordered that the levels of any one activ-
ity over time depend only on the levels of the activities
which precede it in the hierarchy. This means that in the
computafion of the program we successively work down the
hierarchy, at each step solving completely for the levels
of each activity in each of the time periods before pro-
ceeding to the next activity (see figure above).

The triangular model technique is a powerful empirical method
when there is a natural hierarchy of activities and output items.
Certain energy models, for example, currently in vogue use such
an approach.



BLOCK TRIANGULARITY

My paper [4], is my first on methods for solving large sys-
tems:

With the growing awareness of the potentialities of the
linear programming approach to both dynamic and static
problems of industry, of the economy, and of the military,
the main obstacle toward full application is the inability
of current computational methods to cope with the magnit-
ude of the technological matrices for even the simplest
situations. However, 1in certain cases, such as the now
classical Hitchcock-Koopmans transportation model, it has
been possible to solve the linear inequality system in
spite of size because of simple properties of the system.
This suggests that considerable research be undertaken to
exploit certain special matrix structures in order to fac-
ilitate ready solution of larger systems.

Indeed, recent computational experience has made it clear
that standard techniques such as the simplex algorithm,
which have been used to solve successfully general systems
involving one hundred equations (in any reasonable number
of nonnegative unknowns), are too tedious and lengthy to
be practical for extensions much beyond this figure. Our
purpose here will be to develop short-cut computational
methods for solving an important class of systems whose
matrices may be generally described as "block triangular",

By "block" triangular we mean that if one partitions the
matrix of coeificients of the technology matrix into sub-
matrices, the submatrices (or blocks) considered as ele-
ments form a triangular system,

.
Ary ceseneas Aff

For example, von Neumann, in considering a constantly ex-
panding economy, developed a linear dynamic model whose
matrix of coefficients may be written in the form,

-3 A

where A 1s the submatrix of coefficients of activities in-
itiated in period t, and B is the submatrix of outout co-
efficients of these activities in the following period.
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Now the main obstacle toward the full application of stan-
dard linear programming techniques to dynamic systems 1s
the magnitude of the matrix for even the simplest situations.
For example, a trivial l5-activity--7-item static model,
when set up as a 12-period dynamic model, would become a
180-activity by 84-item system, which is considered a large
problem for application of the standard simplex method. A
fancy model involving, say, 200 activities and 100 items
for a static case would become a 2000 x 1000 matrix if re-
cast as a l0-period model. It is clear that dynamic models
must be treated with special tools 1if any progress 1s to be
made toward solutions of these systems.

From a computational point of view, there are a number of
observed characteristics of the dynamic models which are
often true for static models as well.

These are:

(1) The matrix (or its transpose) can be arranged in tri-
angular form

(2) Most submatrices A;; are either zero matrices or com-
posed of elements, most of which are zero.

(3) A basis for the simplex method is often block trian-
gular with its diagonal submatrices square and non-
singular (referred to as a 'square block triangular"
basis),

(4) For dynamic models similar type activities are likely
to persist in the basis for several periods.

To illustrate, consider a dynamic version of the Leontief
model in which (a) altermative activities are permitted

(a simple case would be where steel can be obtained from
direct production or storage); (b) inputs to an activity

for production in the tth time period may occur in the same
or earlier time periods. It can be shown in this model that
(a) a basic solution will have exactly m activities in each
time period (where m = number of time dependent equations),
(b) each shift in basis will bring in a substitute activity
in the same time period, and (c¢) optimization can be carried
out as a sequence of one-period optimization problems; 1i.e.,
the optimum choice of activities (but not their amounts) can
be determined for the first time period (independent of the
later periods) this permits a determination for the second
time period (independent of the later periods), et cetera,

When flow models are replaced with more complex models which
include initial inventories, capacities, and the building

of new capacities, the ideal structure of a basis (see third
characteristic above) no longer holds. However, tests (car-
ried on since 1950) on a number of cases indicate that bases,
while often not square block triangular in the sense above,
could be made so by changing relatively few columsg in the
basts (e.g., one or two activities in small models). This
characteristic of near-square block triangularity of the
basis, 1.e., with nonsingular square submatrices down the
diagonal, is, of course, computationally convenient and this
paper will be concerned with ways to exploit it,
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Towards the end of the above paper can be found the following:

Finally, may 1 make a short plea that linear programmers
pay greater attention to special methods for solving the
larger matrices that are encountered in practice. The ex~
cellent work of Jacobs on the caterer problem and the work
of Jacobs, Hoffman, Johnson on the production smoothing
problem are examples of what may be done with certain dyn-
amic models with a simple repetitive structure. Cooper and
Charnes have employed in their work a number of short cuts
that have permitted resolution of certain large scale sys-
tems. At RAND we have found efficient ways to hand compute
generalized transportation problems, and Markowitz has pro-
posed a general procedure in this area that is promising.
Many models exhibit a block triangular structure and cer-
tain partitioning methods have been proposed which take
advantage of this type of structure. There is need for
those of you who are foresighted to do serious research in
this area.

At the present time (1955), 1t is possible to solve rapidly
problems 1in the order of a hundred equations. The Orchard-
Hays 701 Simplex Code has solved many problems of this size
with as high as 1,500 unknowns and machine times of five to
eight hours as a rule--all with excellent standards of ac-
curacy. However, it is self-evident that no matter how much
the general purpose codes are perfected they will be unable
to cope with the next generation of problems which will be
larger in size. It is also evident that the models currently
being run could have been handled more effectively by the
proposed special methods.

There are certain characteristics common to many models
which I believe should be emphasized:

(1) Most factors in the coefficient matrix are zero.
(2) In dynamic structures the coefficients are often
the same from one time period to the next.

(3) In dynamic solutions the activities employed often
persist from one period to the next.

(4) Transportation type submatrices are common.

(5) Block triangular submatrices are common.

Part of the research in this area should certainly be de-
voted to a better understanding of the potentialities of
techniques other than the simplex method.

UNCERTAINTY

In a related paper [5], published in 1956, appears the following

In the past few months there have been important developments that
point to the appiication of linear programming methods under
uncertainty. By way of background let us recall that there

are in common use two essentlally different types of sched-

uling applications—-one designed for the short run and those
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for the long run. For the latter the effect of probabilistic
or chance events 1s reduced to a minimum, by the usual tech-
nique of providing plenty of fat in the system. For example,
consumption raves, atirition rates, wear-out rates are all
planned on the high side. Times to ship, time *to travel,
times to produce are always made well above actual needs,
Indeed, the entire system 1s put together with plenty of
slack and fat with the hope that they will be the srock
abgorbers which will permit the general objectives and rim-
ing of the plan to be executed in spite of unforeseen events.
In the general course of things, long-range plans are re-
vised frequently because the stochastics elements of the
problem have a nasty way of intruding., For this reason also
the chief contribution, if any, of the long-range plan, is

to effect an immediate decision--such as the appropiation

of funds or the initiation of an important development con~
tract.

For short-run scheduling, many of the slack and fat tech-
niques of 1ts long-range brother are employed. The princi-
ple differences are attention to detail and the short time-
horizon. As long as capabtilities are well above require-
ments (or demands) or if the demands can be shifted in time,
this approach presents no problems since it is feasible to
implement the schedule in detail. However, where there are
shortages, the projected plan based on such techniques may
lead to actions far from optimal, whereas these new methods,
where applicable, may result in considerable savings. I
shall substantiate this later by reference to a problem of
A. Ferguson on the routing of aircrafrc.

With regard to the possibilities of solving large scale lin-
ear programming problems, one can sound both an optimiscic
and a pessimistic note. The pessimistic note concerns the
ability of the problem formulator, either amateur or profes-
sional, to develop models that are large scale. The pessi-
mistic note also concerns the inability of the problem sovler
to compute models by general technigues when they are large
scale, If this 1s so, is not the great promise that the lin-
ear programming approach will solve scheduling and long range
planning problems with substantial savings to the organizations
adopting these methods but an illusion and a snare? Are the
big problems going to be solved as they have always been
solved--by a detailed system of on-the-spot somewhat natural
set of priorities that resolve every possible alternative as
it arises?

. The status of problems involving uncertainty as far as prac-
tical solutions are concerned, has not changed much since 1956.
The following, sums up the 1965 situation:

When one considers instead, a direct attack on uncertainty
via mathematical programming, it inevitably leads to the con-~
sideration of large-scale systems. Problems with their struc-
ture, have proven difficult of solution so far. I believe
that they will be the subject of intensive investigation in
the future.
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DECOMPOSITION PRINCIPLE

The Decomposition Principle [ 6] arose in 1958 in connection
with a military tactical problem which was too large to handle by
conventional linear programming problem. A good summary of the
approach can be found in my 1965 survey article:

Recently the author, jointly with Philip Wolfe, developed

a new procedure that is particularly applicable to angular
systems and multistage systems of the staircase type

This is reported in prelimimary form in RAND P-1544 (Nov,l0,
1958) under the title, "A Decomposition Principle for Linear
Programs'. The system consists of certain goods shared in
common among several parts and certain goods (including fac-
ilities, raw materials) peculiar to each part. Imn short the
system is angular in structure.

Although the entire procedure is one intended to be carried
out internally in an electronic computer it may also be viewed
as a decentralized decision making process. Each indepen-
dent part initially offers a possible bill of goods (a vec-
tor of the common outputs and supporting inputs including
outside costs) to a central coordinating agency. As a set
these are mutually feasible with each other and the given
common resources and demands from outside the system. The
coordinator works out a system of "prices" for paying for
each component of the vector plus a special subsidy for
each part that just balances the cost.

The management of each part then offers, based on these
prices, a new feasible program for his part with lower cost
without regard to wnether tt i1s feasible for the system as

a whcle., The coordinator, however, combines these new offers
with the set of earlier offers so as to preserve mutual fea-
sibility and consistency with exogeneous demand and supply
and to minimize cost. Using the improved over-all solution
he generates a revised set of prices, subsidies, and receives
new offers. The essential idea is that old offers are never
forgotten by the central agency (unless using '"current”
prices they are unprofitable); the former are mixed with the
new offers to form new prices.

In the original paper [ 6] appears this abstract:

A technique is presented for the decomposition of a linear
program that permits the problem to be solved by alternate
solutions of linear sub-programs representing its several
parts and a coordinating program that is obtained from the
parts by linear transformactions, The coordinating program
generates at each cycle new objective forms for each part,
and each part generates in turn (from its optimal basic fea-
sible solutions) new activities (columns) for the intercon-
necting program. Viewed as an instance of a 'generalized
programming problem' whose columns are drawn freely from
given convex sets, such a problem can be studied by an ap-
propriate generalization of the dyality theorem for linear
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programming, which permits a sharp distinction to be made
between those constraints that pertain only to a part of the
problem and those that connect its parts. This leads to a
generalization of the Simplex Algorithm, for which the de-
composition procedure becomes a special case.

The reported experience with solving structured linear pro-
grams by means of the decomposition principle varies from very
good to poor, In general it appears that if the decomposition
between master and sub is a “natural” one, it can perform very
well. Like the simplex method, there is rapid improvement for the
early iterations followed by a long tail except here the tail is
much longer.

COMPACT BASIS INVERSES

From 1962 onwards there has been growing interest in schemes
for compactly representing the inverse of the basis for the simplex
method. This effort goes under various names: compact basis tri-
angularization, LU basis factorization. One must worry not only
about the compactness but also about the stability of the solution
to small changes in the original data. My 1962 paper [7] was dir-
ected to finding a compact representation of a basis for staircase
systems.

Alex Orden was the first to point out that the inverse of
the basis in the simplex method serves no function except
as a means for obtaining the representation of the vector
ertering thebasis and for determining the new price vector.
For this purpose one of the many forms of 'substitute in-
verses' (such as the well known product form of the inverse)
would do just as well and in fact may have certain advan-
tages in computation,

Harry Markowitz was interested in developing, for a sparse
matrix, a substitute inverse with as few nonzero entries as
possible. He suggested several ways to do this approximately.
For example, the basis could be reduced to triangular form

by successively selecting for pivot position that row and
column whose product of nonzero entries (excluding the pivot)
is minimum. He also pointed out that, for bases whose non-
zeros appear in a band on a staircase about the diagnonal,
proper selection of pivots could result in a compact sub-
stitute with no more nonzeros than the original basis.

We shall adopt Markowitz's suggestion. However, instead of
recording the successive transformations of one basis to the
next in product form, we shall show that it is efficient to
generate each substitute inverse in turn from its predeces-
sor, The substitute inverse remains compact, of fixed size.
Thus "reinversions' are unnecessary (except in so far as
they are needed to restore loss of accuracy due to cumula-
tive round-off error).

The procedure which we shall give can be applied to a gen-
eral m x m basis without special structure. As such, it is
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probably competitive with the standard product form, for it
may have all of its advantages and none of its disadvantages,
With certain matrix structures, moreover, it appears to be
particularly attractive,

We shall focus our remarks on szartrecase structures. The

reader will find no difficulty in finding an equally effi-
clent way to compact block-angular structures.

STATUS AS OF 1967

A summary of the status of solving large-acale problems can
be found in my 1967 paper [8].

From its very inception, it was envisioned that linear pro-
gramming would be applied to very large, detailed models of
economic and military systems, Kantorovitch's 1939 propos-—
als, which were before the advent of the electronic computer,
mentioned such possibilities. Linear programming evolved out
of the U.S. Air Force interest in 1947 in finding optimal
time-staged deployment plans in case of war; a problem whose
mathematical structure is similar to that of finding an op-
timal growth pattern of a developing economy and similar to
other control problems, Structurally the dynamic problems
are characterized in discrete form by staircase matrices
representing the irputs and outputs from one time period to
the next. Treated as an ordinary linear program, the number
of rows and columns grows in proportion to the number of

time periods T and the computational effort grows by T° and
possibly higher, This fact has limited the use of linear
programming as a tool for planning over many time periods,

At the present 1967 stage of the computer revolution, there
is growing interest on the part of practical users of linear
programming models to solve larger and larger systems. Such
applications imply that eventually automated systems will
obtain information from counters and sensing devices, pro-
cess data into the proper form for optimization and finally
implement the results by control devices. There has been
steady progress in this mechanization of flow to and from
the computer. Hitherto, this has been one of the obstacles
encountered in setting=-up and solving large-scale systems.
The second obstacle has been the cost and the time required
to successfully solve large problems.

It is difficult to measure the potential of large-scale
planning. Certain developing countries appear, according
to optimal calculations on simplified models to be able to
grow at the rate of l53% per year implying a doubling of
their industrial base in five years. But administrators
apparently ignore plans and make decisions based on polit-
ical expediency which restrict growth to 2 or 3% or some-
times -2%. It is the belief of the author that the mech-
anization of data flow (at least in advanced countries) in
the next decade will provide pathways for constructing
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large models and the effective implementation of the results
of optimization. This application of mathematics to decision
processes will eventually become as important as the classical
applications to physics and will, in time, change the emph-
asis in pure mathematics.

In this paper the following unsolved problem was posed:

It has been discovered recently that the size of the inverse
representation of the basis in the simplex method could have
an important effect on running time. Therefore, compact~
inverse schemes along the lines first proposed by Harry
Markovitz of RAND have become increasingly importamnt. Re-
cently, two groups working independently, developed this
approach with astounding results. For example, the Standard
0il Company of California group reports running-time on some
of their typical large problems cut to l/4,

How to find the most compact inverse representation of a
sparse matrix is still an unsolved problem:

CONJECTURE: If a nom-singular matriz has K nom=zerc elements,
it ts always possible to represent them as a pro-
duct of elamentary matrices such that the toral
nunber or non-zerc entries (exeluding their di-
agonal wnit elements) ig ar most K. [Ineidensally,
the cmpiriaal schemes just mentioned often nave
no more than K+1G"K non-zeros in the <nverse re-
presentation,)

STATUS TO THE PRESENT (1980)

From 1967 onwards there has been an increasing interest in
techniques for solving large-scale linear programs. A number of
conferences have been exclusively concerned with the topic. Most
general operations research and management science meetings have
at least one session devoted to it., A selected reference list
which I use in my seminars (mostly published during the period
1970-78) contain 237 titles which I have arranged by sub area.

General Books 20
(10 exclusively large scale, 2 sparse methods, 8 other)

Survey articles 12
GUB, G-GUB and the decomposition principle 15
Variants of above 19
Block Triangularity 3
Linear cptimal control and dynamic systems 14
Nested decomposition 4
Column generation, convex and nonlinear programs 34
Sparse matrix techniques 10
Large networks and related problems 37
Applications 52
Software a7

Total 237
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Some idea of the recent research of the Systems Optimization
Laboratory of the Operations Research Department at Stanford can
be gleaned from the titles that follow:

Andre Perold: "Fundamentals of a Continuous Time
Simplex Method”.

Andre Perold and George B, Dantzig: "A Basis Factor-
ization Method for Block Triangular Linear Programs”.

Bob Fourer: "Solving Staircase-structured Linear
Programs by Adaptation of the Simplex Method”.

Ron Davis: "New Jump Conditions for State Constrained
Optimal Control Problems".

Philip Abrahamson and George B. Dantzig: "Imbedded
Dual Decomposition Approach to Staircase Systems”,

John Birge: "Solving Staircase Systems under Uncertainty".

This Workshop may well mark the point in time when efficient
methods for solving large dynamic systems may be more than just a
promise. Thirty three years from the time the hope was first ex-
pressed that such methods be found, they may soon become a reality:
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THE SIMPLEX METHOD FOR
NONSTRUCTURED LINEAR PROGRAMS






SOLVING LARGE SCALE LINEAR PROGRAMS WITHOUT STRUCTURE

P. Huard

Direction des Etudes et Recherches
Electricite de France

A variant of the simplex method is adapted for the solution of large-size linear program-
ming problems with a very sparse constraint matrix. instead of using the inverse of the
basis, three sparse linear systems are directly solved at each step, using a suitable pivoting
method. Two advantages of this variant compared to standard procedure are:

® Memory volume requirements are proportional to the number of constraints (and
not to its square).

® (Calculation may be faster; the appropriate numerical tests are described in the
paper.
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1. - INTRODUCTION

With regard to the resolution of large linear programs, the basis
of a variant of the Simplex method, using only a small amount of memory,

has already been briefly described [31].

The aim of the present paper is to give a detailed study of this

method and of the numerical experiments that validate it.

In its classiral form, the Simplex method uses a square matrix, the
inverse of the basic matrix, whose value is updated at each iteration.
The number of nonzero elements of this matrix increases rapidly as the
iterations go along and it is necessary in practice, when using the
explicit form of the inverse, to have on hand a number of memories equal
to the square of its dimension, say m2 for a linear program with m
constraints. Thus it becomes difficult to handle problems having several
hundred constraints, without using disks or tapes; then the overhead
time may becomes prohibitive, because of their repetitive use and the

large number of iterations.

Some special structures of the matrix of the linear program - like
for example the block-angular one - allow for various interesting
decompositions of the inverse of the basic matrix, which is similar to
the solving of smaller linear programming problcms. Then the amount of
nccessary memory varies only lineariy with the size of the program, if

the dimensiosn of the blocks is a constant. Fortunately, such a block-
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angular structure is rather often encountered (dynamic problems,
regionalization problems) and various decomposition methods have been

proposed (see for example [5])).

However, many linear programs do mot have any structures suitable
for decomposition. This is the case for problems related to a graph -
e.g. flow-problems - which contain the problem of electrical dispatching,

as far as its structure is concerned.

Large linear programs, issued from "real life", have a very sparse matrix :
only a few percent of the elements are nonzero. Of course, this sparsity appears
in each basic matrix, but it dis;ppears from the inverse matrix. The variant
of the Simplex method, which follows, uses the basic matrix itself, instead
of its iuverse, and then eliminates the need for mz memory positions. However,
in the calculations, products of a matrix by a vector are replaced by
resolutions of linear systems of the same dimensionality. The complexity of
these two operations would be of m2 and m3 order respectively, if the matrices
were full, which would rule out the proposed variant. But, as will be seen
below, two factors may make it competitive. One is the difference in
sparsity between the basic matrix and its inverse. The other is the fact
that generally, the basic matrix is almost triangular, or more precisely
"triangular-band-wise". In other words : after having performed a suitable
permutation of rows and columns, nonzero elements lie below an extra-
diagonal line, located at a small distance p above the diagonal. Such a
linear system is easily solved through a specialized pivoting method that
we call below the method of parameters. The amount of calculatiomns is
proportional to p p m2, where p is the proportion of nonzero elements,

p the width of the band located above the diagonal, and m the dimension

of the matrix (a large number, by hypothesis). In large problems, of real
origin, that we have known of, p is often between p m and 2 p m. If o'

is the proportion of nonzero elements (density) of the inverse matrix

(p' is normally much larger than p), the respective amounts of computation
for one iteration of the Simplex method are roughly in the ratio A(p/p')zm.
For o' = 60 p and m = 103, this is practically 1. In actual fact, numerical
comparisons of Section 7, involving linear programs of up to 900 constraints,
exhibit a very good speed for the proposed variant. In Section 8 the detailed
costs for one iteration of the Simplex method are given with a comparison

between the two variants.
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2. - THE REQUIRED CALCULATIONS DURING ONE ITERATION OF THE SIMPLEX METHOD

The linear program to be solved is given in standard form

Maximise f x subject to

AXc=a n

»
v
©

(2)

where A is a full-rank matrix; its rows are indexed by M = {1, 2, ..., m}

and its columms by N = {1, 2, ..., n}.

At each iteration, a basis I is considered, i.e. a subset I such that

iI| =m
I ., .
A invertible

I . . . .
where A", the basic matrix relative to I, is composed of the columns

A, Vi eIl

To the basis I is associated the so-called basic solution of the
basis I, defined by

xI = (AI)-l a

x_ =0

1

where I is the complement of I in N.

The successive bases generated by the Simplex method, are such that

X1 2 0; hcnce, the considered basic solutions are all feasible (they

satisfy conditions (1) and (2)).
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An iteration consists of changing the basis I into a neighboring
basis I', that is a basis obtained by exchanging an index r € I with an

index s ¢ 1 :
I'"=sI-1+5s (3)
To determine r and s, one can compute, in order
u=f" (A7) (4)

(5
where u, fI, dI are row-vectors. This allows the candidate s ¢ I, to be
chosen with the condition d® > 0. Then :

X = (AI)—] a (6)

15 = (al)71 A% N

s s . .
where Xys @y T” and A™ are column vectors. This gives r ¢ I by the
condition
x

r

X.
=9 =min {— | i eI, T} >0} (8)
T s 1

s
r i

Once r and s are determined, it remains to update the inverse of the
', -1

basic matrix, i.e. to compute (A~ ) . This is classicaly done from
(AI)_'l through the relation :
' -1 I -1
Aa") =E (A7) 9)

where E is an elementary matrix, explicitly known (see figure 1).
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Thus the necessary calculations are represented by relations (4)
to (9), and the inverse of the basic matrix is used in (4), (6), (7).

These last relations can be replaced by

u AI = fI “")
Al x; = a (6")
Al 15 = 4° (7")

i.e. three linear systems to solve. In the first ome, the matrix is the
transpose of the basic matrix, in the last two, it is the basic matrix
itself : these systems enjoy the sparsity of the A matrix, and solving

them can be done without storing and using the inverse.
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3. - DIRECT RESOLUTION OF THE LINEAR SYSTEM

The systems (4'), (6'), (7') have long been successfully solved
directly in the case of classical transportation problems. These very

special linear programs can be stated

ij

Minimize I ¢ ° x,, subject to
.. ij
1]
I x,.=a. , j=1,2,...
: i3 3 ; ] ’ » P

I x,, =b, y 1=1,2,..., g
X..20 o Yij

Here the A matrix has no more than 2 nonzero elements per column,
which are equal to 1, and the basic matrices are triangular. Thus solving
the three linear systems is particularly easy and fast (it is not even

necessary, here, to solve (7')).

An extension to problems of flow with gains was proposed by MAURRAS [4]
in 1972. In this type of linear programs, the A matrix still has no more
than 2 nonzero elements per columm, but of any real value. Systems (4'),
(6') or (7') are alwmost as simple as a triangular system. The method of
solution consists of particularizing one unknown as a parameter, and in
expressing one after the other the (m1) remaining unknowns as functions
of this parameter, using (m—-1) equations. Eliminating these (m-!) unknowns
from the last equation - not yet used - gives the value of the parameter.
Plugging this value in the expression of the (m-1) unknowns completes the
solution. The choice of the particularized unknown is guided by an
interpretation of the structure of the A matrix, as incidence matrix of
a graph. Of course, it is not possible to extend this theory to matrices
with more than 2 nonzero elecments per column. However, a study of many
square matrices, very large and very sparse, issued from real problems,
shows that they often have a triangular-band-wise structure (after
suitable permutations of rows and columns); their band-width has the
same order of magnitude as the average number of nonzero elements per

column or per row. Morc precisely, these square matrices arec such that
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Al=0 ,yi, jiici+p

where p is the width of the band located above the diagonal. These matrices,
of small thickness, correspond to linear systems that are easily solved by
the pivoting method, called method of parameters, described in the next
section. This method, which can be considered as an extension of that

used by MAURRAS, uses a number of parameters equal to p. In practice, it
reduces to solving a triangular system of dimension (m—p) with p right-hand
sides, and solving a p x p system. In problems of flows with gains, one

always has p < 1.

4. - THE METHOD OF PARAMETERS

Let the system to solve be
Bx=0»0 (10)
where B is an invertible (m x m) matrix, such that
B'E-O Vi, j=1,2,...m: § > i+p an
We call p the band-width of the triangular-band-wise matrix B.
The row i = | has at most p + | nonzero elements. We may suppose

BE+1 ¥ 0, possibly after having exchanged colummn p + } with some other.

Therefore we can express x as a function of the variables xj, j=1,2,...,p

ptl
considered as parameters :
xp+l = £p+l (x], Xgs vens xp) (12)
where £ .l is an affine function.
pt2 . . .
If B2 # 0 we can express from the Tow i = 2, xp+2 as a function of
xp*l and of the parameters Xyseen, xp. Eliminating xp+] with (12) we

obtain
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x (xl, Xyieney X ) (13)

p+2  Lps2 p

and so on. If, at cach step k, corresponding to the use of the row k, we

have B;+p # 0, we obtain after (m—p) steps, the affine functions

lp+i (x’, Xyseens xp) i=1,2,... (wp) (14)

Storing the coefficients of these functions (including the affine

terms) requires an array (m-p) ¥ (p+l1).

Only the first (m—p) equations have been used. Using (14) we can

eliminate the variables xP+i i=1,2,..., mp from the p remaining

equations, and we obtain a system of p equations, where the p unknowns

are the parameters X,,..., xp. Solving this (p * p) system gives the

1
values of the parameters, and then (14) gives the other unknowns.

:+P ¥ 0 implies that a new unknown X does appear

at step k. If this hypothesis is not satisfied, then the unkuown X

The hypothesis B

does not appear yet (nor any other, because of (i1)); one parameter can
be eliminated between equations k and k-!, which no longer contain the
unknowns xp+i' i=1,2,..., (k=1), after use of (14). From then on, this
eliminated parameter will become an unknown, expressed as a function of
the remaining parameters. But later on, more than one unknown may appear
at some step k' > k. It is then necessary to introduce new parameters,

consisting of the excess unknowns.

Thus the set of parameters may fluctuate along the steps, in its
dimensionality as well as in its content - see Figure 2. But it is sure,

from (11), that it has never more than p elements.

In addition to the matrix B and the right-hand side b, the core
requirement is at most m x (p+1) : (m;p) x (p+!) memories for the
expressions (14), and p x (p+!) for the (p x p) system. Hence, in order
to reduce the required storage, it is convenient to reduce the band-

width p down to a value as small as possible, by means of suitable
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rearrangements of the matrix B. Various techniques, systematically
tested by D. FAYARD and G. PLATEAU [1], and Y. HAUW [2], have led
to a simple technique, described in the next section; it gives a

band-width which, if not optimal, is a quite satisfactory approximation.

For the sake of theoretical curiosity, as has been pointed out in
{21, when applied to (10) with a full matrix B, the method of parameters
leads to a pivoting method of the diagonalization type, as with the
Jordan method. But the operatioms are not the same, and a precise
inventory of the calculations shows that the respective numbers of
multiplications, divisions and additions, are exactly the same as in
Gauss method (which is a triangularization method, cheaper than Jordan's).

In section 9 a detailed comparison of these operations will be given.

Finally, it should be noted that for the steps not including
eliminations the pivots used are original elements of the B matrix,
for at step k, rcws k+! to m have not vet been modified. This fact is

important for the stability of the computations.

5. - OBTAINING IN PRACTICE THE MINIMAL BAND-WIDTH

To permute rows and columns of the B-matrix reduces to choose two
permutation functions g and h, defined on the domain M = {1,2,..., m}.
The optimal permutations, which give minimal band-width, solve the
problem

min {max {(h(j) - g(i)) 8 | 1, j € M)}

g.h 1

where 8,, = | if B} # 0, 8., = O otherwise.
ij i ij

No exact solution is known to this combinatorial problem, except

through exhaustive enumeration - too expensive. Various heuristic
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approaches have been proposed, to solve this problem or similar ones.
In the case of band-matrices of minimal band-width, we mention the process
of Tewarson [7], which requires the resolution of an integer programming

problem, without even guaranteeing an optimal solution.

In fact, concerning large and very sparse matrices, issued from real
problems, some simple heuristics, based on intuitive considerations, have
proved very efficient in a large number of cases. Rule 5.2 below is one

of them.

5.1, - The full-rectangles rule

The nonzero elements of the B-matrix are squared into a string
of rectangles, which touch one another by their diagonal corners, and

whose upper-right elements are nonzero (sece Figure 3).

How

1234567 891011213 1234569871011 1203
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Figure 3

Any one of these which is not full can always be decomposed
into smaller full rectangles, and this is only done by permutations which
concern only rows and columns in that rectangle. Then the new band-width

is not greater than the old band-width.
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This process can be applied independently to every initial
rectangle that is not full. But, as Figure 4 shows, it does not guarantee

an optimal solution.

5.2. - Row of smallest relative degree

Let Fi be the set of indices corresponding to nonzero

elements in the row i. Having fixed the first k rows of B, the number

d, = |p.| -1
J J
k
where P, =T, /T.n Cu T.)
S T TR TR R

is called the degree of the row j, relative to the first k rows. Pj
represents the set indexing the elements that are nonzero in the row j,
but are zero in the first k rows. Thus, adding a row of O degree after
the first k rows does not increase the number of parameters. A negative
degree will decrease by | the number of parameters (through elimination).

A positive degree increases that number by dj.

Therefore a simple process consists of sorting the rows
downwards : at each stage, one chooses a row that has the smallest
relative degree among the remaining ones, and the new columns are moved
so that the nonzero entries in the present new row are regrouped on the

left.

It is this simple process that has finally been implemented
in the code written by HAUW (2], after a number of extensive tests with
matrices (20 x 20) and (100 x 100) have been performed. It seems that,
with (100 x 100) matrices, the band-width has always been optimized

within 2 or 3.

When several rows have the same relative degree at the same
stage, it is attractive to use a secondary criterion to choose from among
them. For example, their influence on the remsining rows may be considered.

After having tried more than a dozen such criteria, none has proved
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significant. Finally, the policy is to take the last encountered of

the candidate rows (which leads to the easiest implementation).

It can be checked that this process automatically satisfies

the rule 5.1 of full rectangles.

5.3. - Taking into account of special structures

Obvious permutatiows can be suggested by certain special
structures. This is the case for example when slack variables are
present (or, more generally, when the matrix A contains a diagonal

submatrix).

It is straight forward to obtain a basic matrix AI that has
the pattern indicated on Figure 5 (where U is‘a unitbmatrix, corresponding
to the slack variables in the basis). In practice, the slack-rows are
placed in the bottom. Then only the B-matrix is processed, and its column
permutations are also applied to C. It is the new triangular-band-wise

matrix B' that imposes the number of parameters.

Note also that, when the basis is changed, the triangular-
band-wise pattern of the basic matrix is only slightly affected. It can
easily be seen that, through a very simple column permutation, the
band-width is changed by 1, O or ~1. Thus, a complete reordering may be

applied only from time to time.

6. - AVERAGE THICKNESS OF A MATRIX

An important question, before using the method of parameters, is

to know what band-width is to be expected after reordering.

Or course, this question has no general answer, but one can try to
have an idea by studying first the probability distribution of this
band-width, for matrices whose elements are randomly generated. This is

done in 6.1. Structured matrices are studied in the following scctions
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in 6.2, pathological cases ~ fortunately artificial and rare - that
give maximum band-width; in 6.3, highly structured matrices, issued from

problems of electrical dispatching, always giving small band-widthes.

6.1. - Sparse matrices randomly generated

Three samples, of 100 matrices each, have been generated.
These matrices are (100 x 100) and their elements, O or 1, are
realizations of independent random variables with a probability p to
get a 1. The samples correspond respectively to p = 0.05, 0.04, 0.03.
Each matrix thus obtained is processed as described in 5.2, so as to

obtain a band-width as small as possible.

Figure 6 indicates the frequency of the minimal band-width p.
Note the dispersion of p, and its very quick vériation, as a function
of p: for p = 57, the average p is between I8 and 19, but reduces to

8-9 for p = 47, and practically vanishes for p = 3Z.

However, the density is not the only influential factor for
the thickness of the matrix. From a remark of W. DE LA VEGA and
J.F. MAURRAS [9] a randomly generated (1,000 x 1,000) matrix of exactly
10 nonzero elements per row (and hence with a density of 0.0!) may have
a null (333 x 333) submatrix with a probability almost equal to zero. *

The "absolute" value of'|Pi| seems to play an important role.

Lastly, notice the numerical experiments of J. DENEL [8]
concerning random matrices with, for each row i, a randomly generated
value of the degree |Ti| between ] and d, and randomly generated ranks
for the nonzero elements. The sizes of these matrices vary between 50
and 1,000, with d = 6, 10 and 20. The mean value of the degrees is
thus d/2. Notice that almost all these matrices are structuraly singular.
In the table below are given the mean values of p and p for each couple
(d, m), corresponding to samples of 10 matrices (m <« 1,000) or 20

matrices (m = 1,000).
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m S0 100 | 200 {1,000 50 J100 | 200 | 400 } 600 | 800 | 1,000 1,000

¥4 7 1 3.50.75(0.35 [ 11 (5.5 .75 1.4 | 0.9]0.7] 0.5|1

p 3 | 355 13 | 10 |19 34 |67 a8 121 |155 330

It is not really possible to draw practical conclusions
from these experiments, because basic matrices of usual linear programs

substantially deviate from these random matrices.

6.2. - Pathological cases

It is possible to comstruct matrices in which any pair of
rovs (and of colummns as well) have only one nonzero element at the same

place, i.e. :

T, ar,| =1, Vi, j=1,2, ..., m, isj

(2) This theorical result was confirmed bv numerical exneriments : amona twenty such random
(1,000 X 1,000) matrices, the minimum value of p was 431 (See [8] ).




-38-

Such (m x m) matrices, with k nonzero elements per row end per
column, can be found by representing configurations or finite projective

planes. A study is given in [6].

These matrices are characterized by the numbers m and k

related by
k =q+1
m=q2*q+l

where q is a prime number, or a power of a prime number. One sees that

the density p = k/m becomes small when the size of the matrix increases.
Examples of such matrices are given in Figure 7 for q = 1, 2, 3, 22

We leave to the reader the pleasure to construct the case q = 5 (m = 31,

k = 6). He will then see that constructing such matrices is not a trivial

task. It is fortunate that these matrices are some-~what "rare', because it

is easy to check that their minimal band-width is at least k (k-1)/2, or

(m-1)/2, i.e. the same order of magnitude as m.

6.3, - Matrices of real motivation

Contrary to random matrices, matrices corresponding to linear
programs coming from real problems, are highly structured. As a result,

for the same proportion of nonzero elements, they have narrower bands.

Experiments with problems of electrical dispatching, have
been conducted by FAYARD, HAUW and PLATEAU [1], [2]. A first series of
12 (20 x 20) matrices - issued from lincar programs representing the CIGRE
model of electrical network with 10 nodes - having many nonzero elements
(207 to 357) have given band-widthes ranking from | to 5, as indicated in
the table below. The indicated p-values are the smallest ones obtained
after various trials of permutations. But results were generally obtained

with Procedure 5.2.
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0% | 19,75 |23 | 25,25 | 27 27,75 | 28,75 |30 |31,25] 32,5 | 33,75 | 34,5 | 35,25

Note that p generally increases with p, but with fluctuations,

of course due to differences in the structures.

A second series of experiments has been conducted with 10

(100 x 100) matrices A of the following form :

B’ B

where B' is obtained from the given matrix B by removing one column. This
general pattern is typical in problems of electrical dispatching, having

similar constraints on reactive and active powers.

The chosen B matrices had structures frequently encountered
in this type of problems, with p-values ranking from 67 to 107. As
indicated in the table below, the corresponding p~values vary from 5 to 20;

they are the smallest values obtained after various trials of permutations.

p% |5,93] 5,95 5,95 5,97] 6,49 7,35 [8,85]8,93] 9,15 9,49

pl 7 S 8 6 8 12 17 20 18 15

Here again the rough increase of p with p is patent, despite
the variety of the chosen B-structures. Just for comparison with the
random (100 x 100) matrices of Section 6.1, a smoothed extrapolation of

the above results give approximately p = 3 for p = 57 ( compare with Figure o)
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7. - NUMERICAL EXPERIMENTATION OF THE METHOD OF PARAMETERS (2]

The method of parameters has been experimented with some linear
programs, the dimension of which ranking from 60 to 922 constraints. The
results, displayed in the table below, show that the maximum number of
parameters used during each resolution is always considerably smaller than
the number of constraints; this established the interest of the method of
parameters with respect to explicit use of the inverse of the basic matrix,

as far as storage is concerned.

The very simple experimental code used in the tests was written by
Y. HAUW [2]. It contains a switch for the computation d, T° and X1 (see
Section 2) either by "Explicit inverse" or by "Parameters". The two variants
for a same problem normally give the same sequence of bases, except possibly
by the end, in the case of very small values for d® and of roundoff errors

different in either method. This code is written in Fortran IV, H compiler.

The computation times indicated in the "Parameters" column are those
obtained with this code on a CII IRIS 80 computer. Likewise for the
"Explicit inverse" column for problems 1,2,3. For problem 4, it is the
time obtained with the IMSL Code on IBM 3033 Computer, multiplied by
19.5 in order to compare with IRIS 80(*).

For problem 5, it is the time obtained with the APEX III code oOn
CDC 7,700 (although this code factorizes the basic inverse) multiplied
by 60. It may be remarked that the parameter's variant is quite
competitive for the first four problems. For problem 5, the analysis of
the computation time has shown that the re—ordering of the matrix needed
almost all of the 1l seconds. The sorting routine used in the experimental
code of Y. HAUW was a m2 sequential sorting routine, which becomes prohibitive
for large values of m. A new version of J, DENEL [8], based on an adaptation
of the binary~tree HEAP-SORT procedure, has a cost of only N logzm, N being
the number of nonzero elements of the matrix. The time for ordering a
(1,000 x 1,000) matrix is then divided by about 10, which for problem 5

should give a time per iteration similar to the one of the APEX III code.

(x) The number 19.5 is obtained by comparing the times needed to imvert
a matrix ir double precision (COLVILLL standard program). These times

are respectively 2.51 and 49.1 secounds.
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Notice finally that the possibilities of saving permutations
when the change of basis takes place, indicated at the end of section

5.3., have not yet been used in the code.

Problem m n |Nonzero elements p Mean time/iteration in sec.
N° Total b4 maxi Explicit inverse |Parameters
] 60 92 | 328 6 6 0.13 0,17
2 100 120 | 600 5 8 0,45 0.41
3 170 218 | 793 2 6 1.36 0.75
4 249 487 954 0,8 4 4.60 1,14
5 922 (1763 3738 0,23 3 1 11

Some notes about the origins of the problems considered

The dimensions are those of the standard form (equality constraints,

non negative variables, slacks included, artificial variables excluded).

N° 1 : A program with 28 inequality counstraints and 32 natural variables,
non negative and upper-bdunded, The bounds are taken as ordinary
constraints, hence 28 + 32 = 60 slack variables, and 28 + 32 = 60

constraints.

N® 2 : A synthetic problem, the matrix being obtained by doubling a random
(99 x 60) matrix - having linearly independent columns - and adding
a bordering line, as described in CHARNES, RAIKE, STUTZ and WALTERS
(ACM volume 17 number 10 (1974) 583-586).

K° 3 : Management of a reservoir, 122 inequality constraints and 48 natural
variables, non negative ard bounded. The bounds are treated as
ordinary constraints, hence 122 + 48 = 170 slack variables, and

122 + 48 = 170 constraints.
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: Energy program, with two periods, 236 inequalities and 13 equalities,

251 natural positive variables. Hence 236 + 13 = 249 constraints

and 236 slack variables.

: Energy program over 8 periods, with 922 inequalities and 841 natural

positive variables, hence 922 slack variables.
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8. - ANNEX
COMPARISON OF THE REQUIRED CALCULATION, DURING ONE ITERATION OF

THE SIMPLFEX METHOD, BETWEEN THE EXPLICIT USE OF THE INVERSE, AND THE
DIRECT RESOLUTION WITH PARAMETERS

In one iteration of the Simplex method, the matrix calculations
that differ in the two variants are : (4), (6), (7), (9) for the explicit
use of the inverse, and (4'), (6'), (7') for the solving of the linear

systems with the method of parameters.

In the first variant, it is of course possible to avoid (4)

by using the classical relation

w1 = u - a® 17 @h7! (a-1)

where the values of u, d, T are those relative to the basis I, and hence
are known. One can also ccmpute directly
d(1'y = d - ds(rf,)" (AI);I A (a-2)

Also, in either variant, it is possible to avoid (6) or (6'), using

the classical relation
1y = - .

xi(I ) x5 T, 6 , 1 el

xs(I') = 8 (A-3)

x.(I'Y = 0 y 3 el~-s

J
where g is given in (8).

However, in large problems, with many iterations.roundoff errors
may become important in these recursive calculations. In what follows,

therefore, we suppose that both variants actually use (4), (6), (7) and
(9), on the one hand, and (4'), (6'), (7') on the other.
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The second variant (direct resolution) requires in addition re-
arranging rows and columns (actually : rearrangement of pointers), i.e.
operations that can hardly be compared with arithmetic operations.
Nevertheless, these operations being fast, we will disregard them in the

analysis below.

Some more comments before going on : operations (6) and (7) cost
the same. Operations (4'), (6') and (7') as well, but (6') and (7')
concern the resolution of the same linear system with two different
right-hand sides, which is little more expensive than just one resolution.
Solving (4') corresponds to the transpose matrix, which enjoys the same

reordering as the basic matrix (rows are just used in reverse order).

Therefore it suffices to detail the calculations for (6) on the
one hand and for (6') with one and two right-hand sides. These calculations
mainly consist of scalar products between rows and columns, so we take
into account the zero-elements of these vectors to avoid corresponding
multiplications : the amount of calculation is the expectation of the
actual number of multiplications. The value of this number in a scalar
product exploiting sparsity, is recalled in Section 8.1. Also, operations

vhose result is a value known in advance (0 or 1) will not be counted.

We recall that these schematic balances count only the arithmetic
operations : multiplication, addition, division, that they analyse only
parts that differ in the two variants and that they do not take into

account possible computer adaptations, characteristic of each variant.

8.1. - Scalar product of two sparse vectors

Let u and v be two m-vectors, the components of which are
independent random variables. Let p (resp. p') be the probability that
a component of u (resp. v) is zero. We set q = 1 - p, q' =1 - p'.

Consider the scalar product
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1f x is the number of multiplications with one zero at least,
this number equals the total number of zeroes in u and v, minus the
number of coincidences up = v, o= 0. Hence

E(x) = m(p + p' - pp')

E(x) = m(1 - qq") (A.4)

If y is the number &f actual multiplications(ui and vy # 0),

one has y = m - x, hence

E(y) = m qq' (A.5)

8.2. - Detailed calculations in the variant "explicit inverse"

8.2.1. - Updating the inverse

The new inverse is obtained by premultiplying (AI)—1

by an elementary matrix E. Thus, an element (i,j) of the new inverse

LR
(AI ) ! is calculated through the following scheme (see Figure 8).

NNNNNNNNNN

NN

(al'y -

Figure 8
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If i # s, i.e. m(m=1) occurences : | addition and ] multiplication.
If i = s, i.e. m occurences : only | multiplication.

The addition is done only if the element (i,j) of the old
inverse is nonzero. The multiplication is done only if the element(i,r)
of E and the element (r,j) of the old inverse are both nonzero.

If p' is the density of the basic inverse, and of the

r~column of E (which is obtained, from the candidate column TS, through

m divisions), we finally obtain the following account

x m{m-1)p* + 1) p'

+ m(m-1) o' (A.6)

* (w=1) p" + 1

8.2.2. - Product of the basic inverse by a vector

If p is the density of vectors fI, a or A® (supposed

to be equal to.that of A) we obtain

2
* m” pp
+ n’ oo (a.7)
y 0

8.2.3. - Total account

Summing up operations 8.2.1 and 8.2.2 (the latter

being done three times) gives a total account
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m large
x [m(ra(3p + p') + 1 - p")p' m2(3o +p")p!
+ | m(m(1 + 3p) - )p'’ mz(! + 3p)p’ (A.8)
B (m - p" + 1 mop'

8.3. - Detailed calculations in the variant '"Parameters"

We study here the direct resolution of a linear system,
considering simultaneously h right-hand sides. We have h = 1 when solving

(4'), and h = 2 when solving simultaneously (6') and (7').

The (m x m) matrix of the system is supposed triangular-band-
vise, having a band of width p (above the diagonal, diagonal excluded).
Therefore the number of parameters to be used when solving this system
is at most p. We will further suppose that this number is constantly

equal to p (no temporary elimination of parameters).
There are four distinct phases in the calculation :

-~ Successive transformations of the first (m - p) lines, to express (m - p)

unknowns as functions of the parameters.
- Construction of the (p x p) system to compute the parameters.
- Solving this system.
- Calculating the (m - p) other unknowns.

It is reasonable on the long run to take for the basic matrix
the same proportion p as for the matrix A. However we cannot take the same
value for the row-sections that lic below the null-triangle. We have to

modify p according to the ratio of surfaces of the null-triangle and the

matrix, and to take
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Dn = p (A.9)

| o fm=p = D(m-5p)
2
2 m

If m is large with respect to p, ome has approximately p" = 2 .

8.3.1. - Transforming line k (k = 1, 2, ..., mp)

The first (k~1) rows (including the right-hand
side(s)) have already been transformed by pivoting, and look like the

sketch on the left of Figure 9 (where only one right-hand side is shown).

We suppose in this figure that the p parameters
correspond to the p first columns, and that no parameter has been
eliminated. We suppose that, from the previous operatiomns, the first
p columns are full, as well as right-hand sides. The other elements in

the first (k-!) first rows are : ! in (i, p + i) and O elsewhere.
The operations that transform the row k are

« p"(p+k+ h=-1) divisions by the pivot (divisions of the non-zero

elements, excluding the pivot but including the right-hand sides).

. p"(p * h)(k - 1) multiplications (multiplying each row k' < k, by the
same element, to obtain after addition a zero at the location (k, p + k')).
Only the e¢lements of the first p columns, as well as right-hand sides,

are actually multiplied.

. p"(p + h)(k = 1) additions (to cach multiplication above, corresponds one

addition to some element in the row k).

Summing up from k = | to k = m - p, we obtain :

(m=-p)(m=-p=-1(p +h) ,
7 P

. (m - p)(m -Zp - +h o (A.10)

(m = p)(m+p+2h-1) "
2 D
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8.3.2. - Building the (p x p) system

Once the above operations have reached the row
k = m -~ p, we have a matrix looking like the sketch on the left of
Figure 10. Combining with the first (m - p) rows, we eliminate the entries
of the last prows, columns p + | to m. If some entry is already 0, the

operation is skipped.

We suppose€), that the submatrix (i,j) i =1, 2;... (mp),

" is to be considered in

j=1, 2, ..., p is full, but only the proportionp
the submatrix (i,j), i = (m-p + 1), ..., my, J = (p+l), ..., m because
the transformations 8.3.1. have not affected the last p rows. Moreover,
eliminating an entry of this submatrix does not change its other entries
(yet it modifies the corresponding row of the (p x p) submatrix of the

parameters).

We finally obtain after enumeration :

x [ p(p + h)(m - p) p"

+ | p(p + h)(m - p) p" (A.11)

8.3.3. - Solving the (p x p) system for the parameters

Its matrix is normally full. A classical pivoting

method such as GAUSS's method requires

p{p - N(@ p+3h+2)
6

. plp - 1) (26p +6h=-1) (A.12)

p(p +2h ~1)
2

which amounts to p3 order, and is negligible if p 1s small with respect

to m.
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8.3.4, - Calculating the other unknowns

To obtain the k—th unknown (k = 1,2,...

one has to multiply the p first entries of the k—th row (matrix on the

» m-p)

right in Figure 10) by the corresponding parameter value and to substract

the results from each right-hand side. Hence, for the whole of (m-p)

unknowns and h right-hand sides :

x | (m - p)op

+|(m=-p)ph

(A.13)

In summary, solving (4'), (6'), (7') as a result of

adding (A.10) to (A.13) for h = 1 and h = 2, requires the following

operations

(m=p)(m+p-1(20p+3)
] <]

L z(m_ P)P +

p(p = 1)(4 p + 13)
6

b | @t DD ey g gy e 20 NG 0

3

3 (m=p)(m=p+2) p" + plp +

2)

If m is large in front of p, p'

of magnitude are :

x |2 0P

2
+[2m pp

(A.15)

(A.13)

n 2p and the orders
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9. - ANNEX 2

COMPARISON BETWEEN THE PIVOTING METHODS OF GAUSS, JORDAN AND PARAMETERS

We suppose here that the considered matrix is full. This leads, in the
method of parameters, to use m parameters (which of course presents no
interest from a practical point of view). In this special situation, the
method of parameters is a pivotyng method with diagonalization, as JORDAN's
method. However, its cost is exactly that of GAUSS'e method, which is a

pivoting method with triangularization.

In Figure 11, are given the details for the k-th stage for each

method, together with the comparative account of the calculations.

GAUSS JORDAN PARAMETERS
Triangularization Diogonalization Diegonalizotion

RSSOERRNT]
AN
NNANAE
]
NN
NNANN
SSSEESY

1’ ] 111

NN P

. | mim-uizmes) fim-tfnimet) -2 [ m(m-1)(2mes) |
3 2 3

. mim-1)(2m+5) [ im-t)mim«e1)-2] [ mim-1}(2m+5)
6 2 5

. m(ms1) 2 m (m+1)

' 2 m 2

Figure 11
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1. INTRODUCTION

A linear programming basic feasible solution is said to be degenerate when it
contains zero valued basic variables. Call these degenerate variables. A degen-
erate iteration in the simplex method is a (feasible) change of basis with no

improvement in the objective value.

The presence of degenerate solutions in linear programming is troublesome
both theoretically and computationally. In the former, the possibility of
cycling (an infinite number of iterations) cannot be ruled out without special
pivot selection tiebreaking rules (e.g. [1], [2]). In the latter most problems
encountered in practice exhibit some degree of degeneracy, and even though
the simplex method almost never cycles on such problems, it nevertheless
usually performs a high proportion of degenerate iterations [7]. (OQur own
experience indicates that a problem with on the average 20% of its variables
degenerate usually results in approximately 50% of its iterations being degener-

ate.)

In this paper we study degeneracy from the point of view of reducing the
computational effort per degenerate iteration. We begin by viewing the simplex
method as performing a sequence of nondegenerate iterations, with the direc-
tion of movement at each such iteration being determined by an auxilliary linear
program having as many rows as there are degenerate basic variables in the
current solution. Then we show that the computations in this setting can be
conveniently performed by means of a basis factorization method which
achieves its savings by being able to perform degenerate iterations with only
partial information. We indicate that this method should be best suited for use
with multiple pricing [4], a technique that considers several candidates at once

for introduction into the basis.
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2. RESOLVING DEGENERACY: A SUBPROBLEM

Let the given problem be

minimize cTx

subjectto Ax = b; x 2 0. (1)

Denote a basic feasible solution generically by x = (u,v,y), where u, v and y
are respectively the basic variables at positive level (nondegenerate variables),
basic variables at zero level (degenerate variables), and nonbasic variables. Let

B denote the generic basis submatrix of A.

For a given feasible basis B, we may express the basic variables in terms of

the nonbasic variables to obtain an equivalent problem

minimize ply

subjectto u + Cy = q (q>0)
v+ Dy =0 )
(u,v,y) 2 0

(We ignore the constant term difference between the objective values of (1)
and (2)). The form of (2) will be considered generically, being equivalent to

the usual canonical simplex tableau [2].

Suppose we now perform the simplex method (under a given pivoting rule)
and that k (> Q) iterations occur before either a strict improvement in the
objective value or a proof of optimality is obtained. Two observations are

immediate:

1. Iterations 1,..,k will consist of exchanges of nonbasic variables (y) with

degenerate basic variables (v).
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2. If iteration k+1 yields a strict decrease in the objective value, this can only

occur if D, < 0, where y_ is chosen as the entering variable.

From this it is clear that in order to move from one basic solution to another
with a strict improvement in the objective value, the simplex method is indeed

solving the subproblem

minimize ply
subjectto v + Dy = 0 (3)
(v,y) 2 0.

This is a linear program whose variables all remain at zero level until an un-
bounded solution is detected, at which point it is terminated. Once (3) has
been soived, a change in the degeneracy structure occurs with a simultaneous

exchange of degenerate (v) and nondegenerate (u) variables.

We wish to regard (3) as being distinct from the original problem for the

following reasons:

1. Being generally much smaller in size, it may prove worthwhile to solve it on
the side in some sense. If the simplex method performs many degenerate
iterations or if the degeneracy structure does not vary greatly from one
nondegenerate step to the next, then (3) represents that part of the tableau

changing most rapidly. Exploiting this is the subject of the next section.
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Totally degenerate linear programs such as (3)! are in a way very different
from their nondegenerate counterparts, and may (at least a priori) be better
solved by methods other than the usual pivoting rules. Firstly, feasibilty is
always assured: every nonsingular submatrix of columns of (I,LD) is a
feasible basis for (3). Secondly, (3) can be solved by inspection if there is a

column satisfying

D, <0, p, <O (4)

Thus if we had the updated tableau at our disposal, this should be the first
criterion for an incoming column rather than, say, p, = min {p,}. Further,
if no such column exists, we wish to perform an exchange of columns with
the hope that there will be such a column at the next step: to this end,
there seems little justification for selecting an incoming column with
p, < 0, or restricting the pivotal element to be positive. In the revised
simplex method [2] where for reasons of cost the full updated tableau is
not available, choosing the incoming column with p, < 0 may therefore be
viewed as maximizing the probability that, in addition, D, < 0. With the
added use of multiple pricing, however, a few columns of the updated
tableau are kept at hand. In particular, this can be used to advantage in
seeking a column satisfying (4), and is well suited for use with the method

presented next.

t

Every linear program (1) may be stated in a totally degenerate
form: maximize t subject to Ax = bt, ATw < ct, ¢Tx < bTw,
x 20 [2,p.290].
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3. A DEGENERACY EXPLOITING BASIS FACTORIZATION METHOD

The heart of most implementations of the simplex method is the manner in
which the basis is represented. Usually one chooses a factorization that can be
used efficiently and stably in solving for the prices and the representation of the
incoming column - as required in the revised simplex method, and can be easily

updated from one iteration to the next.

The method proposed here is, like a great many others, based on partition-
ing and tearing (see [3]). Consider first the following general factorization

scheme:

Partition

T H
F G

arbitrarily but so that T is nonsingular. Then B may be factorized as the prod-

(2 7)o

for appropriate G and H. In order to solve equations with respect to B and BT,

uct

)=LV (6)

o] J= of

it suffices to have T and G in factorized form. Typically, T is chosen to have a
convenient form, e.g. triangular, so that most of the work centers around
Gand H, F already being part of B. To save on storage, the requisite equations
may also be solved without knowledge of H, an approach we favor here (see

e.g. [5] ). For example, to determine the representation of the incoming

column, a, the system

Bz

[}
»
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may be solved as follows:

Lw = a

Gz = w? N

where w = (w!, w?) and z = (z!, z?) are partitioned appropriately.

In the context of degeneracy, let B be partitioned so that B! and B? are the
columns corresponding to nondegenerate and degenerate variables respectively®.
Observe that G and H are then simply parts of the tableau updated relative to

the basis L. In addition, G is the starting basis for the subproblem (3).

Suppose next that the simplex method applied to (1) with starting basis B
performs some degenerate iterations followed by one that is nondegenerate.
Since degenerate iterations involve replacements only of degenerate variables,
the change in our factorization of B in (6) is localized to an exchange of
columns in G alone (assuming we discard H). Further, in solving for the
representation of the incoming column we would only partially solve (7) in
order to obtain z2, which is all that is needed to perform a degenerate iteration.

(z2 here is D, in the previous section).

z?2 < O indicates that the current iteration is nondegenerate. We would
then solve the third system in (7) for z!, and determine the leaving column by

means of the usual minimum ratio test. At this point the update of the factori-

¥ For the moment we require only that T be nonsingular.
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zation (6) is more cumbersome because a change in the degeneracy structure
occurs. Restoring (6) in conformance with the new partition into degenerate
and nondegenerate columns will most likely be too costly, and an easier metkod
(both conceptually and computationally) may be to border G appropriately,

leaving the factor L untouched.

More specifically, if the entering column, a, replaces a nondegenerate
column of B, and moreover a subset a of the nondegenerate variables become

degenerate, we would enlarge G to obtain
1
a &
G (new) -(O w:_ H )

where r is the pivot row and w is determined in (7). The work here is then to
generate the required rows of H' followed by an update of whatever factori-
zation is employed for G. Note that G now represents the degenerate varia-

bles together with the nondegenerate variables that were initially degenerate.

Periodically we would begin the process from scratch by reinversion, indi-
cated either by G requiring excessive storage or by loss of numerical accuracy.
In the event that a large number of nondegenerate variables become degenerate
at any one iteration, finding the rows of H for the bordering process may
become prohibitive, and it may be profitable simply to treat these new degener-
ate variables as being nondegenerate, then performing reinversion earlier than

otherwise.

' Finding a row of H requires the solution of a system with respect to L and the
inner product of this solution and BZ.
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Several existing factorization algorithms (e.g. [3], [5]) attempt to reduce
storage requirements by permuting B to bordered triangular or block triangular

form:

This corresponds in (5) to choosing T as large a (block) triangular matrix as
possible, and can be adapted easily to our case by letting G initially represent

both the degenerate variables and the bordered nondegenerate variables (called
spikes). L, too, is then a (block) triangular matrix which between reinversions

remains fixed in this desirable form.

In cases where a very sparse (or otherwise desirable) factorization of B is
available that is not of this near (biock) triangular form, the method still
applies: Let L bg all of B (in this desirable factorized form) and begin with G

being the identity corresponding to the degenerate variables.
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3. SUMMARY AND CONCLUSIONS

We have proposed a basis factorization algorithm intended to exploit the
degeneracy that has been observed to occur in linear programs encountered in
practice. A typical simplex iteration begins with the basis represented by two
systems (see (6)): the first, L, is of a desirable form, e.g. triangular, remains
fixed between iterations, and is associated largely with nondegenerate vanables;
the second, G, represents most of the degenerate variables together with the

remaining nondegenerate variables. The iteration proceeds as follows:

1. Select an incoming column, a, by a suitable pricing mechanism or otherwise.
If there is none, the solution is optimal: stop.

2. Solve the equations

Lw = a

Gz? = wi.

3. If the degenerate part of z2 has any positive components select the largest
one as the pivotal element (or any other depending on the pivot rule), and
go to step 4. Else go to step S.

4. This is a degenerate iteration: exchange the column w? with the column
leaving G as selected in step 3. Return to step 1.

5. This is a nondegenerate iteration: solve the system

z!
L( ) = a - B2
0

6. Select the pivot row by performing the usual minimum ratio test on z and
the updated right hand side. If none can be selected, the solution is un-
bounded: stop.

7. Update the right hand side and determine the new degeneracy structure.
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8. Update G by bordering it with the appropriate rows and columns deter-
mined by this column exchange and also by the occurrence of any new

degenerate variables (if desired). Go to step 1.

This method should significantly reduce the time spent on degenerate
iterations since it localizes the area of most rapid change in the basis factoriza-
tion and allows one to execute these iterations with only partial information.
Nevertheless the advantage gained could be offset by potentially large changes
in the degeneracy structure of the basic variables. However, investigative test
runs on a variety of problems have shown that the average change in the
degeneracy structure from one nondegenerate step to the next is indeed very
slight. Experimentation is currently under way with an adaptation of these

ideas to the LU factorization, and will be reported in [6].

We remark, finally, that the advantages of this method should be sigificant-
ly enhanced with the use of multiple pricing. This is so for two reasons: Firstly,
the effects of being able to perform exchanges of columns cheaply are even
more pronounced when pricing is carried out only, say, every 5 iterations. (In
our experience it has been common to spend 50% of the iteration time comput-
ing the prices and pricing out the nonbasic variables). Secondly, as indicated in
section 2, having part of the updated tableau at our disposal can result in fewer
degenerate iterations because of increased flexibility in choosing the entering
column. Only the degenerate part of the updated tabieau is required in this

case, being precisely what this method was intended to find efficiently.
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1. INTRODUCTION

Implementations of the simplex method usually comprise two often inde-
pendent aspects. The first is the manner in which the columns entering and
leaving the basis are selected, the primary aim being a reduction in the overall
number of iterations (e.g. Harris [7] and Goldfarb and Reid [5]). The second
is the means of maintaining the basis in factorized form so that the requisite
equations can solved efficiently, and therefore reduce the computational effort
per iteration. One’s choice of factorization method is usually guided by numeri-

cal stability, the structure of the problem, and the particulars of the computer.

For general large sparse linear programs two of the most efficient factoriza-
tion and updating methods are due to Reid [15], [16], and Saunders [18], [19].
Both are implementations of the the LU factorization with Bartels-Golub
updating [1]: Reid computes the factors using a Markowitz strategy [10] with
threshold pivoting, and performs the updating with the use of row and column
permutations on U so as to effectively minimize the growth of nonzeros. This
method favors having a greater proportion of nonzeros in U, and requires that
all of U be kept in core. Saunders’ method, on the other hand, is aimed at
keeping as much as possible in secondary storage, and is ideal for problems that
are very large or that will otherwise require excessive paging. Here the LU
factors are determined by the "bump and spike" structure of the basis. By
collecting the spikes after Gaussian elimination has been performed most of the
nonzeros go into L. All that is kept in core is the small upper triangular subma-
trix F of U which remains after deletion of the rows and columns of U corre-
sponding to triangle pivots. Sparsity is well preserved during updating since the
growth of nonzeros is confined to F. Recently, Gay [4] has experimented with
an improvement over Saunders’ implementation by updating F with Reid’s

method.
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This paper describes an alternative implementation of the LU factorization
that is more intimately connected with the iteration path of the simplex method.

The main features of this approach are:

1. Degenerate simplex method iterations can be performed with far less

computational effort;

2. It can be used profitably with multiple pricing to allow increased flexibility
in choosing the entering column and so reduce the overall number of

degenerate iterations;

3. It is similar to the method of Saunders in that primary storage need be
allocated only for its analogous F matrix. This likewise facilitates the
efficient use of Bartels-Golub updating, particularly as implemented by

Reid.

Most of the underlying ideas here stem from a more theoretical discussion in

Perold [14], although it is intended that this presentation be self contained.
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2. PRELIMINARY FACTS AND OBSERVATIONS

The method discussed here exploits two empirically observed phenomena of
the bases of sparse practical linear programs: a moderate number of degenerate
columns!, perbaps between ten and thirty percent of the total number of basic
columns, and a small number of spikes!, somewhere between 1 and 100. We
shall later indicate how it can be modified so as not to be adversely affected on
problems having a large number of degenerate columns. However, its perform-

ance will deteriorate markedly as the number of spikes gets large.

2.1 Degeneracy

We call a column of a given feasible basis degenerare if its corresponding
basic variable is at zero level. The presence of degeneracy is theoretically
troublesome since the simplex method may cycle (an infinite repetition of a
basis) without the use of special rules for selecting the entering and leaving
columns (e.g. Dantzig [3], Bland [2]). On practical problems, however, cycling
is rare. Nevertheless, degeneracy usually results in a great many degenerate
iterations, these being feasible basis changes with no improvement in the objec-
tive value. Indeed, it is typical for a problem with an average of 20% of its

basic columns degenerate to result in 50% of its iterations being degenerate.

Figure 1 illustrates the difference between degenerate and nondegenerate
iterations. X is the updated right hand side and y is the representation of the

entering column.




-71-

Nondeg + + + +
art N + N +

P +| |+ +| |+
- + - +

Degen - 0 - 0o

>

> >

Y y

a)] Degenerate b} Nondegenerate
iteration iteration

Figure 1

Iteration (a) is degenerate because of the presence of a positive entry in the

degenerate part of y. The points of note are the following:

1. Degenerate iterations can be carried out without any knowledge of the
nondegenerate part of y. Only if the degenerate part of y has no positive
elements is it necessary to consider the remainder of y in order to select the

leaving variable by means of the usual minimum ratio test.

2. Degenerate iterations consist of replacements of degenerate columns only.
Only during a nondegenerate iteration can (and usually does) the degenera-

cy structure change.

These facts lie at the heart of the method of this paper.
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2.2 Near triangularity

Spikes are columns having nonzeros above the diagonal. These were consid-
ered first in the context of linear programming by Hellerman and Rarick [8]
who observed that the bases of sparse practical linear programs could usually
be permuted to a form that is near lower triangular in the sense of having very
few spikes. They proposed a heuristic! P? to accomplish this, and then im-
proved on it [9] by first determining the maximal block triangular structure of
the basis? (this is unique) and then applying P? to the irreducible diagonal

blocks, called bumps.

Figure 2: Bump and spike structure of B

! The problem of finding the minimal number of spikes is NP-complete [17].
2 There are now very efficient algorithms to determine the block triangular struc-
ture, e.g. Gustavson [6].




-73-

Observe that by moving the spikes to the end of B in a principal rearrange-
ment, we obtain a bordered triangular form (Figure 3). A recent efficient
heuristic to permute a sparse matrix to this form with minimal border is due to
Sangiovanni-Vincentelli and Bickart [17]. At the present time there are no

comparative results with P3.

e

border

Figure 3: Bordered triangular form of B

The advantage of preprocessing the basis in either of the above ways is that
the growth of nonzeros during Gaussian elimination is confined to the few spike
(border) columns. Although the row and column order given by the bump and
spike structure usually yields sparser LU factors than the order given by the
bordered triangular form!, the latter will nevertheless be more suitable for our

purposes since it yields a much sparser L factor.

! The extent to which this is true is worthy of investigation.
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3. THE LU FACTORS OF B

From the previous section we assume that B has the bordered triangular
form depicted in Figure 3. Performing Gaussian elimination in this preassigned
order yields L and U of the form in Figure 4, where T is the triangular part of
B and remains unchanged in L, and R, F, and E represent the spike columns S

transformed by pivoting first on the diagonal of T.

Figure 4

Remarks
1. Fill-in occurs in all three of R, F and E.

2. It can be easily seen that F here would be the same as that obtained by
Saunders when all the spikes appear at the ends of their bumps. Since this
is usually the case for most spikes, we can expect the two F’s to be very

similar.
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The next step is the further partitioning of U according to the degeneracy
structure of B. The degenerate columns of B bear no relation to its bordered
form although they wili be made up mostly of triangle columns since there are
usually so few spikes. Perform the principal permutation on U that collects all
the rows D (say) of R corresponding to degenerate triangle columns and places

them adjacent to F. This gives U the form depicted in Figure 5.

N\ N

U = where l:'

M
Ll

A
]

RA\D

Figure 5

With L and U now determined in this way, we consider performing a basis
change. In the remainder of this paper we shall identify the columns of U and
F with their corresponding columns in B. Thus we call a column of F degen-

erate if its corresponding column in B is degenerate.
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4. PERFORMING A BASIS CHANGE
A substantial part of the computational effort in each iteration of the
simplex method consists of selecting the column to leave the basis — for a

given entering column a — and then updating the current to reflect this ex-

change.

In order to determine the leaving column we need to solve the system

By = a.
This we do by solving the systems

Lw=a

Uy = w.

By partitioning w = (w', w?) and y = (y', y?) according to the above partition
of U (Figure 5), it is clear that y can be obtained from w in a two step proce-

dure:

Fy2 = W2

y! w! — (0, R)y2

Following our discussion on degeneracy in section 2.1, we see that it
suffices to have y? in order to perform a degenerate iteration since it contains
all the degenerate components of y. Only if all of these are nonpositive is the
computation of y! required. Further, since a degenerate iteration is the ex-
change of the entering column and a degenerate column, no new degenerate
columns are created. Thus the factorization may be updated simply by an

exchange of w? for the leaving column of F (e.g. by Bartels-Golub updating).
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The update during a nondegenerate iteration needs to be performed in two

stages:

1.

(1) The rows of R corresponding to new degenerate columns not in F.

Perform the update corresponding to the exchange of columns. Unless the
leaving column is a nondegenerate column of F, this will result in the
formation of an additional spike which can be handled precisely as in

Saunders’ case with his F replaced by F.

Update the degeneracy structure. In principle several degenerate variables
can become nondegenerate, and several nondegenerate variables can be-
come degenerate. In practice, it is common for no more than 2 nondegener-
ate variables to become degenerate, and it is easiest to border E appropri-
ately to accommodate them (in the same way as F was bordered to obtain
the initial F), leaving untouched any degenerate columns that may have

become nondegenerate.

Schematically the new F has the following form:

L)

(2)

F (new) = F (old)

(3)

~

(2) The row of R corresponding to the leaving column of B.

(3) Subvector of w = new spike to be eliminated by Bartels-Golub.
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5. DISCUSSION
5.1 Discarding R

Observe that E is required only during nondegenerate iterations: it is used
in the solution of y! and for the bordering of ; with a few of its rows. During
degenerate iterations it is accessed only to save the subvector w!. The above
steps can all be performed without knowledge of E By looking at the rows of
B corresponding to y' as depicted in Figure 3, it is clear that there is a triangu-

lar submatrix T of T and a submatrix S of S so that y! satisfies

~

Ty! + (0, 8)y? = a'

where a = (al, a?) is partitioned accordingly. Thus y' may be determined by
solving a triangular subsystem of L. Likewise, the p!h row of R may be ob-

tained by solving the system
'.;T th .
z = e, (p  unit vector)

and forming the inner product zTS. This can be used to save substantially on
storage since L, T and S can be embedded as part of the constraint matrix.

Additional storage would then be required only for E and F.

In an out-of-core implementation the storage aspect is not all that impor-
tant, however, and we would probably store L, T and S separately so as to be
more easily accessible. Nevertheless, since T and S are generally much less

dense than R, it may still pay to perform the calculations with them instead.
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5.2 Excessively many degenerate columns

The success of this method hmges on its ability to confine most of the work
to the small triangular submatrix F which is to be kept in core. The order of F
is determined primarily by the number of degenerate columns, and may become

too large for two reasons:

~

1. 1f, say, 70% of the columns are degenerate then F constitutes most of U,

and the savings during degenerate iterations will probably be slight.

2. Even if F is a proportionately small part of U, it may nevertheless require

too much core, as may happen with extremely large probiems.

In either case, this method can still be made viable by treating sufficiently
many degenerate columns as being nondegenerate (for the purposes of this
factorization only) so as to keep the core requirements of E manageable. Thus
even though y? no longer contains all the degenerate components of y, we still
require y' only if there are no positive degenerate components in y?>. A good
strategy would seem to be to keep E as large as possible subject to core availa-
bility and/or to there still being some benefit over a method that keeps all of U

in core (with perhaps sparser L and U factors).

5.3 Large changes in the degeneracy structure

In the rare event that a large number k of nondegenerate columns not
currently in E become degenerate (only possible during a nondegenerate itera-
tion), updating E by bordering it with the corresponding k rows of E can
become expensive. This would be especially so if we need to generate these
rows because E is not maintained. In such a case it may be better to temporari-

ly treat these added degenerate columns as nondegenerate columns — in a
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fashion similar to the approach in section 5.2 — and then perform refactoriza-

tion earlier than usual.

5.4 Summary

The procedure for performing a basis change may now be summarized
below. We assume that the entering column a has been selected. As before, X

is the current updated right hand side.

1. Solve Lw = a

2. If the degenerate part of y? has no positive components go to step 4. Else

select one of them as the pivot element.

Degenerate iteration
3. Exchange w* for the leaving column in F, and add w!' to R if R is being
maintained. Restore F to upper triangularity (by Bartels-Golub updating).

End of iteration.

Nondegenerate iteration
4. Solve one of Ty! = a! - (0, S)y?
y' = w! = (0, R)y%.
5. Determine the leaving column by means of the usual minimum ratio test on

X and y.

6. If the leaving column is not in F generate row p (say) of R corresponding
to the pivot row, either by retrieval from secondary storage, or, if R is not
being maintained, by solving TTz = e, and forming z'S. Augment F with

this row.

7. Proceed as in step 3.
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8. Update the right hand side.

9. Determme the new degneracy structure, and generate (as in step 6) the

rows of R corresponding to new degenerate columns not already in F

10. Augment F with these rows and appropriate unit columns, maintaining

upper triangularity. (This step requires no arithmetic). End of iteration.
Remark

Note that each iteration requires the solution of systems with respect to L
and F and the elimination of a single splke to restore F to upper triangularity.
As such, it is important to have L and F in as compact a form possible: permut-
ing the spikes to the end before performing Gaussian elimination brings us
much closer to this goal. An alternative may be to find the best bordered form
from amongst only the nondegenerate columns (i.e. a rectangular matrix). This
should yield a "thinner" border, but may result in much more fill-in in the
degenerate columns. While not considered here, this approach seems worthy of

investigation.

5.5 Use with multiple pricing

Computing the prices and determining the incoming column can often cost
as much as 50% of the iteration time. Multiple pricing [12] is intended to save
on most of this by selecting several columns at once for introduction into the
basis. Typically between 5 and 10 columns are selected and introduced one at
a time subject to remaining profitable. Their representations are kept in core
and are updated as if in a tableau. In addition to the savings in pricing, one can
reduce the overall number of iterations by choosing from amongst these, for

example, the column yielding the greatest decrease in the objective value.
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With this factorization the savings during degenerate iterations will be even
more pronounced when pricing is not performed at every iteration. For each of
the 5 to 10 columns we would compute and store their w2 and y? subvectors as
usual and then try to select from these a column whose degenerate part is
nonpositive. From one of these "minor" iterations to the next the w?’s can be
updated by the transformations used to update E During nondegenerate minor
iterations the y?’s gam additional components These can be easily found by
using the rows of R being added to F Then the tableau updating formulae

apply as usual.
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IMPLEMENTATION

In order to investigate the behavior of this factorization algorithm, particu-

larly with respect to the distribution of nonzeros and the relative times spent on

degenerate and nondegenerate iterations, we implemented the foregoing propos-

als in an experimental code DELUX (Degeneracy Exploiting LU simpleX).
DELUX was written in FORTRAN IV and run on an IBM 370/168 under VM
(FORTHX compiler, OPT = 2). The important aspects are the following:

1.

The constraint matrix is stored column wise with row pointers. Upper and

lower bounds on the variables are kept in two separate arrays'.

The maximal bump finding algorithm and P? were implemented as by

Saunders in the code MINOS [11], [19].
To save on storage R is discarded.

All triangle columns of B are represented by pointers into the constraint
matrix. They are pivoted on first before any spikes are considered. Any of
these with unacceptably small pivot elements (relative to the elements in
the rest of the column) are rejected for pivoting at this stage and treated as

spikes.

The square "'remaining matrix" of the transformed spike columns is fed to
Reid’s routine LAOSA [16] to be factorized into the product EF (see
Figure 4 and the remark below). LAQS5SA stores F row wise with column
pointers, together with an additional set of row pointers used only to

indicate the nonzeros column wise.

F is formed by augmenting F with the rows D (Figure 5). This involves the

insertion of these additional nonzeros row wise at the end of the file for F,

1

In this case a basic column is degenerate if its variable is at its upper or lower
bound.
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followed by an update of the column structure and a permutation array. (F

and F are permuted upper triangular matrices).

7. During nondegenerate iterations, L is used in place of T for the solution of
y' and the generation of the required rows of R. Advantage is taken of the
fact that many of the columns of L can be skipped during these transforma-

tions.

8. During updating, augmentation of F takes place first (when necessary) as
mentioned in 6. Then the column swap is performed on F by Reid’s

routine LAOSC [16].
Remark

Factorizing the remaining matrix in the already determined bump and spike
pivot order may be a more efficient means of computing the initial E and F.
However it was much easier implementationally to call on LAQO5SA. This also
has the added long run benefit of placing more weight into E : L can only grow
in size while l~: can actually shrink if a dense column is replaced by a sparse
one; a sparser L yields a sparser transformed column w, which in turn yields a

slower growth of nonzeros.
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7. EXPERIMENTAL RESULTS

As our test problems we used 3 small- to medium-scale LP models.

Problem Rows Columns Nonzeros % Density Iterations
PILOTS 626 1376 6026 0.7 500
SCSDS8 398 2750 11334 1.0 456

L84MAV 114 1994 11120 4.9 1043

Table 1: Problem statistics

The first two are time period models: PILOTS8 has an 8 period staircase struc-
ture with a few nonzeros in the lower block triangle; SCSD8 has a 39 period
staircase structure. Earlier experience with these models on MINOS and
LPBLK (an LP code emploving a block triangular factorization of the basis) is
reported in Perold and Dantzig [13]. L84MAV is a set covering problem and
was chosen because such linear programs are known to be highly degenerate.
All runs had the refactorization frequency set to 100 and were started from
advanced feasible bases. These were the same starting bases for PILOT8 and

SCSD8 as reported in [13]. Only PILOTS8 was terminated short of optimality.

7.1 The initial LU

Two tolerances are used in determining the initial factorization:

1. uy is the minimum acceptable ratio of the pivot element of a triangle
column (of B) to the largest element beneath it. Triangle columns unac-

ceptable in this way are moved to the end of B and treated as spikes.

2. u,, is the threshold used by LAO5SA in conjunction with the Markowitz

strategy.
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PILOTS SCSD8 L84MAYV
Rows 626 398 114
Nonzeros 3388 1552 585
Density (%) .86 .98 4.5
Slacks 37 1 10
Initial spikes 120 48 12
Triangle rejects 24 0 0
Dimension of F 144 48 12
Degenerate cols 52 117 21
Degenerate spikes (¢ 18 1
Dimension of F 190 147 32
Nonzeros!
T2 2076 1311 503
E 2559 88 56
L=T+E 4635 1399 559
F 1473 203 75
D 88 241 36
F=F+D 1561 444 111
R? 3041 2575 342
Total: L +F + R 9237 4418 1012

URefer Figures 4 and 5 in section 3.

2 Embedded in the constraint matrix.

3 These were not stored.

Table 2: Statistics for the initial LU
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Problems SCSD8 and L84MAY were not very tolerance dependent. PILOTS
on the other hand was very sensitive to the tolerance ur, having a large number
of rejected triangle columns even with u; = .001. The best result was obtained
with u; = .0001 and uy, = .1, this being barely satisfactory numerically. These
tolerances were also used for the figures reported here for SCSD8 and

L84MAYV,

Table 2 summarizes the statistics for the initial LU. Of particular interest is
the low proportion of nonzeros in ;, even though the dimension of ;‘ in all
cases is approximately one third that of B. Perhaps more remarkable, and
indeed very surprising, is the fact that the number of nonzeros in D (i.e. what is
added to F to gef E) is far out of proportion to its size relative to E On
PILOTS, for example, D has approximately 10% of the rows of E yet less
than 3% of its nonzeros. The only explanation for this is that the nonzeros in
R are distibuted asymmetrically: very few at the top and a great many at the

bottom.

Table 3 gives the initial LU statistics for MINOS on PILOTS8 and SCSDS8
from runs recorded earlier for {13]. On PILOT8 the same tolerance u, =
.0001 was used, resulting in the same number of triangle rejects. As expected,

the factorization performed by DELUX has:
1. A much sparser L

2. A denser F (due mostly to the Markowitz strategy of LAQ5A) although not

much more so in terms of the total number of nonzeros

3. A very much denser R.

While the total number of nonzeros in the factorization is less important for
DELUX (since only L and F are used for a large part of the time) it is worth
noting that MINOS produces 24% more nonzeros on PILOTS8 and 48% fewer

nonzeros on SCSD8. The "almost catastrophic” fill-in in R produced by
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DELUX on SCSDS8 is a result of the problem’s staircase structure (39 stairs

with approximately 10 rows in each). A staircase matrix with a high degree of

partitioning is probably a worst case example for this type of behavior.

PILOTS SCSD8 L84MAV
T 2076 1311
I
E 6760 675 Not.
L=T+E 8836 1986
run
F 1323 68
R 1255 244
Total: L + F + R 11414 2298 i

! E here consists of the subdiagonal parts of the filled-in spike columns.

Table 3:

7.2 Some degeneracy statistics

Nonzeros in the initial LU of MINOS

The method of the paper is based in part on the assumptions that a relative-

ly small number of degenerate columns result in a relatively large number

degenerate iterations, and that large changes in the degeneracy structure at any

nondegenerate iteration are rare. From Table 4 we see that the first assumption

holds for the three test problems.
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Degenerate columns % Degenerate
Mean number Mean % iterations
PILOTS3 52 8.3 40
SCSD8 131 33 78
L84MAV 36 32 70

Table 4: Degenerate columns and degenerate iterations

Changes in the degeneracy structure are important only in so far as they
affect the size of E The frequency diagrams below summarize the distribution
of the growth in dimension of E This growth is made up of a new spike and/or
the number of new degenerate columns that are not already in I:: Note that the
growth will slow down as E gets larger (until the next refactorization) so that
these figures should be interpreted as averages. From Figure 6 we see that for
by far the bulk of the nondegenerate iterations, the dimension of ; either
remains constant or goes up in size by one. On SCSD8 some isolated large

increases were reported, most notably one of size 22.
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207
PILOTS
301 Nondegenerate iterations
89 (out of 500)
3 2
O 1 2 3
36
[ | SCSD8
26 100 Nondegenerate iterations
| (out of 456)
14
H 9
3 4 3 2
D ol ot S 4
0] 1 2 3 4 5 6 8 11 14 22
155
] L84MAV
106 313 Nondegenerate iterations
] (out of 1043)
35
10 ,
Hj S 3 4
O 1 2 3 4 5 6 7

Figure 6: Frequency diagrams of the growth in dimension of F

during nondegenerate iterations
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Table 5 indicates that the average growth in dimension of ; is slow even
for nondegenerate iterations. The (overall) average growth in dimension of
MINOS’s F was .39 on PILOTS8 and .73 on SCSD8. These are expected to be
higher than those of DELUX since F is smaller than E

PILOTS8 SCSD8 L84MAV
Nondeg itns .34 1.93 77
All iterations .20 42 23

Table 5: Average increase in dimension of F

7.3 Growth of nonzeros during updating

The figures in Table 6 show a remarkably slow growth of nonzeros in L and
;. This and the high proportion of iterations during which no growth took place
in L are due both to Reid’s updating method and the initial low density of L.
With MINOS the growth rates for L were almost twice these: 18.8 for PILOTS
and 5.8 for SCSD8; SCSD8 had no growth in L 25% of the time. (This figure

for PILOTS and the growth of nonzeros in F were not available).
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% itns with no Average Average
growth in L growth in L growth in F
PILOTS 44 9.9 16.3
SCSD8 46 3.3 11.9
L84MAV 50 5.4 7.6

Table 6: Average growth of nonzeros

7.4 CPU times

PILOTS SCSD8 L84MAV

Solve for prices 334 162 72
Select incoming col 108 81 62
1. Solve: y* 255 91 51
2. Solve: y! 130 66 34
3. Update: LAO5SC 113 42 42
4. Augmenting F 204 299 60
Degenerate basis

change: 143 368 133 93
Nondeg basis

change: 1+2+3+4 702 498 187

Table 7: Average CPU time per iteration (seconds x 10%)

' The incoming c¢olumn was selected by partial pricing, i.e. cyclic scanning of
partitions of the constraint matrix. 3 equal partitions were used for PILOTS§
and 10 for SCSD8 and L§4MAYV.
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Table 7 shows nondegenerate basis changes taking twice as long as degener-
ate ones on PILOTS8 and L84MAYV, and much longer on SCSD8. Note, howev-
er, that much of the time for nondegenerate iterations went into generating the
rows of E to be added to E (especially true on SCSD8). This can be improved

upon by a more careful implementation in several ways:

1. Store T and S row wise (in secondary storage) instead of using all of L and

S (stored column wise) as was the case here.

Do not discard R, and obtain the required rows directly from it. In addi-

[

tion, depending on the density of R, use whichever method is most econom-

ical to solve for y'.

Even with a sharp reduction in the time spent on augmenting E, the large
savings during degenerate basis changes is nevertheless clear. With the added
use of multiple pricing (see section 5.5) the high proportion of the iteration
time spent in selecting the incoming column should diminish to about 10%.
This would make the total time for degenerate iterations about 35% faster than

that for nondegenerate iterations.

8. CONCLUSIONS

We have presented a new implementation of the LU factorization that
achieves fast execution times for degenerate simplex method iterations, espe-
cially when used in conjunction with multiple pricing. The scheme possesses a
major benefit of Saunders’ method, viz. requiring only part of U (i.e. 1?) in
core. This greatly reduces primary storage requirements while simultaneously
facilitating the efficient use of Bartels-Golub updating, particularly as handled

by Reid.
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Preliminary experimental runs indicate that the method might typically
achieve a 35% savings in the run time for degenerate iterations. In so far as
the available data allow for a comparison with Saunders’ method, we conclude
that while this method initially requires more storage for I-' than his F, this is
still only a fraction of the total number of nonzeros. This difference is in any
event offset by a growth of nonzeros about half that of his, aside from the
savings in time during degenerate iterations. Further testing is warranted in

order to bring these tentative results into sharper focus.
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CONTROLLING THE SIZE OF MINIKERNELS

Richard D. McBride

Finance and Business Economics Department
University of Southern California

In the bump triangular dynamic factorization algorithm the basis is partitioned in such a
manner that the simplex method can be executed from a series of small inverses, called
minikernels, and the basis itself. Methods are presented which can help control the size
of the minikernels, One particular problem solved concerns the potential existence of
bumps with alarge number of spikes obtained from Hellerman and Rarick’s p4 procedure.
Artificial inverses are used to keep the minikernels small in dimension.
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INTRODUCTION

Recently, a method was published [5] which permits the simplex method
to be executed from a series of minikernels or mini-inverses. The
efficiency of the method depends on controlling the size of these
minikernels. The method utilizes directly the block triangular structure
of the basis induced by Hellerman and Rarick's [4] P4 procedure. The
spikes within each bump on the diagonal are moved to the right of the bump
thereby inducing a triangular submatrix and an inverse (equal in dimension
to the number of spikes within the bump) for each bump. In [5] procedures
are presented which permit this partition to be maintained from one pivot
to the next. Difficulty is encountered in this method in solving those
few problems that have bumps containing a large number of spikes.
Partitioning procedures are presented in this paper which can be used to
reduce the size of the minikerunels which result from bumps having a large
number of spikes.

Section 2 develops the basic partitioned inverse and Section 3
presents the procedures that can be used to reduce the size of the

minikernels.
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2. DEVELOPMENT OF FPARTITIONED INVERSE WITH MINIKERNELS
Consider the partitioned simplex basis after possible row and column

interchanges

where the a-type columns correspond tu the basic structural variables.

The basis inverse correspoending to the partitioned basis (1) is

'A21A11-l I
All-l is the essential part of B! and is called the kermel [2]. The
kernel can be used as the working inverse in the simplex method. Although
the dimension of A11 may be considerably smaller than that of B, a further
significant reduction can be made by taking advantage of the block
triangularity of A11 (after possible run and column interchanges) for
large sparse LP problems.

After the application of the PA procedure [4], we get the following

partition of A11:

AL = = | (3)
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where T is lower blotk triangula.. The partitioned inverse (3) is:
-1 -1 -1 -1 -1 -1
T + [ \2 HO A3 T T AZ HO
-1 _
AL (4)
-1 -1 -1
”0 1\3 r HO
where HO = Ab - A3 T.1 AZ. Ho-l is called either a subkernel [3] or a
minikernel. The dimension of HO.1 will usually be much smaller than the
dimension of All-l' Immediately after reinversion the dimension of H -1

is typically zero. The simplex method can be executed using Ho-l and T-l.
Due to the bump triangularity of T all operations requiring the use of 1'-1
can be replaced by solving bump triangular systems of linear equations

with T as the coefficient matrix.

The submatrix T can be partitioned

require that the subsystems Dix1 = 2 and (xl)T Di = (El)T be solved.

These subsystems can easily be solved if Di is triangular., If Di is not




-101-

triangular then it is called 4 bump. If the P4 procedure is repeatedly
applied to the bump Di after removal of spikes, then Di typically takes

the following form after row and column interchanges:

L.

The structure of Di in (5) is the same as T in (3). If all of the spikes
of Di are moved to the right of Di then Di takes the following form:
i)

A

-
-

D, = (6)

Experience indicates that the number of spikes in Di is usually quite
small. The partitioned inverse of each bump D.L has the same structure as
(4) and yields the minikernel Hi-l. The structure of Di given in (6) is
the structure of Di implemented in [S]. As mentioned above, experience
indicates that the number of spikes in Di is usually small and therefore
the dimension of Hi-1 is small. It is very common for the dimension of

Hi ! to range from one to eight.




-102-

To solve the subsystem Uixl = a2’ one must compute
x; 51 z+1
xl = = ['),-l =
1
X% il
2 T2 s
where
_-i g -l 1 _ i
T.z = als s = Hi (32 A3 z)
(M
i _ Al _ -1,1
Til = AZS' Hi = A4 A3 Ti Az

When Hi-l is available, we compute x* by solving two triangular systems of
equations involving Ti and performing some matrix arithmetic. The
ity _ ,2i\T . ) .
subsystem (x") Di = (a”) is solved in a similar manner.
Computational experience is given in [5] which illustrates the

effectiveness of the use of minikernels in representing the basis inverse.

-1

One minikernel is required for each bump in T in addition to HO

Experience indicates at least a reduction of one third in the number of
nonzero elements needed to represent the basis inverse when compared to
Reid (6, 7] at the expense of a slight increase in computational time.
The above techniques with Di partitioned as in (6) works well for most
problems. In the next section we discuss the partition that can be used
when that occasional problem is encountered that contains a bump with a

large number of spikes.
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3. PARTITIONING RIS WITH LARGE NUMBERS OF SPIKES

When a bump is encountered with a large number of spikes the
partition given in (&) «iil produce a minikernel large in dimension. In
the PILOT1 energy model [1] it iz ~ommon for a bump to be encountered with
more than 100 spikes. A minikernel of dimension of more than 100 is not
desirable. In this case partition (5) is preferred over (6). When using
(5) one would solve bump triangular systems of linear equation in (7)
rather than solving purely triangular systems.

In a particular PILOT1 basis studied a bump was encountered with
dimension 424 and 117 spikes. When the 21 tallest spikes are moved to the

right of the bump, the bump decomposes into:

Hi Dimension 0 6 0 1 1 0 1 3 Q 5 0 24 0

Ti Dimension 6 5 11 1 1 7 1 4 3 26 16 46 4

712 42 1 1 1 3 1 3 1 7 1

The bump decomposes into 38 subbumps with minikernels ranging in dimension
from 1 to 24. In this case the space required to represent the bump (carry

the minikernels) reduced from 13,689 to 1,566.
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It is possible to nse an ilecated form of (5):
_ ) i _ z -i
Dl = T \2 A2 = D1 A2
i
(8)
=1 =i
_ A3 A4
i A
A3 A4
o1 =1
A A
3 4
n i
Here we have
A, = &, -Ai 5 Al
i 4 3 i 2
9)
T S SIS B
Hi = A& A3 Ti A2

Carrying the partition in (8) to 1its extreme would permit
representing Di by a series of one by one minikernels equal in number to
the number of spikes in Di‘ However, this would require too much
computational work to execute the simplex method.

The subsystem Dixi =3t would be solved using (8) and the inverses of

(9) as follows:

w

N1
+
—1

®
1]

(=)
"
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where
§35=31 - _~ -1 -1 rO-
22, =, (1: - A3 z)
(10)
ol
hll
5 TRl sl -
Dl 1= A2 s = b1 =
- i
P2
and
1 . _ci IRES ! Al
stz JRth] TimTean e s FH Gt Ay z)
i 1 ’
. .
1 L L Ay 5y
and
- : 0 - S -1 i i 0
A Li| Tyz=by o sy =i by, = Ay 2))
1=0""58= . - - .
i 1 ! _ sl
S2 Ty ly = =8, sy

In computing z and 1 notice that zl and z, can both be computed in the

same phase through the columus of Ti' The same is also true for 11 and 1,.
-

Note that the net effect of partitioning the spikes on the right in Di
requires no additional passes through the columns of the bump triangular
submatrix Ti. Using this iterated strategy it is possible to replace a 2n

X 2n by two n x n minikernels with a resultant 50% reduction in memory

requirements,




-106-

4. CONCLUSION

Bumps with a large number ot spikes can be efficiently handled by a
repeated application of the basic partitioning strategy. It is possible
to further reduce the size of minikernels by an iterated application of
the basic partitioning scheme which yields a further 50% reduction in
memory requirements. Clearly. the space required to represent the basis
inverse (in addition to the basis itself) can be reduced to equal the
number of spikes in the kernel. The practitioner must choose that level
of partitioning to obtain the fine balance between his particular memory

and execution time requirements.
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ALGORITHMS FOR BLOCK TRIANGULARIZATION OF BASIS
MATRICES AND EXPLOITATION OF DUAL DEGENERACY IN THE
DUAL SIMPLEX METHOD

Eugeniusz Toczytowski

Institute of Automatic Contro/
Technical University of Warsaw

This paper studies two topics essential to large-scale linear programming. First, algorithms
used inrestructuring a basis matrix to create a sparse representation of the inverse are con-
sidered. We will show that the best strategy for block triangularization of a basis matrix is
in general not the execution in sequence of a maximum matching algorithm and an algo-
rithm for finding the strong components of the directed graph associated with the basis
matrix, but rather the multiple execution of an algorithm for finding the strong compo-
nents of appropriate directed graphs as a subroutine in an algorithm for finding a maxi-
mum matching. We also present a new algorithm for finding a maximum matching based
on the Hopcroft and Karp approach. In the second part of the paper we present a modifi-
cation of the dual simplex algorithm efficient in the case of the dual degeneracy typically
found with integer programming aigorithms,
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1. NCTATION

The LP problem is

max x,
(1) Ax = b
1< x€u
where X=(Xq,eee %), A =|:a1,a2,...,an] is m = n matrix

with columns 850 and =-ao( li < uis +00 , i=1,...,0.
let X be the index set for the nonbasis variables, and

® ={(L1,...,(sm} be the index set for the basis variables.
The gystem AX = b can be written in the form
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(2) Bxp + :E:: a.X, =D

N .]G.N‘ uJ
where B = La Bpesecr a(5m] is the basis matrix and Xg
the vector of basic variables, osr in the form

(3) X(; + ZB-1ajxj = B-1b

jex
If a besis matrix B is reinverted, permutation matrices P
and Q are required such that PBQ is in block triangular
form with diagonal blocks having bordered band lower
triangular structure.
Let us denote by pi(qi) row (column) index of the i-th
row gcolumn) of the matrix PBQ. Permutation matrix P with
elements P(i,j) is equivalent to the vextor p=(p1,...,pm)
by tne equivalence relationship P < p iff P(pi.i)=1.
Analogously Q<>q iff Q(i.qi) = 1.
We associate with an m-square matrix B = Cbij] a directed
graph G(B) which consists of a set of m vertices {1,2,...,m}
and a set of arcs {(i,j): bji # O} .

2 . ALGORITHMS PCR RESTRUCTURING BASIS MATRICES.

Block triangularizing of a basis matrix B can be done in two
stages. The first stage is finding a maximum matching (or
maximum transversal), the seccnd stage is finding the strong
components of the directed graph associated with the

matrix B.

2.1, An algorithm for maximum matchirg.

3ost algorithms for finding a maximum matching are based

on one devised by Hall [4]. Thege algorithms are of
Complexity O(m.t) where m is the number of rows and t is the
number of non-zeros in the matrix. The Hopcroft and Karp
algorithm [5] allows to simultanecusly stretcn an assignment
with several paths of minimal lenght, and thus is of complexi=

ty om'/2.4).
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Since tnis complexity orders are osbtaired from a
worste-case analysis, there is mno> evidency which algoritim
ig more efficient in the typicsel perfaormance. There is,
however, very little published work on comparing these
algorithms. In such analysis randomly generated matrices
have often been used, though bagis matrices from real life
LP problems are not random in structure. In a recent paper
of Darby - Dowman and Mitra (6] an interesting comparison
of two versions of each of the algorithms have been done
based on the analysis of a set of medium-size practical
problems with the number of rows in the bumps ranging from
75 to 435 and with a comparable sparsity. Their conclusion
was that Hopcroft and Karp algorithm for finding a maximum
matching compares unfavourably with the algorithms based
on Hall s method . We have studied, however, sone characte=
ristics that are important in this algorithms. The most
important indicators of efficiency of the algorithms in
addition to the overal CP time are:

(1) the number of iteratisns in function of the number of
rows. By cne iteratiocn we mean in Hall algorithm a nontri-
vial assignment with reasignments in an augmenting path,
while in Hopersft and Karp algorithm - forming a graph con-
taining the set of all augmenting raths of shortest lenght
and performing a set of reassignments resulting from the
set of shortest augmenting paths.

(ii) the average CP time per iteration in function of the
nunber 5f rows.
Comparison 5f this characteristics are given in Rig.1 and

Fig.2. Figure 1a indicates that in Hall algorithm the num=-

ber of nontrivial assignments, though drastically smaller than
the number of rows, increases lineary with the number of

rows. Figure 1b shows that the analogous characteristic for
Hopcroft and Karp algorithm is a slower growing functisn
(approximately a square=root function).

Figure 2a and 2b indicate, that the average CP time per
iteration increases approximately lineary as the number of
rows increases. Thus, the Hopcroft and Karp algorithm tends,
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Fig.1. Number of iterations in a) Hall,
b) Hopcroft and Karp algorithms.
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-115-

to be favorable with the Hall algorithm if the size of ma=~
trix increases.

The minimal size of matrices for which the H=K algo-
rithm is more efficient than the Hall algorithm depends on
the sparsity of the matrix. It probably tends to decrease
as the average number of nonzeros per one row decreases.,

In this paper we present an improvement of H-K algorithm.
We use an observation that an appropriate modification of gra-
pas formed by H-K algorithm can considerably increase the
number of assignments found per graph and thus reduce the
number of H-K iterations. The idea of the algorithm is to
form a graph containing larger set of augmenting paths, not
only of shortest 1lenght. This can be done as follows
(the notation and definitions used here may be found in fSJ)
Let X ={1,...,m§ be the set of rows, and Y ={1,..., m{
be the set of columns of the square matrix B =[bij].Then
we form the bipartite graph G = (V,E) with vertex set V
containing X and Y, and the edge set E such that each edge
of G joins a vertex coresponding to row i in X with a vertex
corresponding to column j in ¥ if and only if bij £0.
A set ME E is a matching if there is no vertex u eV
incident with more than one edge in M. A matching of maximum
cardinality is called a maximum matching. A vertex VeV
ig free if it is incident with no edge in M.
A path (without repeated vertices)

P = (V'I’ V?_)' ( Uzo V3),-"’(U’2k_19 VZK)

is called an augmenting path if its endpoints L and Vék
are both free and its edges are alternatively in EM and
in M. It is easy to verify [5] , that if M is a matching
and P1""’Pt are vertex disjoint augmenting paths relative
to M, then

M = MOP ®P,8...0P ,(Where & denotes the symmetric
difference)is a matching, and M| =jM[+ t .

Now we discuss how to find a maximal vertex-disjont
set of augmenting paths P1""’Pt re;ative to M.
Pirst we assign directions to the edges of G in such a way
that augmenting paths relative to M become directed paths.
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This is done by directing each edge in i so that it runs

from a row to a column and each edge in E-~M sc that it rums
from 8 column to a row. The resulting directed graph is denoted
by G = (V,ﬁ). Now assume, that the graph G contains stron-

gly connected components Ei =(Vi,§;), i21,.4.,K.Then the

edges of G fall into 2 classes.

(1) some are edges joining vertices of the same component
(ii) other join vertices of different components. These

are called cross-links.
Theorem [10]. If NC E 4is a maximum matching in G, then ¥
does not contain cross-links of G.
Since the finding of the strongly connected components of G
can be done by the depth - first search algorithm of Tarjan
in O(E} space and time, the elimination of cross-links from
consideration may increase the efficiency of the matching
algoritnm in the case of very large and sparse matrices.
Assume, that in block triangularizing of a basis matrix the
Tarjan algorithm for finding the strong components of the
directed graph associated with the basis matrix is used
repeatedly with the maximum matching algorithm after perfore
ming, say, k iterations of the matching algorithm. The
efficiency of the block triangularizing algorithm evidently
depends on k. The optimal value of k depenrnds on such paramete=-
r8 of the basis matrices as the number of rows and the
average number of nonzeros per one row. The most desired stra-
tegy must be obtained empirically.
In the remaining part of this paragraph we will present a
modyfication of Hoperoft and Karp algorithm for maximum
matching. In one iteration of the modified algorithm the
graph G = (V n) containing larger set of augmenting paths
P1,...,Pt Es formulated and then the new matching M is
defined by M = M e P1¢!v1>2 e @ Pt'
let E = {(y,x) (y,x) € E; for some i}

Vow we extract from graph (¥, E ) a subgraph G with
the property that the directed path of G running from a
free column to a free row correspond one=to-one to an augmen-
ting rath in G relative to M. This is done as follows.
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Let Lo be the set of free rows, and let

o _ A
Li Li‘\ g free c¢columms }
Li = Li Li

Ey ={ (u,v); (u,v) € -E-o, ve Ll ’ uéL’auL.l '-/L:&

Li+1 ={11: for some v L,(u,v) & Ei}

for i = 0,1,2’--0

¥ . 10
let 1i¥ = max {i D A A A
Then we define the graph (V,E), where
L VI,V ...UL v L°
°o M 4®

33O
('

- )
E=L3UE1U ceos VE A(LHXL! )

ot B LR LA

i

A A A '
The graph G = (V,E) in ocomparison to the graph formed by the
original Hopcroft and Karp algorithm ([5], p.229) has the
fallowing properties:

(1) the graph formed by H-K algorithm containts only the
shortest augmenting paths relative to M and is a subgraph
of 6

(ii) 6,contains also augmenting paths relative to M of
greater lenght.

An algorithm for finding a maximal vertex-disjoint set of

paths is given in [5] For our purpose we should order the

get of free columms in such a way that the algorithm will find

first the shortest augmenting paths and then the augmenting

paths with increasing length.

There are three characteristics of the presented
algorithm for maximum matching,important for large-scale
graphs: (a) storage requirements, (b) CP time per one
iteration, (c) number of iterations. In the absence of
actual implementation, the following analysis will be some-
what superficial. R
(a) Storage requirements. Since G contains at most all

vertices of G, storage requirements in all steps of the
algorithm are linear in number of vertices apd edges.
From numerical experience, the subgraph of G formed by
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H-K algorithm contains typically from 60 to 80 percenta=-

ges of vertices of G and this percentage is vertex-size

independent. Thus 6 mey contain typically at most 10 t»o
40 percent more vertices of G tharn HeK graph.

CP time per one iteration. Complexity is linear in num=
ber of vertices and edges. Time is increased in compari-
son to H=K algorithm by a factor similar to (a)

Number of iterations in comparison to H=K algorithm may
be considerably decreased. This supposition folllows
from handy-made analysis of small problems and from
analysis of the characteristic of H-K aigorithm
presented in Fig.3.

o, %
400
80
60
40 1
20 N s

A

P

0 ' °
100 200 300 %0 pumber of rows

Fig.3. The part of the graph vertices
belonging to vertex disjoint

augmenting paths.

The figure shows the size of subgrapa of G which contains
all shortest vertex disjoint augmenting paths. This
subgrapn of G contains only small fraction of vertices »f G
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and moreover, this fraction is decreasing with the gize of
problems. Thus, after removing from ¢ all shortest vertex
disjoint augmenting paths there remains a considerable part
of 6 containing augmenting paths 5f greater lenght.

We conjecture that the number of iterations of the
presented algorithm is a slower growing function of the
size of the problems in comparison to H~K algorithm.

2.2. An algorithm for refinding lower block triangular
structure of an updated basis matrix.

It is now accepted that the most efficient algorithm for fin-
ding strongly connected components of a directed graph is
due to Tarjan [9]. However, if the basis matrix is updated,
the algorithm can be modified to enable performing the
search in a restricted part of the graph of the updated
basis. The need for such an algorithm results from the
possibility of using an additional rule in multiple pricing
which will result in producing at each iteration basis matri-
ces with the simplest "bumb and spike" structure.
Let us assume that the r-th column of the basis matris

B is replaced by a column 8y ke, The bump structure of
the updated basis matrix may be created by the following mo=
dification of Tarjan algorithm, in which the depth~first se=
arch is restricted to a part of the updated basis. From the
previous step we will use the following information: for
each row i there is known its bumb number S(i), where

5(i) = m%n{p(t) : t and i 1lie in the same bump }

Algorithm
) -
1~ Compute P = minn{a(i) DBy # O} and M, = S(r)

It 8 # 0 go to 2°, otherwise denominate a, as the "free"
column and row r, as the "free" row, and find an asugmen-
ting path in the graph of the basis matrix leading from

the free column to the free row using the depth-first

search resatricted to the rows with p(i) such that

Ry € p(i) ¢ M, . Make the reasignment of the rows and

columns belonging to the augmenting path .GO to 20
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2° In the subgraph of the basis matrix, containing vertices
with row indices p(i) such that p, ¢ p(i)SMk perform
the algorithm of Tarjan that finds the strongly connected
components 3f the subgraph.

The complexity 2f the above
algorithm is O(t) , where t is the number of nonzero

elements 9y of the updated basis matrix with row and
column indices lying betwsen P and Mk‘

Suppose that in multiple pricing we have a set of columns
aj, j€ K and we want to choose the column 8, giving the
simplest bump structure of the updated basis matrix. If the
precise algorithm for updating the bump structure is too
expensive, the following suboptimizing criterion may be
used:

From the set of columns aj, j € K select a column 8y
such that

A K = .mln zij
JEK
waere 4y = S(rj) -min{S(i):aij 4 0§

and r, is the index of the column,leaving the basis B
after entering aj to the basis.

3. EXPLOITING DUAL DEGENERACY IN THE DUAL SIMPLEZ{ ALGORITHM.

In some integer programming algorithms the "power" »f the
succeeding iterations is usually hampered by the massive
degeneracy and/or the severe round-off errors. This osccurs in
the cutting plane algorithm of integer forms as well as

in the composite integer algorithm having cuts incorporated
into the branche=and=bound scheme. In this section we discuss:
a technique presented in [11] that allewiates this difficulty.

3.1. A modified dual LP algorithm

Though cycling resulting from degeneracy is not 8o serious
a problem in practice (it may be prevented by the use of a
perturbation scheme such as lexicographic ordering of row
or column vectors or by cnoosing the smallest index or any
Sther handy rule preventing cycling at least from empirical
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evidence ) there remains the related problem of slow conver-
gence caused by many iterations with zers changes 3f the
objective function. The difference between degenerate and
nondegenerate iterations in the LP algorithms results from
the fact, that in the absence of degeneracy the simplex
algorithm has the stepest descent property, while in the
presence of degeneracy the lexicographic¢ ordering assures on-
ly finitness of the iterations.

To reduce the number of degenerate simplex iterations
we have incerporated into the dual simplex algorithm a me-
chanizm which assures the stepest descent property of the
algorithm also in the case of severe degeneracy.

Let us consider the LP problem (1,2) and assume, that
the basis is:

(1) dusl feasidle, i.e. oy i= e$13'1a:I > 0 , jeXN .
(ii) primal infeasible, i.e. there is nonempty set T of
negative basic variables Xy i€ T (for simplicity
we assume, that li = 0, uy =+ Yo
We also assume, that the basis is dual degenerate, i.e. the
set /fo ={j: oy = 0y of degenerate nonbasic variables
is nonempty. In the dual simplex method moving from one
degenerate basic solution to another is indeed solving the
totally degenerate subproblem

max X(;1
4) xg + 2 @ ek, = 5
je‘Mo Jd T d

x's,szo

which has primal infeasible basis B. In order to solve this
subproblem we can maximize an auxiliary function
W o= :EE:: Xpy which measures the primal infeasibility

ig?T
of (4) as in the first phase of the Orchard-Hays composite
simplex algorithm [8] . After solving (4) the new basis is
updated according to the ordinary rules of the dual LP algo-
rithm. Our experience shows that this modification significa=
ntly improves the performance of the dual LP algorithm in
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the case when the number of nonfeasible basic variables is

equal one, as it occurs in the Gomory s cutting plane algo-

rithm after adding a new cut or in the branch-and-bound algo-

rithm after branching to a new vertex. It follows from the

fact that in this case, ance (4) has been sslved, a change

in the basis occurs with a simultaneous exchange of dual

degenerate and nondegenerate variables.

Now we will present one iteration of the algorithm under

assumption that the dual LP algorithm uses the same data

format as the primal algorithm.

Intally set © : = =00 , k:=0 and select r € T.

Algorithm (one iteration)

1° Bxecute backward transformation routine, compute the
pricing forms

_ Tr=1
11"1 = e1B
T = eTB-‘l
r r
Ty = dTB-1, where d = Z ey
o ie T
Go to 2
2% If there exists a nonbasic column a,, jEN not consi=-

dered yet, compute °<1j‘ = 771'13. and go 1o 3°; otherwise
get j:= k and go to 5°,

3° 1r “1j> 0 then go to 4°. Otherwise compute

Xy t= T de If L 0> 0 go to 4°. Otherwise select
the basic variable Xy reaching first its bound after
entering xj to the Dbasis (this is pivot selection rule of

the primal simplex algorithm); r: =t , Go to 5°

0 s oa T . %1
4" Compute “rj' = 7. o‘.j,If o(m.(O and e<°‘rj

then set 8: =‘:—1-q- and k: = J. (this is pivot selection
of the dual algo?ithm). Go to 2°.
50 If j=0, LP is not feasible. Otherwise update the basis

with the pivot pair (r,j). This involves creation new ?
and solution columns.
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3.2. Computational results.

The modified dusl algorithm has been tested by solving the

get of

test integer programming problems, relatively diffi-

cult to solve by cutting plane method. The problems have
been choosen from [2] and from [7].
The following algorithms have been compared.

LIP1

KAL

TO

TO0=M -

- a version of the method of integer forms developed

by Haldi and Isaacson [3] known as LIP 1
a versiosn of the method of integer forms developed
by Kaliszewski [7]

= the method of integer forms for ILP with bounded

variables in the all=integer floating-point represen-
tation, with the basic dual simplex algsrithm, and a
source row selection that yields the largest decrease
in the objective function
the method PO with two modifications: dual simplex
algorithm is replaced by'the modified dual algorithm
described in section 3 and an additional source row
selection (criterion 3 in [2] p. 165) which breaks
the ties in the source row selection in the algorithm
TO
The results of the algorithms LIP1 and KAL were

reported in [2], p.380 and in [7] . Computations of the
algorithms TO and TO-M were performed on the computer Odra
1325. The results are in Table 1
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Table 1
Test pro- Algorithm Cuts Simplex Simplex
blem iterations | iterations
per cut
LIP1 > >
Haldi 5 TO > >
TQ=M 176 222 1.2
LI 123 ?
Haldi 6 TO 49 121 2.8
TO=M 41 69 1.6
LIP 42 2
Haldi 9 TO=-M 8 14 1
LIP1 953 ?
IEM o T0 > >
{m=35,n=40 TO=M 22 _155 &
KAL 40 146 3.5
T0=20 TO 15 69 4.1
TO=M 1 7 1
KAL 4 18 3
TA-20 TO 1 7 1
TO-M 1 7 1
KAL >160 >613 3.8
0-19 TO=i 17 39 1.8
KAL >190 > 518 2.7
0-17 TO-M 47 80 1.6

The comparison of the algorithms indicate that:
cuts leadihg to the severe dual
degeneracy in the algorithm TO-M ig advantageous

from the efficiency point of view.

(1) the choise 2f the

(i1)

the use of the modified dual simplex algorithm redu=-

ces the average number of simplex iterations per one

cute.
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THE SIMPLEX METHOD FOR DYNAMIC AND
BLOCK-ANGULAR LINEAR PROGRAMS







A RESOURCE-DIRECTIVE BASIS DECOMPOSITION ALGORITHM FOR
WEAKLY COUPLED DYNAMIC LINEAR PROGRAMS*

Tatsuo Aonuma

Kobe University of Commerce

This paper presents a decomposition algorithm for dual anguliar linear programs, which also
can be extended to a wider class of structured linear programs. The method is closely re-
lated to the algorithm by Martin Beale on the parameterization of the linking variables. In
the algorithm, the linking variables are first fixed at given values to partition the problem
into several subproblems. Secondly an optimal setting of the linking variables is deter-
mined, given that the bases for the subproblems are fixed. Then, the bases for the subprob-
lems are changed so as to improve the entire problem. The computational experience indi-
cates that the number of cycles to adjust the linking variables required for optimality is
nearly equal to, or less than the number of the subproblems, and is smaller than the earlier
computational results in the column-generation scheme, and that the computing time is
much faster than in the direct simplex approach.

*This is a revised version of the paper presented at the XXV International Meeting of the institute of
Management Sciences, June 18—22, 1979, in Hawaii.
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Introduction. A two-level algorithm for two-stage linear programs has
been presented in Aomuma [2]. The algorithm was developed with an intention
of solving the two-stage linear programs arising from a nested approach to
multi-period planmning [1], in # manner of interactive preference optimization
for considering uncertainty in the future. In the present paper we extend the
same decomposition approach to a wider class of structured linear programs,
especially to dual angular linear programs and also report computational expe-
rience in using it for weakly coupled dynamic linear programs.

The dual angular linear program we address is written as follows:

i1
Max bA cx  + y (0.1)
=] CY
s.t. Aixi + A; y = bi (0.2)
.,y >0 (i=1,2,,, B (0.3

We call y the linking variables and A; the linking matrix for the i-th block.
In a dynamic linear program we get together all of the linking variables
between two consecutive periods into one block.

Our decomposition method is closely related to Beale's approach [6] on
the parametrization of the linking variables and is not of column-generation
scheme. We begin by choosing initial values for the linking variables, and
then the problem is decomposed into several subproblems when the y-variables
are fixed. After optimizing these subproblems, the optimal setting of the
linking variables are determined, given that the bases for the subproblems
are fixed. For this purpose, we solve a coordination problem. Subsequently,
a direction-finding problem for every non-optimal subproblem is solved for
the purpose of exchanging the basis so as to improve the entire problem. We
call the process 'coordination" of the y-variables. The coordination process
terminates when there is no improving the bases for the subproblems. Im a

‘'sense of planning process [12], this type of coordimation is considered to be
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resource-directive [8] and of two-level.

The time-consuming jobs throughout the whole computation in the algorithm
are solving the subproblems at the initial stage and solving the coordination
problems during the coordination process. We call the number of times of solv-
ing the coordination problem the mumber of coordination cycles. A built-in
lipear programming subroutine is required for solving both the subproblems and
the coordination problems. As the number of rows of the coordination problem
is equal to that of the linking variables, the largest problem to be solved by
the subroutine can be the coordination problem in such a case that the number
of periods, K, in a dynamic case is very large. That is one of the reasoms
why weakly coupled dynamic models are computationally preferable and
effective for our algorithm for the purpose of solving much larger-scale models,
where "weakly coupled" implies that the number of the linking variables between
two consecutive periods is relatively small. The second reason is that it is
posaible for us to estimate ''good" initial values for the linking variables in
weakly coupled cases. The computational experience indicates that a good setting
of the y-variables makes the algorithm work effectively.

An experimental code, named MULPS, has been written in FORTRAN for HITAC
8250 in order to solve dynamic linear programs having up to 180 rows and 6
periods. The SEXOP developed by R.E.Marsten [15] is used in the MULPS as an
LP subroutine for solving the linear programs.

In the present experiments we mainly focus on the number of coordination
cycles. From our experiments the number of the cycles seems to be nearly equal
to, or less than the number of periods, and seems to be very small in comparison
with thatin the ea;lier algorithms of columm-generation scheme. For comparison
with a direct simplex approach we tentatively convert the MULPS to a new large

computer, FACOM M-160S(comparable to IBM 370/148), which has virtual storage
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in its operating system, and we use a version of the original SEXOP [15] as
the FORTRAN linear programming code for the direct method. We observe that,
for two test problems of 6 periods, the CPU computing time by the MULPS is
about a quarter of those by the direct method, and that only a half of storage
in the direct method is required in the MULPS.

It has been lately suggested by several researchers that our method is
closely related to Gass' dualplex method [18] and Winkler's method [19]. We
shall describe in [20] that there are three computationally different points
from Gass' method. We happened to report before in [2] that the number of
cycles required for optimality in our algorithm was less than that when employ-
ing a selection rule of Gass' type to obtain an improved basis of the subproblem
in the 2-stage case, where we compared with the Beale's rule [6] which is also
the same as the Gass' rule. And also, we can understand that our algorithm
gives a concrete optimal strategy to Winkler's framework. However, our algorithm
will be regarded as a coordination method rather tham as a simplex method for
large-scale problems.

Section 1 presents some methods on parametrization and transformation in
linear programs, which will basically give a solution method to the coordination
problem. In Section 2 the decomposition algorithm is presented for a simplified
form of our problem above. The justification of the algorithm is shown in a
constructive manner with several theorems and its finite convergence is also
proved, At the end of the section the computational procedure is summarized.

Section 3 contains the computational experience.
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1. Parametrization and Transformation in Linear Programs

Consider the linear program

LP[B:y] max cY(B)y
s.t. Ix; + AY(B)y = b(B)
X,y 2 0

where I is a suitable identiy, AY(B) is an m x ny' and the other vectors are
of conformable dimensions. LP{B:y] represents the cannonical form of a linear
program with respect to a given basis B and is the analogus notation adopted
in Marsten and Shepardson [16) for expressing conveniently a linear program
updated with respect to a given basis.

For the purpose of formulating the resource-directive coordination process
in our two-level algorithm we consider a transformed linear program derived
from LP{B:y]. Suppose that, at first, the y-variables are fixed at given values,
yo, and then they are adjusted through "new parameters”, A, around yo. We

have the following transformed problem:

LR, (Bey=y™+ TN ] max o (A + ey (B)y] (1.1)
s.t. Ixy + A = x(50) (1.2)
D+ Iy =y° 1.3)

5 v 20

where xB(yo) = b(B) - AY(B)yo. The Xy and y play the role of slack variables
for the constraints (1.2) and (1.3) respectively. Let the dual form of LPA
denote as follows:

DPB[I:y=y°+ A ] min uxB(yo) + vyo + cY(B)yo

s.t. uAY(B) -Iv = cY(B)
u, v > 0

vwhere u and v are the dual variables associated with (1.2) and (1.3) respectively.
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Let D be a dual feasible basis for DPB and let o and wD denote the cor-

responding primal basic solutiom of DPB and the dual one respectively; i.e.,

pt- D-lc;(B). We update DP_, with respect to D to obtain the following form:

B
DPBtD:y-yo+ 1] min u{xB(yo) - AY(B)wD} + V(yo+ vpt + CY(B){Y0+ bpl
s.t. u AY(B)(D-l)t -voht -
u, v > 0 .

Again, let us consider the dual of DPB[D]:

DDPB[D:A] max od + cY(B){yo*'wD}
s.t. aA®OHES ¢ g6Y - A ey (1.4)
-ohh o Y0y . (1.5)

Let the slack variables for (1.4) and (1.5) be iB and y respectively. Then,
DDPB[D:X] can be regarded as a transformed form of LP,(B]. We have the follow-
ing obvious and useful result.

THEOREM 1. Let D be a dual feasilbe basis for DPB[I:y-yo+ Ir] and let wD
denote the corresponding dual solution. If yo is a feasible solution to
LP[B:y], then

(1) yl- y0 + wD is also a feasible solution to LP{B:y], and yl becomes
an optimal solution if D is an optimal basis.

(11) DDR;[D:A] = LPA[B:y-yl+ o,

(i1i) there are at least ny zero components among the xB(yl), yl, where
ny is the dimension of y and also the number of rows in DPB. The number of
zeros among the xB(yl), yl is equal to ny under the non-degeneracy assumption,
which we shall assume hereafter in the coordination problems that will be
defined later.

Let us define T'= T°(D™1)C where T0= I (identity). Them, we have the

new relationship between the y and the parameters
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y= yl + Tlx (1.6)

through which the y-variables will be adjusted around the yl again. LPy[B:y=

yl+ Tlx] is the problem updated with respect to the new relationship (1.6)

1

and so is the DDPB[D:X]. We call T the Parametric Transformation Matrix (P

TM hereafter).

2. The Decomposition Algorithm

We use the same notaiton as in [16] for expressing a linear program with
respect to a given basis. For simplicity in terminology, we represent
the linear program (0.1)-(0.3) as follows:

LP[I:y] max cx
s.t. Ax + AYy = b
x,y20

where A is an m x nmatrix having K blocks, each of which contains m, TOWS

K K
and n, columns, i.e., m = 1Elmi and n -1Elni, AY i{is m x ny, and the other

vectors are of conformable dimensions. We also assume without loss of generality
o™ 0 in (0.1), because we can always alter the original problem to the above
type of problem, by adding a comstraint cy¥ - z+ +2 = o, z+, z 2> 0 to the
x-block.

For the purpose of proving the finiteness of the algorithm we shall
assume some ordinary non-degeneracy assumptions like in Theorem 1 (iii) when
necessary. And also we assume, for simplicity, the boundedness of the problem.

INITTALIZATION STAGE

The Subproblem. Firstly, we choose initial values, yo, for the y-variables,

and when y-yo is fixed we have the subproblem
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SP[I:y-yo] max cx
s.t. Ax = b - AYyo
x>0 .
Notice that the subproblem actually consists of K smaller subproblems of the

same type, each of which is of an m x n, dimension. We assume, for simplicity,

1" 71
that the subproblem has a finite optimal solution.

Now, let Ba be an optimal basis and let L denote the corresponding

o
dual variables; s T ¢y Bol where g is the components of c corresponding
o o o
to the basic variables Xy - Then, the subproblem updated with respect to Bo
o

becomes
SP[BO:y-yO] max EN Xy
s.t. xBo + ZN(BO) Xy = Bgl(b-AYyo)
o %y 20

where xy denote the non-basic variables, and we have EN < 0 and B;l(b—AYyo)

> 0 because of optimality. Likewise, the LP(I:y] is updated with respect to
Bo as follows:
LP[Bo:y] max EN > "BOAY v

s.t. xBo + ZN(BO) x +AB)y = b )

o e Y20
vhere A (B ) = B! Ay and ° 58) = B .
o [ o o

The Pirst Coordination Problem. We define the coordination problem for the
purpose of determining an optimal setting of the y-variables, given that the
B° for the subproblem is fixed. Assume that the y~variables are adjusted
through the parameters, A, around yo according to the linear relationships

y = yo + TOA R To = I(identity). (2.1)
Then, LP[Bo:y] can be equivalently written as the following transformed form,

in the same way as for LPA in Section 1:
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0 0 -
LPX[Bo:y=y + T Al max ¢, X, = WBOAYTOX dual var.
- - 9 0
s.t. xBo + AN(BO) x + AY(BO)T A xBO(y ) : u
- Tox +y= y0 HER Y
3, w720
o

where xBO(yo) - B;l b - AYYO) =- S(Bo) - KY(BO) yo. Let DPBO[I:y-y0+ Tox]
denote the corresponding dual problem.

In the above problem, adjusting £hrough the A involves both adjusting
the y~variables and the basic variables, L but the non-basic variables Xg
remain locked at zero. This mechanism will :e formulated as a coordination

problem. Now, the coordination problem is defined in a primal form as

o, .0 0
CPB [I: ywy + T Al max - 7, AYT A dual var.
° 2 0 0
s.t. xp +A(B) T =x (¥y) T u
o 0 0°
-TXx+ y =y HE
xB s Y :0'
. o
Notice that the problem is obtained by dropping all of the non-basic x-variables,
0

X from LPA[BO:y-y + TOX]. In our algorithm the dual form of the coordination

problem is actually solved, and simply the coordination problem shall imply

its dual problem in the future description of the computational procedure.

0

Let DCPB [Tey=y '+ TOX] denote the corresponding dual problem.

o
We assume that CPB is bounded. If it is unbounded, so is LP[I:y]. Let D

o
denote an optimal basis for DCPB [I:y=y°+ TOA] and let wD denote the corres-

o
ponding dual solution. From Theorem 1 we have yl = yo + wD as an optimal setting
for the y~variables, given that the basis Bo for LP[I:y) 1is fixed. And also,
we have

0 0 1 1
the dual of Dcpy [Diy=y" + T'2] = CPB [I:y=y” + T7A]
o o

where Tl denotes the PTM, and

™1 o ht - oLt (2.2)
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Let ug and vp be the basic variables of DCPy [I:y-y0 + Tox] for the dual
o
variables, u and v, respectively. For simplicity, we assume that those basic
variables are placed in the basis, D, in such an order as (vD,uD); this means
that if we put
- O = = (o) (2.3)
“BOAY [+ pv’Du ’ .

then the corresponding basic solution is

¥p " Py and Up ® Pyt

LP[BO:y-y0+ TOA] can be updated with respect to yl and the new PTM, Tl :
1 1 -
Lg@Bo.y-y + T7)A] max cN(Bo)xN + paA dual var.
- - 1 1

s.t. xy + AN(BO) Xy + AY(Bo) TA = xy ¢ : u

[} 1. 1°

-T2+ y=y HER
Xg 5 Xy > ¥ 20,
[}

We also have the updated subproblem, SP[BO:y-yl],corresponding to the above.
In view of our non-degeneracy assumption described in Theorem 1 (iii),
there are exactly ny zeros among the % (yl), yl. The corresponding positions
o

are associated with the u, and Vg Let the set of the rows in which the

corresponding components of xp (yl) are equal to zero denote ['. In the case
o

1 + lel, we say simply that the rows belong to the I'-set, or,in

0

of LP[BO:y-y

the case of DCPB [Diy=y '+ T1A], that the corresponding columms belong to the

o

r-set. The basic variables, among the Xp s which are in the rows belonging
o

to the I'-set correspond to the variables called "pseudo-basic" in Beale [6].

l+ lel are classified into either

All of the rows of AN(BO) in LP [Bo:y-y
the '~set ‘or otherwise. We assume, for simplicity, that all of the ['-rows
are placed at the bottom of KN(BO), and let KNT(BO) denote the corresponding
part of KN(BO). The assumption above means, together with the assumed order

of (vD,uD), that the updated linking matrix, KY(BO)‘Tl, has the following

structure:
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_ R Q.
Ry T - (2.4)
0 H }uD
where H 1s a square matrix composed of the unit row-vectors, which correspond

0

to the columns associated with the 4, in DCPB [D:y=y + TOX]; H is a kind of

o
permutation matrix and we have H—l- Ht.
Similarly, if we assume that all of the zero components among the yl are

placed at the top, the updated linking matrix, - Tl, can be written as follows:

-T = (2.5)

where Ho denotes the collection of the unit row-vectors, which correspond to

the columns associated with the p in DCPB [D:y-y0 + Tox]. B is also a

-1 t °
permutation matrix and Ho - Ho .

OPTIMALITY TEST
THEOREM 2. If we have

b, B A (B) - 5y(3) 20, (2.6)

1

then the basic solutiom, Xg =X, (yl), y = yl, in LPx[BO:y + Tlx] is optimal
o o

for LP{I:y].

1, hy,

Proof. Notice that if the basic solution is optimal for LPA[BO:Y
it is also optimal for LP(I:y]. Put u* = (0,p B") > O and v* = (p HC, 0) 3 O.
The condition (2.6) means that the u a u*, v = v* {g a feasible solution to

1

DPB [I:y=y + TlX] because of (2.3), (2.4) and (2.5). We have clearly comple-

o
mentary slackness, and the solution 1s optimal. ||
CHANGING THE BASIS OF THE SUBPROBLEM
. . - - t- -
The Direction-finding Problem. Wow suppose that o H ANP(Bo) - cN(Bo) £ 0,

so that we are not finished. Therefore, we try to change the present basis

Bo to an attractive one. Put




-140-

t - -

pN(Bo) -ouﬂ ANF(Bo) + cN(Bo) i 0. 2.7

We define the direction-finding probiem:
. 1

FBO[I.y=y ] max pN(Bo) Xy

s.t. 1 xBOF + ANP(BO) 3 = 0

5 0y 20
o

where X r denotes the components of X in the I'-set and plays the role of
slack va:iables. °

It is very important for us to notice that solving PB [I:y-yl] means
changing the present basis,Bo, of SP[Bo:y-yl] to an imﬁrovzd basis by
restricting the candidates of pivotal rows to the I'-set and by using the
modified objective function. We assume that the degenerate program FB [I:y-yl]
is solved by the perturbation method. Notice that the direction—findi:g problem
has either a bounded null solution or unbounded solutions.

1f FB [I:y-yll has an bounded optimal solution, the associated basis-

o
change also induces the basis-change for the subproblem, SP[BO:y-yl]. Let Bl
denote the induced basis for the subproblem: the subproblem has been updated
with respect to the Bl and we have SP[Blzy-yl].

If FB [I:y-yll is unbounded, we need an extra-operatiom for the purpose
o

of obtaining such a basis that,among the corresponding basic variables, there
is at least one basic variable, the objective coefficient of which is exactly
positive.
The Extra-operation in the Unbounded Case. Let x_ denote such a variable
that its simplex criterion is negative and all the components of its updated
column are non-positive.

If X, is not a component of the X 1,,,t:hat: is, not a slack variable, then

0

we perform a pivoting operation for bringing x_ into the basis imstead of a
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basic variable which 1is a component of the Xy s that is, a slack variable
in the basis. °
If x_ itself is a component of the XBOF' there 1s at least one basic
variable in the present basis , the objective coefficient of which is positive.
Because the corresponding objective value tends to infinity by letting the x;
increase. In this case we do not need the extra-operation for our purpose.
Thus, in the unbounded case we also have had a new basis for FB [I:y-yl].

]

Let B, denote the induced basis for the subproblem as well as in the bounded

1
case. We have the updated subproblem, SP[Blzy-yl], as well. The possibility
of performing the extra-operation is insured by the following lemma.
LEMMA 1. VWhen FB [I:y-yl] is unbounded, we can claim the following facts:
(1) There has :oobe at least ome variable chosen among the xB r-variables
in the present basis, or else the X, itgelf is a component of the x: T
(11) Unless the x, is a component of the xB P-variables, there gas to
be at least one non-zero component in the update: column of the x_. The non-
zero component appears on some of the rows of the basic xB r-variables in the
present basis.

Proof. (1) From (2.7),F [I:y-yll can be equivalently written as

B
o
t -
max puE xBoF + CN(BD) Xy (2.8)
s.t. I xBOP + ANP(BO) X = Q (2.9)
*B,r 0w 2 0.

As we have EN(BO) 5 0, the problem does not show the unboundedness 1f all of
the basic variables and x are the components of the xN-variables.
(11) If the x_ is a component of the xN-variables, at least ome of the
basic Xy r-variables in the basis has to become positive by letting the x_
[

increase, because of EN(BO) < 0. This means that the claim (i1) is true. ||
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Concerning the new basis, Bl, for the subproblem, which is induced from
solving the direction-finding problem, we have the following result:

LEMMA 2. Let B denote the basis matrix for FB [I:y-yl], which is asso-
o

-basis for the subproblem, and let x

ciated with the B and pB denote the

1 ]

corresponding basic variables and the corresponding objective coefficients

respectively. Then, there is at least one positive component, psj>0, among the pB.
Proof. 1In the unbounded case of FB [I:y-yll, it is clear owing to the

extra-operation above. So, we shall prov: it in the bounded case. Let xB(e) >

0 be the values of the optimal basic variables for the perturbed problem of

FB [I:y-yl] for sufficient small € > 0, and lim xB(e) = 0. Suppose that Pg 0.

A Zase Pg = 0 causes dual infeasibility, bec:u:eochere is at least one positive

component among the pN(Bo): This i3 impossible. If Pg $ 0, we have psxs(e) < 0.

This contradicts the optimality of xs(e), because a null solution becomes an

feasible one to the perturbed problem. [

Expressing the B, by the B and the By, Let f(Bo) denote an enlarged matrix

of the basis,g,for LP[Bo:y], i.e., under the assumptions for simplicity, we

have

-1

- =1
F(B) = and F .(Bo) - (2.10)

where a denotes the componnents outside the I'-set of LP[BO:y] in the same
columns as B. Notice that if some variables in the B are chosen from the X3 o
o

the corresponding components of a are null. Then, we have

-1 =1 -1
B =~F () B , (2.11)

which 1is called Dantzig's Factorization in Marsten and Shepardson [16].
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Likewise,

- - =1
“Bl(Bo) - cBl(Bo) F(s) (2.12)

where EB (Bo) denote the objective coefficients of the basic variables cor-
1
responding to the basis f(Bo) in SP[Bo:y=yl]. From (2.10) we have

c, (B) =c¢c, =-m_B
Bl o B1 Bo 1

= (0, 34(B) ) (2.13)
vhere EB(BO) denote the component of EN(BO) corresponding to the 8.

Let 7, denote the dual variables associated with the B, for SP[BO:y-yl].

B1 1
Then, from (2.11), (2.12) and (2.13) we have
- -1

ﬁ =7 + wn_(B)B 2.14

Bl Bo Bl( o) o , ( )
vwhich was also shown in [16]. In additionm,

- —1 -

A (B)) = F (B)) Ay(B) (2.15)

Thus, we have obtained the updated LP[Blzy], as well as the subproblem,
SP[Bl:y-yl].
THE SUBSEQUENT COORDINATION PROBLEMS

Now, we would like to define the subsequent coordination problem for the
updated subproblem SP[Bl:y-yI]. As well as the first problem, the purpose is
to determine an optimal setting of the y-variables, given that the new basis,
Bl, for the subproblem is fixed.

First of all, we shall define a new relationship between the y-variables
and the A-parameters for the purpose of reducing the amount of work réquired for
updating the linking matrices with respect to Bl.
The B~transformation. Let us define the intermediate PTM, Tl*, as

I o
he - Tt . (2.16)
o B

and we consider the following new relationship :
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y = y1 + Tl*k a (2.17)

The linking matrices in LPA[Bl:y-yl + Tl*A] are obtained as follows:

A ()T = Fis) i) h, (2.18)
by (2.4) and (2.10) ,
R g~ ag’lm (1 o R Qa8 - a
0 s~ 5 0 HB 0 I
E O I o E 0
e m- | © e |- - ° . (2.19)
o & | |0 &% q, RES ]
By (2.14),
- Ay o - AYTI* - (30)3;1 A, Tia ’
o 1
by (2.12)
1 - - 1
-y Ay T - cBl(Bo) A (B) T . (2.20)

and by (2.3) and (2.13)

= (oye0 B°8) - (0,3,(B)) Ky(B;) T's

= (0,+0, B 8) - (0,3,(B ) , by(2.18),

= (0,20 BB - S(B)) . (2.21)
We should pay attention to the component of puEtB-EB(Bo). Then, we:note that
these components associated with the slack variables in the basis,8, are not

l+ TlA], because the

changed from the corresponding components in LPA[Bo:y-y
corresponding components of EB(BO) are null., Furthermore, the other components
associated with the basic variables chosen from the xy are simply replaced by
the corresponding components of - pB(Bo) in FBO[I:y.yll.

In conclusion, the linking part can be easily updated with the new relation-
ship between the y and the X as (2.18), (2.19) and (2.21), only by using the
basic matrix, B8, for the direction-finding problem. We call simply those trans-

forming operations the B-transformation hereafter.
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The Second Coordination Problem. WNow, we can define the coordination problem

derived from LPA[Blzy-y1+ Tl*A] as wéll as before.
CP [I:y=yl+ Tl*A] max - w AY Tl* A
Bl E Bl
- 1 1
s.t. xBl + AY(Bl) T % ) - xnl(y )
1

_T*A-{-y-yl

»y 20.
xBl

1+ Tl*l] denotes its dual fogm.

Similarly, DCP_ [I:y
B
THEOREM 3. Under the non-degeneracy assumption in Theorem 1 (iii),
LP[I:y] is strictly improved after solving the CPB [I:f-yl+ Tl*x].
1

Proof. It i3 sufficient for us to show that the objective function

1+ Tl*A] has a positive value. From Lemma 2 and (2.21), there

for CPy [L:y=y
1 1

is at least one negative 8bjective coefficient in CPB [T:y=y™+ Tl*x]. And
1
that, the corresponding component of the A belongs to the T'-set. This shows

l+ Tl*x] is insured under the non-

that strict improvement in CPB [I:ymy
1
degeneracy assumption. [

1

As well as in the first coordination problem, we solve DCPB [I:y-yl+T *1]

1
to obtain the new y-values, yz, and the new PTM, TZ, and then perform the

optimality test. This completes one major iteration of the algorithm.
Notice that the bases for the subproblem, Bl, Bz, ..., are generally not

dual feasible in the subproblem except Bo at the initialization stage. The

k+

possibility of performing the extra operation in FB [T:y=y 1] is insured

k
only under the optimality of the subproblem by Lemma 1. Accordingly,

we may, on rare occasions, fail to find the negative pivotal element in
the unbounded column. Only when such a case happens, we need re-optimize the

subproblem for y = yk+l_
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THE ALGORITHM
Our algorithm may now be summarized as follows:
Step 0. Choose yo and set TO-AI as the starting PIM, and k = 0.
Step 1. Solve the subproblem, SP[I:y-yk], to obtain the optimal basis Bk'

Step 2. Solve the first coordination problem DCPB [I:y-yk+ TkA] to obtain the

ko

optimal setting of y, yk+1. and the new PTM, T = Tk(D-l), where D

, and the corresponding solutiom, ok.

B

1s the optimal basis of DCP

Step 3. Identify the T'-set.

ok 8" K (8) - cy(B) 2 0, stop : xﬁk(ykﬂ). 7 1

Step 4.  If py(B)
optimal for LP[I:y].
Step 5. If the T-set is not void, solve the direction-finding problem FB [I:yk+1].
k
If FB [B:yk+1] is bounded, ther let the induced basis for the subproblem
k
be Bk+1’ and then go to Step 7. If it is umbounded, then go to Step 6
for the extra-operation.
If the I-set is void, then set k = k+l, and go to Step 1 by fixing y =
k+1
b4 .

Step 6. Check the existence of a negative element in the unbounded ¢olumm.
If there is not, then set k = k+l, and go to Step 1 by fixing y = yk+1.
Otherwise, perform the extra-operation for FB [I:yk+1] to obtain the
k

basis, 8, and let B be the induced basis for the subproblem.

k+l

Step 7. Perform the B~transformation for the matrices and the RHS vector in

DCPB [D:y-yk+ TkR] to obtain the intermediate PIM, Tk+1*, and the

k K+l kel
second coordination problem DCPBk [T:y=y "+ T “*i].
+1
Step 8. Solve DCPBk [I:y-yk+1+ Tk+1*k] to obtain the new y-values, yk+2, and
+1

the new PTM, Tk+2. Set k = k+1 and go to Step 3.
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Finite Convergence. The finiteness of the algorithm is insured by the follow-
ing theorem.

THEOREM 4. The proposed algorithm terminates in a finite number of the
major iterations under the non-degeneracy assumptiomn.

Proof. 1t is seen by Theorem 3 that the problem LP[I:y] is strictly
improved through the coordination of the y-values and the subsequent basis-
change under the non-degeneracy assumption. The y-values are optimally set
with respect to the given basis,Bk, in the coordination problem. This implies
a finite termination of the algorithm, because there are only a finite number
of possible bases Bk's for the subproblem in a course of selecting yk in the
algorithm. I
Implementation. In order to implement the algorithm for the dynamic linear
programs, we have to solve K subproblems separately, and we need to bring out
K permutation matrices like H from the coordination problem, which are used
for the B8-transformation of K blocks. The dimension of the dual coordination
problem to be solved at every cycle becomes ny x ( § m

1
i=1
that the linear program has extremely many colummns as compared to the number

+'ny ), which shows

of rows. See [3] for the detailed procedure to implement the algorithm.
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3. Computational Experience
MULPS. An experimental code, named MULPS (Multi-period Linear Programming
System), for the weakly coupled linear programs was written in FORTRAN using
the SEXOP[15] for HITAC 8250 Computer. The computer has 160 KB main storage
and disc storage devices. Its operating system does not have virtual memory.
The SEXOP is used for solving all linear programs in the MULPS. A version of
the SEXOP for the HITAC 8250[5] runs by overlay between the main storage and
the disc storage. The MULPS can solve dynamic linear programs having up to 30
linking variables and 6 periods, each having up to 30 rows and 50 columns.
The Purpose of the Experiments. The present experiment primarily focuses on
the numbher of cycles required for optimality by the algorithm, and also we
observe the degrees of optimality throughout the whole coordination process.
The computing time is secondarily observed, because the numher of cycles will
have a great influence on the computing time, and the MULPS has not been designed
and coded with the intention of investigating strictly the computing time.

For the purpose of comparing the algorithm with the direct simplex approach,
we tentatively convert the MULPS to a large computer, FACOM M~160S(comparable to
IBM 370-148) having 768 main storage and virtual memory. We use the SEXOP for
the direct simplex method.

The Test Problem. Our test problems were mainly derived from (i) a version of
Gilmore and Gomory's model of cutting stock problems{9], (ii) Manne's model of
multi-period economic planning[7], and (iii) fictitious refimery production
planning models. These problems are listed in Table 1.

Generally speaking, in a case of multi-period models it is relatively
easy to estimate the "good" initial values for the linking variables, so that
these make easily the problem feasible. However, in the present experiment,
the initial values are set at zero except for R1B. For R1B, the optimal values

of y for R1A are used.
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The Resultas. The number of cycles required for optimality and the CPU comput-
ing time are summarized in Table 2. Table 3 illustrates the degree of optimality
at every cycle. 1In Table 4 the CPU computing time up to every cycle throughout
the optimization is described in detail for Problem MAl. 1In Figure 1 the total
CPU computing time and that per cycle are plotted for the corresponding number of
periods for the six problems G3A - G6B. Notice that those problems have sub-
problems of the same dimension, but a different number of periods.

In Table 5 we compare both the CPU computing time and the amount of storage
required in the system with those by the direct simplex method(SEXOP) for MAL.
The Conclusion. From Table 2 we note that the number of cycles required for
optimality is almost equal to, or less than the number of periods. For the
purpose of comparing it with that by the algorithms of column-~generation scheme,
we shall refer to the earlier results of Glassey's algorithm [10] and of Ho
and Manne's one [14].

In Glassey [10] the computational result for almost the same model as MAL
derived from [7] was preseanted. The number of cycles was reported to be 31,
which shows to be five times larger than that for MAl. In Ho and Manne [14] the
two test problems coded SC50A and SC50B have 6 periods and the dimenaions are
rather smaller than Rl and R2 among our problems. The number of cycles was
reported to be between 25 and 35, whcih shows to be six or eight times larger
than ours. However, it is reported in the recent comparative study of their
method, Ho and Loute [13], that the number of cycles is greatly reduced. We
could not trace the same problems in the present experiment.

From Table 3 we note that the process of convergence is fairly fime and

the "long tail" of convergence scarcely occurs. The degree of optimality
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attains a very high position at a relatively early coordination cycle. The
degree at the first coordination is beyond 702 in almost all cases such that
the initial values for the y-variables make the problem feasible at the initial
stage. This feature seems to be significant imn a practical use, and a near-
optimal strategy may work effectively.

From Table 4 we note that the CPU computing time per cycle tends to
decrease slightly. All subproblems are optimized before solving the first coor-
dination problem. Therefore, much more time is consumed at the first cycle.
Except some specilal occasions, solving the subproblems are skipped and the
direction-finding problems are solved only for the non-optimal blocks. We have
observed so far that the number of non-optimal blocks gradually decreases
according as the coordination proceeds.

Table 5 shows that the MULPS is four times faster thamn the direct method
concerning the computing time, and requires only a half of memory for the direct

simplex method in the case of MAl.
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TABLE 1

Dimensions of Test Problems

Entire Problem

Subproblem

Problem Period Rows Col.'s* ZDensity L.V.** Rows Col.s ZDensity
Gilmore~Gomory
G3A 3 90 162 3.0 12 30 50 9.1
G3B 3 90 162 3.1 12 30 50 9.3
G4A 4 120 218 2.2 18 30 50 9.1
G5A 5 150 274 1.8 24 30 50 8.0
G6A 6 180 330 1.3 30 30 50 8.0
G6B 6 180 330 1.5 30 30 50 9.3
Manne's Model
MAL 6 116 266 1.8 26 19-20 37-43 9.7-11.0
Refinery Prod.
R1A 6 60 186 2.7 30 10 26 20.0
R1B 6 Only the linking matrix is different from RIA above.
R2A 6 90 198 2.5 30 15 28 15.0
* Includes slack variables.

*#% L.V. denotes the number of linking variables.
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TABLE 2

Number of Cycles and CPU Computing Time

Problem Periods Number of Cycles CPU Computing Time
min. sec.
G3A 3 4 (0)* 5 40
G3B 3 5 (1) 6 30
G4A 4 5 (0) 10 10
G5A 5 5 (1) 15 00
G6A 6 8 (0) 24 45
G6B 6 6 (0) 24 50
MAL 6 6 (0) 20 00
R1A 6 4 (1) 7 10
R1B 6 3 (0) 5 48
R2A 6 5 (1) 12 10

* A parenthesized figure denotes the number of times returned to Step 1l in

Step 6. In Step 1 the subproblem is reoptimized.

TABLE 3

Degree of Optimality and Number of Cycles

Number of Coordimation Cycle

Problem 0 1 2 3 4 5 6 7 8
G3A 0 94.7 96.2  98.0 100%

G3B 0 0 18.5 71.5 7.5 1002

G4A 0 89.6 93.1  97.3 97.5  100%

G5A 0 87.7 88.6 100 100 100z

G6A 0 89.7 95.5 98.6 99.0 99.5 99.5  99.8  100%
G6B O 76.6 87.6 96.6 97.3 99.3 100%

MAL % 0 32,6 71.9 87.2 96.8 100%

R1A * * * [ 100%

RIB  * 0 97.1 100%

R2A  * * 1] 69.2  84.0 100%

Note: An asterisk demotes that a feasible solution is not found yet. O demotes
feasibility attained for the first time. 100 denotes a near 100.
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TABLE 4

CPU Coumputing Time up to Every Cycle for MAl

Up to Optimization Number of Cycle
of Subprob.’'s 1 2 3 4 5 6
min. sec.
Compuring 2 37 449 830 1127 1417 17 07 20 00
ime
Per Cycle - 4 49 3 41 2 57 2 50 2 50 2 53
TABLE 5
Comparison of MULPS with Direct Simplex Method
CODE MULPS SEXOP SEXOP /MULPS
PROBLEM CYCLES TIME ITER- TIME RATIO IN
No. Periods Size ATIONS TDE
MAl 6 116 x 266 6 31.6 192 134.0 4.2
G6B 6 180 x 330 6 56.6 306 215.9 3.8
MAIN
STORAGE USED 294 KB 729 KB 2.5

i) The times reported are in CPU seconds on a FACOM M-160 (comparable to

IBM 370/148).

ii) The FACOM M~160 has 768 KB real memory and 16 MB virtual memory, which is

under O0S IV/X8 (comparable to IBM 0S/VS2 ). The FORTRAN IV HE compiler

with OPTIMIZE(2) is used throughout (comparable to IBM FORTX compiler with

OPT = 2).
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Total nin. Pe;iﬁycle

25 4 L 5 *
CPU

»? Per Cycle

20 J L 4

15 L 3

10 L 2

5 1

3 4 5 6 7
Number of Periods

Fig.l CPU Computing Time and Number of
Periods for Problems G3A-~G6B.




ASPECTS OF BASIS FACTORIZATION FOR BLOCK-ANGULAR
SYSTEMS WITH COUPLING ROWS

Michael Bastian

Rheinisch —Westfalische Technische Hochschule
Aachen

In the class of decomposition and factorization algorithms characterized by Winkler [9],
certain subinverses have to be updated by elementary column- and row-matrices. It is
shown how to keep a Forrest—Tomiin representation of these subinverses in spite of the

row transformations.

For the case of staircase systems — viewed as nested blockangular systems — problems of
data handling are addressed.
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1. INTRODUCTION

Many algorithms have been proposed over the years to take advantage
of noticeable block structures in the coefficient matrices of Linear
Programming problems. We are concerned here with modifications of
the Simplex Method which are generally based on a factorization of
the basis inverse that preserves the block structure.

The general judgement of whether special LP-algorithms are useful
or not has changed during the past 25 years several times.

In 1955 DANTZIG [ 3 ] wrote:

'Now the main obstacle toward the full application of standard
linear programming techniques to dynamic systems is the magnitude
of the matriz for even the simplest aituation. For example, a tri-
vial 15—activity-7—ttem static model, would become a 180-activity
by 84—item system, which is considered a large problem for applica-
tion of the standard simplex method.---It is clear that dynamic
models must be treated with special tools if any progress is to be
made toward solutions of these systems'. '
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With every next generation of computers and improvements of general
LP-systems people tended to disregard block-structures. On the
other hand, the size of the problems that had to be solved also
increased enormously, and special methods were reconsidered.

Right now, it seems to me that we are in a period where a lot of
attention is paid to the efficient solution of block-structured

Linear Programs, one of the main reasons probably being the development
of really huge multi-period multi-area energy models at many places

in the world.

But there are other reasonsto apply special algorithms also to
block-structured problems of medium size:

- In many situations one knows in advance that for certain compu-
tations only a small number of 'parts' of the factorized inverse
as well as of the original data is used.

By an efficient buffering system one might be able to have most
of the relevant data in core during these computations.

- In the near future it may become quite standard to use programming
languages that allow for the implementation of parallel algorithms.
There are more possibilities to make use of parallel computations
if block-structures are maintained.

If that is so, why don't people use factorization methods for solving
block-structured models today? The main reason, I think, is that so
far most special LP-algorithms were developed in an academic environ-
ment, where implementations - if there were any - served as a stand-
alone test vehicle for the factorizational and decompositional part
of the problem. What should be done is to make sure that the highly
efficient procedures developed for general large scale LP remain

part of the system whereever this is possible: Factorization for
structured LP should be an option not a separate system. To be more
specific: A system should have several options for different block-
structures which share as many routines as possible and extensively
use standard LP-procedures.
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After giving a brief summary on block-structures and factorization
methods, [ shall show how subinverses of a basis-factorization may
be updated by the Forrest-Tomlin Method, even though some of the
updating transformations are elementary row matrices.

This situation occurs for example in the class of algorithms de-
rivable from Carlos Winkler's unified theory of partitioning and
decomposition (WINKLER [91).

One of the block-structures which are most often encountered din
practical applications and hard to solve are staircase-structures.
Problems of data handling when using Winkler's nested factorization
approach for solving staircase structured LP's are addressed.

2. Block-Structured Systems

Let A be an m x n-matrix with real coefficients,
M the set of nonempty subsets of {1,2,...,m},

N the set of nonempty subsets of {1,2,...,n},
1<k<m and K : = {1,2,...,k}

Def.:

A (row-oriented) block-structure of A is a set BS(A):={(aj,r;)li € K}
of pairs (aj,vj) € M x N such that

(1) f@j 1i € k} is a partition of {1,..,m};

(2) every nonzero element Ahj # 0 of A is contained in one of the

sub-matrices
Aﬂi’Yi (i €K).
The matrices Aﬂi'Yi (i € K) are called blocks.

A block of a blockstructured matrix is thus given by a set a of
rows and at least those columns that have a nonzero element in
any positive number of rows in a.
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The factorization methods under consideration keep representations
of the basis-inverses which retain (to a large extent) the block-
structure of the corresponding bases. The idea is that the FTRAN-
and BTRAN-operations of the Simplex Method are simpler to perform
if nonzeroes only appear in certain blocks, the position of which
is apriori known.

3. Basisfactorization for Blocktriangular Matrices

Def.:

A real m x n-matrix A is called blocktriangular, if it has the

following block-structure:
BS(A):={(aj,yi) €M x N1 i €K, yi & U ¥y v 1<i<k} .
' J>i
The class of blocktriangular matrices is quite large and contains
the majority of block-structured coefficient matrices of ‘real world'
Linear Programs. Well-known substructures are:

a) the blockangular structure (with coupling rows and coupling

variables):
BS:"-‘{(Gj,Y‘i)l'i € K, Y1=[1’---)n}’ Y’itYkVi *k)
Yioyj = vk V1sis i1}

b) the staircase structure:
BS:={{xj,vi) 1 € K, Yinvjsep * Av ik, YinYj = A v li-jl >1}
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It ist now twenty-five years ago that George Dantzig [ 3 ]
suggested to modify the simplex algorithm when applied to problems
with block-triangular coefficient matrices. The main idea of that
early paper, i.e. the factorization of block-triangular bases into
a blocktriangular and a very sparse factor, remains the same in
most of today's approaches.

Let B be a blocktriangular basis. By column exchanges it is possible
to yield a matrix B from B with the following properties:

a) B is blocktriangular up to a few 'spikes’
b) B can be factorized into two invertible matrices

F and L such that 8-1 = -1 . F1,

where F~1 is blocktriangular and -1 s very sparse.
c) The submatrices on the main diagonal of B are square.

pl-l. fle-

This structure greatly simplifies the operations BTRAN and
FTRAN of the simplex method.

c-Bl=(c.Lly.rFl
Bl . Ay = L7l (Fl . A

BTRAN: W
FTRAN: d

The multiplication by F-l is simple because of the structure
and the multiplication by L-1 is fast because of the small
number of nonzeroes.
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The main challenge is to provide an efficient method for maintaining
this structure of the inverse during the ijterations of the simplex
method.

KALLIO and PORTEUS [ 6] published a solution to this

probiem in 1977, A different approach was taken by PEROLD and
DANTZIG ([ 4 ].

In the case of particular blocktriangular structures the matrix F-1

is further factorized. We shall consider here Winkler's factorization
for blockangular structures with coupling rows.

4. Blockangular Systems With Coupling Rows

Def.:

A real m x n-matrix A is called blockangular (with coupling rows),
if it has the following block-structure:
BS(A):={(aj.vi) €M x Nli € K, ya={l,.e,m}, yj Ny; =@V 1&isjs+l}

In this paragraph we shall consider coefficient matrices of the
structure just defined.

4.1 Winkler's Factorization

Let B be a basis of A and 8 c¢{1,2,.:,n}, {B( = m, its set of column
indices.

It follows from B being invertible that there exists a partition
BiljggofB such that

(a) Bj ¢ ¥y and 18il = lajl (i = 1,2,..,k)

u
[aV]
-
.
.
b
~

(b) Bajspi is invertible (i
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A rearrangement of the columns of B (to the order Ba4,..,Bk)
yields:

/45 A Ay

_—

By

where the B; are square and invertible and the first [B4[ columns
of B are very sparse.

Let Ci : = -A; - B3l for i = 2,3,..,k. Then there exists a
decomposition of B into three invertible factors By, W and L such

that B = L7 o Wl ¢ B! has the form:
I B_l I Ca... Ck
-V 1 " -1
B-l - . . B2
. .I II . N . -1
Vi By

Here

is very sparse and [Qr] = Bal " Bag,

Notice that in order to maintain B"1 it is sufficient to store

(in addition to the coefficient matrix A) a sparse matrix V as well

1 -1 -1

as k ‘subinverses' By, B3,.,8, .




~165-

The simplifications during FTRAN and BTRAN are tremendous,

because only very few of the subinverses are needed.

A similar statement is true for the actualization of the inverse~
representation during the iterations of the simplex method (WRETA).

There are three different update situations depending on the pivot
row p and the entries of the matrix V.

Disregarding the changes performed on elements of the V-matrix
(details are explained in WINKLER [ 9] or BASTIAN [1]) an update
consists of:

case 1: adding a column eta to the file of B;l.

case 2: adding a column eta to one of the subinverses B;l (i€ 12,..,k1).

case 3: adding a column eta to one of the subinverses B;l (i € {2,..,k}),
adding a row eta and a column eta (which pivot in the same row)
to By .

There are pivot selection strategies that tend to reduce the number
of occurrences of case 3 and completely avoid this situation during
the first part of phase 1.

Our explanation of the update cases has tacitly assumed that the
product-form of the inverse (PFI) is used for all subinverses. The
B}l, (i = 2,3,..,k), could as well be kept in EFI using the Forrest-
Tomlin method. Infact, this should be done in view of the advantages
of the EFI and our aim to incorporate latest LP-technology into
special routines for block-structured problems.

For 3;1 the situation is more complicated, as case 3 does not correspond
to a simple column-exchange in B,. For this matrix, however, an updating
procedure which reduces the growth of the eta-file would be extremely
desirable, because (in contrast to the other subinverses) B;l is in=
volved in each BTRAN- and in each FTRAN-operation. Moreover, the

columns of B, are not contained in the coefficient matrix A and have

to be computed prior to each reinversion.
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In the next section it is shown that also 8;1 can be stored and
maintained in the Elimination Form of the Inverse. The muiti-
plication by two elementary matrices in update-case 3 is replaced
by a modified Forrest-Tomlin procedure which yields a growth of
the eta-file comparable to the PFI (at most three new eta-vectors
have to be stored; one row is erased in the U-file).

In case 1, however, one enjoys all benefits of the classical

Forrest-Tomlin method which should yield considerable savings
in total computation time.

4.2 Using the Forrest-Tomlin Method for Updating Bﬁl

In the update-situation under consideration (case 3) one is given
an m4 x my~inverse B;l and an m4-row-vector v * 0, from which a
nonzero component vz is chosen.

Let Ez be obtained from the identitiy matrix by replacing its
2-th row by the vector v and define

-1 -
Gw = Ez - Bwl.

A .
Let By be an invertible matrix obtained from B, by replacing

its z-th column by an my-column d. Then there exists an elementary
column matrix Eg such that

-1
A

In the following sections a different representation for B, is
derived,

4.2.1 Assumption

B;l is given by two factors ™1 and L-1 which are stored in
product form

Ul = Uy - Ua L Up, and L7l = Ln, - Lpg-t oo Ly
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on different files (the U-file and the L-file) in order to
allow for the insertion of new elementary matrices between
Up, and Lp,. There are no further assumptions on L-1, but
the existence of a permutation matrix P is postulated such
that P.uU.Pljs upper triangular. Because of this
structure, the eta vector of Uj may be obtained directly
from the i-th column of U.. P-1 (i = 1,2...,m1)

Notice that the situation discribed is for example given
right after an inversion using LU-decomposition.

4.2.2 Theorem

Let B;l satisfy assumption 3.2.1 and vz # Q. There exist an

elementary column matrix T, elementary row matrices R, and Ra,
an eta column y as well as a representation

ALl Al Al
Bl-ut.t
of the matrix B-% = Ec . E, - B!, such that B} satifi ti
w = Es - E; + By, such that B" satifies assumption
3.2.1.
ALl

The product forms of 0! and L
presentation of B;l by the following modification of the Forrest-
Tomlin method:

are easily derived from the re-

(1) add the eta vectors of Ry, T, Rz to the L-File (in that order);

(2) mark the eta vector of the U-file which pivots in row z as
being deleted;

(3) delete all elements of the U-File having row index z;

(4) add y to the U-file.




4,2.3 Outline of the Proof

A -
As B, and By =L -U- E;l differ by just one column, the same

- 1 A _1
is true for U := L°* - Bw and U . E,° .
We have:

Ll d

Uz

u

o = Uoj - vy +laz vifz. (1)

From P . U . P-1 being upper triangular we conclude

p.u.p-l =

RIS

Qur intention is now to transform G back to a permuted triangular
matrix which differs from U just by one column and one row:

S SO BANS |
The product form of B, =U ~ - L

representation completely analogous to the Forrest-Tomlin method.

is later obtained from that

The roles of the elementary transformations Ry, T and Ra may be
described using the shape of P - U - P=1 sketched above:
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e R, eliminatesrow s of the first term (up to the diagonal
element);

o T eliminates rows 1 to s-1 of the second term;

e R; eliminates row s of the second term.

We shall now determine the eta vectors of Ry, T, Ra.

4.2.4 The Eta Vectors of R4, T and R3

R4 differs from the unit matrix just by its z-th row w, which
is supposed to have the property w - U.j =0V j+ 2z, Choosing

wi= Uy - U;l (2)

yields ones on the main diagonal of R,.
(The notation Usl is used instead of (U~l),, in this section)-

The eta column of T is already available in the U-file; it is
the eta vector ¢ that pivots in row z:

Ci = { I/Uzz

i=12z 3
‘U-iz/Uzz i%2z ( )

The transformations already applied to U Tead to the matrix

- U,

[eng |}
]
—_
=
-

the elements of which are easily determined (using (1),(2),(3))
to be

ﬁzj = - vj jez

ﬁij = Ujj i*ze]
Uzz = U3l - L1 . d

Uiz = (L°1 . d)j - Ujz - Uz - L1 - d iz
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The row eta w + 0 of Ra has to satisfy the

condition W - U.j =0 Vj#+az.
We define q:=v .Ul (4)
and choose Wi=q-qz - W+ Iz, (5)

As Qz = 1, we have ones on the main diagonal fo Ra.

; A-1 . {0-1. 11
4.2.5 The Representation of By = U™2 - L

Ra - U is now a permuted upper triangular matrix, which can be
factorized (as in the Forrest-Tomlin method) into

R,-G=CZ-U,

where U is obtained from U by replacing the z-th row as well as
the z-th column by unit vectors, and C, is an elementary matrix

with x := Rz - U,, as its z-th column.

We have

ﬁ;l =0-1. 1. U1.¢ly - Ry - TRy . LoD,

Identifying y as the eta vector of C;l (obtainable from x by a
pivot on x,) the claims of theorem 3.2.2 are proved.

What is really stored in the U-File is y, = 1/x, as well as the
nonzero components x4 (i # z) of x (c¢f. FORREST-TQMLIN [5]).

It can be shown (cf. BASTIAN [2]) that

Yz = Vz/9z »
Xj = hj = fz « Uiz iz,

where g;, f; and h; (i=1,..,m4) are data available in Winkler's
algorithmic approach.
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Summarizing the computations necessary to update Bgl in case 3
of Winkler's algorithm we have

o two BTRAN-operations to compute w and q (as compared to
one BTRAN-operation in case 1, if the Forrest-Tomlin
method is applied);

e two multiplication of a vector by a scalar and two
vector additions to compute w and x.

Update case 3 occurs if the sparse matrix V has nonzero elements

in the pivot row p. If this row of V contains exactly one nonzero
element, then the whole procedure simplifies to what is basically

a standard Forrest Tomlin update: Rz is a unit matrix and T ist not
added to the L-file but rather used to modify the eta-vector of C;l:

~

8;1 =(U-1.(czl-T1)) - (Ry - -1

Although the modification of the Forrest-Tomiin method just des-
cribed was illustrated in the context of Winkler's class of algorithms,
it may have other applications in situations where an inverse is
frequently updated by elementary column matrices and sometimes by
elementary row matrices.

5. Staircase Systems Viewed As Nested Blockangular Systems

Any block-structured matrix may be viewed as a permuted matrix
with nested blockangular structure, as we know for example from
ZVIAGINA [101 and LOUTE [71].

Staircase structures are a particularly nice example. Let
k=2h -1, he N ; for h = 3 we have

gl

~N A W =N P
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(The numbers indicate the position of a blo¢k in the original
staircase structure).

Winkler showed that his factorization also extends to this
nested situation, where the inverse is given by k 'subinverses’
(for each i € K there is one of dimension lajixla;jl) and (k-1)/2
V-matrices.

A1l data that is used for a BTRAN or FTRAN operation with the
basis inverse is shown in the following matrix:

.
EEANNY

N

///
5/ RN
.

v

#

ked indicates a subinverse,
gg a V-matrix and
N

original data

)

Here

The following 'binary search tree' {s the key for understanding
operations with this structure:
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With each leaf i we associate the inverse of a matrix B; whose
columns are drawn from block Ag,,y; of the original staircase
coefficient matrix.

Let i beanon-leaf-node having the two sons f and g. With i we
associate three matrices: the inverse of a matrix B,; and a
V-matrix Vi which may be obtained from Bgl, B;l and original

data (as explained earlier for block-angular matrices), and a
larger inverse B;l which is given in the form of Winkler's
factorization by B;% and Bal, B;l and V5. Candidates for columns

in B;} and V4 are original columns which have nonzeroes in at least
one row p € aj where j ist a node in the subtree with root 1.
Finally, B3} = 871,

The main advantage of a 'divide-and conquer' - approach like this
is that during FTRAN and WRETA at most h << k of the subinverses
and V-matrices (associated with a path in the tree) are needed;
the same holds for the BTRAN-operation if the partial-block-
pricing strategy is used. This compares to an average of k/2 in
many other methods.

There are, however, two serious drawbacks:
e the data-handling, particularly with the V-matrices, is not
simple;

e if j < h subinverses are involved in a WRETA-operation, then
J - 1 of them have to be updated 1like B;l in case 3 discussed
earlier; this amounts to a comparatively rapid growth of the
eta-files.

I shall address in the next sections some of the data-handling
problems.

5.1 Storing the Coefficient Matrix A

We have K + 1 different types of columns, type 1 having nonzeroes
only in rows p € as, type i having nonzeroes in rows p € aj.; U aj
(i = 2,3,..,k), and type k + 1 having nonzeroes only in rows ag.
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The column header should contain the type of the column as

well as the length of its two parts. From that information

one can immediately decide whether a column has nonzeroes in

a given set of rows aj and one can read that part. In addition,
one should store the starting address for the first column of
each type in order to have fast access in case of partial block
pricing.

(For smaller problems it may be considered to take all columns of a
type into core simultaneously).

5.2 Storing the V-Matrices

As the columns that multiply a V-matrix in a BTRAN- or FTRAN-
operation are expanded, there won't be any problems whether or
not the V-matrix may be accessed column- or row- wise and whether
the entries of an accessed vector are sorted or not.

The situation is much more complicated during WRETA. Here, the
following operations may have to be performed:

(a) replace a column of V;

(b) determine whether a row p has at least one nonzero element;
(c) update all columns having a nonzero element in row P;

(d) get row p;

(e) exchange two rows .

Here (a) occurs in cases 1 and 3,
(b) occurs in cases 2 and 3,
(c),(d} and (e) occur in case 3 only,

It is very hard to decide whether column- or row-oriented access
is more frequent. But as operations that may affect the length
of a packed vector are confined to columns, I would suggest a
column-oriented addressing scheme.
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The nonzero elements of each column should be kept sorted
according to their row indices. This makes operations (b),

(d) and (c) considerably faster as binary searchcan be used.
The only disadvantage would be in operation (e), where several
entries of a column have to be shifted if that column has a
nonzero element in exactly one of the two rows that are ex-
changed.

What kind of additional structure could be introduced to support
row access?

The simplest one would be a bit vector whose entries correspond

to the rows of V; bit i is set to 1 if row i may possibly con-

tain a nonzero element. Whenever a nonzero is encountered in

(a), (c) or (e) the corresponding bit is set to 1; it is reset to

0, if no nonzeroes have been found in that row during a(b)-operation.

Another possibility is a bit matrix which contains a 1 in position
(i,J) if Vij + 0.

This would yield direct access to the columns relevant during (c),
(d) and (e) at the cost of more complicated update-operations
(a), (c), (e) to maintain the bit matrix.

One of these approaches I would consider to be appropriate.
One could of course store a column-oriented and a row-oriented
representation of the V-matrix, but that would be extremely
costly to maintain during operations (a) and (c).

In this context it should be pointed out that searching for a
particular row index does (on the average) only have to be applied to
half the number of columns of a V-matrix:

If B;lis an inverse given by 8;%, Vis B;l and B;l, then no column

of Vi ever has nonzeroes in rows in af and in ag. Which block applies
can be seen from the type (index) of the column.
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6. Conclusions

It is shown that for updating an inverse with elementary column
and row transformations the Forrest-Tomlin method can be used.

This seems to be advantageous to do if row transformations are

not likely to occur too frequently.

The class of Winkler's factorization algorithms for blockangular
systems is considered to be an area of application.

When Winkler's approach is applied (in a nested way) to staircase
structures, the situation is more complicated:

o The 'unpleasant' update-cases occur more frequently which
makes the standard product form more competitive for about
half the number of subinverses.

¢ Instead of one there are several sparse 'V-matrices' involved,
for which row and column access is necessary.
Different ways of storage have been discussed.
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INTRODUCTION

Staircase-structured linear programs (LPs) have been studied
about as long as linear programming itself. Staircase LPs arose naturslly
from models of economic planning over time: activities were run in a
gseries of periods, and constraints linked activities in adjacent periods.

The resulting LPs, in their simplest form, had a structure like this:

maximize clxl + c2x2 + c3x3 + oo 4 ct—lxt—l + ctxt
subject to Allxl = bl
Alel +A22x2 - bZ
AypXy TAg3%g = by
At,t-lxt—l + Att t = bt

In the infancy of computers this sort of structured problem was
attractive because it seemed to offer a hope of solving practical LPs
in a reasonable amount of time. Thus in 1949 Dantzig observed [5] that

...while the general mathematical problem is concermed with
maximization of a linear form of nonnegative variables
subject to a system of linear equalities, in the linear
programming case one finds by observing the above [staircase]
system that the grand matrix of coefficients 1is composed
mostly of blocks of zeros except for submatrices along and
just off the "diagonal". Thus any good computational
technique for solving programs would probably take advan-

tage of this fact.
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The simplex method was as yet impossibly slow for large gemeral problems,
but there was reason to think that a much faster version could be devised
for staircase LPs.

Staircase linear programs are of no less interest today. Along
with economic planning, they have found applications in production
scheduling, inventory, transportation, control, and design of multi-
stage structures {32]. Yet a recent survey [18] observes that

the "staircase" model, in which similar sets of variables
and constraints are replicated many times, seems no more
tractable today then when its importance was recognized
over 20 years ago. Typical of many "time-phased" economic
problems, it is the standard model for numerically solving
problems of optimal control. Today we know only how to
solve it as we would any linear programming problem; but
this type of problem requires more work to solve than does
the average problem of the same size. However, there

should be some way to take advantage of their simple structure.
Thus the situation has been reversed. The general simplex method is now
impressively fast rather than impossibly slow, while staircase LPs are

a troublesomely hard case rather than a promisingly easy one.

Proposed methods for staircase LPs

There has certainly been no shortage of attempts to solve stair-
cage LPs more efficiently. Although the simplex method has usually been
involved in some guise, individual proposals have varied considerably.
The essential ideas of these proposals may be classified in four broad

areas:
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Compact basis methods employ a special representation of the basis
or basis inverse in conjunction with a more or less standard simplex
method. This approach was first suggested by Dantzig [6,8], and early
variations were employed by Heesterman and Sandee [23] and Saigal [46].
More recent compact-basis schemes have been worked out by Dantzig [9],
Wollmer [51], Marsten and Shepardson [35], Perold and Dantzig [42], and
Propoil and Krivonozhko [43].

Nested decomposition methods apply the Dantzig-Wolfe decomposition

principle to generate a series of sub-problems at each period. This
approach was suggested by Dantzig and Wolfe in their original paper on
decomposition [10], and has been extended or modified by Cobb and Cord
[4], Glassey [19,20] and Ho and Manne [29]. (Ho has reported favorable
computational results in two special cases [26,27].)

Transformation methods start with a simpler LP that can be solved
easily, and work toward a solution of the original staircase LP. Varied
proposals in this class are from Grinold [22], Aonuma [l), and Marsten
and Shepardson [35].

Continuous methods deal with a multi-period LP in continuous rather
than discrete time. Fundamentals of a simplex method for continuous-time
LPs have been proposed by Perold [41].

Computational experience with most of these proposals 1s negligible.
At present no method has proved as effective as the general simplex

method in handling a wide variety of staircase problems.
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Adaptation of the simplex method for staircase LPs

Proposals for improving the general simplex method itself have
been, by contrast, much more successful. As a result the simplex method
has become an amalgam of fairly sophisticated algorithms. Many of these
algorithms are objects of study in their own right, and are not normally
thought of in connection with linear programming. The simplex method has
consequently become more and more a specialist's domain.

It is therefore not surprising that study of staircase LPs has
tended to diverge from study of the simplex method. Staircase linear
programming, typified by the above-listed papers, has become a search
for methods to replace the old simplex method; in the mean time a new,
better simplex method has emerged for general linear programming but has
not been applied to special structures such as staircases.

This and a companion paper [16] seek to reverse the trend: they
are concerned with adapting the modern simplex method to solve staircase
LPs more efficiently. Each paper looks at a set of algorithms within the
simplex method: this one deals with "inversion" of the basis--more
accurately, solution of linear systems by Gaussian elimination--and the
succeeding one considers partial pricing.

Both papers describe extensive, although preliminary, computational
experience. The results are quite promising: a staircase-adapted
simplex method sometimes performs considerably better than the general
method, yet on a range of problems it is never significantly worse.

Moreover, further improvement appears possible in a number of respects.
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1. STAIRCASE LINEAR PROGRAMS
Staircase linear programs share two simple characteristics:

their variables fall into some sequence of disjoint groups; and their
constraints relate only variables within adjacent groups. Usually the
sequence of groups corresponds to a sequence of times, so that variables
in a group represent activities during ome time period. Constraints
then indicate how activities in one period are related to activities
in the next. Staircase LPs thus arise especially often from many kinds
of economic planning models.

A constraint 1s said to be in period & if 1t contains variables
of period £ but not of later periods. Typically some constraints involve
only variables of period £, while others relate variables of periods %
and £-1; the latter are linking constraints, whereas the former are non-
linking. Analogously, linking variables appear in constraints of periods £
and 2+1, while non-linking variables appear only in constraints of
period 2.

A staircase LP is also naturally viewed as a kind of linear discrete-
time optimal control model. Typically such a model minimizes a linear
function of nonnegative state vectors x, and control vectors g, sub-

3

ject to dymamic equations,

AL L ML

Coxel = 4 % () g

and control contraints,

0=aPx + Déz)u

. X +béz) s L =1,..., t+l

2
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This is readily seen to be a staircase linear program. The state vectors
are the linking variables, and the control vectors are the non-linking
variables; the dynamic equations are the linking constraints, while the

control contraints are non-linking.

Staircase LPs of higher orders

A more general approach says that a staircase linear program is
of order r if its constraints relate variables that are at most r periods
apart. The preceding subsection thus characterized staircase LPs of
order one. Higher-order staircase LPs are not uncommon in complex appli-
cations (for example, modeling energy systems [40]). They are analogous
to linear control models that have rth-order dynamic equations.

This paper 1is predominantly concerned with first-order staircase
LPs: these have the most gpecialized structure and, consequently, are
most amenable to special techniques. Still, many techniques are essen-
tially applicable to higher-order staircases as well, with appropriate
adaptations that will be pointed out as the exposition proceeds. For
brevity, however, the adjective "first-order" will usually be dropped.

Higher-order staircase LPs can also be made into first-order ones,

in either of two ways. First, rth-order equations can be transformed to
equivalent first-order ones by adding certain variables and constraints.
This yields a larger first-order LP that has the same number of periods..
Second, every r periods of the rth-order LP may simply be aggregated
as one period. The result is a first-order staircase LP of the same
size but having only about t/r periods. The first method is most
practical when the LP 1is nearly first-order to begin with, while the

second may be feasible when the number of periods is large relative to r.
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Staircase matrices

The matrix of constraint coefficients of a staircase linear

program is a staircase matrix. Its nonzero elements are confined to

certain submatrices centered roughly on and just off the diagonal--as,

for example,

- e aw > e o ey W a -‘
Al N
]
A21 | Ayp |
] . \
X A | M43 !
! Az | Aas |
1
A A
b e e e e e 28 33

Formally, one partitions the rows of an m X n matrix A into t disjoint
subsets, and the colums into t disjoint subsets, so that the matrix is

partitioned into tz submatrices, or "blocks":

A i{i=1,..., t; 3§ =1,..., ¢t

14’

A 1is lower staircase (as above) if Aij = 0 expcet for 1 = j and

1 = j+l. A 1is upper staircase if Aij = 0 except for 1 = 3 and

1= j-1.
By analogy with staircase models, rows in the ith partition of
a staircase matrix A are called period-i rows, and columns in the jth

partition are called period-j columms. If a period-i row has nonzero
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elements in blocks and A 4 it isa linking row; if it has non-

AfL1-1 1

zeroes only in A it is a non-linking row. Similarly,a period-j

11
column that has nonzeroces in A and A is a linking column,
i3 3+,
while one that has nonzeroes in AJJ only is a non-linking columm.

Any upper-staircase matrix may be permuted to lower-staircase
form by reversing the order of the periods [15]. Moreover, if a period-i

row is entirely zero within A that row may be moved back to period i-1

11
without disrupting the staircase structure; analogously, a period-j column
that is all-zero within Ajj may be moved to period j+l. Nothing is
lost, therefore, in assuming that A 1s lower staircase and that its
diagonal blocks AIE have no all-zero rows or columns; A 1s then said
to be in standard staircase form. Henceforth it will be assumed that all
stalrcase LPs have a constraint matrix A 1in this standard form. (The
trivial case in which A has an all-zero row or column is thus ruled
out.)

Following [15], the period-i rows may be permuted to put the link-

ing rows first, and the period-j columns may be permuted to put the link-

ing columns last. Then A has the following reduced form:

_Tssssss=s=7 A
Ay |
1Ay 1
' A2 '
I 1
Fy 1
1 32 A33 \
|
| Ayq
l Aus
- - - —
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The reduced block Ak k-1 is just the intersection of the period-k link-
’
ing rows and the period-(k-1) linking columms.
If the linking rows of every period i are switched to period 1-1,

then A gains an alternative row-upper-staircase form:

- m-— - - -

Switching the linking columms of period j to period j+1 gives a different,

columm—-upper-staircase form. Thus a staircase A in reduced standard form

embodies three staircases--lower, row-upper, and column-upper--each corre-

sponding to a different choice of where the periods begin and end.

Staircase bases

Any basis B of a staircase linear program necessarily inherits a
staircase structure from the constraint matrix A; B's staircase blocks,
Bz,l-l and BZL’ may be taken to be the sub-blocks of Al,l—l and AZE
that contain only the basic columms. If A has a reduced form, ﬁl 2-1

k4

may likewise be taken as the basic part of AE 2-1°
’

The inherited staircase of B need not be in standard or reduced

form, even though A 1is. Specifically, either 322 or ﬁz g-1 Day be
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-

zero along some linking row i-—-if it happens that, in All or Al 2-1’

all the nonzeroes along row i are in non-basic colummns. In this event,
B may be returned to reduced standard form by reassigning certain rows

and columns. Any linking row that is zero in B becomes a non-linking

L2

row in period %-1; in the process, some linking columns of period 2-1
may become non-linking. Any linking row that is zero in Bl,l-l becomes
a non-linking row.

It is generally more convenient to deal with B in its inherited
staircase form, whether standard, reduced or otherwise. However, better
results are often achieved by using B's reduced standard form instead,
egpecially as it has fewer linking rows and columns and hence a tighter
structure. This issue is considered further subsequently.

~

or Bl,L-l) will represent the

blocks of B's chosen staircase form, whether inherited or reduced standard.

Henceforth Bll and Bl,n-l (

The number of rows in period i will be denoted o, and the number of
colums in period j will be nj; the respective numbers of linking rows
and columms will be ﬁi and ﬁj. For the row-upper-staircase form, the
number of rows in period i will be mi, and for the columm-upper-staircase
form the number of columns in period j will be nj. Necessarily

Zmi = Zmi = an = an = m, and ﬁi < m ﬁj < ny-

Balance constraints and square sub-staircases

If the staircase LP has a special dynamic Leontief structure [7]
then in each period the number of basic columns must exactly equal the

number of rows: n, = m

. Y for all £, and all blocks B are square.

2L
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This is not the case in general, however. A basis B of an arbitrary
gtaircase LP way have o, > m, for some periods £ and n, < m,
for others.

Since the basis is nonsingular, however, it must obey the 'balance
constraints" developed in [15]. In summary, these restrict the excess of

basic colums over rows in each period, individually and cumulatively,

as follows:

1 -~ -~
0 i Zl (ni-mi) i min(m£+1,n£), L =1,..., t=1

. - . X N
~min(m ) < Zk (n,-m,) < min(m,,,0,), kL = 2,..., t-1

s t
-min(m,m ;) <] (o-m) <0 k=2,...,t

In words, the cumulative imbalance between rows and basic columms in

~

periods k through 2 is bounded by the smaller dimension of Bk k-1 and
?

the smaller dimension of B Hence these constraints are quite

2+1,2°
strict when there are relatively few linking rows or columns.
The first constraint above may also be written as the following

three inequalities:

3 2
21 ng 2 ) oy
g
LR
g i ot
I “1i21 oy

These say that the first 2 periods of the lower staircase camnot have
more rows than colummns, while the first % periods of the associated row-

upper or column-upper staircase cannot have wore colummns than rows.
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All three of these relations are equalities when 2 = t, since
B 1is square. It can also happen that equality is achieved for some

£ < t. For example, if Ei m, = Zi n, B must look something like this:

i

——--—-—1

jrennna TITETITT

3 3
z1 oy = z1 oy

| I I

The rows and columns of periods 1 through £ form a square sub-staircase,

as do the rows and columms of periods £+1 through t; they are linked

only by nonzero elements in the off-diagonal block B In a similar

2+1,8°
way an equality Zi n, = Ei mi implies a palr of square sub-staircases
within the row-upper staircase form, and Xi ni = zi o, implies the

same for the column-upper form.

Generally B may exhibit any or all of these three kinds of
equalities, and each may hold for several values of £ < t. If p differ-
ent such equalities hold, then B breaks into p+l disjoint square sub-
staircases of various kinds. The presence or absence of sub-staircases

will be of importance to several of the techniques described further

on in this paper.
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2. SOLVING LINEAR SYSTEMS IN THE SIMPLEX METHQD
In solving linear programs by the simplex method, a great deal of
computational effort is devoted to "inverting the basis". More precisely,

at each iteration the simplex method solves two linear systems:

By = a
BTﬂ-z

B is the basis, an m X m matrix of basic columns of the constraint matrix
A; a 1is a non-basic column of A; and z 1 an appropriately chosen
"pricing form".*

There are many ways to solve such systems, but not all are suit-
able to practical linear programming. Typically m 1is in the range of
several hundred to several thousand, and the simplex method generates
roughly 2m different bases B. Hence only very efficient solution
techniques are useful. Further, B has two very special properties:

® Successive bases are similar. Only one column of B is

changed at each iteration.

® Bases are sparse. For a typical large application, less than

1% of the elements of an average B are nonzero.

The best techniques can use these properties to advantage in various ways

that are outlined in this section.

*It is general practice to incorporate the linear objective function as a
row of A. Then, when the basis is feasible, the pricing form z 1is a
unit vector; when the basis is infeasible, z has one nonzero element--
either +1 or -l--corresponding to each infeasible basic variable. The
exact choice of 2z depends on details of the implementation, as explained
in [39,50].
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Permutation of the basis

The variables and equations of a linear system By = a or
BTn = z can be written in any order. Each ordering of the variables
corresponds to some permutation of the columns of B, while each ordering
of the equations corresponds to some permutation of the rows of B.

Any permutation of the rows and columns of B may be written
PBQT, where P and QT are suitably chosen permutation matrices. The
system By = a 1s thus equivalent to the permuted systemb (PBQT)(Qy) = (Pa).

BTw = 2z 13 likewise equivalent to (QBTPT)(PH) = (Qz).

LU factorization

At the heart of recent simplex implementations is a technique based
on Gaussian elimination. The basis B 1s factored as the product of a
lower-triangular matrix L, and an upper-triangular matrix U. Once

B = LU is known, the linear systems of importance reduce to

L(Uy) = a

UT(LIW) =z

Then y or @ may be found through solving two triangular systems by
back-substitution.

In practice Gaussian elimination is applied to a chosen permuta-
tion PBQT. Choice of P and QT is a crucial matter, as can be seen
by considering the computation involved in elimination. Its essential

operations are defined by the following recursion:




-194-

g1 - paqT
(k+1) (k) (k), (k) ,,. (k) . -
s e ay s e e . Lo kel

of which L and U are a by-product:

= ald) (P .

Lij Bij /Bjj , i>3
(1)

Uyy = 8yy s 1<}

The critical values are the "pivots" Bit): an LU factorization exists

if and only if all pivots are nonzero. Moreover, elimination is numeri-
cally stable only if all picots are sufficiently large in magnitude, both
absolutely and relative to other elements of B(k).

As a consequence, practical Gaussian elimination looks for permu-
tations P and QT such that PBQT has an acceptably large series of
pivots. Choosing P and QT is thus commonly called "pivot selection".

Once L and U are computed, solving the resulting triangular
systems presents no difficulty. Back-substitution in these systems is
an inherently fast and stable process.

The jargon of LP computer codes refers to solution of a lower-
triangular system as an FTRAN ("forward transformation"); solution of an
upper-triangular system is a BTRAN ("backward transformation"). Solving
L(Uy) = a thus requires first an FTRANL and then a BTRANU, while solving

UT(LTn) = z requires an FTRANU and a BTRANL.
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Updating the LU factorization

Just as successive bases are similar, their LU factorizations are
similar. Consequently it is practical to merely update L and U at each
basis change, rather than compute the factorization from scratch each time.

The idea of an LU update is as follows. Suppose the initial basis,

T T.
Bo, has been factored as POBOQ0 LOUO' Thus Bo (POLO)(UOQO). Bo is
the product of a permuted lower-triangular matrix and a permuted upper-
triangular matrix. Equivalently, L )ls. = v Qn-
070 0 070
Now update Bo to a new basis Bl, and consider

T. -1 ~
(POLO) B, = U

1 = %% &)

~

Uo need not be upper-triangular; however, it does have an LU factorization,

EOQO = (PiLl)(UlQl). Substituting into (1) and rearranging shows that
B, = (PL)(PIL,) (U,Q,) 2
1 olo’ (F1k) (UG @

Thus B1 is factored as the product of two permuted lower-triangular

matrices and a permuted upper-triangular matrix. Linear systems involving

Bl are then readily solved as before, but with the addition of some back-

substitutions in Ll.
Similar updates can be applied at subsequent basis changes. After

k 1iterations, the basis Bk is factored at

T T
B = (Polo) (1L )+ ==+ <(BIL,) (U,Q)) (3
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FTRANL and BRRANL perform back-substitutions with L_ through L

0 k’

while FTRANU and BTRANU use Uk'
LU updating in this way is practical because Bl differs from

B0 in only one column. Hence ’BO 1s nearly upper-triangular--it differs

from UO in only one colummn--and, as a result, Ul is much the same as

UO, while L1 is not much different from the identity. The factorization
(2) is.thus fairly easy to find and record, and the subsequent back-substi-

tutions are only marginally more expensive than for BO. Further updates

are equally economical, and may continue until the cost of back-substi-
tution in (3) begins to rise appreciably--typically after 50 to 100
iterations. A fresh LU factorization of the basis is then computed, and
updating begins anew.

Specific algorithms for LU updates differ primarily in their

T,
choice of permutations Pl and Ql for the factorization UOQO = (PlLl)(UlQl).

The original algorithm of Bartels and Golub [2,3] was designed to ensure
numerical stability. Subsequent variations have given more weight to

*
storage arrangement [14,47] or sparsity ([17,44].

*Anocher technique, proposed by McBride [36], promises an especially
sparse update. Essentially, it usesas B acarefully updated and permuted
BO’ with the result that the product (PgLo)(PILl) may be collapsed to
a single lower-triangular factor; in effect this technique updates the
lower-triangular factor at each iteration, whereas the other techniques
merely augment it. McBride avoids Gaussian elimination in his implemen-
tation, however, preferring to keep the inverse of one small matrix

explicitly.
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Storing the LU factorization

To benefit from sparsity, an LP code must store only the nonzero
elements in matrices such as A, L and U. The total storage required by
a sparse problem is thereby drastically curtailed; indeed, large-scale
linear programming would be impossible if all zeroes had to be stored.
Moreover, sparse storage makes possible efficient pricing and pivoting
routines that automatically skip multiplying and adding zeroes.

Because bases are subsets of the columns of A, it is universal
practice to store A by column. Typically one array lists the nonzero
elements of A 1in column order, a parallel array lists the row index for
each element, and a shorter third array indicates where each column begins
in the first two arrays. A basis is represented by just a list of the
basic columns.

To factorize a basis B stored in this way, it may be efficient
to rearrange the operations of Gaussian elimination so that only one

column, b,, 1s processed at a time. An LU factorization of PBQT is

]
then computed by essentially the following algorithm:

1: SET L=U=7]

2: REPEAT for each columm b, of BQT:

3
2.1: SOLVE Lx = ij for x
2.2: SET Uij = xi for 1 =1,..., ]
2.3: SET Lij = xi/xj for 1 = j+l,..., m

L and U are produced ome column at a time, and so may be stored like A

as columwise 1ists of nonzeroes. FTRAN operations read forward through
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these lists, whereas BTRAN operations start at the end of a list and
read backward to the beginning. (Hence the terms FTRAN and BTRAN.)

In practice the storage arrangement of L and U 1s closely tied
to the updating technique. Any of the previously-mentioned techniques may
store L columnwise, since it is just augmented (by PELk) at each
iteration. Only the Forrest~Tomlin technique, however, can be adequately
implemented with U stored columnwise. Saunders' technique requires
row-wise access as well to a (hopefully small) part of U, while Reid's
technique is only practical with row-wise access to all of U. Thus these
latter techniques have been implemented with various alternmative storage
schemes for U: Saunders has stored part of U explicitly [47], while
Reid has experimented both with linked lists and with a combination of
row-wise and column-wise arrays [45].

There are important advantages to storing L and U by colum
only. Colum-wise storage is simple and compact; the associated FTRAN
and BTRAN routines are also simple and L and U may be held on any
sequential storage device. In a virtual-machine environment, sequential
storage also minimizes the danger of '"thrashing'-—excessive overhead
cost that results from trying to access too many widely-separated parts
of storage in a short interval of time. On the other hand, if storage is
at a premium one may take further advantage of "triangle" columms--those
that are zero above the diagonal of PBQT; a triangle column is essen-~
tially trivial in U and unchanged in L, and so may be represented in
L by just a pointer into A.

Access to U by column only does have its disadvantages, however.

It restricts updating to the Forrest-Tomlin technique which, while usually
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adequate, 1s inferior to other techniques in numerical stability and
sparsity. In addition, it suffers from certain inefficiencies in applying

FTRAN and BTRAN to sparse vectors, as explained further below.

Sparse LU factorization

It is well-known [11,12,13] that when B 1is sparse, some of 1its
permutations have much sparser L and U factors than others. Conse-
quently all LP codes implement some form of sparse Gaussian elimination
in which pivots are chosen to promote sparsity of L and U as well as
numerical stability.

There are principally two techniques of sparse Gaussian elimina-
tion employed in linear programming. Bump-and-spike techniques look for
a block-triangular permutation of B that has many small blocks ("bumps")

and few columns ("spikes") that extend above the diagonal. Local-minimiza-

tion techniques choose each pivot to minimize the estimated number of non-
zeroes added to L and U by that pivot alone. These ideas are des-
cribed and compared in Section 1 of [15].

Each technique of sparse elimination is best suited to certain
updating techniques. Saunders' update relies on there being relatively
few spikes in U, and so it has been implemented with bump-and-spike
elimination. Reid's update, by contrast, benefits when nonzeroes fall
more heavily in U than in L, and is well-suited to elimination by
local minimization.

As noted previously, update techniques can also be designed to

promote sparsity in the updated factors Lk and Uk' Reid's update in
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particular is intended to preserve sparsity, and Gay has also incorporated

Reid's ideas in Saunders' techmique.

Sparse right-hand side vectors

The linear systems of the simplex method, By = a and BTﬂ =z,
usually have not only a sparse matrix but a very sparse right-hand side:
a 18 a column of the sparse matrix A, and the pricing form z has one
nonzero when the basis is feasible and k nonzeroes when there are k
infeasibilities. FTRAN and BTRAN routines can take advantage of this
additional sparsity to a certain extent, depending on how they access
L and U.

For purposes of 1llustration, consider first a simple lower-tri-
angular system Lx = d. If the nonzero elements of L are available

sequentially by columm, back-substitution 1s carried out as follows:

FTRANL:
REPEAT FOR j FROM 1 TO m:

SET xg = dj/ij
REPEAT FOR Lij $0, 1 FROM 3j+1 TO m:

SET di = di - Lijxj

At the jth pass through the main loop, if dj = 0 then also xj =0

and the inner loop merely adds zero to various elements of d. Hence

the jth pass 1s superfluous when d, = 0. Moreover, if it happens that

3

doyeees dk are all zero, then the main loop does no work until pass k+l.

1’
A more efficient algorithm 18 thus as follows:
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FTRANL:

1: SET k = min{j:d, # 0}; SET xj-O for 3 =1,..., k

3
2: REPEAT FOR j FROM k+l TO m:

IF d, =0: SET x, =0

3 3
ELSE: SET x, = d. /L
3™ 447ty
REPEAT FOR Lij $ 0, 1 from j+1 TO m:
SET di= di-Lijxj'

Step 1 is especially valuable when dl,..., dk are konown beforehand to
be zero. In step 2, d tends to fill in with nonzerces in each pass of
the loop; but 1f L and d are both sparse then d should not fill in
too quickly.

The situation i3 quite different if instead one must solve the
upper—-triangular sysatem LTx = d. If the nonzeroes of L are only avail-
able sequentially by colum, then LT i1s effectively available only by

row, and back-substitution must be carried out as follows:

BTRANL:
REPEAT FOR j FROM m TO 1:

REPEAT FOR Li $#0,1 FROM m to j+l:

]
SET dj = d.‘l - Lijxi
SET x:l = d.‘l/LJJ
Here there is no advantage to knowing dj = 0, since d-1 13 continually
modified within the inner loop and x, is not set until after the inner

3

loop. The most one can say is that, 1if dm"" » d are all zero, then

k

X srees X are also all zero and the main loop may be started with

j = k-1.
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For sparse elimination with updating the situation is somewhat
more complex, involving not one L but a series of permuted L's.
The conclusions are the same, however: 1f the lower-triangular factors of
the basis are stored by column only--as they commonly are~—then FTRANL can
benefit from sparsity in the right-hand side to a much greater extent than
BTRANL. Moreover, the same reasoning can be applied to U: 1if all or part
of the upper-triangular factor is stored by columm only, then BTRANU can
exploit right-hand side sparsity much more than FTRANU.

In practice these differences have various consequences. At a
typical iteration, the FTRAN and BTRAN operations are carried out once

each, to solve systems that look like these:

TO SOLVE By = a:

+ (PTL )(PTL.)e oo - (BT SO
FTRANL:  (PoLy) (PiL;) (®.L) ¥ a

1)

BTRANU: (Uka) y=y

TO SOLVE BTn = Z:

FTRANU: (QEUE)ﬂ(l) =z

coalpye eee ca@fryalp ) = D
BTRANL: (L P,) (L)P ) (LPIn =

Hence sparsity of the right-hand side can be exploited in the following
ways:

FTRANL can fully exploit the sparsity of a. A small additional
advantage can be had if it is known that (Poa)l, e (Poa)i are all
zero for some 1; this knowledge 1is not readily available in the general

case, but it is often available from staircase methods to be described.
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. )

BTRANU can fully exploit any sparsity in y Since y is

the solution vector from a sparse FTRANL, it may well be sparse itself.
FTRANU can exploit the considerable sparsity in 2z only if either

U. is available by row, or (ka)l, vee (ka)i are all zero from some

k

i. In many cases it is possible to arrange that 1 1is quite close to m
[21]. Indeed, with some updating methods it can be guaranteed-—provided

the basis is feasible--that (ka)l'"' , (ka)m- are all zero, so that

1
FTRANU may effectively be skipped.

BTRANL generally cannot benefit from sparsity inm h(l).

However,
the update factors Ll,... . Lk are generally so simple in form that
BTRANL handles them as efficiently as FTRANL. The significant extra

work lies entirely in processing Lg.

Partial solutions

It is evident from the preceding analysis that the solution to
By = a or BTﬂ = z 1s ultimately computed one element at at‘time, regard-
less of how L and U are stored. The vector y 1s produced by BTRANU
in the order (Qky)m, cee (Qky)l; likewise, the vector T 1s computed
by BTRANL in the order (Pow)m,... , (Pon)l.

BTRANL or BTRANU may therefore be terminated prematurely if only
part of y or 7 needs to be computed. Such a partial solution has two
potential uses in linear programming: when the rest of vy is known to
be zero, and when only a portion of T is required for pricing in the

current iteration.
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Nevertheless, in the general case there is little to be gained
from trying to compute partial solutions, owing to the presence of permuta-

tions P, and Qk: there is no efficient way to tell whether all remain-

0
ing elements of Qky are zero, or to predict which elements of Poﬂ will
be needed. Section 4 will show, however, that partial solutions can

offer an economy in 8olving staircase LPs, provided Po and Qk are chosen

to reflect the staircase structure.
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3. SPARSE ELIMINATION OF STAIRCASE BASES

Two techniques for sparse elimination of staircase matrices were
proposed in [15): ome adapts the bump~and-spike approach, while the
other is a kind of local minimization. Either of these techniques may
be applied to the staircase bases that arise from staircase LPs in the
simplex method.

This section summarizes the direct effects-—on speed, storage,
and sparsity--of substituting staircase elimination techniques for
standard ones in a simplex LP- code. Section 4 then shows how these stair-
case techniques make possible additional efficiencies in the FTRAN and

BTRAN routines.

Bump—-and-spike techniques

The standard bump-and-spike technique [24,25] 1s a two-step pro-
cedure. First it determines the block-traiangular reduction of the
basis B, an essentially unique permutation that puts B in block-tri-
angular form with as many diagonal blocks ("bumps') as possible. Second,
each diagonal block larger than 2 x 2 is further permuted by the Pre-
assigned Pivot Procedure (P3), a heuristic that tries to make each block
lower triangular except for a small number of "spike" columms that extend
above the diagonal. Permuted in this way, B has a good structure for
sparse Gaussian elimination: fill-in (creation of new nonzeroes during
elimination) 1is confined to the spike columns, and pivots within a given

bump cannot give rise to fill-in within other bumps.
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A proposed staircase bump-and-spike technique [15] dispenses with
block-triangular reduction, and uses instead the staircase form of the
basis. The heuristic P3, adapted to handle blocks that are non-square
or rank-deficient, is applied im turn to each of the diagonal blocks
(Bzz) of the staircase. Thus the rows of period 1 are assigned to pivot
first, followed by the rows of period 2, period 3, and so forth through
period t. The columns are also generally pivoted in period order, but
"interperiod spikes" from certain periods are pivoted in later periods
in order to square off the oblong staircase blocks. Thus fill-in is con-
fined to two kinds of spikes—intraperiod spikes found by P3, and inter—
period spikes assigned to square off diagonal blocks-~-and pivots within
a given period can only give rise to fill-in within spikes of the same
period or within interperiod spikes of preceding periods. The balance
constraints of Section 1 guarantee that this is a workable arrangement:
the number of interperiod spikes need not be very large, and there are
always enough Interperiod spikes to square off every staircase block.

Computational experience [15] has shown that the standard and
staircase bump-and-spike techniques are roughly comparable. They usually
produce about the same number of spikes, and both yield a sparse factoriza-
tion: the fill-in due to either technique is seldom more than twice the
fill-in due to the other. However, each technique does appear to be
superior in certain situatioms.

Standard bump-and-spike seems invariably better when all bumps
are small and most are 1 X 1. P3 1is then applied cheaply to a few blocks,

whereas the staircase technique must still apply P3 to every diagonal
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block of the staircase. The interperiod spikes of the staircase technique

also tend to be larger than the spikes of the standard technique, and so
the former fill in more: £1ill-in within L tends to be about the same,
but the standard technique produces a notably sparser U. In addition,
the standard technique is less prone to producing spikes that have un-
acceptable pivot elements, and so less time is wasted in "spike-swapping”
during the elimination.

Staircase bump-and-spike has the advantage when there are one or
two very large bumps that comprise half or more of the rows and columms
of B. P3 becomes highly inefficient in processing these large bumps.
Fill-in within U i1s comparable, while the staircase technique yields
a sparser L. Moreover, the staircase technique produces substantially
fewer spikes that have unacceptable pivots.

Storage requirements vary somewhat with the size of the largest
block that must be processed, but are moderate in any case. Since a

pivot order is fully chosen prior to elimination, storage required by

the bump-and-spike heuristics may later be used to hold part of L and

Local-minimization techniques

Standard local-minimization techniques dynamically choose the

(k)

kth pivot element fromthe remaining uneliminated matrix, B The

chosen pivot minimizes some "merit" function over all nonzero elements of

(k)

B that meet certain numerical tolerances. Practical merit functions

are computed from two sets of values: rik), the number of nonzeroes in

(k), and c(k), the number of nonzeroes in columm j of B(k).

]

row 1 of B
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Local minimization was first suggested by Markowitz [34], who proposed

(k) (k)
i

- l)(cj

that the merit of element (i,j) be (r - 1); no substantially
better merit function has been found since.

Proposed staircase local-minimization techniques [15] differ by
(k)

limiting the minimization to roughly one period of 8 at a time.

As a consequence both the rows and columms of B are pivoted in period
order. It can also be shown that fill-in is limited to a small part of
B(k)--roughly two periods or less—-while the remainder of B(k) is just
the same as B.

Staircase local-minimization offers clear economies in both

execution time and storage space. All of the work at the kth pivot——

minimizing the  merit function, updating B(k) to B(k+1), and updating
rik), cgk)-—is confined to the rows and colums of one or two periods,

whereas the standard technique must deal with the entire B(k).

(k)

Storage

is required only for the part of 8 , also one or two periods, that

differs from B.

For large problems of many periods, the differences in required
storage may be immense. As a result, staircase local-minimization may be
able to use simpler or more efficient storage strategies than standard

local-minimization. During elimination by the standard technique the
(k)

uneliminated 8 shrinks while L and U grow; thus some sort of

(k)

dynamic storage allocation is necessary when 8 , L and U are too

large to be stored fully together. By contrast, under the staircase

(k)

technique the active part of B8 1s small and fairly constant in size,

and might well be kept in a fixed work area.
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Standard local minimization does seem to usually produce a sparser
L and U, as might be expected: it conducts its minimization over a much
greater number of potential pivots. In the worst case in [15] the stair-
case technique produced about twice the fill-in (47% vs 22%); in some

cases it did nearly as well, however, and in one it was distinctly better.

Comparison of techniques

Choice of a sparse-elimination technique cannot be separated from
choice of an updating method (as explained previously), and both choices
are sensitive to the nature and availability of storage. Consequently it
is impossible to recommend cne class of techniques——bump-and-spike or
local-minimization——over the other categorically. Each may have its place
in certain situations.

Indeed, the evidence of [15] suggests that every technique outlined
in this section (standard and staircase bump-and-spike, standard and
staircase local-minimization) offers the lowest fill-in for certain bases.
Either of the staircase techniques should be acceptably fast, and all but
the standard local-minimization have unproblematical storage requirements.

Staircase bump-and-spike techniques apply just as well to higher-
order staircases. Staircase local-minimization might also be adapted to
handle higher-order problems, but the extent of fill-in would be greater

and hence the savings would be less.
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4, SOLVING LINEAR SYSTEMS WITH STAIRCASE BASES

Both proposed staircase elimination techniques order their row
pivots by period: all rows in period 1 are pivoted first, then all rows
in period 2, and so forth. Staircase local-minimization also orders all
column pivots by period, as does staircase bump-and-spike with the excep—
tion of certain columns (the interperiod spikes) that pivot after other
columns of later periods.

This section describes how these staircase pivot orders can be
taken advantage of to make the FTRAN and BTRAN routines more efficient.
A partition of the L and U factors by period is first defined more
formally, after which each solution routine-——FTRANL, BRRANU, FTRANU, BTRANL—

is taken up in turm.

Period partitions of the L and U factors

In the notation of Section 2, the basis B at an arbitrary

iteration is factored as
T. T T.
B (POLO)(PlLl) . (PkLk)(Uka)
In terms of this factorization and the staircase constraint matrix A,

one may define the following indices for any period 2:

Al first row of POB whose corresponding row of A 1is

in period £ or later

Hy first columm of BQE from period ¢ or later of A.
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<u

Necessarily X, <&, ., WUy )

. for any factorization as above. Thus

{Al,..., At} and {ul,..., ut} partition the rows and columms, respec-

tively, of POBQE by period. Since the rows of POBQ: correspond to the
rows of LO’ the 1A's can also be thought of as partitioning Lo; anal-
oguously, the u's partition Uk'
In general these partitions are not particularly useful, as the
A's and u's all tend to be small. In an extreme case, for example, if
the first row of POB is a period-t row then Al = seem At = 1. It is
thus necessary to show that the staircase pivoting techniques yield worth-
while partitions whose X's and u's are more or less evenly spread out.
Consider first a factorization with no updates, POBQg = LOUO.
Certainly the staircase techniques, applied to the staircase structure
that B 1inherits from A, yield good partitions. Either technique yields
Az = Ei-l o, + 1. For bump-and-spike

no all-zero rows in B

My 2 Ag» and w, =2, if there are

for local minimization, u, = Jo | n, + 1.

The situation is slightly more complicated 1f, as suggested in

g2’

Section 1, B 1is put in reduced standard staircase form before the stair-
case pivoting techniques are applied. Some rows of B that correspond to
period-% rows of A may then be pivoted as if they were in period 2-1.

As a consequence, one can say only that 4-2 m, +1< Ay £ Ei—l m, + 1;

1 1 1
the A's may be smaller, and the A-partition less regular. Nevertheless,
the A's are still well spaced and constitute a useful partition, particu-
larly if the periods are small and numerous.

As B changes and the factorization is updated, LO and the

A-partition are unchanged. U0 is updated to U, , however, and in the pro-

cess the u~partition is altered. Specifically, all of the common update
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methods have the following action: a colum of BQ:_1 is deleted, and
a new colummn is inserted at some point after the deleted colummn to produce
BQ:. The wu-partition up to the deleted columm and after the inserted
column is therefore unchanged; but if uy is between the two columms then
its value drops by 1. The u-partition is thus slowly degraded. Degradation
should not be severe, however, for large LPs with the usual 50-100 updates
between refactorizationms.

It may be concluded, then, that staircase pivot-selection tech-
niques do yield A's and u's that constitute non-trivial partitions of

L and U by period.

Staircase FTRANL

At each iteration FTRANL starts by solving a system like
(PgLo)x = a, or equivalently Lox = Poa, where a 1is a columm of A.
If a 1is from period &, them it is zero on rows of periods 1 through

2-1. Consequently,

(Poa)1 =0, i=1,...2,-1

and the main loop of the FTRANL routine may begin at index Az as ex-
plained in Section 2.

In short, when FTRANL transforms a period-f column it can start
at the g th period in LO’ rather than at the beginning. The resultant
savings will be small, however, since FTRANL already handles right-hand
side zeroes efficiently.

Further savings might be possible if one kept track of upper-

sub-staircases of BO’ as described in Section 1. The idea is as follows:
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if Bo has an upper-sub-staircase in periods 1 through &, and if a
lies in period 2 or earlier, then the solution x of (PgLo)x = a is
zero in periods &+1 and later. Thus the main loop of FTRANL may be
terminated prematurely. As a practical matter, however, the logic of such
a scheme is fairly complex, and computational experiments [15] have

shown only a moderate number of upper-sub-staircases; so the potential

savings are probably not worth the trouble.

Staircase BTRANU

At each iteration BTRANU solves a system like (Uka)y = x, where
x 1s a solution vector from FTRANL. Since FTRANL has solved with

Lo, L . Lk’ there is no telling where zeroes may be in x. Hence

100
BTRANU cannot benefit specially from a sparse right-hand side.
A small saving is possible, however, if the location of (lower)

square sub-staircases in B 1is known. Suppose that the linear system at

hand is By = a, that a 1s from period j, and that B has a sub-stair-

case at period £ < j (that 1is, imi = ini). Then the system can be
partitioned as
[
B(ll) 5 0 y(l) 0
i -
2D | gD | | @ a2
where B(ll) and B(22) are the square sub-staircases. Clearly the solu-

W g LW

tion must have vy being just the part of y that corresponds

to the columns of B 1in periods 1 through &.
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Now if By = a 1is written instead as (BQE)(Qky) = a, the pre-
ceding statement is equivalent to the following: an element of Qky
will be zero if it corresponds to a columm of BQE in periods 1,...,%.

That 1is,
(Qky)i = 0, 1= l,...,ul-l
Thus the main loop of BTRANU, which computes (Qky)i' {i=m..., 1, can

stop after the ul-th pass; the remainder of the solution is zero.

Staircase FTRANU

FTRANU solves at each iteration a system like (Uka)Tx =z,
or Uix =- ka, where 2z 18 a pricing form chosen in one of several ways
(see Section 2). Usually most of 2z 1s zero, and often it can be deter-
mined that 2z 1s zero in all colums of the first ¢ periods of the basis;
during Phase I of the simplex method, for example, this would occur 1if all

basic variables of the first % periods were feasible. It would then

follow that

(ka)i =0, i= l,...,ul—l

and the main loop of FTRANU could begin at u, as explained in Section 2.
This result is analogous to the one for FTRANL above: when
FTRANU transforms a 2z that is zero prior to period &, it can start at

the 2th period in Uk rather than at the beginning. However, the

potential savings are greater since--if Uk

FTRANU cannot normally benefit from sparsity in z. 1In practice the

is stored only by columm—

savings depend on how U is actually stored and on how 2z 1s handled.




-215-

Staircase BTRANL

BTRANL produces a vector 7 that is employed in "pricing" non-
basic columns of A; specifically, each iteration computes numerous inner
products ﬂTa with colums a. If a 1is from‘period 2 then it is zero
except on rows of periods £ and £+l, and so only the elements of =
that correspond to these periods are needed to form ﬂTa. Since the
simplex method seldom considers all nonbasic colummns at one iteratiom, it
can be arranged that only certain periods of m are needed. (See [16]
for a more extensive explanation.)

Assume, therefore, that at the current iteration one only needs
elements of 7 corresponding to rows of periods £ and later. The vector
T 1is the solution of BTﬂ = z, or (POB)T(PON) = z. Thus, equivalently,

one needs only elements of Poﬂ that correspond to rows of P.B in

0
periods £ and later. It will suffice, therefore, to compute (Poﬂ)i,
i= Al,..., m.

BTRANL actually produces the elements of * by solving (PgLO)Tﬂa X,
or Lg(POw) = x, where x has been obtained from preceding transformations
of 2z 1in FTRANU and BTRANL. Each pass through BTRANL computes another
element of Poﬂ, in reverse order: (Poﬂ)m,... , (Pon)l. Thus to compute
the desired part of ™ one need only run BTRANL through the Alth pass
of the main loop; the remainder may be skipped.

The potential savings in this instance are considerable. Using
one of the partial-pricing schemes of [16] substantial amounts of computa-
tion may be avoided, on the average, at each iteration. This is especially
important as BTRANL is one of the less efficient transformations, being

unable to take advantage of right-hand side sparsity when L. 13 stored

0
in the usual columwise fashion.
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5. COMPUTATIONAL EXPERIENCE

This section reports on initial computational experiments with some
of the preceding ideas. The results indicate that staircase adaptation of
the simplex method does make a significant difference: generally much
less time is spent in certain routines, while more time is spent in others.
Overall the staircase runs were measurably faster, and in one case the
savings were quite substantial. Moreover, it appears there is still room
for improvement in subsequent implementations.

For the test runs an existing LP code, MINOS [38,48], was modified
to recognize staircase structure and to apply optionally the staircase
techniques of Sections 3 and 4. Each test LP could then be solved twice
—once with the staircase features turmed off, once with them on--and
the results could be meaningfully compared. Details of the test code and
the experimental setup are given in Appendix B.

MINOS employs a bump-and-spike factorization with Saunders' up-
dating technique. Consequently the staircase bump-and-spike technique was
implemented in the test version, and all test results bear directly only
upon bump-and-spike methods. Nevertheless, from certain results one may
make quite favorable speculations about the expected performance of stair-
case local-minimization techniques, as described further below.

To keep the presentation compact, only short tables of results are
presented in this section. Graphs of more extensive test data are collected

in Appendix C.
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Overall results

Seven medium-to-large-scale linmear programs were used in the tests.
All are from applications, and are of dissimilar structures (aside from

being staircase). Their dimensions are as follows:

ITERATIONS TO

NONZERO SOLVE FROM

PERIODS ROWS COLUMNS COEFFICIENTS SLACK START
SCAGR25 25 472 500 2208 1058
SCRS8 16 491 1169 4106 862
SCSD8 39 398 2750 11,349 2047
SCFXM2 8 661 914 5466 1012
SCTAP2 10 1101 1880 13,815 1174
PILOT 9 723 2789 9291 >2000
BPL 6 822 1571 11,414 >2000

For the sake of economy, PILOT and BPl were tested on runs of 1000 and
750 iterations, respectively, starting from advanced bases. The rest
were run to optimality from an all-slack start. Additional information
about the test LPs 1is collected in Appendix A, and Appendix B explains
in more detail how they were solved.

Raw results from the test runs, standardized to seconds

per 1000 iterations, were as follows:
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TOTAL TIME
STANDARD STAIRCASE % CHANGE
SCAGR25 29.7 27.9 - 6%
SCRS8 33.9 1.5 -7
SCSD8 43.2 37.8 -137
SCFXM2 43.4 42.2 - 3%
SCTAP2 67.2 67.1 0z
PILOT 155.7 106.4 -322
BPL 181.8 189.7 + 42

Savings were substantial for PILOT, and respectable for SCSD8. For the
others the gross difference between the standard and staircase techniques
was small, though the latter performed worse only on BPl.

It is misleading to consider only these totals, however. When
the times are broken down by function-—-as in the first set of graphs in
Appendix C--it can be seen that gains in some areas tend to be offset by
losses in others. The staircase version has an edge in simplex pricing
and pivoting, while it is usually slightly behind in updating the LU
factorization; it ranges from much faster to somewhat slower in pivot
selection for Gaussian elimination, but is almost always slower in computing
the L and U factors. Miscellaneous routines consume a good 10-20Z of
the time, much of which could be saved in practical (rather than test)
circumstances.

Thus much more is to be learned by examining the times of individual
routines and functions. The following subsections consider first the simplex-

iteration routines, and then the LU~factorization ones.
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Iterating routines

The simplex method spends a majority of its time in tasks that
are repeated at each iteration: choosing a column to enter the basis
(pricing), determining which column leaves the basis (pivoting), and revising
the basis factorization accordingly (updating). The LP code's "iterating"
routines carry out these tasks.

For the test problems, total time spent in the iterating routines

~-again, normalized to seconds per thousand iterations--was as follows:

ITERATING TIME

STANDARD STAIRCASE % CHANGE
SCAGR25 24.6 22.2 -102
SCRS8 28.1 23.8 -152
SCsD8 34.2 30.5 -112
SCFXM2 33.2 32.5 - 22
SCTAP2 56.9 54.3 - 52
PILOT 108.0 86.3 =207
BP1 136.6 146.1 + 7%

‘Here the results are somewhat more striking, four of the seven showing
savings of 10-20%.

Again more can be learned from a further breakdown of the times,
glven by the second set of graphs in Appendix C. The greatest difference
by far is in BTRANL, which 1s significantly faster with the staircase version
in every instance. There is a correspondiqg, but smaller, efficiency in

FTRANL. The figures for these two routines are as follows:
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FTRANL BTRANL
SID STAIR % CHNG STD STAIR % _CHNG
SCAGR25 2.7 1.9 =292 6.7 3.5 ~48%
SCRS8 2.4 1.5 -36% 5.7 3.4 =417
SCSD8 3.9 2.9 -25% 8.2 4.7 ~422
SCFXM2 2.6 1.9 -282 7.8 5.4 -322
SCTAP2 3.3 2.6 =212 9.2 6.6 ~282
PILOT 13.0 8.0 -38% 22.9 12.7 =452
BP1 14.8 12.6 -152 32.5 26.9 -17Z

Roughly there is a 30-50% saving in BTRANL, and a 20-40% saving in FTRANL.
There i3 a small but noticeable tendency of the staircase version
to run slower in BTRANU and FTRANU. Most likely this behavior is a con-
sequence of the LU factorization: the staircase bump-and-spike pivot order
tends to yield a demser U.
Some of the difference in BTRAN and FTRAN timings should be due
to the methods of Section 4. The efficacy of these methods cannot be told
from the above data, however, since the same timings are sensitive to differ-
ences in L and U density. Consequently a separate set of runs was made,
employing the staircase LU factorization but not the Section 4 enhancements.

The differences were as follows:
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TIME SAVED
BY EFFICIENCIES
IN FTRAN, BTRAN % OF
(SECTION 4) TOTAL TIME
SCAGR25 4.9 152
SCRS8 4.1 122
ScsD8 5.2 122
SCFXM2 4.4 97
SCTAP2 4.4 6%
PILOT 13.4 112
BP1 3.5 2%

Thus the efficiencies in FTRAN and BTRAN cut total running times 9-152

in most cases; the savings would be more pronounced as a percentage of
iterating time only. Predictably, LPs of many periods tended to show the
greatest differences.

Comparable savings should be realized if staircase bump-and-spike
pivot selection is replaced by staircase local minimization, since the
methods of Section 4 apply equally well to either. Hence local minimization
may well be superior for LPs such as SCAGR25 and SCFXM2 whose staircase
factorizations--as reported in [15]--are notably denser under bump-and-spike.

The one sour note in the three tables above is BPl, on which the
staircase iterating routines seem to perform rather poorly. On closer
examination, however, this is not entirely surprising, as BPl differs
significantly from the other LPs. Whereas the others are first~order stair-

cases (or, in the case of PILOT, very nearly first-order), BPl has a large
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number of nonzeroes below the staircase; its form is in fact closer to dual-
angular. BPl's bases consequently tend to be unbalanced. Hence the stair-
case technique produces considerably more spikes, and a much denser U factor.
The result: much more time spent in FTRANU and BTRANU, offsetting any gains
in FTRANL and BTRANL.

It thus appears that a good staircase form is essential to success
of the staircase techniques. BPl's staircase arrangement was deduced from
fairly scant information, and is evidently inadequate. A better staircase
form may exist, but a better knowledge of the underlying model may be necessary

to find it.

Factorizing routines

At intervals of typically 50-100 iterations a fresh factorization of
the basis 1s computed by a separate set of routines. For bump~-and-spike
techniques, these "factorizing" routines fall into two classes: ones that
select a pivot order, and ones that compute the L and U factors.

For the test problems, total time in factorizing routines—normalized

to seconds per 10 refactorizations--was as follows:

FACTORIZING TIME

STANDARD STAIRCASE % CHANGE
SCAGR25 1.4 1.6 +152
SCRS8 1.1 1.4 +227
S§CSD8 2.7 1.6 -392
SCFXM2 1.9 2.8 +472
SCTAP2 1.7 3.0 +80%
PILOT 32.8 9.7 -70%

BP1 27.9 26.1 - 62




-223-

The outcomes appear to vary wildly. However, they are the consequence of

a few simple patterns which are revealed by looking at the pivot-selection
routines and LU-computation routines separately, with reference to the third
set of graphs in Appendix C.

Pivot selection involves a routine for the P3 heuristic, a block-
triangularization routine (for the standard technique only), and main
routines to call these and record the selected pivots. The staircase
technique's main routine seems to run usually somewhat lomger, probably

because it is more complicated. The others' times are summarized below:

STANDARD T SE MEDIAN SIZE,
P3_ BLK 3 TOTAL B3 LARGEST BUMP

SCAGR25 0.4 0.2 0.6 0.2 45

SCRS8 0.2 0.2 0.4 0.2 28

SCSD8 1.1 0.4 1.5 0.2 114

SCFXM2 0.2 0.5 0.7 0.8 36

SCTAP2 0.0 0.5 0.5 0.7 1

PILOT 20.4 1.0 21.4 2.4 533

BP1 13.1 2.0 15.1 3.8 408

The behavior of P3 is clearly critical. When bumps are small P3 is quite
fast; but it begins to slow down whem bump size passes 100, and it is

extremely inefficient on bumps of size 400 or 500. PILOT, the worst case
here, spends 16Z of its total running time in P3 alone! By extrapolation,
it seems likely that P3 will be prohibitively slow for larger bumps. Thus
a staircase bump-and~spike technique (or else an efficient local-minimiza-
tion technique) may be essential for larger versions of models like SCSD8

and PILOT.
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The main LU computation routines employ FTRANL and BTRANL as sub-
routines: FTRANL solves for the next column of L and U (as described in

Section 2); BTRANL solves for row k of B(k)

when a column interchange
("spike swap") 1s necessitated by an unacceptable pivot element. The test
problems gave the following results (where SWAPS is the maximum number of

swapped spikes per factorization):

STANDARD LU STAIRCASE LU

MAIN FTRAN BTRAN  SWAPS MAIN FTRAN BTRAN  SWAPS
SCAGR25 0.2 0.0 0.0 3 0.6 0.1 0.1 20
SCRS8 0.2 0.0 0.0 1 0.4 0.1 0.1 11
SCsD8 0.4 0.1 0.0 6 0.5 0.1 0.1 11
SCFXM2 0.5 0.1 0.0 2 1.0 0.2 0.1 8
SCTAP2 0.2 0.0 0.0 0 0.7 0.1 0.4 19
PILOT 3.3 3.8 2.4 27 3.2 1.8 0.8 16
BP1 3.7 3.8 2.4 28 6.4 5.8 7.2 49

Predictably, the times are sensitive to the numbers of spike swaps; each
swap requires another BTRANL and FTRANL, plus extra work in the main
routine. Experience with PILOT and other LPs [15] suggests that the stair-
case pivot order may generally require fewer swaps when the bumps are big
(as for PILOT) and the staircase is well-balanced (unlike BP1's). The
other test LPs have smaller bumps and require fewer swaps with the standard
pivot order.

Again the data suggest that staircase local-minimization techniques
might be preferable for the small-bump staircase LPs. An efficient imple-
mentation of local minimization [12,45] incurs only a small extra cost in

rejecting any unaccepatably small pivot element.
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Comparison with a commercial code

The PILOT model was frequently solved--on the same computer as used
for the above tests—-by a commercially-marketed machine-language LP code,
MPS III [37). These runs employed the WHIZARD simplex routine of MPS III,
which incorporates a bump-and-spike factorization scheme. Various system
parameters were set from experience to yield fast PILOT rums.

For comparison, WHIZARD was run 1000 iterations from the same

starting basis as used above with MINOS. The running times were as follows:

MINOS, standard pivot selection 155.7 sec
MPS III/WHIZARD 114.7 sec
MINOS, staircase pivot selection 106.4 sec.

MINOS did require considerably more storage, primarily because its storage
scheme for the U factor could not efficiently accommodate a large number of
spikes. U could probably be stored more compactly, however, without
significant effect upon the MINOS timings.

Nothing very definite can be inferred from these figures, since
MINOS and MPS III differ in many ways; moreover, the intermal structure
of the latter is largely unknown, as is the case with many commercial codes.
Nevertheless, it is gratifying that MINOS—which 1s written in FORTRAN and
intended more as a test code-—can compete with a supposedly fast LP system.
At the least, one may conclude that the timings throughout this section are
probably quite realistic. And the superiority of staircase MINOS to MPS III
for PILOT suggests that, for at least some large staircase problems, the tech-

niques of this paper will offer significant savings.
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APPENDIX A: TEST PROBLEMS

The linear programs used in the computational experiments of
Section 5 are described in greater detail below. The tabular summarizes
for each LP are largely self-explanatory, but a few general notes are
appropriate:

All statistics except OBJ ELEMS refer only to the staircase con-
straint matrix, excluding the objective row and right-hand side. 1In each
case the constraint matrix, A, has been put in reduced standard form;

DIAGONAL BLOCKS refers to the staircase blocks A OFF-DIAGONAL BLOCKS to

e’

the blocks A 2’ and SUB~STAIR BLOCKS (when present) to the blocks

+1,
A

Agpa g w0 0 By

Variables (columns) are implicitly constrained only to be non-
negative, unless there is an indication to the contrary. BOUNDED implies
implicit lower and upper bounds, FIXED implies fixture at a givem value, and
FREE implies no implicit constraints.

MAX ELEM and MIN ELEM are the largest and smallest magnitudes of
elements in A; LARGEST COL RATIO is the greatest ratio of magnitudes of
elements in the same column of A. Where values are given BEFORE SCALING

and AFTER SCALING, all tests were conducted with A scaled as described

in Appendix B. Otherwise NO SCALING is indicated.
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SCAGR25

Test problem received from James K. Ho, Brookhaven National

Laboratory, Upton, N.Y.; source not documented.

LARGEST COL RATIO 1.9 x 10~

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ
PERIOD ROWS  COLS ELEMS  DENS ROWS  COLS ELEMS DENS  ELEMS
1 18 20 45 132 7 17 302 19
2-24 19 20 46 122 7 17 302 19
25 16 20 43 132 19
1146 12% 408 302 475
GRAND TOTALS
ROWS 471 (300 EQUALITIES, 171 INEQUALITIES)
coLs 500
ELEMS 1554
DENS 0.7%
NO
COEFFICIENTS SCALING
MAX ELEM 1.3
MIN ELEM 2.0 x 1071
1
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SCRS8
Derived from a model of the United States' options for a transition

from oil and gas to synthetic fuels; documented in [27,33].

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS 0BJ

PERIOD ROWS ~ COLS ELEMS  DENS ROWS  COLS ELEMS  DENS  ELEMS
28 37 65 62 25 22 29 5% 18
28 38 69 62 25 22 29 5% 19
3-5 3 76 181 8% 25 22 29 5% 55
68 32 79 192 8% 25 22 29 52 58
9 3 79 189 8z 25 22 29 5% 58
10-12 31 80 190 8% 25 22 29 52 59
1315 30 80 186 8% 25 22 29 5% 59
16 3 70 177 8% 59
2747 8% 435 5% 847
GRAND TOTALS
ROWS 490 (384 EQUALITIES, 106 INEQUALITIES)
coLs 1169
ELEMS 3182
DENS 0.62
BEFORE AFTER

COEFFICIENTS SCALING SCALING
MAX ELEM 3.9 x 102 4.0
MIN ELEM 1.0 x 1073 2.5 x 107%
LARGEST COL RATIO 4.5 x 10° 1.6 x 10!
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SCsSD8
A multi-stage structural design problem, documented in [26].

This i{s the only staircase test problem for this paper in which the stages

do not represent periods of time.

DIAGONAL BLOCKS OFF-DTAGONAL BLOCKS 0BJ
PERIOD ROWS COLS ELEMS  DENS ROWS COLS  ELEMS  DENS ELEMS
1-38 10 70 130 192 10 50 90 182 70
39 17 90 224 15% 90
5164 182 3420 18% 2750
GRAND TOTALS
ROWS 397 (ALL EQUALITIES)
COLS 2750
ELEMS 8584
DENS 0.82
NO
COEFFICIENTS SCALING
MAX ELEM 1.0
MIN ELEM 2.4 x 107%

LARGEST COL RATIO 4.0



SCFXM2

Test problem received from James K. Ho, Brookhaven Natiomal
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Laboratory, Upton, New York; source not documented.

DIAGONAL BLOCKS OFF~DIAGONAL BLOCKS 0BJ
PERIOD ROWS COLS ELEMS  DENS ROWS COLS ELEMS  DENS  ELEMS
1 92 114 679 62 9 57 61 122 13
2 82 99 434 52 9 35 35 112 4
3 66 126 300 4z 5 33 33 202
4 90 118 1047 102 5 5 5 20
5 92 114 679 6% 9 57 61 122 13
6 82 99 434 5% 9 35 35 112
7 66 126 300 42 5 33 33 20
8 90 118 1047 102
4920 72 263 132 46
GRAND_TOTALS
ROWS 660 (374 EQUALITIES, 286 INEQUALITIES)
COLS 914
ELEMS 5183
DENS 0.92
BEFORE AFTER
COEFFICIENTS SCALING SCALING
MAX ELEM 1.3 x 10° 1.1 x 10t
MIN ELEM 5.0 x 1072 8.7 x 1072

LARGEST COL RATIO

1.3 x 10 1.3 x 10
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scTapP2

A dynamic traffic assignment problem, documented in [28].

The LP has 11 objective rows; the objective named OBJZZZ2ZZ was used in

all tests. Statistics below omit the other tem objectives.

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS 0BJ
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS  ELEMS
1-9 109 188 423 27 62 138 276 3z 141
10 109 188 423 22 141
4230 22 2484 3% 1410
GRAND TOTALS
ROWS 1090 (470 EQUALITIES, 620 INEQUALITIES)
COLS 1880
ELEMS 6714
DENS 0.3%Z
NO
COEFFICIENTS SCALING
MAX ELEM 8.0 x 10l
MIN ELEM 1.0
1

LARGEST COL RATIO 8.0 x 10
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PILOT

Derived from a welfare equilibrium model of the United States’
energy supply, energy demand, and economic growth: seeks maximum aggregate
consumer welfare subject to competitive market equilibrium. The LP was
supplied by the PILOT modeling project, Systems Optimization Laboratory,
Department of Operations Research, Stanford University; it is documented
in (40].

SUB-STAIR

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS BLOCKS OBJ
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS  ELEMS DENS  ELEMS

1 84 343 686 22 31 74 105 5% 18 0% 10
2 90 351079 3% 3% 76 111 4 8 0% 10
3 90 3431073 3% 3% 74 109 4% 5 0% 10
4 90 3431073 3% 3% 74 109 4% 5 0% 10
5 90 3431073 3% 3 74 109 4% 5 0% 10
6 90 3431073 3% % 74 109 4% 3 0% 10
7 90 3431073 3% 32 74 107 sT 1 0% 10
8 87 41 1060 4T 4 19 19  25% 10
9 1L 45 113 23% 12
8303 3% 778 4% 45 0% 92
GRAND TOTALS
ROWS 722 (583 EQUALITIES, 139 INEQUALITIES)
COLS 2789 ( 80 FREE, 296 BOUNDED, 79 FIXED)
ELEMS 9126
DENS 0.52
BEFORE AFTER
COEFFICIENTS SCALING SCALING
MAX ELEM 4.8 x 10 2.0 x 10t
MIN ELEM 1.4 x 107% 4.9 x 1072

LARGEST COL RATIO 7.0 «x 106 4.2 x 102




BP1
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Developed by British Petroleum, London; supplied via the Systems

Optimization Laboratory, Department of Operations Research, Stanford

University.

This LP is approximately dual-angular, with 6 main diagonal blocks

and about 40Q coupling variables.

For the experiments described in this

paper it was treated as a 6-period, 5th-order staircase problem.

DIAGONAL BLOCKS

SUB-STAIR
OFF-DIAGONAL BLOCKS BLOCKS OBJ

PERIOD ROWS COLS ELEMS DENS  ROWS COLS ELEMS DENS ELEMS DENS  ELEMS
1 111 227 1400 6% 3 60 3 2z 163 0% 138
2 151 353 2175 4% 62 108 112 2% 142 0% 149
3 113 321 964 3% 92 232 346 2% 494 1% 270
4 170 295 2178 4% 51 14 11 2% 4 0% 74
5 134 198 1315 5% 111 2 2 12 40
6 142 177 1091 4% 56

9123 4% 474 22 803 0% 727

GRAND TOTALS

ROWS 821 (516 EQUALITIES, 305 INEQUALITIES)

COLS 1571

ELEMS 10400

DENS 0.82

BEFORE AFTER

COEFFICIENTS SCALING SCALING

MAX ELEM 2.4 x 10° 1.3 x 10%

MIN ELEM 2.0 x 1074 7.6 x 1072

LARGEST COL RATIO 1.7 x 10° 1.7 x 10>
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APPENDIX B: DETAILS OF COMPUTATIONAL TESTS

Computing environment

All computational experiments were performed on the Triplex system
[49] at the Stanford Linear Accelerator Center, Stanford University. The
Triplex comprises three computers linked together: one IBM 36Q/91, and two
IBM 370/168s. Runs were submitted as batch jobs in a virtual-machine environ-
ment, under the control of IBM systems 0S/VS2, OS/MVT and ASP.

Test runs employed a specially-modified set of linear-programming
routines from the MINOS system [38,48]. MINOS is written in standard
FORTRAN. For timed rums, MINOS was compliled with the IBM FORTRAN IV (H

extended, enhanced) compiler, version 1.1.0, at optimization level 3 [30].

Timings

All running-time statistics are based on "CPU second" totals for
individual job steps as reported by the operating system. To promote
consistency all timed jobs were run on the Triplex computer designated
"system A," and jobs whose timings would be compared were rum at about the
same time. Informal experiments indicated roughly a 1% variation in timings
due to varying system loads.

More detailed timings employed PROGLOOK [31], which takes frequent
samples of a running program to estimate the proportion of time spent in
each subroutine. To determine the actual time in seconds for each sub-
routine, every timed job was rum twice--once without PROGLOOK to measure
total CPU seconds, and once with PROGLOOK to estimate each subroutine’s
proportion of the total. PROGLOOK estimates were based on at least 2300

samples per job.




-235-

MINQOS linear-programming environment

MINOS was set up for test runs according to the defaults indicated
in [38], with the exception of the items listed below.

Scaling. Problems noted as "scaled"in Appendix A were subjected
to the following geometric-mean scaling (where A denotes the matrix of
constraint coefficients, not including the objective or right-hand side):

1: Compute p, = max|Ailj/A A, , 0.

E
1,1 P19

2: Divide each row i of A, and its corresponding right-hand side

1/2, taking the minimm over

value, b min, (A, |)(max, [A
all Aij # 0.
3: Divide each column j of A, and its corresponding coefficient
\ 1/2
in the objective, by [(miniIAijl)(maxilAij|)] , taking the
minimum over all Aij ¥ 0,

4: Compute p = maxlAilj/Aizjl, A, ., # 0.

12j
This procedure was repeated as many times as possible until, at step 4,

p was at least 907 of po. (In other words, scaling continued as long

as it reduced p, the greatest ratio of two elements in the same column,

by more than 10Z.)

Starting basis. All LPs except PILOT and BP1l were solved with
crash option O of MINOS: the initial basis was composed entirely of unit
vectors, and all nonmbasic variables were placed at zero. PILOT and BPl
were run from initial bases that had been reached and saved in previous

MINOS rums.
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Termination. All LPs except PILOT and BPl were run until an optimal
solution was found. PILOT and BPl were run for 1000 and 750 iteratioms,
respectively.

Pricing. Except for SCTAP2, the partial-pricing scheme of MINOS
was employed-~with one important change: the arbitrary partitioning of
the columns normally defined by MINOS for partial pricing was replaced by
the natural staircase partition. Thus the periods of the staircase were
priced one at a time in a cyclic fashion.

Pricing for SCTAP2 was similar except that the incoming column
was chosen from the latest possible period. (This choice was known to
produce a relatively small number of iterations from an all-unit-vector
start.)

Refactorization frequency. MINOS was instructed to refactorize

the basis (by performing a fresh Gaussian elimination) every 50 iteratioms,
except for BP1 (every 75) and PILOT (every 90).
Tolerances. The "LU ROW TOL" for MINOS was set to 10-4. All

other tolerances were left at their default values.

Modifications to MINOS

All runs described in this paper were made with a special test
version of MINOS. This version retained MINOS' routines for standard
bump-and~spike elimination, and added new routines to implement a version
of staircase bump-and-spike elimination. Routines for solving linear
systems were also modified to take advantage of the staircase pivot order.

Control routines were adjusted appropriately.
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New subroutines in the test version are described briefly as

follows:

SP3-—an adaptation of the P3 heuristic to find a bump-and-spike
structure in non-square or rank-deficient blocks, as proposed

in [15]. This routine is a modification of the MINOS subroutine P3.

SP4--main routine for the staircase bump-and-spike pivot-selection
technique of [15]; sorts the staircase basis into reduced form, and

calls SP3 once for each diagonal block.

DSPSPK~-spike~display routine; prints a graphical summary of the
basis bump-and-spike structure found by P4 (for the standard tech-

nique) or SP4 (for the staircase technique).

STAIR--a staircase analyzer. Given an initial partition of the rows
by period, this routine permutes the constraint matrix to a reduced
standard staircase form and stores the staircase partitions in arrays
that are read by subsequent routines. STAIR is called once at the

beginning of every run.

SCALE--implementation of the geometric-mean scaling scheme described

above; called optionally at the beginning of a run.

UPDBAL--updating routine for cumulative-balance counts: after
each iteration, revises an array that records the cumulative excess
of columns over rows at each period of the staircase basis. (This

array 1s used to find square sub-staircases.)
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In addition the test version incorporates the following substantial modifi-

cations to MINOS subroutines:

FACTOR efficiently handles a pivot order from either the standard
or staircase technique, and finds the partitions xz and Hy

(defined in Section 4) for the staircase technique.

FTRANL, BTRANL, FTRANU and BTRANU incorporate the ideas of

Section 4 in a uniform way. FTRANL and FTRANU can begin at a
specified L or U transformation, and BTRANL and BTRANU can stop at
a specified transformation. BTRANL can also be restarted at a

point where it previously stopped.

LPITN determines a starting point for FTRANL and a stopping point

for BTRANU when the staircase technique is used.

SETPI, for the staircase technique, determines a starting point
for FTRANU and a stopping point for BRTRANL when it is first called
at an iteration. When subsequently called at the same iteration it

determines restarting and stopping points for BTRANL.

PRICE incorporates the staircase-oriented partial-pricing methods
described in the preceding subsection of this appendix. When

these methods are used with the staircase factorization techmnique,
PRICE also keeps track of how much of the price vector it requires,

and calls SETPI accordingly.

SPECS2 determines whether the standard or staircase technique will
be used in a particular run, according to instructions in the SPECS

input file.
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Other subroutines were modified as necessary to accommodate these

changes.

MPS III1 linear programming environment

For purposes of comparison the PILOT test problem was also run on the
MPS III system [37], as explained in Section 5.

The MPS III run employed the WHIZARD linear-programming routines
of version 8915 of MPS III. The run used the same starting basis as the
MINOS runs for PILOT, and was terminated after 1000 iterations like the
MINOS runs. Exact CPU timings were 0.56 seconds in the compiller step

and 114.18 seconds in the executor step.
The control program for the MPS III run was as follows:

PROGRAM
INITIALZ
XPROC = XPROC + 6000
XCLOCKSW = O
XINVERT = 1
XFREQINV = 90
XFREQLGO = 1
XFREQL = 1000
MVADR (XDOFREQL, TIME)
MOVE (XDATA, 'PILOT.WE')
CONVERT ('FILE','INPUT')
SETUP ('BOUND', 'BOUND', 'MAX', 'SCALE')
MOVE (XOBJ, 'OBJ')
MOVE (XRHS, 'RHSIDE')
INSERT ('FILE','PUNCH1')
WHIZFREQ DC (250)
WHIZSCAL DC (4)
WHIZARD('FREQ', WHIZFREQ, 'SCALE', WHIZSCAL)
TIME PUNCE ('FILE', 'PUNCH1')
EXIT
PEND
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APPENDIX C: TIMINGS

The bar graphs below summarize timings of the MINOS test runs
for this paper. Details of the test runs and timing procedures are in
Appendix B; individual MINOS subroutines are documented in Appendix B
and in [48].

Graphs are presented in three groups. The first group shows
time in all routines, the second shows time in iterating routines only,
and the third shows time in factorizing routines only. Within each
group the format is the same: the first graph compares totals for all
seven test problems, and seven succeeding graphs--one for each test
problem-break the times down into various subtotals.

All graphs show a palr of bars for each total or subtotal.

The top bar is for the run that used standard bump-and-spike elimination
on the basis; the bottom bar is for the run that used staircase bump-and-spike

elimination and the related techniques described in this paper.

Total time
The FORTRAN subroutines of MINOS are classified below as follows:
PRICE routines choose a nonbasic variable to enter the basis;
they include FORMC, PRICE, SETPI and FTRANU, and BTRANL when called

from SETPI.
PIVOT routines choose a variable to leave the basis; they

include LPITN and CHUZR, and FTRANL, BTRANU and UNPACK when called

from LPITN.
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UPDATE refers to the subroutine MODLU, which updates the LU
factorization of the basis at the end of each iteration.

PERM routines permute the basis of a bump-and-spike structure.
For the standard method they include P4, P3, TRANSVL, BUMPS and
MKLIST; for the staircase method they are SP4, SP3 and MKLIST.

FACTOR routines compute an LU factorization of the basis; they
include FACTOR and PACKLU, and FTRANL, BTRANL and UNPACK when called
from FACTOR. )

OTHER routines include all other MINOS subroutines, and utility
routines inserted by the FORTRAN compiler. Other MINOS routines
comprise DRIVER and routines it uses (BTRANU, FTRANL, ITEROP, SETX, STAIE,
UNPACK, UPDBAL), INVERT and routines it uses (BTRANU, DSPSPK, FTRANL,
SETX), and various routines called once only at the beginning or end
of the run (CRASH, GO, HASH, INITLZ, LOADB, MINOS, MOVE, MPS, MPSIN,
NMSRCH, SAVEB, SCALE, SOLN, SOLPRT, SPECS, SPECS2, STAIRS). FORTRAN
routines for input and output registered significantly (3-102 of
total) in the timings; the volume of input was very small, so these
routines probably did most of their work in producing printed output
for the runs. A FORTRAN square-root subroutine, called from SCALE and

SETPI, used an insignificant amount of time.
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SCFXM2
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Iterating time

Iterating routines are those invoked at each iteration. They
are classified as follows:

MAIN includes DRIVER and miscellaneous routines invoked from it:
ITEROP, SETX, STATE, UNPACK and UPDBAL, and FTRANL and BTRANU when called
from SETX.

PRICE refers to subroutines FORMC, PRICE and SETPI.

FTRANU and BTRANL refer to the like-named subroutines when called
from SETPI.

PIVOT refers to subroutines LPIT™N and CHUZR, and UNPACK when
called from LPITN.

FTRANL and BTRANU refer to the like-named subroutines when called
from LPIIN.

UPDATE refers to subroutine MODLU.
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Factorizing time

Factorizing routines are those ilnvoked at each refactorization
of the basis. They are classified as follows:

MAIN includes INVERT and miscellaneous routines invoked from it:
DSPSPK and SETX, and FTRANL and BTRANU when called from SETX.

PERMUTE includes the driving routine for bump-and-spike
permutation--P4 with the standard method, SP4 with the staircase method--
and the utility routine MKLIST.

P3 refers to the subroutine that implements the spike-finding
heuristic: P3 for the standard method, or SP3 for the staircase method.

BIK A refers to subroutines TRNSVL and BUMPS, which find a
block-triangular reduction of the basis (in the standard method only).

FACTOR includes subroutine FACTOR, the driving routine for LU
factorization of the basis, plus routines PACKLU and UNPACK invoked
from FACTOR.

FTRANL and BTRANL refer to the like-named subroutines when called

from FACTOR.
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A BASIS FACTORIZATION TECHNIQUE FOR STAIRCASE LINEAR
PROGRAMS

Philippe Gille and Etienne Loute”

CORE
Universite Catholique de Louvain
Louvain-la-Neuve

Basis matrices of staircase linear programs can be rearranged in a block tridiagonal matrix
with the property that it can be decomposed into a lower (L) and an upper (U} block tri-
angular matrix. The U matrix has block diagonal submatrices consisting of identity mat-
rices. The basic data and any representation of the inverses of the block diagonai submat-
rices of L form a substitute for the basis inverse.

We present an algorithm which allows updating of this basis inverse representation for any
basic change. Our work is related to the papers of Heesterman and Sandee (1965}, Saigal
{1966}, and Wollmer {1977). Our contribution is threefoid: we prove it is always possible
to maintain the basis factorization for any basis change. We obtain better bounds for the
worst case computational complexity of the updating algorithm. Moreover we present a
practical method of controlling the accuracy of the basis inverse representation when it is
updated.

*Research supported by the Beigian Department of Science Policy under contract E/1/3.
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I. THE STAIRCASE STRUCTURED LINEAR PROGRAMMING PROBLEM

A linear programming problem is said to have a staircase structure of
to be a staircase LP problem if the nonzero coefficients of the constrainc
matrix are confined to certain submatrices on or just below the block diago-
nal as in figure 1. A partitioning of the row indices, Rl’ eey RN can be
////// ture. N will be referred to as the
////

::;//':;//’ number of periods and the sets R,
1{1:: v //i as periods. The set R; contains

ra
/:;f;/i;/ ///, A m; indices and m = E,m,. A column

V/ v ///f i il
//<;> of the matrix will be called a type
L L

1 column if its nonzero elements

associated to the staircase struc-

Fig. | : Staircase LP problem are confined to rows in R, and Ri+l

with at least one nonzero element in Ri'

2. STAIRCASE BASES

. . A basis matrix of a stair-

1 1
case LP problem inherits the

K L b ; i
staircase structure of figure 1.
This can be formalized as follows

] A

the nonzero coefficients of the

matrix are contained in the subma-

tri . . . i 2
ices Al, Ml and Kl of figure

censsasad

these submatrices being respecti-
= Mgt

vely of dimension m, x m., m, xm,
i i i i+]

e 3 A

» and mi+1 xm, . If we denote by

Fig. 2 : Staircase basis




th . . . . . :
e the k" column of the identity mactrix of appropriate dimension, we have

the following :

For i € {2, ..., N-1} and k € Ri

We denote by BS a basis of a staircase LP problem with the structure of

figure 2 and which satisfies (2.1). Note that the kth column of Ai’ A.e
i

corresponds necessarily to a basic columm of type i-l or i.

the column is said to be of type (i-l)*. 1f Kiﬁk'f 0, it is said to be of

type i,

Hi-lek # 0 implies Ki e
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k

= (.

If M, & £0,

It is known (see e.g. WOLLMER [ 7] that through a suitable column

k)

permutation of BS between adjacent periods, the following matrices, hence-

forth named block pivot or BP, exist and are nom singular :

i-1

~1

M.

i-1

i-1

The matrix BS is then said under a feasible form and is denoted by FBS.

(2.1)

(2.2)

Such a matrix can be factorized in two matrices L and U, the first ome being

Fig. 3 :

Block LU decomposition of FBS

- e

A 1 A H,
3 1 rui
K ) 272
by 1 T'n
X 4 Ay
' T H
H H H
i H :
: : i
: : :
. [
:
:
H
i
H
A=t t
Ky-1 A
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lower block-triangular and the second one upper block~triangular with iden-~
tity matrices on the principal diagonal (see figure 3). This basis inverse
substitute and the related operations of the revised simplex algorithm are
presented in WOLLMER [7]. This factorization technique enjoys several
advantages : the associated data structure is easy to handle and simpler

than in related works where "spikes"” in the U matrix can extend bevond the
second block diagonal (see e.g. PROPOI and KRIVONOSHKO [ 5], LOUTE [4]).

Any operation of the revised simplex algorithm can be efficiently performed
with the original data and the block pivot inverses (BPI) onmly. Updating

the basis inverse reduces to updating the BPI's. This can be done efficient-

ly by means of dyad corrections defined as follows

1+ % hg' (2.3)
where A is a nonzero scalar, I the identity matrix, h and g column vectors
of same dimension (g' denotes the transposes of g). We restrict ourselves
to the use of such multiplicative corrections because they lead to product

form substitute for the BPI's.

3. THE PARTTAL UPDATES

Let us denote by v the entering column (see figure 4.a) and by e the
column vector with zero elements except the one of index correspondirg to
the leaving column which is equal to ome : this index is supposed to belong
to R . Let us denote it lq € Rq. In fact, when the updating begins, the

1

partial updates of these columns are available, i.e. the vectors h = L 'v

and g' = e'U-l (see figures 4 b,c). Their subvectors are given by

~]
1] = el , t — A M f >
8 " ey, 8ol " By AL M, forpZa (3.1)
- ~] - ~] _ - ~] -
by = A4, by A OK_ b)), Boet ™ A Ko By for p # i (3.2)
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o 0 4 ] We shall refer to the pivot element
..;.- 0 J 0 3 (supposedly nonzero) £ = g'h as the
N I R exchange value . A scalar a is said
o wevens "almost zero”, noted a = 0, if (2| < n,
d hi‘l 0 i=1 E
-n=o- where n is a small positive number
b hy { 0 i
chosen in order to satisfy the following
0 b o il
1+1 i .
ve h . 8= boued properties :
: B " DIfaox0 E-a%OandE+asko (3.3)
o . £ 9 2) Let s and t be vectors; if s't % O
! Bget| ! then there exists an index k such
: that the components 8, and e satisfy
0 a, g, | ¥ simultaneously S %* 0 and o %* 0, (3.4)
=1 I - Remark on the notation : At any stage of
L 0 by L 8y ¥
E . 4 b the algorithm, the BPI's and the partial
() (®) (e) updates, i.e. the sequences KT!, hj’ 250
Fig. 4 : The entering column and j=1, ..., N, are at hand and sometimes

the partial updates

modified by dyad correctioms. To limit
the pumber of symbols used, we shall not introduce a new notation after a

correction. We use the symbol « which means "replaced by", and which allows

a dynamic use of the notationm.

For example the following sequence of transformations
~1 ~]
A. = (I + st')A,
LY ( st') 3
h, = (I + st")h,
h, ( ) j
Tile (I + sh' )R
=] —17]
where s and t are column vectors, will be written

e @+ seHT s h c @ e stDh, ;TS (@ e sa)EL
J p] ] ] ] 1l ]

to be read from left to right.
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4. UPDATING : COLUMN PERMUTATICN

In the next pages we often use the permutation of

two columns in two subsequent BP's. Let us consi-

" der as in figure 5, the columns s of type j- and t
of type j+. The permutation is feasible if and only
A .
3 if
~1
e! A, Me_ o0, 4.1
t s 7] it “.n
Then the sequence of computations is the following :
Fig. 5 : Column
Permutation

Step P (j) : Compute Pl =1 -—

1 i
P, =1I-— e (e' A, M.+el).
3 e'A.1M.e tes t
jt

Then, A~ P X' ;8.0 « P! ;h. ~P, h., +eeh;

> 7 [ S T | 275+1 7 Ui+l 2 j+l t's j’

- . ] - of
next hj Plhj H sj+l gj+1 P3.
Modify the definition of aA,, M., K., A. {see figure 5).
3 i b j+l

By "modify the definition" we mean to permute the corresponding values
of the pointers which are used to pick up the original data.

The other elements (except for Aj and Aj+l) remain unchanged.

5. UPDATING : CENTRAL CASES

As uentioned before, the algorithmic procedures presented in the paper
produce the corrections for the BPI's successively, in the natural order :

1, 2, ..., N. For the BPI's of indices between i and q, we distinguish
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several cases according to the types of the entering and leavic: zolumms (+).
This is the object of Section 6. However, for each case, there =xists a

period say p, where the algorithmic procedure can be embedded i= a general fra-
mework : the central cases where singularity may occur. These céntral cases
are linked as follows : the principal central case generally occurs at the
period equal to max(i,q). It is followed by the auxiliary cenzr.:l case in

the next period. This last case then occurs repeatedly up to za-iod N.

5.1, Auxiliany central case at perdiod p (p > max(i,q])

At period p, the BP has to be modify in the following way :

~ 1
A% = A (I + —nh ') .
P P a4 p%p G0
P
N
- T g .
where Ap-l #0 and |g| |AP_l + 2-p g'y bl %0 (5.2)

The input at this stage of the algorithm consists of p and Ap-i'
W : - , . . R : Ix
e define the value AP Ap-l + gp hP The non singularity of 5 depends

on the value of Ap'

We simply perform the following step :

Step ACI: ile(r-Lug)n! (5.3
P A, »p/ P
P

and we find that the following BP becomes

~

~ 1
® - _— ' A
Ap+l Ap+l (I * Ap hp-o-l gp-o-l)' (5.4

Therefore, after the incrementation of p, we are led back to Zormula (5.1).

(t) In sections 5 and 6, the type of the entering column will be —oted i-Il
and the type of the leaving one gq.
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From (5.2), (3.1) and (3.2) we find :

1 ( . ! 1 . )-1
gy oM [T+ (B . )) (A’;+21<p+l) v ) R Kb & O,

Consequently, there must exist two indices s and t such that
=1 [
gpAp Mpet %0 ers %0 eshp 0.

As Hpec % 0 and ers % 0, we have Kp+lec 1%

quence, it is possible at least from a structural point of view to permute
the columms of indices s and t, as in figure 5 with j = p. However the

condition (4.1) is required, so let us distinguish both possibilities.

1 : :
1
esx; Mpec % 0 (weak singularity)

The permutation is performed by means of the step P(p). The new value of

A + g;hp is no longer almost zero and the algorithm is unlocked.

A =
p p-1

The step ACl is performed and we are led back to the situation above.

-l . .
esAp Hpet o 0 (strong singularity)

In this situation, it is no longer possible to permute the columns s and t;

this operation must be splitted as illustrated in figure 6.

=0, M e =0 and, as a conse-

oo v aee
4 A
] A kL A ¥ H A -4
hr P P P 4 P P
] ’ -
? - 2 -
~
?
A |4 A 14 A ”
% p+! P p*l P iy’
7
t t t t i t i t
s t st s t [ 3
Initial positiouns Prior substitution Posterior substiturioa

Fig. 6. : Column permutation in case of stromg singularity

(5.5)

(5.6)
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The prior substitution induces the following operations

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

] ~1 ~1
P : | = — ') - '
Step ACO : Compute Sl ( A] AP Mpeces where Al 1+ e, Ap Mpet %0
- - el '

S2 I ec(esAP MP + Zet)
S, =1~ L e (e'x-lM + 2e!).
3 Al t sp p t

Then &' « s n ~sh ;5 ~s, i},

P 17p ° 7p 1'p 7 Tp+l 2 Tp+l?
- ] . 1 '
hp+l Szhp+l + eshpet s gp+l - gp+lS3.
After the preliminary corrections, the new value of 4 = Ap-l + gl')hP is non

almost zero, and the step ACl can be performed.
Finally, the posterior substitution has to be done, the resulting sequence

is divided in two parts.

Step AC2 : Update the data Ap’ MP. Kp, AP*‘ as in figure 6.
—1 | ~—1 —1 a
{1 + — ') -]-g' -] —2
Ap ( + Az AP Mpetes Ap where Az 1 esAp Me 1 ApAl-'#O
(A; is the old value of Ap which was almost zero).
~—1
- - 1
Compute and store S4 I etesAp Mp.
~—1 ~l
StEE AC3 : Ap"_1 - SA Ap*l'

Note that the step AC3 is performed only after the auxiliary central case
is initiated for p+l (i.e. after the step ACl for p+l) because the logic

of this correction is the following. The prior substitution induces the
modification of the BPI's p and p+l!. The correction (5.3) of ACl affects the
BPI p and all the following ones, including p+l. Finally the posterior subs-

titution is carried out and modifies the BPI's p and p+l. Hence, the correc-

(5.12)

(5.13)

(5.14)
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tion of the BPI p+l resulting from the posterior correction must te stored

and performed later.

The flow chart of the auxiliary central case is described in figure 7.
We have introduced an array of logical variables DEG; the value of DEG(p)
is YES if strong singularity occurs in period p, i.e. if the step ACJ is

to be performed at period p+l.

The BP corresponding to period p has to be modified as follows.:

A = X ; t o ' ]{ .l_ - 1 v - ] '
A A [I + a'e ey (up gp) I+ 3 EI e, up)hp + (gphp (a+e))e£ up (5.15)

P P
L
P P P P P
where gle, %0, €0, uley =1, a%0 (5.16)
P Pt
P P
and for h ind if M - 'e = gle = ¢!
each index t i p-let 0 then upet gpe: elpet .(5.17)
N
and [E] = |[e - Z g'hlj. (5.18)
L=p L

The input for this procedure consists of p, Ep. €, Q, u;. We define A =
P
8I’Jhp—e7 and the situations to be studied are the same as in the previous

section.
5.2.1. &_# U (No singubanity)

The BPI is updated in two steps.

Step PCI.l : Compute EI -1 - e (ul; - g;) (5.19)
~l ~l P
A +FEA ; h «Eh.
P 1A 5By 1 (5.20)
Step PCl1.2 : Compute E, =1~ AL (hp - (a+ t-:)ez ) ul') (5.21)
~— ~— P P
il ern il
P <P
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AC : ENTRY DOINT

p ~ prl

A «a "
P So-1"%"p

SELECTION

OF s AD ¢

DEG(p) ~ YES _’_L A «
) o Ap-l.gphp

Fig. 7 : Flowchart of algorithm-AC

Remark : Y stands for YES and N for NO.
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It is easy to see that the next BPI has to be corrected as in formula (5.3).

We then branch to the auxiliary central case with DEG(p) = NO.

As in 5.1.2. we select two indices s and t and we try to permute the

corresponding columns.

~1 . .
1
esAp gpet % 0 (weak singularity)

The permutation is feasible and can be performed. Note that the steps P(p)
and PCl.! commute, i.e. they can be applied in any order.

a1 : :
esép gpet =~ 0 (strong singularity)

The permutation is splitted in prior and posterior substitution.
The prior substitution is performed by the step PCO which is the same as
ACO, and which commutes with PCl.l. AP is then recomputed and PCl1.2 is per-
formed. The step PC2 is identical to AC2; AC3 does not occur here.

The flow chart of the principal central case (figure 8) is verv similar
to the one of the auxiliary central case. In fact several steps are common

to both of them.

b, UPDATING : EXCHANGE ALGORITHM

The present section is devoted to the presentation of the algorithms

handling the BPI's of indices between i and q. Cbviously, in a block LU
factorization the BP's of indices less thanm zin(i,q) remain unchanged.

We successively consider three subseotions according to the relative values
of 1 and q; each subsection being subdivisided to consider the type of the

leaving columm (q- or (q-l)+).
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DEG(p) + WO

A 'h
p = Bt

SELECTION Y N
OF s AND ¢ P

Fig. 8 : Flowchart of algorithm PC

Remark : The meaning of the different entries will be explained

in the next section




-274-

6.1. 4 = ¢
1} M .
.- 4 HEN
’ i
Hi-1 ¢ M2
A * b A
Ki Al*l Ki-l
. i
1
é——_————_——'
(a)

Fig. 9 : Case where i = g

6.1.1. The type o4 the Leaving column is o (see gigure 9(a))

The basis data is modified as follows

H =M, + de' A* = A  + (b - A, e, e/ KT = K, - K. e’
- - 2 . ’
i-1 i~1 q : i i Ll i i lﬁq Lq
. - - !
This leads to Ai Ai(I + (hi elq)ezq).

This allows us to bramch to the principal central case with the following

steps.

Step SAD : Set g; = u; = ei y & =1, eE=0, pm=aqg.
g

Step SAl : Modify the definitions of Mi-l' Ai’ Ki (see figure 9(a)).

6.1.2. The type o4 the Leaving column is (_q_—!)* (see gigure 9(b])

The modifications leads to the same expression as (6.2) and we just

replace SAl by

Step SA2 : Modify the definitions of Mi-l’ Ai (see figure 9(b)).

(6.1)
(6.2)
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6.2. £ <g

6.2.1. The tupe 04 the Leaving column is ¢-

1f hq = O, then from (3.2) and § = g'h we get £ =~ 0 which is absurd.
Thus
~1 .
hk+l--Ak+lKkhkq“o for k = i+l, ..., q (6.3)
and there exists a sequence of indices lk' k=1i, ..., q-1, such that
simultaneously = e h % 0and Ke, %0 for k =i, ..., q-1. This
A =g M N

suggests the modifications described in figure 10.

L. A M
9= q q
X A
q q-1
t L]
N :
L1
+
\’1
q
\__/’

Fig. 10 : Case i <gq
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The exchange algorithm for this case makes use of the following property.

Property 6.1

If the following transformatioms occur in period k
* - + A e, e while a * - '
M= M A 2,52 LA 0 and K¥ = K - Ke, ey

k+l k+1 k "k
R 1 . .
and if Ai = KR(I - elkeik + 5 hk“é) with ul"eEk = 1, then the BPI is

modified as follows,

Step SBO(K) : Compute D = -~ e (uL - ei )
k

n—]‘_ Ml' -
A "DA i DRy (6.5)

1

""l‘_ -1 - v a1
K- [a g Ak—lelkpik]Ak : (6.6)

Moreover ifA* == + e, e! =~ e e!
Al T A T K A YT N S
~ ~ 1

then * = (I - e e! 4+ — u’ ) (6.7)
Al T A T N B kel

[] Ak [l [
where Y Z;:T ue Aquk + e1k+l (6.8)

with I;' resulting from the step SBO(k).
This property is proved by applying the Sherman-Morrison formula twice in

succession., Now it is easy to show that

2% = 2 v '

Ai Ai(I + hiel. e, e (6.9)
i i7i

and if we state ui = ei and Ai- = | then the property 6.l can be used recur-

. 1
i
sively for k = i, ..., g-1. After each step SBO(k) we have to perform the

following step :

Step SBI(k) : Compute ua as in (6.8).

Modify the definition of Mo A and X
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6.2.2, The tupe 04 the Leaving columi (s (q-l)+

~
.~
.

\/\ e

The only difference with figure 10 is

given in figure 11.

A ¥ The property 6.1. is used in the same way
q-1 q-1

as in the preceding case for k =
L. A u i, ++., q=1 and the only modification is

the formulation of ua which is now

R q q+l A | —1
w' ==l gy T M (I-e, e! )+ e! (6.10)
A -1 -1"q~1 L e L

. a B el fa-lTq A a
q-1

t The step SB1(q) is replaced by :

1

q

Fig. Il : The leaving column is of type (q-l)+

Step SB2 : Compute u& as in (6.10)

1

Modify the defimition of Hq_ and Aq

Now it is easy to see that (5.15) reduces to (6.7) with k+l = q, if we
take p=q, € = 0, a = Ap-l and g; - ei in (5.15). The conditions (5.16),

P
(5.17) and (5.18) are satisfied and we can branch to ENTRY | of PC.

6.3,1. The type 04 the fLeaving column A (q;l]+

From (3.1) and the fact that £ % O, we deduce that gi-l % 0 and that
it is possible to select a sequence of indices lﬁ k = q+l, ..., i-1, such
that T ~g'e, %0 for k=gq, ..., i~1 (L 1is already defined) and

k-1 k !'k q

Kk e =0 for k = q, ..., i~]l. Moreover if A. =g h e~ O then
lk i-1

ri—l % 0 and Kie

v
i-17i-1
1_-0.

1
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The figure 12 illustrates the modifications (the problem of the index li

is explained below).

‘q-l M‘l‘ 1
A M
Kq-l q q
zq L
q+l
t
1
q

tal
ot
|
~
>
o
]

-
E
.
oty
. 0
~
/171187 TR
=
. -
o
mm
T3t
=1 1.1

. 12 : Case i > g

|

As in subsection 6.2, we introduce a property on which the alsorithmic
process is based.

Property 6.2

If the following transformations occur in period k

i TR Aty o0

k#l,
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b d ind 1 - 1 e ]
and A; =A ¢+ er£k+lelk ;_—_'Akelkak (6.11)

k-1

Then the BPI is transformed as follows :

~1 1
Step SCO(k) : “|\I~-e, (¢, -8 ,
Step SCO(k) : 4 ( 2, o, 8, ;Z;

1 [ 1 ~1 |
“|1+ —@& Me -e, e} ]A .
e M x " Tl W RE

Moreover if A;+l = Ak+l + (Mk+le2k+2 - Akﬂezkﬂ)eik+l , we find for Ak+l

the same expression as (6.11) after incrementation of k.

At period q the new BP is

' (Note that Tq_ = 1, because

: w3 e, g
8,8 T 2 1
T et T Tat e

g' = e! ).
2
4 q

This initiates the algorithm which is applied up to i-1 or i depending on the

value of Ai-l' The step SCO(k) is performed and completed by

Step SCI(k) : Modify the definitions of Mk-l' A and K, .

A, &0
i-1

From (6.11) with k = i-1, we can compute the BPI by the following step :

Step SC2 : Compute E = I - e, (ei - gi_l),
i-1 i-1
loeex) h,  +Eh
i-1 i-1 i-1 i-1’

~l ( 1
A. - I -
i-1 81 i-1 il

Modify the definitions of Hi-l' Ai and Ki'

And we find K; = Ki (I * % L hig;). Hence we can branch to ENTRY 3 of PC
i-1

with p = i-1 and DEG(p) = NO.
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We use the index li to perform a supplementary iteration (k = i~1) with

property 6.2. Taking the following substitutions into account :

td - - - ] x g - - [
Mi_| =M, (Mi-lel. d)ey AT = A, (Aiez‘ bleg
i i A i

leads to the formula

~ ~ 1 ] {
L) - - !
A Ai[I e 8 eg (ep -8 I+ [(I °g.0 00y +
1 1 1 1 1

i
(glh, - (1 + 4. _))e ]e' }
i'i i-1 li li
Consequently, we branch to ENTRY | of PC with

€= A,

i-1" P-i’ué-ei s @ =1

P
6.3.2. The tupe 04 the feaving column is g~

As before we see that g;_, % 0. Thus there exists an index %441 Such that

elqu !ﬂle%+] % 0 and we apply the permutation P(q) with s = lq and t = 2q+1;
q is incremented and we branch to the preceding case.

~~l

i= g+l
As before we define 4, , = g! ,h. ,.
i-1 i-17i-1

./_\," 1f Ai—] ~ 0, from a similar argument we

deduce the existence of an index 2i such

i~1 i-1 d that e;l 'TC]] M._ e % 0., The permutation
-1 1T i-1 1

is performed, q is incremented and we are in

the case i = q and the type of the leaving

' column is (¢-D)*. If 8, | %0, it is
11 possible to perform the exchange (see figure 13).

Pig. 13 : Case where i =g+l This is the object of the step SC3.
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ol 1 _ ' -1
Step SC3 : A, + (I y (he e, )eli_r>Ai_l.

i-1 i-1

Modify the definition of A

It is easy to prove that

1

A* =3, (I+
t 841

Consequently we branch to ENTRY 3 of PC with p = i-1 and DEG(p)

1
higg.

[

= NO.

All the computations and branching of section 6 are schematized in the

flow-chart of figure l4.

A set of examples corresponding to all cases arising in the exchange

algorithm is presented in GILLE [3].
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“i - .1
81 71
k= i-1l

k = kel
SBI (k) -

SBO(k)

k = q-l

N $B0(q)

Y
SB2
SBi(q)

p=q,E«0 p‘i..l:'-Ai_l P+-i-l
5= 'G-Ap-l a1, u;-a.". DEG(p) + NO
P P
PC
ENTRY 2

Fig. 14 : Flowchart of the exchange algorithm

Remark : means : is q~ the type of the leaving variable ?
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?. CONCLUSTONS

We have presented a basis inverse substitute for staircase linear pro-
grams. The computations of the revised simplex algorithm (simplex multi-
pliers, updating of a column, etc ...) are straightforward and have been
omitted in the paper (e.g. WOLLMER [7]).

We rather concentrated on the updating of the basis inverse substitute.
The resulting algorithm reduces to updating submatrices of the size of the
periods by means of dyad corrections. It is guaranteed that the determinant
of the dyad corrections will not be small as compared to the pivot element.
The number of corrections required for a basis change is smaller than in
other related works. According to WOLLMER [ 7] the number of dyad corrections
to be applied to the block pivots ( to their inverses) between the periods
i~1 and q (respectively of the entering and leaving colummn) is 1, 2, 3, ...,
lq=i] + 1. The next block pivots are all updated by |q-i| + 1 dyad correc-
tions. With our algorithm, the number of dyad corrections is [, 2, ..., 2
between the period i and q. The next block pivots, are updated in general
by one dyad correction or by at most 5 dyad corrections if weak or strong
singularity occurs.

Experience with other basis factorization techniques making use of
dyad corrections (LOUTE [4], HO and LOUTE [2]) shows that singularity of
corrections is not frequent. However we must be able to handle such cases.

The complexity of our updating algorithm is linear in terms of the
number of periods. This constrats with algorithms proposed by ZVJAGINA
[8], WINKLER [ 6] and LOUTE [4] where the complexity of the updating is in
log2 of the number of periods. However, this result is obtained at the
expense of the simplicity of the data structure and at the expense of the

sparsity of the basis inverse substitute.
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From a sparsity preserving point of view the block LU factorization
is inferior to the pure LU factorization. In fact it is possible to adapt
our work to the standard LU factorization. The basis inverse substitute
would consist of the original data and the LU factorization of the block
pivots. The updating algorithm would require to update the L and U fac-
tors of the block pivots modified by ramk one corrections. This will be
the object of another paper. This basis inverse substitute would be more
compact than the standard LU factorization applied to the whole basis :
only a part of L and U is kept explicitely. Moreover it would be possible
to make use of recent results of FOURER [ 1] on gaussian elimination of

staircase systems.
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L Introduction

One standard model in stochastic linear programming is the stochastic program
with complete fixed recourse

min [¢'x + EQwx, w)]Y)

s.t. Dx = d, xeR%, Q)
where D is a real (m x n)-matrix, c € R"* and d e R™, and

Q(x, w) = min{q’y | Wy = b(w) — A(w)x, yeRL}, @

where g € R* and the real (u x v)-matrix W are fixed and the (u x n)-matrix A(w)
and b(w) e R* are random on the given probability space (Q,#, P). To assure
complete recourse and the existence of the expectation EQ(x, w), we assume

AD {y| Wy=2z,p20 #3 VzeR¥

A2) (u| Wu < q} # 2,

A3) the existence of EA4(w) and Eb(w).

For simplicity we make a further assumption, which is not very restrictive in applica-
tions:

Ad) Y ={x|Dx=4d,x 20} # 2 and bounded.

The practical meaning of problems with complete recourse is this: taking a
decision x € X before knowing the realization w € Q may yield a violation of the
constraints (w) — A(w)x = 0; w being observed, this violation can always (according
to Al)) be compensated by the second stage program (2) with finite penalty costs
Q(x, w) (according to A2)). The objective in (1) is to take x € X in such a way that

the total expected costs (which exist according to A3)) be minimized. Examples of
such problems appear in energy, production, transportation planning, and others,

1) The prime at vectors and matrices means transposition.
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where often part of the productivities, available resources, demands etc. are to be
treated as random instead of deterministic, as they are in the usual linear programming
approach.

Under our assumptions the following statements are well known [4]:

Proposition I: ¢(x) = EQ(x, w) is convex and Lipschitz continuous. Further-
more, if the probability distribution of (b(w), A(w)) is given by a density function,
o(x) has a continuous gradient.

Proposition 2: For a finite discrete probability distribution P(w,) = p, > 0,
i=1,...,r, 2la1p =1, solving (1) coincides with solving the linear program
min [¢'x + 2]a; g 'y

st. Dx =d

Alw)x + Wy = blw,), i=1,...,r 3

x =0, yWw=0, i=1,...,r

Proposition | seems to suggest the solution of (1) by means of convex optimization
techniques. However. this attempt fails, except for very special problems, since the
evaluation of @(x), and moreover of its gradient, is in general a very complicated
task. Proposition 2 suggests to approximate a given continuous probability distribu-
tion by an appropriate discrete one and to solve the corresponding linear program
(3) instead of the nonlinear program (1). If we construct the discrete distribution by
defining a finite disjoint partition {4} of Q, A, eF, i = 1,...,r, choosing w, = 2,
Py = P(2) and letting (4, b) be constant on 2, we get the expected penalty costs
@x) instead of ¢(x), and we know from [5]

Proposition 3: There is a constant y such that
|p(x) — @(x)| < y[1b — bily + {x|-14 = 4], C)]

where |--! is the Euclidean norm and ||--!|, means the L;-norm for vector valued
functions on £2.

Hence the above-mentioned suggestion in connection with proposition 2 seems
to be justified in principal. However, we then are involved in large-scale linear
programming. and therefore we should try to take advantage either of the special
structure of (3) or of particular properties of (1). In the first case we are handling
implicitly due to proposition 3 an overall approximation of ¢(x), whereas in the
second case we only try to approximate the minimum value of ¢’'x + ¢(x) on X.

II. Minimization of the Overall Approximation of the Objective Function

In this approach we choose a discrete distribution of (A, &) such that the error
estimate (4) becomes sufficiently small. For this discrete distribution we set up problem
(3), which for applications may become very large; if for example 1 = 50 and we
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have only 4 independent random coefficients each of them approximated by not more
than 5 realizations, which does in general not yield high accuracy, we get at least
625 blocks of 50 rows, i.e. 31 250 constraints in (3).

In [8], the author proposed (for a special stochastic program) to solve the dual
of (3) by a modified revised simplex method applying a so-called basis reduction
technique in each pivot step [1], [2]. It was supposed that this method was faster
than the unmodified simpiex method. We want to determine the reduction in the
number of essential operations (i.e. multiplications and divisions) that resuits from
this technique applied to our problem (3).

The basis reduction can be shortly described, for an arbitrary linear program,
as follows: let

- )

be a feasible basis found after some step during the revised simplex method. Hence
B is nonsingular, and B is also supposed to be regular. Let

B-!
X=B"'Y
(LX - 2)°!

be given. To make the next pivot step, we have to carry through the following
operations:

a) Pricing Out
Solve
B =p (6)

where 8 consists of the basic components of the objective's gradient.
Now (6) is equivalent to

m(LX - Z) = B X - ﬂ'z}

mB =B, - mL M

B’ = (B3, B2), = = (m,, m;), which is determined by matrix multiplication.

b) Optimality Test
For all nonbasic columns

D
D, = (D‘:”)
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we must check, whether
d—=aD,=d — mD¥ — 7,D® >0 8)

(d, nonbasic component of the objective’s gradient). Let (8) be violated for D,. Hence
D, may enter the basis.

¢) Updating of the Pivot Column
We need

4= () = 80. ©)
which also can be determined by matrix muitiplication as the solution of

Byy = D(pn
(LX = Z)Wo = Lpg — D - (10)
Y1 = ¢o — Xiba

Suppose that ¢ £ 0, because otherwise the linear program we try to solve would
not have a finite solution.

d) Determination of the Pivot Row
We need the vector of basic variables

= (X‘) = 8-,

X2

=)

(1D

the right-hand side of the linear program, which according to (9), (10) is found by
solving

Bfo = b1
(LX - z)ig = L.‘Eo - bg . (]2)
il = io - Xiz

Then the leaving variable %, is given by

X

Xu min{
‘/‘-u '/’!u

P= 1,20 gy > o}- (13)
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€) Pivoting

Case 1: The leaving column B, is part of

(z) 2-()
hence B and L are not altered. Y, is replaced by D'’ and X, by

£, = B-1D. (14)
In LX — Z only the column LY, — Z, is replaced by

e=L% -2, 2,=Dp,
i.e. we get the new matrix

(LX = Z)zew (15)
by pivoting with the updated pivot column (LX — Z)~!¢.

Case 2: The leaving column 8, is part of

B B,
(L)’ B = (L)
and
a) (B7'D"), = oy # 0 (see (10)).
Replace B, by DV, yielding B,.. again regular,
L, by D@

and compute

B} by pivoting with o = B~1D"  (see (10)), (16)

Xpew = BLY (Y unaltered) an
and

(LX = Z)em. (18)

In this case (LX — Z).,% cannot be determined by a single pivot step, since in general
by (17) several columns of X (and LX) are changed.

b) (BDY) = dou = 0.

Then the regularity of 8 implies the existence of a column X, of X such that X,, = 0.
Exchange

() = ()
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and compute

B! by pivoting with B-1Y, = X, (19)
X new = B3 DY (20
Zipew = DY 2D
Xinew = Bow Y i#, (22)
(LX = Z3L). (23)

The manipulations, especially in case 2) b), guarantee that the form
B Y

& )
is maintained for all feasible bases generated by this variant of the simplex method.
with B always of the same size and regular. This is advantageous if B is large and of
special structure, e.g. blockdiagonal as it will be in our problem. Then the main
savings of operations result from (7), (10), (12) and (16), if we observe the
blockdiagonality.

To apply this procedure for our problem we reformulate the dual of (3)

max [ 5 #'@)o® + d’u]

im]

st. W' < pg, i=1,...,r (24)

S A(w)® + Du < ¢

im]
according to a proposal in [3]. By assumption Al) the columns of the recourse matrix

W may always be rearranged such that W = (W,, W), where W; is nonsingular.
Then

W < pg (25
is equivalent to (set v’ = (W7)~Y(pg; — sV))
Wa(W) - (pgr — s) < pqu, s 20, (26)

where ¢’ = (gr, g11) corresponds to W = (W, Wy).
By this substitution and introducing slack variables and replacing u by non-
negative variables, (24) becomes

rel
max 21 bz + v
-
st. W= =4 i=1,...,r
r+1 -
Z Ai:“) =g+

{w]
>0 i=1,...,r

@7
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where
W= (=Wu(W)-4 1)
§=pgn — WaWD) 'piqr, i=1,...,r

Gre1=c¢-— 121 A'(w (W)~ pgy
A= (—A)(WD~40), i=1...,r (28)
Zrd»l = (D', _D',I)
by = (=b'(w)(WD)™4,0), i=
5;4»1 = (d,’ —d" 0')

|
—
~

r= 121 b’ (w)(W1) ™ 'pigy.

By this reformulation the number of rows, compared to (24), is reduced by r u
which is a large number, as stated in the beginning.

Now obviously every feasible basis of (27) may be, by rearranging columns,
brought to a form (5) with blockdiagonal B:

B(l) 0

0 B(r)

where the B, are [(v — p) x (v — p)]-matrices.
Going through the procedure described above, it can easily be checked that the
number N of essential operations per simplex iteration amounts

N~ €(r) 29)
or more precisely
N=rP+vn—puv+v—pul+3s (30)

where & does not depend on r.
If we had not modified the revised simplex method in the above-mentioned way,
we would have had to pivot on inverses of feasible bases
(B T
5=
L Z )

which obviously are

-1 _ VY - -1 -1 - -1
B_1=(B X(LX — Z)7'LB~* X(LX 2))

(LX - Z)-'LB! —-(LX - Z)"!
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and which in general do not have a special structure even if B is blockdiagonal.
Hence the number of essential operations per simplex iteration would have been

N~ &([r(v — p) + nP?), a3n

which is considerably greater than (30) for large r.

Nevertheless (30) also indicates the range of applicability of this approach. If
for example we assume as in the beginning 0 = 50, r = 625 and v = n = 100 and if
our computer needs 20 microseconds per multiplication, one simplex iteration will
take about three minutes.

The approximating program (3) becomes so large because we are handling an
equally good approximation of the whole objective function ¢’x + ¢{x) on X with
an a priori error estimate according to (4), instead of attempting only to approximate
the minimum of ¢’x + ¢(x) on X, which we are really interested in. The basic ideas
for an approach of that type are described below. There the probabilistic nature of
our problem is used to some extent.

1. Approximating the Minimum

Let £ be a random vector on (Q, 5, P) with existing expectation. Then we know
from probability theory {7] that for any o-algebra ¥ < # there is an almost surely
uniquely determined %-measurable function (vector valued) Eg{£), called the con-
ditional expectation, such that

" Ef6)dP = ¢dP Vae9 (32)
I, )

Furthermore if S is a ¢-algebra such that /¥ < ¥ < &, then almost surely

Eq(Eg(£)) = Ex($). (33)
If we define
p(b(w) = A(w)x) = Q(x, w) (see (2)), (34)

it is well known [4], that there are finitely many vectors g, k = 1, ..., ¢, such that
p(b(w) — A(w)x) = max, gi(d(w) — A(w)x). (35)
Now we can easily prove

Proposition 4° Let & be the o-algebra generated by a finite disjoint partition
{4} of Q, U € # hence ¥ < F Then

J‘ P(Eg(b(w) — A(w)x))dP < l. p(b(w) — A(w)x) dP = ¢{x). (36)
a Ja
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Proof:
| o(Estow) - dwrnap = 3 L‘ P(Ex(b(w) ~ A(w)x)) dP
35): -3 f“ g (Ee(b(w) = A(w)x) dP
G2): -3 f‘ g1 (B(w) — A(w)x) dP

< 3 [ max, gitbe) — A(w)) dP
Ty
= #(0). n

As a corollary we get immediately

Proposition 5: Let 4 be generated by a finite partition {3} of Q and # be
generated by a finite partition {#;} of Q such that # < ¥ < & Then

f P(Ese(Bw) ~ A(w)x)) dP < fn p(Eg(b(w) = A(w)x)) dP

37
< fn p(b(w) — A(w)x) dP = p(x).

Proof: The second inequality was already proved, and the first one follows by
combining (33) and proposition 4. i

These propositions generalize Madansky’s inequalities [6], which were proved
for expectations instead of conditional expectations, as follows:

Proposition 6: Under the assumptions of proposition 4 define @(x) =
J' o P(Eq(b(w) — A(w)x)) dP. Assume that £ is a solution of min {c'x + ¢(x) | x & X}
Then

X+ §(X) < m.l;x [c'x + ¢(x)] < c'X + @(X). (38)

These statements suggest that we proceed as follows: Start with the trivial partition
{Q} of Q, i.e. with the expectations E(b(w)), E(A(w)) and solve the resulting program (3).

In general: having solved (3) for a partition {2} (obviously with P() > 0Vi)
getting the solution %, subdivide one or several sets ¥, into disjoint subsets, compute
the conditional expectations of b(w), A(w) with respect to the subsets and solve the
updated program (3). Proceeding along these lines yields, according to (37), a
monotonically increasing sequence of optimal values of (3), approximating the
optimal value of (1). From the proof of (36) we also can conclude which %, should
be chosen for subdivision to yield a strictly positive increase of @(X) at least at $:
Choose ¥, such that the optimal feasible basis out of W to compensate
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Ey, (b(w) — A(w)¥) does not remain feasible with positive probability for b(w) —
A(w)% on 2.

According to the numerical examples computed so far, procedures of this type
have several advantages. On the one hand we start with linear programs of reason-
able size, in the beginning the constraint set is just

Dx=d
Ax + Wy = b, A = EA(w), b = Eb(w),
x>0, y20
and subdividing 2 into %, U 2, just means replacing (let 4, be Ey A(w) etc.)
A x + Wy =},
by
Ayx + Wy = b,
Ax + Wyt? = b,

which can be managed within the simpiex algorithm by simpie updating techniques.
On the other hand proper choice of the sets %, _to be subdivided yielded a rather
fast increase towards the optimal value of (1).
The disadvantage so far is that in general the a posteriori error estimate (38) is
only of theoretical value because of the complicated evaluation of ¢(x).
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THE SIMPLEX METHOD FOR DYNAMIC LINEAR PROGRAMS*

A. Propoi and V. Krivonozhko
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Moscow

There are two major approaches in the finite-step methods of structured linear program-
ming: decomposition methods, which are based on the Dantzig—Wolfe decomposition
principle, and basis factorization methods, which may be viewed as special instances of
the simplex method.

In this paper, the second approach is used for one of the most important classes of struc-
tured linear programming — dynamic linear programming (DLP).

The paper presents a finite-step method for DLP — the dynamic simplex method. This is a
natural and straightforward extension of one of the most effective static LP methods — the
simplex method — for DLP. A new concept — a set of local bases (for each time step) — is
introduced, thus enabling considerable reduction in the computer core memory require-
ments and CPU time.

The paper is in two parts. Part |, “‘the dynamic simplex method: general approach’ and
Part |1, “a basis factorization approach” give a description of the dynamic simplex method
and its extensions.

In Part | construction of a set of local bases and their relation to the conventionai “giobal”’
basis in LP are given. A special control variation and the corresponding objective function
variation as applied to this set of local bases are described. This part is written in a lan-
guage more familiar to control theory specialists.

Part |1 describes the separate procedures of the dynamic simplex method: primal solution,
dual solution, pricing, updating, and the general scheme of the algorithm. The connection
between the method and the basis factorization approach is also shown. A numerical
example and a theoretical evaluation of the algorithms reveal the efficacy of the approach.
The extensions of the method (dual and primal-dual versions of the algorithms, application
to DLP problems with time lags) are briefly discussed in the final part of the paper. This
part is closer to LP specialists.

More theoretical aspects of the method are treated in ||ASA Research Report 78-14, of
which this paper forms the last two parts.
*The authors wouid like to express their acknowledgment to George B. Dantzig for his long-standing

interest in and support for this work. Many thanks aiso to Etienne Loute for his valuable comments
and suggestions.
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I. THE DYNAMIC SIMPLEX METHOD: GENERAL APPROACH

1. Introduction

Methods for solving general linear programming (LP) are now
well developed and have resulted in an extensive field of appli-
cations [1,2]. Dynamic linear programming (DLP) is a special
class of linear programs for planning and control of complex
systems over time [3-6]. DLP applications tend to be too large
to be solved by general LP methods. These applications have
been hampered by lack of universal DLP computer codes. The few
DLP problems that are solved are limited in size. They are solved
by treating them as static problems and using for their solution
standard LP codes (see, for example, [4,6]).

As DLP problems are principally large-scale, this "static"
approach is limifed in its possibilities, and the development of
efficient algorithms specially oriented to dynamic LP problems
continues to be needed. In recent years, methods for DLP have
been proposed which make it possible to take into account the
specific features of dynamic problems (e.g. [7-9]).* But exten-
sion of the most effective finite-step method -- the simplex
method for solving LP -- to the dynamic case yet has to be im-
plemented although there have been a number of proposals by
Dantzig and others.

The dynamic simplex method as presented here was first sug-
gested in [10,11]. 1In this approach, the main concept of the
static simplex method -~ the basis -~ is replaced by a set of local
bases, introduced for the whole planning period. It allows a
significant saving in the amount of computation and computer core.
It permits the development of a set of finite-step DLP methods
(primal, dual and primal-dual) which are the direct analogues of
the corresponding static finite-step methods.

This paper consists of two parts: the first part describes
the proposed approach; the second part presents the separate

*See also references in [3].
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procedures and the general scheme of the algorithm as well as
the connection with the basis factorization approach.

Consider the DLP problem in the following form.
Problem 1.1. Find a control
u= {u(0),...,u(r=-1)}
and a trajectory
x = {x(0),...,x(T)} ,
satisfying the state equation
x(t+1) = A(t)x(t) + B(t)u(t) (t=0,1,...,T-1) (1.1)
with initial condition
x(0) = x° (1.2)
and constraints
G(e)x(t) + D(t)u(t) = £(t) (1.3)
u(tl >0 > (£ =20,1,...,T-1) (1.4)
which maximize the objective function

Jy(u) = a(T)x(T) . (1.5)

Here the vector x(t) = {x1(t),...,xn(t)} defines the state of
the system at step t in the state space En, which is assumed to
be the n-dimension euclidean space; the vector u(t) = {u1(t),
...,ur(t)}EEr (r-dimension euclidean space) specifies the con-
trolling action at step t; vectors xo, f(t) and the matrices
A(t), B(t), G(t), D(t), respectively are of dimensions (nx 1),
(mx 1) and (nxn), (nxr), (mxn), (mxr), and are assumed to
be given. In vector products, the right vector is a column, the
left vector is a row.
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There are a number of modifications of Problems 1.1 which
can either be reduced to this problem [12,13] or the results
stated below may be used directly for their solution. For exam-
ple, constraints on the state and control variables can be sep-
arate; state variables may be nonnegative; state equations in-
clude time lags; the objective function depends on the whole
sequences {u(t)} and/or {x(t)}, etc. [3,12]).

Along with the primal Problem 1.1, use will be made of its
dual {12].

Problem 1.2. Find a dual control

A= (A(T-1,...,A(000})
and a dual (conjugate) trajectory

p={p(M,...,p00} ,
satisfying the costate (conjugate) equation

p(t) = p(t+1)A(t) - A(L)G(t) (t=T-1,...,1,0) (1.6)
with boundary condition

p(T) = a(T) (1.7)
and constraints

p(t+11B(t) - A(E)D(t) <0  (t=T=1,...,1,0)  (1.8)
which minimize the objective function

o T
Jo(A) = plO)x” + ] A(EIE(E) . (1.9)
t=0

Definition 1.1. A feasible control of the DLP Problem 1.1

is a vector sequence u = {u(0),...,u(T-1)} which satisfies with

some trajectory x = {x(0),...,x(T)} conditions (1.1) to (1.4).



=303~

An optimal control of Problem 1.1 is a feasible control u¥*,

which maximizes (1.5) subject to (1.1) - ({(1.4).

Feasible dual control A and optimal dual control A* to the
dual Problem 1.2 are defined in a similar way.

Let U = ErT; u = {u(0),...,u(T=1)} €U be the control space

of Problem 1.1. In the control space U Problem 1.1 can be re-

written as follows [13].

One can obtain from the state equation (1.1), that

t-1
x(t) = ¥(t,00x(0) + J ¥(t,t+1)B(1t)u(r) (1.10)
=0
where
¥(t,T) = A(t=1) » A(E-2)++~A(T) (0 <t<t-t) ,

¥(e,t) =T .
I is the identity.

By substituting (1.10) into (1.3) and taking into account

(1.2), we obtain the constraints on controls u, given in explicit

form:
t
I w(t,Tilu(r) = hix) , (1.11)
=0
u(t) >0 , (t=20,...,T=1) .
Here
W(t,T)} = G(t)¥(t,t+1)B(T) (t > 1) y
W(t,t) = D(t) ,  h(t) = £(t] - G(£)¥(t,00x° .

The matrices W(t,t) are of dimension (m xr) and vectors h(t)

are of dimension (mx 1).

The objective function (1.5) will be rewritten, respectively,
in the form
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T-1 0
I c(t)u(t) + g(0)x , (1.12)
t=0

J, ()

where

cT(t) = q(t+1)B(E)

Here vectors g(t) are generated recursively by
g(t) = g(t+1)A(t) (t = T=1,...,0)

q(T) = a(T)

Denoting the constraint matrix of (1.11) by W (dimension is
mT x rT), we can reformulate Problem 1.1 in the following equi-
valent form.

Problem 1.la. Find a control u, satisfying the constraints
Wu = h u>0o ,
which maximizes the objective function
J ) = cu

Here u = {u(t)}; h = {H(t)}; ¢ = {c(&)} (£t =0,1,...,T-1) and 51
differs from J, by the constant q(O)xO.

It is evident that the sets of optimal controls for Problem

1.1 and 1.1a are the same.

Now the general scheme of the simplex method as applied to
Problems 1.1a will be described.

Let u be a feasible control; we shall define the index sets

I(u)

{(i,t)|ui(t) >0;i=1,...,r;t=0,...,T-1}

T (u)

{(i,t)|ui(t) =0;i=1,...,r;t=0,...,T-1}

I =TI(a)VYT(u) .
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Denote also the columns of matrix W by wi(t) (i=1,...,r;

t=0,1,...,T=1; wi(t)eEEmT. In this case the constraints (1.11)

can be rewritten as

.

" E)elwi(t)ui(t) =h ; ui(t) >0 .

Definttion 1.2. A basic feasible control of Problem 1.1 is

a feasible control u, for which vectors wi(t), (i,t) €I(u), are
linearly independent.

A nondegenerate basic feasible control is a basic feasible
control u, for which vectors wi(t), (i,t) €I(u), constitute a
. s mT
basis in E".
The basis of a bastic feasible control u is a system of mT lin-
early independent vectors wi(t), which contains all vectors wi(t),

i(t)eI(u).

As usual without any loss in generality we can assume that
Problem 1.1a (1.1) is feasible and that any basic feasible control

is nondegenerate [1].

Denote by IB(u) the set of indices corresponding to the
basic vectors wi(t); IN(u) is the set of indices corresponding
to the remaining vectors w; (t) of matrix W. Let

{u; (8] (1,8) Ig(w}

s
Uy

fu, (£) (i,8) I}

and m(t) is the number of basic components of a basic control u
at step t. Evidently

T=1
I m(t) = mT .
t=0

Then, any basic feasible control may be represented as

u = {uB,uN}, with ug > o, u =0 .
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Denote by Wy the matrix with columns w, (8), (i,t) € IB(u) (basic
. -1
matrix). Then ug = wB h.

Let wj(t1),(j,t1) €1, be an arbitrary column vector of W,
then

wj(t1) = Wij(t1) ' (1.13)

where vector v.(t,) = {v..{(t,,T)}, 4 =1,...,m,1=0,...,T-1)
bR ij

has dimension mT.
Define
zj(t1) = chj(t1) .
Thus, we can rewrite

cj(t) = q(t+1)bj(t)

(1.14)
T-1
zj(t) = Téo q(r+1)BB(r)vj(t,r) .

Here b.(t) is a column of the matrix B(t); the matrix BB(T)

is generated by the basic columns bi(r), (i,1) € IB(u) of the
matrix B(t); (j,tlel.

The direct application of the simplex method to Problem 1.1
(1.1a) gives the following basic operations:

1. The computation of the sign s or zj(t) - cj(t) for all
(j,t) €I, to determine whether an optimal control has been found;
that is the case when zj(t) - cj(t) > 0 for all j and t. If yes,
the algorithm terminates with a printout of the optimal solution.
If not, then

2. the selection of the vector to be introduced into the
basis, that is selection of a vector with a value of zj(t) -
cj(t) < 0. Let the pair of indices associated with this vector
be (j,t1).
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3. The selection of the vector to be removed from the
basis. The pair of indices associated with this vector will be
denoted by (l,tz). If (2,t,) cannot be found, the algorithm
terminates with a printout of information of how to generate a
class of feasible solutions such that J1(u)* +», If not, then

4, the basis and basic feasible control is updated. The

new basic feasible control uM - {ué1),0} is defined by
M () = u_ (1) - 6w (ty, 1) (s,, 1) € I_(u)
S. s. 0's, 1’ i’ B
I 1 1.
J
(1) _
uj (t1) = 60 (1.15)
dMn =0 @ # Geed: (4,7 € Ly (w
i ’ 3. 177 1, I-N ’

where the outgoing pair of indices (l,tz) is given by the value
60 which is calculated from

ug (1)
(2,t,) = arg-min — 2 _ - (1.16)
vS (t1,T)>0 \gi (t1,T)
(s;¥T)EI (u)
and 90 by
ug (t5)
- 3
8y = ———
Veyltqrta)

The numbers z. (t) are usually computed from zj(t) = ij(t),
where A = {ki(T), (i,7) e IB(u)} are simplex multipliers for the
basis Wg:

A= cgWy .

(1.17)

The general scheme considered above is in practice ineffective
for the solution of Problem 1.1 (1.1a) when the dimension of the
matrix W is large. Besides, the input data are usually given in
the form of Problem 1.1 rather than in the form of Problem 1.1a
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and no exploitation has been made of its special structure.
Therefore the simplex procedure directly designed for the solu-
tion of Problem 1.1 will be described.

2. Local Bases

The matrices D(t) (¢t = 0,...,T=1) of constraints (1.3) will
be assumed to have the rank m. This assumption is not restric-
tive because one could always insert, if necessary, additional

artificial columns, as in the static case, see [1].

Let us denote £(0) = £(0) - G(0)x’. Then constraints (1.3)
can be rewritten as

D(0)u(0) = £(0) . (2.1)

In accordance with our assumption we can choose m linearly
independent column-vectors di(O) of the matrix D(0). Denote
these columns by DO(O) and the rest of D(0) by Dq(0). Thus

As determinant [DO(0)| #0, the constraints (2.1) can be re-
written in the form

-1 -
ug(0) = byl (@ 2(0) - b7’ (0)D, (O)uy () (2.2)

where components of the vector uo(o) GE"‘correspond to the matrix

D,(0) and components of the vector u1(0) ggt™

matrix D1(0).

correspond to the

The partition of the matrix B(9) is carried out similarly
to that of the partition of D(0): B(0) =[BO(0)’B1(0)]’ Therefore

x(1) = A(0)x(0) + BO(O)uo(O) + B1(0)u1(0) . (2.3)
Substitution (2.2) into (2.3) yields

x(1) = x*(1) + 8 (0)u, (0) (2.4)
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where
1 _ _ -1
8'(0) = B,(0) - B (0)p;'(0)D,(0)
x*(1) = a(0)x° + By (0)ub(0)
™ _ a1 2
u%(0) = Dy (0)£(0)

Now we consider a step t, 0<t<T=-1. Let

by = vy (2.5)
where

B(t) = (G(£)B' (- 1):D(t)] (2.6)

a6 = (8t =-nuw” (2.7)

B) = £(8) - G(EIX*(E) . (2.8)

In (2.6) to (2.8), the matrix B1(t ~ 1) and vectors G,(t- 1),
x* (t) are defined from recurrent relations, which will be obtained
below.

By construction, the matrix D(t) contains m linearly inde-
pendent columns ai(t). The matrix formed by these columns will

be denoted as ﬁo(t): the matrix from the rest of the columns --
as ﬁl‘t)‘ Thus, (2.5) can be rewritten as

) (t)ﬁo(t) + 131(t)ﬁ1(t) = £(t)

0

D) = (By(t);D, ()]
Hence

~ - A-1 A Am ~ ~

uy(t) = Dy (£)E£(e) = Dy (£)Dy(E)u,(t) . (2.9)
Oor

Gy (8) = ag(e) - d(e)d,(e) (2.10)

where
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Ak a1

@, (t) = B vty (2.11)

o8 = BB, () . (2.12)
Let

x(8) = x*(e) + B (e= D, (k- (2.13)

where x*(t) and B1(t-1) will be defined later.
By substituting (2.14) into state eguation (1.1), we obtain
x(t+1) = A(e)x*(£) + B(r)a(e) , (2.14)
where
B(t) = (A(R)B' (£-1);B(E)] (2.15)

the vector U(t) is defined by (2.7).

Considering the representation

B(t) [130(1:);31 (g1 ,

A _ A~ A T
u(t) = [uo(t),uT(t)]

and substituting (2.10) into (2.14), we again obtain equations
(2.13) for the next step t+ 1:

x(E+1) = x*(£+1) + B (B)a, ()
where

A

x*(e+1) = a(t)x*(£) + Bo(t)ﬁs(t) , (2.16)

B'(£) = 8, () - ﬁo(t)cb(t) . (2.17)

Initial conditions for (2.14), (2.5) are
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x*(0) = x(0); a(0) = u(0)
B(0) = B(0) , D(0) = D(O) . (2.18)
The specific of such a representation of Problem 1.1 is a

recurrent determination of control 4(t), that is, using (2.7)
we optain

dte) = (4, (=1 ,u®)]T (2.19)

~ T .
[uz(t-Z),u1(t-1),u(t)] = ... = [ut(O),ut_1(1),---,ut_i(l),

ooy (6= (01"

where the vector u,
control u which are recomputed from a step i to the step t by
virtue of the procedure which was described above. The relations
(2.19) show that the vector u(t) may include components ui(r)

_i(i) is formed from those components of the

from preceding steps t=t-1,...,1,0.

Consider now the last step
By (T = NG (T =-1) + By(T=-Duy(T-1) = 2(r-1)

where 50(T - 1) is a nonsingular matrix. Let

d,(T-1) =0 , (2.20)
then
Gy(r-1 = B(r-nE@-1 . (2.21)
Determining the value of the vector Q{(T-1)= [L’EO(T-‘I),ﬁ1 a-117T
from (2.20), (2.21), one can compute the values of feasible con-

trol {u(t)} for a given set of local bases {ﬁo(t)}(t.=0,1,...,T -1.
This procedure will be called Procedure 1.

Definition 2.1: The set of m linearly independent columns
ai(t) of the matrix D(t) is called the local basis at the step t
(t=0,1,...,T=1).
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The set of all indices (i,t) associated with the components
of local basis matrix 50(t) (¢t = 0,...,T=1) will be denoted by
Io(u), and its complement with respect to I will be denoted by
fo(u).

Theorem 2.1: Let a control u be computed from Procedure I

for a given set of local bases {60(t)} with boundary conditions

Gp(r-1) = =N r-nEr-1n
d,(T-1) =0
and let
ui(t) >0 for all (1,t) € Io(u) .

Then u 18 a basic feasible control and

[+
]

{uB,uN} ’

{ug () | (1,8) €I (W}

of

{u; (£) | (4,8) €T5)} .

uN

Proof: Let W0 be the matrix which is generated by the col-

umns wi(t) of the constraint matrix W, associated with variables
ﬁo (t), that is,

Wy = [lwg (e) ] (i,£) € Ij(u) .

By construction, W, is a square matrix of dimension of mT x mT.

Por proof of the theorem, we shall need the following asser-
tion.

Lemma 2.1: The matriz W 18 nonsingular if and only i1f the

matrices ﬁo(t)(t:=0,1,...,T -~ 1) are nonsingular.
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Proof: Sufficiency. The procedure of computing {ﬁo(t)}

described above is a block modification of the Gauss method [14]
where pivot blocks are matrices ﬁo(t). The Gauss algorithm trans-
forms the matrix wo to an upper block triangular matrix with

ﬁo(t) on its diagonal:

o *
00(1) 0

"Dylt)  w

where nonzero elements of W, are denoted by .

The Gauss algorithm does not change the rank of the original
matrix [14]. In fact, the relation

IIWOI‘ = |IDO(0)I oo DT =1 (2.22)

holds, where‘lwoq is the absolute value of the determinant of a
matrix Wo. The relation (2.22) implies that, if matrices Do(t)
(t=0,1,...,T=1) are nonsingular, then the matrix W
nonsingular.

o is also

Necegsity: Suppose that k iterations of the Gauss algorithm

have been done and Wg is a matrix obtained after k iterations:

Bgto)  »

Do(1) * 0

ﬁo(k—n *

=Y
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Here ﬁg is a submatrix, generated by elements of W%vwhich are out-

side of pivot rows and columns of previous iterations. 1In this
case, the relation (2.22) should be replaced by

||w0|| = [1801 <o [Bytk- 1| | FE]

The first block-row- of ﬁg is [B(k):0]. Suppose that the ma-
trix D(k) cannot generate any nonsingular sgquare submatrix ﬁo(k)
of dimension m. This implies that the rows of the matrix D (k)

are linearly dependent and the matrix ﬁg is singular with |ﬁg|= 0.

Then |W,| =0, which contradicts the assumption of the lemma.

Thus, if the matrix L is nonsingular then at each step of
the Gauss algorithm a nonsingular matrix ﬁo(k) can be constructed.
This completes the proof of the lemma.

The proof of the theorem now follows directly. By defini-
tion, matrices ﬁo(t)(t,=0,...,T - 1) are nonsingular, which im-
plies that the matrix WO is also nonsingular and vectors wi(t),
(i,t) EIo(u), are linearly independent.

It follows from Procedure 1 that

u,(t) = 0 for all (i,£) € I (u) .

0
As u, (t) >0 for all (i,t) €I,(u), then in accordance with defini-
tion 1.2 u is a basic feasible control. This completes the proof
of the theorem.

The proof of Theorem 3.1 shows that Procedure 1 permits

operations not with the inverse W of dimension mT x mT but with

B
T inverses D01(t) of dimension m xm. Hence, Procedure 1 is basic
to this approach. However, as will be seen further, it is not

used explicitly.

In fact, as follows from the proof of the theorem, only
basic submatrices of matrices D(t) should be handled in the al-
gorithm. Besides, there is no necessity to compute local bases
at each iteration, only the updating of some of the T local bases
is needed.
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3. Control Variatien

In accordance with Theorem 2.1, the basis WB is equivalent
to the set of local bases {ﬁOB(t)}. Therefore, our aim is to
develop the simplex operations for solution of Problem 1.1 rela-

tive to the set of local bases {ﬁOB(t)}.

For a given basic feasible control u= {uB,uN}, let us fix
the pair of indices (j,t1) €1I such that the corresponding column
dj(t1) of the matrix D(t,) is not in the basis, that is, (j,t1)
GIN(u).

We first consider the procedure for selection of the column
dj(t1) to be introduced into the basis, that is, into the set of
local bases {ﬁOB(t)}. In accordance with Section 2, the con-
straints (1.3) at step t can bhe written as

Byp (£) g () + Dipte)a p(e) = B(¢) (3.1)

where

(Dyg (£):Dyg(t)] ﬁB(t) ’

(g (£) 50,5 (€)] = Up(t) ,  upl(t) >0 .

Here the subscript B denotes submatrices and vectors as-

sociated with a given basis W_ or {ﬁOB(t)}.

B

Let a vector GSB(t” €E™ define representation of the vec-
tor dj(t1) in terms of column-vectors of the matrix 6OB(t1)’ that
is,

AR _ a=1 ‘
voB(t1) = DOB(t1)dj(t1) . (3.2)
Taking into account (3.2), we can rewrite (3.1) as

A A AR A ~ N
Dgp () [uOB(t1) -evoa(t.‘)] + Diglt)uplty) + edj () = £t (3.3

where 9 is a real number.
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It is evident that the equality (3.3) is true for any value
of the parameter 6. It follows from (3.3) that a new control
ue (t1) is introduced at step t,:

Pep = [Beiileiidep] T,
where
Gpg(ty) = Ggp(ty) = 8955 (k)
wlgey) = 4,0 (3.4)
&t = [0,...08,...,017 .

By substituting the control ﬁe(t.l) in state equation (2.14),

we obtain

e+ = x(e e ) - eyt e e (3.5)

where

* 1 ~
x(gy + 1) xT (g, + 1) +BB(t1)u1B(t1) ’

(3.6)
* = A o% -
y e+ ) = Bp (£)TF () = by (k) .

Substituting (3.5) into formulation (2.5) of constraints (1.3),
we see that they will be true if

- ~8
Dg(tq + Nug(t, +1) - 9G(t, + Ny* (£, + 1) = E(t,+1) . (3.7)

Let us express the vector -G(t1 + 1)17"'(t1 +1) in terms of

column vectors of the matrix ﬁOB (t1 +1):
ok ~ _A-] *
VOB(t1+1) = DOB(t1+1)G(t1+1)Y (g, + 1) . (3.8)
Considering (3.8), the equality (3.7) can be rewritten as

~ A~ ot ]
DOB(t1 + 1) I:uOB(t1 + 1) -evos(t1 +1):|
A R _ "
+D]B(t1+1)u1B(t1+1) eG(t1+1)y (t1+1)

=%(t1+1) .
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We see that the introduction of the compensating term into
the equality (3.7) is equivalent to the introduction of a new

control ﬁe(t + 1) at step £+ 1:

1

~0 _ a8 .A8 LoB

u (t1+1) = [uOB(t1+1),u1B(t1+1),uN(t1+1)] .
where

~8 _ A - ao*

uOB(t1+1) -uOB(t1+1) GVOB(t1+1)

) _ oA

um(t1 +1) = u1B(t1 +1) (3.9)

G.g(t1+1) =0 .

Thus, the variation of the control (3.4) at step £y where
vector 683(t1) is defined by (3.2), induces a variation of con-

trol (3.9) at the next steps t=t, +1, £, +2,...,T -2 with

1 1

935(0) = =By (DG (ny* (1) . (3.10)

Vectors y* (1) are satisfied to the following difference
equation:

yP(r+ 1) = A Y () + Byp (1T, (1) (3.11)

where vectors GSB(T) (t=t,+1,...,T~-1) are defined from (3.10)
and vector 653“‘1) is defined from (3.2).

Now we consider the last step:

ﬁB(T-1) [GB(T-H -eGB(T-n]- 9G(T - Dy*(T-1) (3.12)
= £(T-1)

As u= {uB,O} is a basic feasible control, then by virtue of
Theorem 2.1, the matrix 5B(T - 1) is nonsingular and

DB(T—1) =DOB(T-1) .
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Therefore (3.12) yields that

Vg T=1) = ¥8,(T-1) = B l(T- NG~y r-1) .

By construction, the structure of vector GB(T»H is simi-
lar to the structure of wvector ﬁB(T- 1). Hence, define a vector:

\'?B(T-1) = [V1B(T-2),VB(T-1)] (3.13)

where vector Vg (T -1) is associated with the variation of vector
uB(T - 1), vector 91B(T -2) is associated with the variation of
vector u.IB(T -2):

~8 _ A _ _al _
u.IB(T—Z) = u1B(T 2) 6V1B(T 2) .

To satisfy the constraints at step T -2, the additional term
-eﬁ.lB(T_— 2)v,g(T - 2) must be compensated by the additional vari-

ation v (T - 2) of control GOB (T-2):

0B

~9 - = 4 - —a l5* - -1 -
uOB(T 2) = uOB(T 2) -9 [VOB(T 2) VOB(T Z)J ’
where

~1 A= Loy A RPN - _ oy _
VOB(T—Z) —DOB(T 2)D1B(T 2)V1B(T 2) = be(T 2)V1B(T 2) .

~ S ~1 ;
Let VOB(T 2) VOB(T 2) VOB(T 2). As in the case of .
(2.7), we can write

(T -2) ["os (T-2),5,5(T- z)]

X (3.14)
[vm(r = 3) vy (T - 2)] )

By induction, we find .that in order to satisfy the constraints
(1.2) for all ¢ and t=0,1,...,T~-1, we must define
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~ ~ - _ad _ _ _ . _ - Bmoo
DB(T-1)[uB(T 1) SVB(T 1)1 8G(T - N y* (T - 1) £(T~-1)

Bog (T) [Agg (T) = 8 (F35(1) = 9o (1)1 + B (1) (8,5 (1) - 87,5 (1)]

- 8G(T)y* (1) = (1) if £ 41 <T<T-2 ,

~ ~ ~a ~1
DOB(t1)[uOB(t1) —S(VOB(t1) -VOB(t1)ﬂ
+ D1B(t1)[u13(t1) '9V1B(t1)] + edj (tl) = f(t1) (3.15)

- - A1 ~ - -
DOB(T) [uOB(r) +8vop(m)] + Dyp(t) [uyg (1) = 8v, ()]

=81 if 0T <ty -1

The vectors Gsa(r)must satisfy the following relations:

ot Al m o - * o = o -
Vop(T = 1) = =Dyp(T=NG(T=- Ny (T=1) = v (T=-1) ,
8 _ -A—1 * . -
Vop(T) = “Dyg(mIG(T)y" (1) if t, + 1< T <T=-2 ,
“a _ Aw
Vop(tq) = Dgg(ty)dy(ty)

The vectors GSB(T) satisfy the relations (0<T<T-2):
Sl (= BT (B, (1) (1) = O (1), (T
o8'") = YoB 1{TVyp (™) = 25 (T)vyp(T)

Thus the variation QOB(T) of control ﬁOB(T)(T =0,1,...,T=-1)

is defined by:

I - = A. -

VOB(T 1) VOB(T 1y
7 = y* - i 1 <7 -2 .16
VOB(T) Vo (T) Vop (1), if £+ 127 <T (3 )

- A1

VOB(T) = -vOB(T) p if o<tX< ty

Using (3.12) and (3.13) we can define the values of vectors
{VB(T)} associated with the variation of control {uB(r)}. Thus,
if a new column w.(t1) associated with a column dj(t1) is intro-
duced into the basis Wg, then the variation of a basic feasible

control {uB,uN} is defined by (cf. (1.15)):
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~0 _ oA _ al
uOB(T) = uoB(r) evo

B(1') . (3.17)
We shall refer to the determining of the variation {Ge(r)}

of a feasible control {u(t)} as Procedure 2. The variation{ﬁe(rn

is satisfied to the constraints (1.1) to (1.3) of Problem 1.1 by

definition. As {u(1)} is a feasible control, then the constraints

(1.4) will also be satisfied for sufficiently small 6 > 0. Hence

the control {&° (1)} is feasible if 0<@ <8

defined by relations (cf. (1.16)):

0" The value of 60 is

ﬁoi(r)

L = -mi p—— ; 3.18
(£,t,) arg-min For (0 ( )

Upg (E3)
= R ——
O Vo leg)

’

where the minimum if taken over all (i,T) EIO(u),GOi(r) >0 and

uOi(r), VOi(T) are the i-th components of vectors uOB(r), VOB(T).

The equality (3.18) follows from (1.4) and (3.16); minimum
in (3.18) is achieved at single pair (&,t;) in the nondegenerate
case.

Let us now define the variation of trajectory {x(t)}. Con-
sidering (3.5), (3.13) and (3.15), we find that the variation of
trajectory xe(r) =x(t) -8y(t)(T=1,...,T) will be defined by

— *
y(T) = y (T) (3.19)

y(T+1) = y*(1+1) + a;mG (1) (t=17-2,...,1,0)

B

where the vectors y*(1) =0 if 0<rt <t,, and yrT+ ) =Aa(n)y*(T)
~ A% .
+BOB(T)VOB(T), if t1 +1<T<T~1.
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4, Objective Function Variation

The special feasible variation of a basic feasible control
has been built up in the previous section. Now we determine the
corresponding variation of the objective function (1.5) when a
column vector dj (t1), (j,t.l) EIN(u) is introduced in the basis W

B
In accordance with (3.19),

3,@% = am=x@ - samy*m .
Denote the variation of the objective function by

At 203, = @) -3 @ze = amytm L e

where indices (j.,t;) show that the variation has been caused by
introduction of the columm dj(t1), (j,t1) EIN(u) to the basis.

By substituting y*(T) from (3.11) with T = T-1 into (4.1},
we obtain

— - * - a - ot J -
Aj(t1) = a(T)A(T=-1)y (T~-1) + a(T)BQB(T 1)VQB(T 1) . (4.2)
Considering (3.16), (2.15) and (1.12), we rewrite (4.2) as

* 1 A
Aj(t1) = gq(T-1Ny (T=-1) +q(T-1)BB(T—2)V1B(T-2) (4.3)
+q(T)BB(T-1)vB(T-1) ’

where BB (T - 1) is the matrix generated by basis columns of the

matrix B(T - 1), variation Vg (T~1) is associated with basic com-
ponents of the vector uB(T -1).

By substituting
*m o - _ LI A Ay Ok -
y (T=-1) A(T-2)y (T-2) + BOB(T 2.)VOB(T 2)

into (4.3) and again using (1.12), we obtain

* A Ak
Aj(t1) q(T-2)y (T-2) +q(T-1)BOB(T-2)VOB(T-2)

+q(T—1)Bl’3(T-2)G (T - 2) + Q(MBL(T-Nv(T-1) .

1B
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Considering (2.17) and (3.16), we can express Aj(t1) in the
form

» A ~
856p) = a(T-2)y"(T-2) + q(T - DBy (T =23 (T-2)

+ q(T-1)ﬁ1B(T-2)G1B(T—2) + q(T)Bg(T - vy (T-1) .
Hence and from (2.15) it follows that

85(ty) = @(T-2)y*(T-2) + q(T - DBL(T-2)¥y(T-2)

+q(T)BB(T-1)vB(T-1) .

Eventually by induction we obtain for all (j,t1) EIN(u):
T=-1
Aj(t1) = r'—Z'O gl(t+ 1)BB(r)vB(r) - alty+Dbsle,) . (4.5)

One can see that vectors vB(r)(r= 0,1,...,T-1) are a solu-
tion of the equations system (1.13). The solution is obtained by
means of the compact inverse matrix Procedure 2, which is analo-
gous to Procedure 1 of basic feasible control computation.

Comoaring (&4.5) and (1.14), we can write
T=-1

120 q(t+ 1) Bg(1)vg (1)

8;(Eq) = 25(60) = e5(ey)

- qlt;+ bs(e) .

Using the dual Problem 1.2, we can now obtain another form
for the definition of the objective function variation Aj(t1).
This form corresponds to (%.17) and is more convenient in prac-
tice.

By substituting the expression G;B(T -1) from (3.10) at
tT=T=-1 into (4.2), one can obtain

by(ty) = a(MA(T-Ny*(T-1) - a(T)ﬁOB(T-nﬁg;(T-nG(T-1)y*(T-1) .

Define a vector A(T-1) as A(T-1) =a('r)§03('r-1)65;('r-1).
Then Aj(t1) =p(T-1)y*(T-1), where the vector p(T -1) is com-
puted from dual state equation (1.6) with boundary condition
(1.7) at £t=T~1.
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By induction we obtain
Aj(t1) = A(t1)dj(t1) - plt, +1)bj(t1) , (j,t1) e IN(u) ’

where

-1
A(t) = P(t+1)§33(t)1505(t) (4.6)

and the variables A(t), p(t + 1) satisfy the dual state equation
(1.6) with boundary condition (1.7).

Theorem 5.1: Vectors {A(t)} computed from (4.6), (1.6) and
(1.7) are the simplex—multipliers for the basis L

Proof: It is sufficient to show, in accordance with the de-
finition of simplex-multipliers [1], that vectors A(t) satisfy
the dual constraints (1.8) as equalities for basic indices; that

is,
j j - r ', .

For this, let us consider the constraints (1.8) of the dual

Problem 2.1 relative to the current basis W, of the primal Prob-

B
lem 1.1. They can be written at t=0 as

A(0)D5(0) = p(1)BL(0) . (4.7)

As a nonsingular matrix SOB(O) can be generated by columns
of the matrix DB(O), then (4.7) can be rewritten as

A (0)Byp(0) = p(1)B,,(0)

A(O)D1B(0) = 9(1)818(0) .
Now we obtain

A ~Aet ~ A
P(1) [Bog (0)553(018,5(0) - Byp (1] = 0
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or, in accordance with (2.17),
p(1)BL(0) = 0 . (4.8)

Using the state equations (1.6), the conditions (4.8) can be re-~
written as

P(2)A(1BL(0) = A(NG(1BL(O) =0 .
Hence and from (1.8), we obtain for the next step,

A (1)

A ae1
p(2)Byg(1)Bgz(0) .

By induction,

- a=1
AlE) = p(t-+1)ﬁoB(t)noB(t)
holds for all t=1,2,...,T -1, where matrices QOB(t) and ﬁ;;(t)
are defined in Section 2. This completes the proof.
Define Procedure 3 by formulas (4.6), (1.6), and (1.7). Pro-

cedure 3 allows computation of the values of simplex-multipliers
{x(t)} for the current basis Wy

It should be noted that for computing both the values of
vectors {A(t),p(t+ 1)} and the values of vectors {u(t),x(t)},
. A= a ~ 1
one can use the same matrices DOB(t), D1B(t)’ BOB(t), and BB(t).

5., Conclusion

As has been shown above, the basis Wy of dimension mT x mT
of the equivalent Problem 1.1a can be replaced by the system of
T local bases {ﬁOB(t)} of dimensions mxm. In this case, all
simnlex operations (primal, dual solutions, pricing, etc.) can

be effectively implemented using this system of local bases.

On the other hand, the original Problem 1.1 can be considered
as a structured linear programming problem with constraints (1.1)
to (1.4). The basic matrix B for this problem has dimension
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(m+n)Tx (m+n)T. One can easily see that the basic control
u= {uB,uN}, determined from Procedure 1 of Section 2 with the
corresponding trajectory x, is a basic solution for linear pro-
gramming Problem 1.1.

The separate onerations and the whole algorithm of the
dynamic simplex method will be considered in the next part.
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II. THE DYNAMIC SIMPLEX METHOD: A BASIS FACTORIZATION APPROACH

1. Introduction

In this part, separate operations and the general scheme of
the dynamic simplex-method will be described. An illustrative
numerical example and the theoretical evaluation of the algorithm
are given. In conclusion, we consider briefly important exten-
sions of the algorithm (non-negative state constraints, time de-

lays in state and control variables, etc.).

For convenience, we repeat the statement of the problem be-
low [1].

Problem 1.1: Find a control u={u(0),...,u{t-1)} and a
corresponding trajectory x={x(0),...,x(T)} satisfying the state
equations

x(t+1) = A(t)x(t) + B(t)u(t) (1.1)

with initial condition

x(0) = x° (1.2)

and constraints

G(t)x(t) + B(t)u(t) f(t) (1.3)

(1.4)

v
(=]

u(t)
which maximize the objective function

Jq(u) = a(Trx(T) . (1.5)

Here we use the same notations as in Part I.

Problem 7.1 can be considered as some "large" linear program=-
ming problem with constraints (1.1) to (1.4). The constraint
matrix of Problem 1.1 has a staircase structure and dimension
(r+n)Tx (m+n)T; decision variables are {u,x} = {uk(t) ,xi(t +1)
(k=1,...,r; i=1%1,...,n; t=0,...,T=-1}.
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We shall denote a basic feasible solution of Problem 1.1 by
{uB,x} (the free variables x are always in a basis). Evidently,
up is a basic feasible control in the sense of Definition 1.2

[11.

2. Basis Factorization Approach

The method which was considered in [1], can be interpreted
as some basis factorization approach to Problem 1.1's solution.
Below we describe the method in these terms.

We need the following assertion.

Theorem 2.1: [2]: Let a non-gsingular 3square matrix F be par-

titioned into blocks
m n

;; :E: jm
F=leeerns (2.1)
2 : R Jin

where H 18 a non-singular matriz.

Then F is represented as the product of upper and lower

triangular matrices in the form

m n
_ H:O I_ ¢ m
F=F°U=[...I...:|'[..m.l...:l} , (2.2)
Q:c 0.1 lin
where
-1 -
C=R-QH P , lcl #0 , ¢=H1P, (2.3)
I and I, are the identity matrices of appropriate dimensions;

the inverse of each of the factors is readily obtained and their

product yields the inverse of F:

S I I e T



-330-

Theorem 2.1 is not stated in ({2] in exnlicit form, but di-
rectly follows from results given in [2].

We now apply the theorem to Problem 1.1. The basis matrix
B of Problem 1.1 has the same structure as the constraint matrix:

Dy (0)
Bg(0) -I
G(1)  Dg(1)
A(1)  Bg(1) -I
B = . (2.5)
-1
G(T-1)  Dg(T-1)
A(T=-1) BB(T-1) -1

where I is the identity matrix of dimension n xn, DB(t) and BB(t)
are submatrices, formed by basic columns of the constraint matrix.

As the rows of DB(O) are linearly independent, one can choose
m linearly independent columns in the matrix DB(O) . These columns
generate the matrix 603(0).

By column permutation, we can transform the matrix DB(O) and
obtain DB(O) =[DOB(0);D1B(0)], where 613(0) is the submatrix, con-
sisting of the columns of the matrix DB(O) which are not in the
matrix DOB(O).

The column permutation of the matrix DB(O) imolies the corre-
sponding partition of the matrix BB(O): BB(O) =[BOB(0);B1B(0)].

In accordance with Theorem 2.1, one can show that the matrix
B is expressed as

(2.6)

where UO is the upper triangular matrix whose dimensions conform

with those of B.
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In the matrix UO' the dimension and location of the matrix
9. (0) = D.1(0)D,_(0)
B - Y0B 1B

coincide with the dimension and location of the matrix 513(0) in
B. The matrix B, is obtained from the matrix B through replace-
m?nt [D B(0)7D1§(0)T by [DOB(O);OI and §1B(0) by
BB(O) = 318(0) - BOB(O)‘DB(O) .

In the matrix EO' we permute the submatrix -I and the sub-
matrix B;(O). Then we permute the submatrices G(1) and A(1) in

the matrix B, and the submatrix ¢B(0) in the matrix U0 resvectively.

0
By analogy with (2.6), we can write that EO =§1V0, where
V, is the upper triangular matrix of the matrix EO dimension:

-

i

1
. -BB(O)

1 _ = _ A
BB(O) = B1B(0) BOB(0)¢B(0) ’
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§OB(O) -I
]
G(1) G(1)Bg(0) Dy(1)
a(m amsl) By -T
G(2) Dy(2)
A(2) aB(Z) -I

-

ol
]

"G(r-1)Dy (1-1)
A(-1EB (T-1) T

The dimension and location of the matrix -B;(O) in V0 coin-
cide with the dimension and location of the matrix B;(O) in §0.
The matrix §1 is obtained from §0 by the replacement of submatrices

(-1 :s;<0)1 by [-I:0] ,

[G(1) : 0 :DB(1)] by [G(1) :G(1)B,(0) :DB(1)] B

[vo B v s Y

[A(1) : 0 :BB(1)] by [A(1) : A(1)B,(0) : BB(1ﬂ

In accordance with Theorem 2.1, a matrix, obtained from the
matrix §1 by cutting out the rows coinciding with the rows of sub-
matrices DOB(O) and BoB(O) and by cuttifg out the columns coin=-
ciding with the columns of submatrices DOB(O) and G(1), is non-
singular. Consequently, the rows of the matrix

;
[G(1)BB(0) .DB(1)]

are linearly independent, and by column permutation, this matrix
can be reduced to the form

1 a a
[G(1)BB(0) :DB(1)] = [DOB(1) :Dg(M1
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where the matrix 303(1) is nonsingular and the matrix 613(1) is
generated by columns [G(1)B;(0) :D(1)}, which are not in the ma-
trix DOB(1).

The matrices
1 _ ra . a
[A(1)BB(0) :BB(1)] = [305(1) .B1B(1)]

and ¢;(0) in matrix U,, as well as the matrix -851(0) in the ma-
trix Vyr are partitioned similarly.

Proceeding in a similar way, we obtain

= *

= v = B*C
B B T-2UT-2 ceeas VOU0 B0 , (2.7)
where
—
Bog (0 ]
BOB(O) -I .
G(1) ?OB(ﬂ
. A1) BOB(1) -1
B = . (2.7a)

G(T-1)f>OB(’D—1)
A(T-1)BOB(TH1) ~I

where 508(t)(t= 0,...,T-1) is a sgquare non-singular matrix of
dimension m xm and is formed either by columns of the matrix D(t)
or by some columns of matrices D(t)(t=0,...,t-1), which are re-
computed to step t during factorization process. Evidently, the
matrices BOB(t) (t=0,1,...,T~1), obtained in such a way, coin-
cide with the local bases, which were defined in [1].
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where ¢i(t) and -Bi(t) correspond to those basic control variables
uB(i), whigh enter loqal basis 508(j). Location of rows of sub-
matrices ¢i(t) and -Bi(t) correspond to the location of rows of
submatrices BOB(t) and ﬁoB(t) in B*.

We denote the non-zero columns in the right corners of the

. 1
matrices Ut and Vt by ¢B(t) and BB(t).

= [t j T-1
¢B(t) = [og (£} ... @7(8) ... oL (t)]
1 = fopttl _nJ _aT-1
BB(t) = [ Bo () ... Bi(t) e Bt (t)] .

By construction, these matrices are defined from

A

s5(t) = D

-1
0B

1, A
By (t) B () - ﬁoa(t)¢3(t) . (2.9)

(t)D1B(t) ’ (2.8)

One can see that these matrices conform with the matrices
defined by fomulas (2.12) and (2.17)in [1].

Taking into account the permutation of basis columns in the

factorization process, we can write the basic variables as
{ug,x} = {855 (0),x(1),8pp (1), ..., 8,5 (T=1),x(T)}

where vector GOB(t) corresponds to matrix D..(t) (t =0,1,...,T=-1).

QB
At each simplex iteration, it is necessary to solve three
system of linear equations for:

(1) determination of a basic solution;

(2) computation of coefficients {v,y} which are the repre-
sentation of the incoming vector

— T T T
Yj (t1) - (Ol--iloldj (t1)lbj (t1)lol"'lo)

in terms of the basis;

(3) determination of the simplex-multipliers.
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Now we describe these procedures for factorized representation
of the basis. We single out the following procedures: the pri-

mal solution, the dual solution; pricing and updating.

3. pPrimal Solution

Vector X==(uB,x) is calculated from the solution of the sys-
tem

U,X =D

v = a*nw = n*
Bx = B'ux = B’V _, ... U, , (3.1)

where b is the constraint vector of Problem 1.1.

Denote

*
X =U0UX ;

then the calculation of the vector X reduces to subsequent solu-
tion of two systems of linear equations in forward and backward

runs:

B*x* = b , (3.2)

Ux = x* . (3.3)

The solution of (3.2) is determined by recurrent formulas:

GSB(t) = ﬁa;(t) (£(t) =G(E)x*(£)) (t=0,...,T=1) ,

* - * 8 he = -

x (£+1) = A(E)x (£) + BOB(t)uOB(t) (t=0,...,T-1) , (3.4)
x*(0) = x(0) .

The system (3.3), considering (2.3), can be written as

-1 -1 *
X = UO e VT-2X .
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It is easy to see that the matrices U;1 and V;1 are obtained
from the matrices Ut and Vt by simply changing the signs of the
elements which are above the main diagonal. Therefore the solu-
tion of the system (3.3) reduces to the recurrent formulas:

2(T) = x*(T) ,

(T =1) = u*(T-1 ,

(3.5)
. tET T-1 ] .
x(T) = x (t) + [By (t) : 0Jun g (3) ,» (£=T-1,...,1)
i=0 jgt * 08
A o t TE1 3 R
Uan (t) = us_ (t) = [e7 (£) : 0lu, g (), (£=T-2,...,0)
0B 0B iZO j=E+1 i 0B

Here the notation [Bi(t) : 0] and [oi(t) : 0] denote that the ma-
trices Bi(t) and @i(T) are augmented by zeros, if necessary, so

that the matrices conform with multiplying.

The coefficients

Yj(t1) = (vOB(O),y(1),voB(1),...,y(T)) ’

which represent the veggtor Yj(t1) in terms of the basis, are cal-

culated from the solution of the system

BYj(t1) = Yj(t1) . ’

On the forward run, we £ind the vector sequence (v*,y¥*):
ot ]

VoB
y*e+1)

AR
VoB

* _ A ~a _
y (e 1) = Bog (e vgg (t)) =byley)

() =0 ,
0

’ (t=0:o--rt -1) ’

]
a1
(t)) = Bglepdytey) (3.6)

o* = _p=1 *
voptt) = -DggltiG(t)y ()

yrE+ 1) = A(R)yt(e) + Byp(t)08g(t), (=t +1,...,T-1)

1
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On the backward run, we find vector seqguence (v,y):

y(T) = y*(T) ,
~ _ * _
VOB (T~1) = VOB(T 1) ’
t=1 T=1 .
y(e) = y™ ) + [ 7 [BI(t) :01%,5(5), (3.7)
i=0 j=t €=T=1,...,1) ,
I N (I
T (t) = vF o (t) - (83 (£) : 019, (5)
0B 0B ifo jeber 1 0B

(t=T-2,...,0)

For given sequences 4 and v, the pair of indices (9.,t2) which
correspond to the outgoing vector, is defined by

T, (1) 3., (t)
8p = min g = A (3.8)
(i, 1) 0i 0g' 72
GOi(r)>o

4, Dual Solution

We define (n +m)T-vector ¢ = {x,p} as
c, = 7B (4.1)

where B is a basi® matrix (2.5) and cg=1{0,...,0,a(T)}. From
(4.1) and representation (2.7) of the basis matrix B, we can cal-
culate the simplex-multipliers {A,p}={A(0),p(1),...,A(T-1),p(T)}

in a similar way using the same matrices B B(t) and ﬁa;(t):

0

p(T) = a(T) ,

- 5 (6] a7 -
Alt) = p(e+ 1) By (£)Dgp(t), (t=T-1,...,0) (4.2)
o(t) = p(t+ 1)A(t) - A(t)G(t), (t=T=1,...,1) .
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One can see that the formulas (3.4) to (3.7) are the explicit
expression of Procedure 1 [1] for determination of basic variables
and coefficients, expressing a column not in the basis by the
basis columns. The formulas (4.2) for determination of simplex-
multipliers coincide with the formulas of Procedure 3 [1].

5. EBricing

The pricing procedure is now constructed straightforwardly.
To price out a vector dj(t) which is not in the basis, we use
formulas [1]:

Aj(t) = X(t)dj(t) - p(t+1)bj(t) (5.1)

where the simplex-multipliers A(t) and p(t+1) are defined from
(u.2).

It should be noted that the method requires only partial
pricing: that is, to determine A(t,) and p(t,+1), which are needed
for pricing out the nonbasic components of vector u(t1), one has
to calculate vectors A(t) and p(t+1) only for t = T-1,T-2,...,
t1+1. These computations require only a part of the basis inverse
representation, in particular, only a few of the local bases.

In a standard approach it is generally not possible to compute
part of the components of the simplex-multipliet vector without
computing the whole vector.

6. Updating

The pricing procedure of computing the values Xj(t) for vec-
tors dj (t), (3,t) EIN(u) , which are not in the basis allows us
to define the vector to be introduced into the basis and the vec-
tor to be removed from the basis.

Let dj(t1) be the ingoing column vector and aoz(tz) be the
outgoing column vector. Here d-(t1) is the j-th nonbasic column
of the matrix D(t,) and aoz(tz) is the 2-th column of the matrix
Dgplty) s 02ty, £y <T-1.
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Replacing the vector d (t ) by the vector doz(t ) implies
the updating of the old system of local basis {DOB(t)} by a new
system of local bases {DOB(t)}'

As in the case of the static simplex method, the updating
procedure must be done efficiently as it constitutes the main
effort of each iterative cycle of the algorithm.

In the dynamic simplex method, we operate with the system
of inverses {53;(t)(t= 0,1,...,T=-1)} of local bases. Hence the
efficiency of the method will be directly defined by the updating
scheme of the inverses {D (t)}

The main complications of the updating procedure in the
dynamic case is the fact that, first, the updating of a local
basis at step t can change the subsequent local bases 603(1)
(T=t+1,...,T-1) and that, sec?nd, the outgoing vector aoz(tz)
may belong to the local basis Doa(tz’ at another step t2, tzftﬁ

The theorem below gives a sufficient condition when the
replacement of a basis column in a local basis ﬁoB(t) does not
change the other local bases.

Theorem 6.1: The replacement of the i-th column in a loecal
basis 608(t) does not change the other local bases, if the i-th
row of the matriz dy(t), where ¢,(t) defined by (2.8), vanishes.

Proof: When we replace the i-th column in the matrix ﬁ (t),
then in accordance with (2.7), the updating of the matrix ¢B(t)
will be similar to the updating of the inverse D (t), that is,
the i-th pivot row of the matrix is added to the other row with

some coefficients [3].

Therefore, if the i-th row of the matrix QB(t) is zero, the
matrix ¢p(t) will not change. In accordance with (2.9), the
matrix B (t) does not change either. Considering the construc-
tion of matrlces DoB(t) at next steps, we find that all subsequent
local bases DOB(C) (t=t+1,t+2,...,T~1) also do not change.
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Consequence_£6.1: If an element ﬁi.(t) of the matrix 9 (t)

is zero, then the replacement of the i-th column in the local
basis ﬁoa(t) does not change the j-th column in the matrix B;(t).

Now let us consider the interchange of the 2-th column of
local basis BOB(t) wit?_? column of local basis 50 (t +1) and
find how the inverses DOB(T) and matrices @B(r), BB(T)
(tr=t,...,T-1) are updated at this interchange. For this, we
need the following theorem.

Theorem 6.2: Let the k~th colwnn of submatriz [g] of the ma-
trixz F in (2.1) be interchanged with the i-th column of submatricz
[g] and let the element by of the matrizx @4=H_1P be not zero
(pivoting element). Then, denoting the updated submatrices in F

de H', Q', P' and R', the following relations hold:

(1) @Y =gu"" (6.1)

where Ep 18 an elementary (mxm) column matrixz wWith clements of

the non-zero X—th column:

ni=-ﬁ (i=1,...,n, 1#¥%k)

R

ko %y

(ii) @' =E. &, i # 4, ¢ = [n n T (6.2)
i k¥i ) TEARREAL ' .

€ =g, (6.3)

whers @i i8 the i-th column of &, E, 18 an elementary (nxn) row
matriz with elements of the non-zero L-th row egual to P
(i=1,...,n);

(1ii) c'= CEj (6.4)

-1 . N .
where E, 13 an elementary (n xn) row matrix with elements of
the non-zero L-th row:
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[ I
ni=—¢—k1— (1=1,0..,n:1#2)
ke
NN
. Ok

Proof: Formulas (6.1) and (6.2) are the basis updating for-
mulas in the simplex method [3]. Now, to prove (6.3): the column
permutations of the matrix F can be written as a matrix product
1?' = FT, where

& : T

0... I ...1 m
I R PP U P .

. b .
1... 7 ...0 n

_ : hl

k 2
As T—1 = T, then §-1 = TF_1. Taking into account the partitioning

of the matrices and using Theorem 2.1, we obtain

[ =XEEN-RRRE ]|

1900
—

The relation (6.4) follows directly from (6.3). This comoletes
the proof of the theorem.
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Now let ¢1 (t) #0 be the pivoting element of the matrix
¢B(t), which correspond to the g-th component of the vector
uOB(t +1). According to T&eorem 6.2, at the interchange of the
2=th column of the matrix DOB(t) with the g-th column of the ma-
trix ﬁ1a(t), the inverse 6aé(t) is updated by premultiplying on
the elementary matrix. The elementary matrix has dimension mxm
and differs from the identity matrix by the 2-th column with

components [3]:
¢, ()

ny = - ¢_1‘Lm. (i=1,...,m i#2)

iq
= & W=D
f\i ¢1 T) B
q
The column permutation in matrices QOB(t) and §1B(t) is car-

ried out in a similar way. The matrix B;(t) is updated according

to Theorem 6.2 as
iBl(t)1* = Bl (0)E (6.5)
B B q '

where E_ is an elementary row matrix, which differs from the iden-

tity matrix by the g-th row with components

9, (t)
i : .
Ei(t) = EZ;TET v i#qg
E.(t) = = ! y i=q .
i ¢1q(t)

-1

Define now the updating of the inverses 60311)(r= t+1,...,
T=-1).

Theorem 6.3: Let ¢1q(t) #0 be the pitvoting element of the
matriz ¢p(t) (which corresponds to the q-th component of vector
uggle+ 1.

Then at the interchange of the L~th column of SOB(t) with
the q-th column of ﬁOB(t-+1) the following relations hold:
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~A=1 _ o=1a=1 .

[Dog(E+ 1" —Lq Dpg(t+ 1 (6.96)

[BOB(t+1)]' =13013(t+1)Lq (6.7)
-1 ~1

., (t+1)]' =L + L _(t+1 .8

(g ( )] q Mg * I g ) (6.8)

where L_ ©8 an elementary row (mxm) matriz whtch differs from
the unit matriz by the q-th row, and Nq i8 a matrixg which differs

from the zero matriz by the gq-th row.
The matrix B;(t+1) is not changed at this permutation, neither

are all the subgequent local bases ISOB(T) and matrices @B(r),
B;(r) (t=t+2,...,T=-1).

Proof: Taking into account the structure of the matrices
B, (t+1) and gB(t + 1), we can write (after column permutations):

3 1
Dyit+1) = [G(t+1)BB(t+1); Dg(t+1)] (6.9)
= [DOB(t+1); D1B(t+1)]
and
~ 1
BB(t+1) = [A(t+1)BB(t+1); BB(t+1)] (6.10)

= [Byg(t+1), Byp(t+ 1]

Considering (6.9) and (6.10), we obtain

[Dyg (E+ ] ' (Dt + ]! ) DQB('t+1) Dyplt+1) Lq N

[Byg (E+ 11" [Byg(t+ D] Bog(t+ 1 B+ o (611

Here [BB(t +11°, [ﬁB(t +1)]' are the updated matrices cor-
responding to the new basis; L_ is the elementary row (m xm)
matrix; Nq is them xk) matrix; I is the identity matrix of dimen-
sion (k xk).
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The right matrix in (6.11) is built up as follows: the ma=-
trix E_ in (6.5) is enlarged up to dimension (m+k) x (m+ k) in
such a way that in the added part the main diagonal contains
units and all the remaining added elements are zero; then the
elements of the g-th row are permuted in accordance with the
columns permutations of the matrix ﬁB(t+ 1), when it is parti=-

tioned on the matrices ﬁoB(t-+1) and 61B(t +1).

Multiplying the right-hand matrices in (6.11) and taking
into account their partitioning, we obtain (6.6) and (6.7). Be-

sides,
[Dyp(t+ 11" = Dyg e+ N, + Byl + ) 6121
(Byg(t+ 1% = B (e NN+ Bo(e+ ) .
According to (2.9), we have
(Bye+ 01" = Bigle+n’ = Beg(er DI B+ N1 Bgleanl  (6.13)

Substituting (6.6) and (6.7) into (6.13), we obtain

9

1 v _ A - _a ~
[BB(t+1) BOB(t+1)Nq+B1B(t+1) BOB(t:+1)LqLq

x

a1 - A
Bggft+ 1 Bogle+ N, + B+ 1)

A A A-1 ~
B1B(t+1) - BOB(t+1)DOB(t+1)D1B(t+1)

Bl (E+1)

The matrix B;(t+ 1) is not changed, therefore all the sub-

seguent local bases ﬁOB(‘t) and matrices ¢B(t) ' B;(T) (T=T+2,...,

T -~ 1) are not changed.

Finally, taking into account (6.6) and (6.12), we obtain
(6.8):

g ' [D . =
[¢B(t+1)] = [DOB(t+1)] [D1B(t+1)] LqN + L

)
. (t+1 .
gt hg D
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This procedure we shall call the interchange of the L-th
column of the matrizx D (t) with the g-th column of the matriz
B(t+1)

Now let us consider the interchange of the f-th column of
the ‘matrix ﬁOB(t) with some column of the matrix BOB(t*),
*
t >t+1.

In the &t row of the matrix @ (t), let the first non-zero
element ¢2 (t) correspond to the ba51c variable, which is recom-
puted to the local basis DOB(t ), and all elements ¢2 (t), corre-
soonding to the variables which are recomputed to local bases
o] B('r), t iT <t*, equal to zero. Now we partipion the matrices
@B(t) and B1B(t) into two parts:

@B(t) = [&,(t); @2(t)] ;
B1B(t) = [Byq(t): §12(t)] H (6.14)
1 _ 1 . 1
Bg(t) = [By(t): By(t}] .

Let the columns corresponding to the variables which are re-
computed into the local bases D (1), t<r <t*, enter the matrix
¢, (t) (311(t)), B (t)),.r-and the remalnlng columns enter the matrix
@2(t) (By,(t), a;(t)).

Then, in accordance with (6.5) and consequence 6.1, the ma-
trix B}(t) does not change at the interchange of the g-th. column
of the matrix BOB(t) with the g-th column of the matrix B, (t).
The matrix B;(t), which is defined from (6.14) is transformed in
accordance with the formula

111t = 5]
[B,(t)]" = By(B)E,

where k is the number of the column of the matrix @2(t) which
contains the element ¢, (t) The order of matrix E, is equal
to the number of columns of matrix B (t).

Let the k-th column of matrix @z(t) correspond to the k-th-
component (6.9), (6.10), the columns of matrices
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G(t+1)B)(t) and A(t+1)B)(t)
do not enter the matrices
DOB(t+1) and BOB(t+1) .

Therefore the matrices ﬁOB(t +1), QOB(t + 1) do not change.

Let us partition the matrices og(t+ 1), B;(t+ 1) and B, (£ +1)
into two submatrices

¢B(t+1) = [¢1(t+1): 02(t+1)] :
1 . 1 . onl .
BB(t+1) = [B1(t+1), Bz(t+1)1 ;
1 _ A
B1B(t+1) = [B11(t+1); B1z(t+1)] .

The columns of the matrix ¢B(t+ 1), which correspond to the same
basic elements as the columns of the matrix ¢2(t) , enter the
matrix @2 (t+1).

In accordance with the partitioning, the matrices ¢1 (t+1)
and 511 (t+ 1) are not changed by the column permutations.

The matrices 02(t+ 1) and §12(t+ 1) are updated by formulas

[d,(t+ 1)) = ¢ (t+ 1E '
X 2 2 k (6.15)
) —
[Bip(t+M)]" = Byy(t+ DE, .
As
~1 A -~
Bz(t+1) = B12(t+1) - BOB(t+1)02(t+1)
then, taking into account (6.15), we obtain
Ble+ 11" = Ble+ e (6.16)
2 . 2 k ° °

Similar reasoning is valid up to the step t*. Thus, the
interchange of the g-th column of the matrix ﬁOB(r) with k-th
column of the matrix ﬁOB(t‘) causes changes neither in the local
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bases ﬁOB(T) nor in the matrices ﬁoB(r) (tT=t+ 1,...,t* -1); the
matrices 02(1) and B;(r) are updated by formulas (6.15), (6.16)
if t+1=1(T=t+1,t+2,...,t*%=1).

At step t*, part of the columns of the matrix G(t*)B;(t*- 1)
enters the matrix SOB(t*). Therefore, the updating of the matrices
at this step reduces to the case considered above.

This procedure we shall call the interchange of the {-th
ecolumn of the matriz 50R(t) with the k=th column of the matriz
DOB(t*), where t* >t +1.

The procedures of column permutation of the matrices ﬁOB(t)
and ﬁOB(t') (t* >t+ 1) allow us to describe the updating proce=-
dure of the o0ld local bases {5OB(t)} into new ones {ﬁOB(t)}'.

When a vector aOE(tz) is replaced by a vector dj(t1), two
cases are possible.

Case_1: t,<ty

In this case, the &-th row of the matrix ¢B(t) contains a
nronzero pivot element. In fact, the index of tne outcoing vari-
able is defined by the relation (3.8). Hence the 2-th component
of the vector OOB(tZ) is not zero.

From (2.8) and (3.7), we find that
VOB(tZ) = -¢B(t2)G1B(t2) if t2 <t .

Therefore, the &~th row of the matrix ®B(t2) contains at
least one non-zero element.

Let the pivot element correspond to the j-th component of
vector ﬁOB(tz +1).

Replace the l-thAcolumn of the matrix 6OB(t2) by the j-th
column of the matrix DOB(t2-+r). This interchange does not change
the basic solution. Therefore, if t2-+r <ty the above reason-
ings are true and we can proceed with the interchanges. In re-

sult, we obtain the following case.
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Case_2: LAt
Proceeding with these subsequent interchanges, we remove the
outgoing vector into such a local basis BOB(tB)' t33_t1, which

satisfies the condition of Theorem 6.1.

If such t3
going column into the last local basis ﬁOB(T-1).

<T -1 does not exist, then we replace the out-

In turn, the outgoing column can be replaced in the local
basis DOB(t3).

Let the outgoing vector be the £-th column of the matrix
ﬁOB(t3). Before introducing the vector dj(t1) into the basis,
it is necessary to recompute it at the step t3.

In result we obtain
X 3

VoB
* = - o ¥
YUy + 1) = -by(t) + Bop(e)Fyp(ty)

Am1
(ty) = Boglepdyte)

Ve () = ~Bi(memyt(n (6.17)
y (1) =AMyt + By (meg (),

T = t1 + 1, t, + 2,...,t

1 3

In these formulas, the new local bases {ﬁOB(t)} are used.

The above considered updating of the ingoing column 4. (t )
is possible as the %~-th (pivot) element of the vector O;B(t3)
is not zero.

In fact, the i~-th element of the vector Gﬁa‘ts) is not zero,
in accordance with (3.8) and the updating formulas (6.17) coincide
with the formulas (3.6) and (3.7).

In accordance with (2.8) and (3.7)
Oop(t3) = Goplts) = ep(t)0p(ty) .

But as the Z-th row of the matrix ¢g(t,) vanishes, 9,  (t,) =082(t3)
#0. Thus a new set of local bases is obtained.
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7. General Scheme of the Dynamic Simplex Method

Let at some iteration there be known: {ﬁag(t)}, the inverse
bases; {ﬁOB(t)}, the basic feasible control; {x(t)}, the corre-
sponding trajectory:; {i(t),p(t)}, the dual variables (simplex-

multipliers).

As in the static simplex method, one can introduce artifi-
cial variables at zero iteration if necessary. 1In that case,
the zero iteration local bases are the identity matrices.

In accordance with Sections 3 to 6, the general procedure
of the dynamic simplex method comprises the following stages:

1. Choose some pair of indices (j,t1), for which Aj(t1) <0,
(j,t1) EIN(u), where A.(t1) are defined from Section 5. Usually,
a pair (j,t1) with maximal absolute value of Aj(t1) is selected.
If all Aj(t1)_10, (3, ) €I (u), then we have an optimal solution
of the problem. :

2. Define sequences of vector coefficients {v,y} from (3.6) and
(3.7).

3. Find the indices (l,tz) for the outgoing column from (3.8).
If all Y,(t) <0, then, the solution is unbounded.

4. Compute the new basic feasible control {u'(t)}:

u, (1) - SOGiB(T), (1,7) € Ig(u)
ui(r) = {8 , G = Gty
0 ’ (ilT) EIN(u)I (iIT)#(JIt1) .

5. Update the local bases:
a) set t=t,

b) if t>t then go to stage e):

1!
¢c) select the non-zero element in the pivot row of the
matrix @B(t). (The index of the pivot row equals the

index of the outgoing column).
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d) let the pivot element of the matrix @B(t) correspond
to the component of the basic control, which was re-
computed into the local basis at step t+ t. Then

- interchange the variables between local bases
DOB(t) and DOB(t+ 7)

- set t+t+1
- go tostage b;
e) if t=T -1, then go to stage g;
£f) 1if the pivot element of @B(t) is nonzero, go to c;

g) replace the column to be removed by the column to
be introduced into BOB(t).

6. Compute the dual variables {A,p} from (4.2). Go to stage 1.

It should be noted that only an outline of the algorithm is
given here. The concrete implementation of the algorithm depends
on the specifics of a problem, the type of computer, the strategy
used as to which column selected and introduced into {(or removed
from) the set of local bases, etc.

8. Degeneracy

It was assumed above that all basic feasible controls were
nondegenerate.

This assumption was necessary in order to guarantee that for
each successive set of local feasible bases, the associated value
of the objective function is larger than those that precede it.
This guarantees that we will reach the optimal solution in a
finite number of possible sets of local feasible bases.

For the degenerate case, there is the possibility of compu-
ting a 85 at step 3 of the method, for which 85 = 0. Therefore,
the selection of a vector to be removed from and a vector to be
introduced into the set of local bases will give a new basic
feasible control with the value of the objective function being
equal to the preceding one. Theoretical examples have been con-
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structed to show that in this case cycling of the procedure is
possible. 1In practical examples this has never happened (with
one possible exception). 1In order to protect against this possi-
bility, a special rule for selecting.the outgoing column can be
introduced to prevent cycling in the case of degeneracy.

Here we can use the method of overcoming degeneracy of the
simplex method [3]. For this we need the columns of the inverse
5-1 (see (2.5)). The j-th column yj of the inverse §-1 is a solu-

tion of the system of equations:
By. = e, , (8.1)

where ej is the unit vector of dimension (m+n)T with the j=-th

component egual to one.

The system (8.1) can be solved by using the factorized repre-
sentation of the basis matrix, which is similar to the primal solu-
tion procedure (Section 3).

9. Numerical Example

Experimental results of tests with the algorithm and its nu-
merical evaluation will be described in a separate paper. Here
we consider an illustrative numerical example and give a theoreti-
cal evaluation (Section 10) of the method.

We consider the problem with scalar state eguations and con-
straints (that is, n=m=1). 1In this case, the dimension of the
"global" basis matrix will be 2T x 2T, hence the corresponding
static LP problem is not a very trivial one for large T. Using
the dynamic simplex method, we do not need to invert the global
basis; what is more, we do not need, for a considered example,
to invert local bases either, because if m=1, the local bases
are simply numbers.

Problem: Given the state equations

x{(t+1) = x(t) + u(t) -~ v(r) (t=0,...,4) (9.1)
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with

x(0) =0 (9.2)
where x(t), u(t), v(t) are scalars. Find {u(0),...,u(®)},
{v(0),...,v(4)} and {x(0),...,x(5)} which satisfy (9.1), (9.2) and
constraints

x(t) + u(t) + v(t) = £(t) (9.3)

u(t) >0 ; v(t) >0
where £(0) =10; £(1) =5; £(2) =5; £(3) =10; £(4) = 5 and minimize

J = 10x(5)

The tableau form of the problem is given below

u(0) v(0) x(1) u(1) v(1) x(2) u(2) v(2) x(3) u(I) v(3) x(4) u(4) v(l) x(5)

1 1
1 1

1
-1

]
-
i
o o n o =

-1

wn O

Thus, if we solve the problem by the standard simplex method, it
is necessary to handle with 10 x 10 "global" basis at each iteration.

Now we proceed by the dynamic algorithm. Let (u(o)(O),v(O)(O),
(@ (1), % 2),09 2),x® (3),u® (3),v (3),x @), v\ 1))
be the first basic variables. The corresponding local bases

ﬁoB(t) (t=0,...,4) are the following:
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2 =1 & 40 = uwo
DV = -2 &Y = v
oSV @ =1 i Al @ =u@

O =1 5 Al @ = ud

B W) = -2 ; “‘°’<u) = v(3)

B (s) = -2 5 G5 = vy .

Note that control variable v(0) from step t = 0 enters
the local bhasis Dég)(1) at the next step t=1. As variable x(5)
does not enter the "global" basis on this iteration, it is necess-

(0)(5) which corre-

ary to introduce an additional local basis DOB

sponds to variable v(4).

The corresponding set of ¢B(t) and B;(t) (t=0,..,4) are the
following:

(0) o . 100) gy = -
0 (0) =1 5 By (0) = -2
(0) 4y = 1 . 1(0) 4y - .
0. =1 5 8% 2 (9.6)
(0) _ .
oy (4) =-0.5;

(0)(1), 0(0)(2), 1(o)(1), B1(0)(2), 31(0)(u) are zeros.

Using (3.4) and (3.5) for (9.1), (9.2) and (9.5), we obtain
the first primal solution:

(0)

u@ ) =75 ul® 2 ul@3) =25 (9.7)

]
o

2.5 vi@w =5
D=5 xD2 =5 xO@3) a5 xOu =5

v o) = 2.5 9 (3

the value of objective function: x(o) (5) =0.

As coefficients of the objective function for basic variables
are zeros, then all simplex-multipliers (according to (4.2)) are
also zeros. Therefore, we have all A, are zeros but
A(O)(x(S)) ==-10. Hence, x(5) is to bg introduced to the basis.
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Denoting coefficients GOB(t) for variables u(t), v(t) and
x(t) as a(t), B(t) and y(t) respectively, we calculate using (3.6)
and (3.7), that ‘%) (3) =-0.25; 8% (3) =0.5; 8 %) () =0.5;
y(o)(u) = ~0.25 the other u(o)(t), B(o)(t) and Y(o)(t) are zeros.

From (3.8)

(0)

2.5
8

= min 2.5, ;=2 = =10

=0.25 ' 0.25 ' 0.5
(it should be taken into account that {x}t)} are free variables).
Thus, x(1)(5) =0é0) =-10 and u(3) is to be removed from the basis.

The new primal solution will be the following

a Vo) = 7.5 ; aM2) =0

v(M(o) = viP@ =5 v =10

|
N
H
wn

Nm=s ; MN2a=5; xXM@H=5; xXNw=0 x5 =-0

Now old local bases (9.5) are updated. As variable u(3)
leaves the basis, we have to interchange variables u(3) and v(3).
3y . A = - 1 = » 3 = .
After interchange: DOB(3) =1, 08(3) =1; BB(3) 2; DOB(Q) =2;
@B(u) =0.5.

Then u(3) and v(4) should be interchanged. Hence ﬁoa(u) =1;
oy (4) =23 605(5) =4, Finally, we replace u(3) by x(5), then
By (5) =~-1.

Thus, the updated local bases are

6(1) 6(1)

0B (0 0B (3

- 5(1 -
2 Dy (W)

]
-
1
-

A (1)
Dog (M)

[
—_

(9.8)

5(1)
DOB (2)

(]
-

A1)
Dyg  (3)

|
=

We can begin new iterations now. Using (4.2), the dual solu-
tion is obtained for local bases (9.8):
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oM (5) = 10 pM(3) = 4o 2 M (1) = ¢
AWy = -1 A2y = 40 A0y =0
o' (4) = 20 pMy(2) = o (9.9)
A3y = -20 AWy =o

From (9.9) and (5.1, 2" (w(w)) =-20; 24" (u(3)) = -60;

A(1)(v(2)) = 80, the other A(1).are_zeros. Hence, variable v (2)
should be introduced into local bases. Calculating 8o for this
iteration, we find that eé1) =0 and u(2) should be removed from
the bases. As ¢é1)(2) =0 and variables u(2) and v(2) are from
the same step t =2, only local basis DOB(Z) at this step t = 2
must be updated. 1In result, 60312) =1 and the other local bases

have the same wvalues as in (9.8).. The new iteration yields

0@ (5) = 10 0@ (3 = 4o 0@ (1) = o

Ay =10 APy =ww0 @) =0

o(2) 4y = 20 p(?)(2) = 80 (9.10)
A2 3y = —20 A@ (1) = 80

and 42 (u(s)) =-20; a® (u2)) =-50; 2 (v(1)) =160; 43 (w(3))
ol
=-40; 8% (u(1y) =o0.
Hence v(1) is introduced to the local bases, =15 and

u(0) is removed from the local bases. At this iteration, the
local bases 503(0) and 303(1) are updated. In result, we obtain

(2)
8%

vBPo=10 PPy Pay-x

(3) (3) (3) (9.11)
Pm=c0 Py =25 PG = s

v (3) =65 v3 @) = 130

N w =-120 x5 = -250

and p‘¥ (2) =80; '3 (1) =160; 23 (1) =-80; 23 (0) =160, €né
other p(3)(t) and A(3)(t) are the same as in (9.10). All values
of A(3)(-) are negative now. Therefore, (9.11) is an optimal

solution.
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10. Evaluation of Algorithm

Above we considered an illustrative numerical example which
is not so easy to solve by hand using the conventional "static"
simplex method, but is very simple to handle by the dynamic al-
gorithm.

Now we give some theoretical evaluation of the dynamic sim-
plex method.

As can be seen from Section 7, for realization of the al-
gorithm it is sufficient to operate only with the matrices
= a 1
Dyg(t): op(t), Byg(t), Bg(t), G(t), A(t) (£=0,1,...,T-1).

Theorem 10.1: The number of columns of matrices @B(t) and

B;(t) does not exceed n.

Proof: Let 2T steps of the factorization process be carried

out.
Then the formula (2.7) can be rewritten as
B = §2t—1Vt-1Ut-1 - - e Vol -
On the main diagonal of the matrix §2t-1 there is the sub-
matrix
v DOB(t) D1B(t)
BOB(t) B1B(t)

The columns of the submatrix F are linearly independent as
the matrix P is nonsingular. Consequently, the number of
columns of matrices 61B(t) and §1B(t) cannot be larger than n.

Hence, one can obtain the statement of the theorem.

The matrices 5;;(t), ﬁOB(t), G(t), A(t) have dimensions
(mxm), (nxm), (mxn), (nxn)respectively. Therefore, the al-
gorithm operates only with the set of T matrices, each containing
no more than m or n columns.
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At the same time, the straightforward application of the
simplex method to Problem 1.1 (in the space of {u,x}) leads to
the necessity of operating with the basis matrix of dimension
(m+n)Tx (m+n)T or of dimension mT xmT', if the state variables

are excluded beforehand.

Thus, in some respects, the dynamic simplex method realizes
a decomposition of the problem that allows a substantial saving
inthe number of arithmetical operations and in the core memory.

As was mentioned above, the DLP Problem 1.1 can be considered
as some "large" static LP problem and thus the simplex methed can
be used for its solution. Let us find an upper estimation of a
number of iterations. At each iteration, the simplex method re-
guires no more than k2 multiplications for updating of the inverse,
where k is the number of rows of the basic matrix. Hence, the
total number of multiplications for the basis updating is no more
than (m-+n)2T2. To compute the coefficients which express the
column to be introduced into a basis in terms of columns of the
current basis, the simplex method regquires some (mi—n)zT multi-
plications.

Now we shall evaluate the number of multiplications for the
dynamic simplex method. It was shown that at one interchange,
the local bases are updated by multiplication on the elementary
column or row matrix. The interchange of columns between two
neighboring local bases 608(t) and 5OB(t-+1) requires no more
than 3(m+n) 2 multiplications. (The matrices ﬁa;(t)' ﬁoB(t),

e (t), BLl(t), BIl(t+1), By (t+1), eg(t+ 1) are updated). In
the worst case, when the outgoing column from the local bases

ﬁOB(O) is entered into the local basis 5 - 1), one needs T

(T
0B
interchanges. We assume that the average number of interchanges
is T/2. Thus the dynamic simplex method reguires approximately
1.5(m-+n)2T multiplications for local bases updating per

iteration.

Calculation of the coefficients expressing the ingoing vector
requires about (m-rn)zT multiplications. In addition, local bases
can be renresented in factorized form, thus enabling use of the
effective procedures of static LP ([3].
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Solution of Problem 1.1 by the static simplex method requires
storage of the inverse of dimension (m+n)T x (m+n)T. The dynamic
simplex method requires storage of only T matrices of dimension
(t)) and T - 1 matrices of dimension mxn (¢B(t))

A

Am
mxm (DOB(tzl BOB
and n xn (BB(t)).

Thus, comparing the estimates of the static and dynamic al-
gorithms for solution of Problem 1.1, one can see that the volume
of computation and the core memory increases linearly with T for
the dynamic algorithm and by quadratic law for the static algor-
ithm.

It is more important that only part of the local bases be
updated at each iteration. Therefore the dynamic simplex method
may turn out to be superior in comparison with a conventional
revised simplex algorithm not only because it offers a more com-
pact substitute for the basic inverse but also because it allows
the use of only a part of the basic inverse representation re-
quired at each iteration.

11. pual Algorithms

The introduction of local bases and techniques of their hand-
ling allows us to develop dual and primal-dual versions of the
dynamic simplex method. The main advantage of using the dual
methods is that the dual statements of many problems have explicit
solutions. The other is connected with the choice of different
selection strategies to the vector pair which enters and leaves
the basis.

In the primal version of the dynamic simplex method, there
are some options for choice of a column with the most negative
orice from all non~basic columns or from some set of these columns,
etc. But a column to be removed from the basis is unique in the

nondegenerate case.

Contrarily, in dual methods, there are options in the choice
of a column to be removed from the basis. It can be effectively
used in dual versions of the method. 1In practical problems, local
bases {ﬁoB(t)} can be rather large, therefore part of the local
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bases should be stored at the external storage capacities. Input-
output operations are comparatively time-consuming. Hence, to
reduce the total solution time, it is desirable to have more

pivoting operations with a given local basis.

Thus, the usage of different dual and primal-dual strategies
allows us to adjust the algorithm to the specifics of the compu-
ter to be used and to the problem to be solved.

12. Extensions

The approach considered above is flexible and allows different
extensions and generalizations. Below, we describe briefly two
of them.

First, in Problem 1.1, the state variables x(t) are considered
to be free. The case when x(t) >0 or 0< x(t) <a(t) can be treated
by the approach very easily. In fact, from the point of view of
the computer implementation of the algorithm, it is better to
handle with the multiplicative form of the inverse of

Dop
Byg(t) -I

. () 0
D

rather than with ﬁ;;(t). because the addition of the unit matrix
-I does not generate additional zeros in the "eta-file".. If x(t)
are not constrained, then by handling with the inverse of ﬁOB(t)
we can consider the rows corresponding to low blocks of ﬁOB(t),
that is, ﬁOB(t) and -I,as free. In this case, all x(t) are in
the basis.

If x(t) >0, then the state variables x(t) should be handled
in the same way as control variables u(t) >0. 1In this case, not
all x(t) will be in the basis.

Evidently, this includes the case when both state and con-
trol variables have upper bound constraints. (The inclusion of
generalized upper bound constraints is also possible).
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The second case, which has many important applications, is
DLP with time delays. Instead of (1.1) and (1.3), we have in

this case

x(e+1) = ] Alt,t )x(t-1) + ] B(t,7 Jult-1)

v "
é G(t,rv)x(t-rv) + E D(t,ru)U(t'-Tu) (12.1)
= £(t)

with given values for x(t) and u{t-1) if £t<0. Here {rv}, {Tu}

are given ordered sets of integers.

New submatrices will appear to the left from the main stair-
case of the diagonal of B* in (2.7a) (see Figure 1a and b).

X X X X X X
X X X X X X X X X
X X X X X X XX XXX
X X X X X X X X X XA XXX
X X X X X X X X XX XX
X X X X X XX XX XXX XXX
X X X X X X X X XXX X
X X X X X X X X X XXX XXX
a b c
Figure 1.

Because the main staircase structure is not changed in this
case (Figure 1), we can use the same procedure as in the case
without time delays. There will be only one difference. Now
local bases ﬁOB(t) will contain recomputed columns both from pre-
vious steps 1 <t and columns from time "delayed" matrices D(t,r)
T <t, which enter the constraints (12.1) at step t.

Thus, both of these important extensions of Problem 1.1 can
be handled by the algorithm almost without any modifications.
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The extensions considered above concern the extension of
Problem 1.1 within the DLP framework. It should be underlined
that the approach_is also applicable to solve LP problems with
general structure (such as in Figure 1, if by ¥ one means some
arbitrary matrix) ..

In this case, the approach will be related to factorization
methods considered in [4,5].

13. Conclusion

The general scheme and basic theoretical properties of the
dynamic simplex method specially developed for solution of dyna-
mic linear programs have been described and discussed.

Theoretical reasonings show that this algorithm may serve as
a base for developing effective computer codes for the solution
of DLP problems. However, the final judgment of the efficiency
of the algorithm can be made only after a definite period of its
exploitation in practice.

It should also be very interesting to compare (both from the
theoretical and the computational point of view) the approach
given in this paper with the finite-step DLP algorithms based on
the Dantzig-Wolfe decomposition principle [6,7,8] and other
methods of solving structured LP problems [4~9].
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I. Introduction

This paper describes preliminary work on an algorithm for solving
staircase-structured linear programs. Such problems often arise in the
modeling of phenomena which are naturally described as evolving over a
sequence of temporal or spatial "periods". A pure nested decomposition
algorithm transforms the problem into an ordered set of smaller problems,
one for each period, which are coordinated only through price and acti-
vity communication between adjacent periods. The process of achieving an
optimal coordination imvolves repeated solution of the individual prob-
lems. Preliminary experience has indicated that the convergence of the
pure algorithm may be slow. To accelerate this comvergence, the algorithm
is modified to enable the individual problems to communicate in an impli-
cit fashion whenever possible. This modification involves the genera-
tion of surrogate columms which are passed to subsequent periods, allow-
ing these period to parametrically adjust solutions to earlier periods.

A compact basis-inverse scheme is used to represent these parametric
variations.

Section 2 states the problem of interest and describes the pure nested
decomposition algorithm. Section 3 outlines the modified approach and

discusses some details of implementation.




-369-

2. Nested Decomposition of the Staircase Structure

2.1 The Staircase Structure

The problem of interest is

minimize g Cp X,
t=1
subject to Alx1 = b1
_Bt—lxt-l + Atxt = bt » t=2, ..., T
x, 20 » t=1, ..., T
where x, is nt x1 , At is m, X nt , and all other vectors and

matrices are of conformable dimension. This linear program is said to

be staircase-structured because the constraint matrix has the form:

4

-B A

-B

Figure 1
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Activities in period t are represented by the matrix At . The inven-
tory provided by period t to period t + 1 1is described by the matrix
—Bt . Otherwise, the activities in period t have no direct effect on

either previous or subsequent periods.

The dual of (P) is

T
(b) maximize I Tb
tt
t=1
subject to ﬂtAt - “t+lBt < Cp s t=1, ..., T~-1

"TAT'S Cr -

2.2 Nested Decomposition

Manne and Ho [7] and Glassey [5] repeatedly applied the decomposition
principle of linear programming developed by Dantzig and Wolfe [3] to
achieve a nested decomposition of (P) . A sequence of applicationms,
modifications, and improvements has led to advanced implementations by
Ho and Loute [6], who have solved some large-scale problems more rapidly
in this fashion than by directly applying commercial linear programming
to (P)

Van Slyke and Wets [8] describe an algorithm for solving (P) in the
case T = 2 which is equivalent to applying the decomposition algorithm
to (D) . Dantzig [2] ocutlined an algorithm consisting of a nested de-
composition of (D) . This paper represents preliminary work on the de-

velopment of a technique which is based on his approach.
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2.3 A Nested Decomposition Algorithm for (D)

The algorithm of Dantzig [2] consists of the following nested decom—

position:
maximize Trlbl + ﬁzbz + 113b3 + 11'4b4 EJRAAEE ﬁTbT
master
subject to mA - mB) < 2
N
”ZAZ - 1r3B2 < <y
1r3A3 - "4‘83 < cq
>su.l:::L
"p-147-1 T "pBra1 Lo
Ay Lo |
Figure 2
Let xo be multipliers for master , and let
t-1 t-1
- 0
b: b: * Bt:-lxt:-l

Then the t-th period master problem has the form

@) maximize mb, +o.f + ptﬂt

subject to A + F +
i Tehe T O T oL,

IA
[¢]

p.e

A
[

¢))
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where (Ft’ ft) and (Lt’ Zt) are, respectively, the extreme ray and

extreme point proposals generated by period t +1 . For t=1, El = bl »
and for t = T , only the terms involving o are present. Note that

each proposal is a row vector.

The dual of (Dt) is

(Pt) minimize z, =X, + et
o
subject to Ax, =b + B _ %X N
tht > ft ct
Lx +ef > Zt Y
X, >0 .

In these problems, St represents the original term bt from (P) as

modified by the inventory B supplied by the current period t - 1

t-1%t~1

= 0
. The dependence of bt om x

£
2f, and L.x + eet 2L

solution xg_ will usually be sup—

1

pressed for clarity. The constraints tht

are necessary conditions for a solution X, to not lead to future in-

feasibilities or non-optimal solutions. Accordingly, they are called

feasibility and look-ahead (optimality) cuts, respectively. The constraints
Atxt = bt + Bg-lxg—l are called the body of the constraints.

The full master problem (Dl) , which includes all possible proposals
from the future, is equivalent to (P) . Computationally, a restricted
master is maintained at each period by including proposals as they are
generated and occasionally purging old proposals which are no longer basic in

(Dt) . It will be clear from context which sets of proposals are indi-

cated by (Ft, ft) and (Lt’ Zt)
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While nested decomposition of (D) produces the problems (Dt) , it is

usually more instructive and more convenient computationally to work with
their respective duals (Pt) . In general, the problem at period t acts
as a subproblem with respect to periods 1, ..., £ - 1 | and-as a restricted
master problem with respect to periods t +1, ..., T . The communication

between the problems (Pt) can be represented schematically:

N\

master \ (Pt-l) \

{ cuts
modified )
N
sub % \ (Pt) \ }master
! [ cuts
]
| modified \
RHS 1 I
\k (i) \\ (S“b
\\\ '
|
Figure 3 l

Note that the form of the look-ahead cuts is such that they essentially
modify the objective function in each (Pt)

The act of solving one of the restricted master problems (Pt) is
called a step. If, at some step, (Pt) is infeasible, a feasibility
cut is generated and imposed on (Pt—l) . If a step terminates with a

finite optimal solution to (Pt) , a modified right-hand side for (Pt+1)

is generated. If in the latter case it is also found that
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*
where z, 1is the new optimal objective for (Pt) and 92 1 corresponds

to the most recent solution to (P ) , a look—-ahead cut is generated

t-1

which may be imposed on ( If (Pt) is found to have a class

Pey)
of solutions with objective unbounded below, a solution xg and a homo-

; 0 . .
geneous solution h.t are generated in the usual fashion. The desired

effect of providing (Pt 1) with a right-hand side of the form
0 0
3
by *B.x toBh  , @20 (3
is achieved by introducing into (Pt+l) a surrogate activity, with level
a > 0, represented by the column
0
—Btht (%)

with cost coefficient cthg . If (P) has a class of solutions with ob-
jective unbounded below, eventually a ray indicating this will be gener-

ated in (P Otherwise, a look-ahead cut will be generated in (Pt') R

)
for some t' > t , which "cuts off" the ray successively in (Pt'-l)’
ceey (Pt) .

A wide variety of computational strategies may be employed within the
framework described above. There is freedom both in the order in which
the problems (Pt) are solved and in when to pass information between
problems in the form of cuts and modified right-hand sides. Computational
experience has indicated that the rate of convergence of the algorithm
can vary significantly when different strategies are employed. This ex-
perience has also indicated that in order to attain the ease of solution

initially envisioned for this approach, signficant modifications to the

algorithm described are necessary.
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3. A Modified Nested Decomposition Approach

3.1 Passing Surrogate Colummns Forward

Suppose, at some step In the course of executing the algorithm des-
cribed in Section 2.3, a finite optimal solution to (Pt) is obtained.
The optimal basis must include Bt and, assuming At is of full rank,
at least o of the variables X, - Some slack variables corresponding
to cuts which have been imposed may also be basic. Let k1 20 and
k2 2> 1 be the number of feasibility and look-ahead cuts, respectively,

whose slack variables are not basic. Then m_+ k, + k., = 1 of the

t 1 2

variables x,  are in the optimal basis. Ordiharily, the optimal solution

%, 1is used to form a right-hand side
b+ tho (5)

for the body of the constraints in (Pt+l) .

A modification to this technique is outlined as follows. Let

k= kl +k, -1 (63

2

be the number of "surplus" variables, and let 82 be the optimal basis,

excluding slacks from cuts. Partition

0

Bt=LBtUNBtU{6t} R (N

where |LBt| =@ |NBt| =k , and A;;t exists, where ALBt is a con-

venient abuse of the proper notation (At).(LBt) . The variables xLBt

are called the local basis. Solve the body of the constraints in (Pt)

versus the right-hand side Et to yield the locally basic solution




(qg ) =Agb. . (8)

Represent the remaining basic variables in terms of the local basis,

-1
Y = » (9)
NB, ALBtANBt

so that
0 0
( ) -Y
xLBt xLBt NB,
0 0 0
X B, 0 + I B, . (10)
0 0 0
Let
-y
NB,
Ht = I (1
0

be the set of homogeneous solutions to the body of the constraints which

are generated by the representations YNB . In contrast to (5), use the
t

locally basic solution (xLB )0 to form a riéht-hand side
t

0
Pesr * Bt(xLBt) (12)
for (Pt+1) . In addition, introduce into (Pt+1) a set of k surro-
gate activities, with levels ) > 0 , represented by columns with
St+l = —Bth (13)
in the body of the constraints, zero coefficients in the cuts on (Pt+1)’

and cost coefficients S+l = cth . The modified problem is
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®_,)

t+l

minimize z = o + +
e+l T Sea1%+1 t Cear¥enr T O

subject to St+1at+l + At+1xt+1 = bt+l :“t+1
Fet1¥en 2 fen *Otn
Leyi®esn ¥ 0 24 PPl

Gep1r ¥ 20 -

-~

This structure, in essence, endows (P ) with a right-hand side

t+l

which is parametrized in terms of the k wvariables Xp and allows
t

of the parametrization. Set-

-~

(P ) to select the coefficients a

t+l t+l

ting a = ng corresponds to the right-hand side (5) obtained in
t+l ¢
the pure nested decomposition framework. Passing activities down the

gtaircase and allowing a to vary from these values provides an

t+l

avenue of implicit communication between (Pt+l) and (%t)’ ey (}l)
which decreases the number of steps needed to obtain an optimal coordi-
nation of the single-period problems.

There are two potential disadvantages inherent in this approach.

First, it seems that forcing (% ) to have some or all of the variables

t+1
L in its basis would unacceptably limit the number of basic variables
chosen from Xe4q Second, the framework sketched above allows (Pt+1)

to use the surrogate activities at any nonnegative levels. In order to

satisfy the body of the constraints in (Pt) , the relationship

0
xLBt(ut+l) = (xLBt) - (YNBt)ut+l (14)

must be maintained. Since (Pt) may include surrogate activities inherited

from (PL 1) , in general a parametrization of all variables which are locally
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basic in (Pt)’ cees (Pl) is obtained in terms of the surrogate activities

received by (P ) . Clearly, nonnegative levels of «a could cause

t+l t+l

the parametrized values of variables in earlier periods to have negative
components. These two points are addressed in the next sections.

3.2 Degeneracy in Optimal Solutions Generated
by Nested Decomposition of (D)

It is well-known that bases for (P) inherit the staircase structure
of the general problem and exhibit a 'surplus-shortage' property which

generalizes the fact that a basis which contains + k of the variables

™
X with k > 0 , must exhibit a "shortage'" of k , relative to the num—

T
ber of remaining constraints, 2 m_, in the number of basic variables

t=2
selected from Koy eees Ky oo Fourer [4] has developed a set of bounds
on the magnitudes of the surpluses and shortages which each period of a
basis may possess.

The following result describes a manifestation of this property in the

setting of the algorithm developed in Section 2.3.

Theorem. Suppose an optimal coordination of the single-period problems

(Pt) has been obtained. If t < T and (Pt) has k + 1 cuts whose

slack variables are nonbasic, then the basic solution to ( ) has at

Pyl

least k degenerate variables.

Under the modification outlined in Section 3.1, surrogate columms
passed from period t replace degenerate variables in the optimal basis
in period t + 1 . These degenerate variables may include basic slack
variables for the cuts in period t + 1 . The fact that the surrogate

columns replace degenerate variables guarantees that no solutions of

)

. in (P
interest are excluded i ( e+l
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3.3 Maintaining Feasibility of Locally
Basic Solutions

As indicated at the end of Section 3.1, nonnegativity of Sy does

not imply nonnegativity of the parametrized values of the variables which
are locally basic in periods 1, ..., t . Two general approaches to sur-
mounting this difficulty are possible. First, the feasibility of earlier

periods can be ignored during the optimization of the modified problem

(P_,.) and restored in a subsequent procedure which would minimize an

t+l
appropriate infeasibility form. The alternative is to employ, while op-

timizing (P , an extended minimum-ratio test which follows the para-

t+l)
metric variation of locally basic variables in earlier periods and indi-
cates when such a variable blocks the increase of an incoming column in

r )

t+l
The latter approach is adopted here. The representation of an incoming

columm in (P ) includes weights on any surrogate columns which are in

t+l
the local basis. Using these weights and repeatedly applying (14) and (9)
yields a representation of the incoming column in terms of the variables
which are locally basic in periods 1, ..., t + 1 . This representation
is used to implement the extended minimum-ratio test. This scheme of
local inverses linked by representations of surrogate columms can be
viewed as a compact basis-inverse technique which maintains a nearly
block-angular inverse of the columns which are locally basic in periods
1, .., t+1.

When the extended minimum-~ratio test reveals that a variable in a

period prior to t + 1 blocks the increase of an incoming column in

~

(Pt+1) several strategies may be employed. The choice in this work is
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to "shuffle" the structure of the surrogate columns by exchanging the
roles of some of the activities which are and are not locally basic.

This process is designed to take the blocking variable and pass it down

to (P ) as a surrogate columm. Primal and dual solutions in each

t+l

-

period are unchanged, and when optimization of (P,,.) 1is resumed, the

t+l

same incoming variable is blocked by this surrogate column. The indi-
cated pivot in (Pt+1) is made and maintains the nonnegativity of locally
basic solutions in periods prior to t + 1 .

3.4 Computational Strategies and Further Work

Again, a wide variety of computational strategies may be employed
within the framework described above. There is freedom in the order
in which the problem (;:) are solved and in when to pass information
between problems in the form of cuts, modified right-hand sides, and
surrogate columns. The presence of the surrogate columns opens addi-
tional options, including variations of the "shuffle'" described in Sec-
tion 3.3.

Currently, computational experience is being obtained with a code
written by Wittrock in Mathematical Programming Language at Stanford
University. This language facilitates experimentation of the type needed
at this stage of the work. The thrust of this experimentation is to de-
vise computational strategies which tend to minimize the computational
effort needed to obtain an optimal solution to (P) . Since the manipu-
lations of data structures, and the form and frequency of updates to the
local inverses, depend heavily upon the computational strategies which

are enployed, decisions about these factors have not yet been made.
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LIFT: ANESTED DECOMPOSITION ALGORITHM FOR SOLVING
LOWER BLOCK TRIANGULAR LINEAR PROGRAMS
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The lower block triangular structure is typical of time phased linear programs with mul-
tiple lags in the variables. We propose an aigorithm for solving this class of problems based
on the Ho and Manne (1973) nested decomposition algorithm. A computer code of this
algorithm (LIFT) has been developed based on state-of-the-art moduliar linear program-
ming software (IBM's MPSX/370).

We present and discuss the implementation aspects of this code and discuss several com-
putational strategies currently available in LIFT. Preliminary computational experience
with large (5000—6000 rows) energy technology assessment models is presented.
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1. INTRODUCTION

Nested decomposition of linear programs is the result of a multilevel,
hierarchical application of the Dantzig-Wolfe decomposition principle [ 4 ].
It has been shown to be a promising approach to large scale problems with
the staircase structure [6] [9 ]. Staircase LP's arise from dynamic models
without explicit time-lags or feedbacks. This means that a variable is in-
volved only in its own time period and perhaps also in the one followinp imme-
diately. An important generalization is to allow explicit time-lags, i.e.
a variable may be involved in its own and any succeeding time period. The
general structure is called lower block-triangular and permits direct ac-
counting of long term effects of investment, service life, etc. Although
lower block-triangular problems can be transformed to equivalent staircase
problems by the addition of variables and constraints, the more compact
and more natural formulation would undoubtedly be favored by modellers. We
may assume that models with time lags will be generated as such. Now, the
use of additional software to convert the input and output data will be too
costly and cumbersome. Therefore, in designing ar advanced implementation
of nested decomposition primarily for the staircase structure, we decided
to treat the more general lower block-triangular structure. The derivation
of the algorithm is similar to that in [ 5] but the formulas are now more
complicated when there is time-lagged coupling. The implementation known
as LIFT is based on state~of-the-art modular LP software (IBM's MPSX/370).
Its design is along the same lines as DECOMPSX [9 |.

This talk outlines both the algorithmic and software aspects of LIFT

and presents computational results.
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2. BLOCK-TRIANGULAR LP MODELS

A block-triangular LP problem is a linear programming problem formu-

lated as follows :

min z = IV X, 0)
t=1
. t
subject to’fl Ats x, - d: t=1, ..., T (1,t)

x, 20, t=l, ..., T

where ct is 1 x L xt isn_x1, dt is m, x 1 for t = 1,

t veey T

and A:s is LR L for s, t =1, ..., Tand s €t.

The constraint matrix of such a problem exhibits a lower block-trianpular
structure (figure 1). Nonzero coefficients of the constraint matrix can be
found only in the submatrices Ats s,t=l, ..., T; s €T
Many structured LP problems can be cast in that form if one allows some of
the gsubmatrices A:s to be zero (see figures 2, 3). The most important
among these are dynamic LP models, also referred to as multistage, multi-
period or time phased LP problems, which are considered as difficult pro-
blems to solve when their size is large. LIFT is primarily intended for
solving dynamic LP problems with the staircase structure (figure 2) or with
the structure of figure 3. Other special casegof lower block-triangular
LP's include : primal or dual block-angular problems, and primal-dual block-
angular problems. Although LIFT may be applied to such problems it is un-
likely to be as efficient as other single-level decomposition algorithms

(Dantzig Wolfe or Benders decomposition algorithms, etc.).
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3. NESTED DECOMPOSITION ALGORITHM

The algorithm consists of solving a sequence of subproblems defined

as follows.

T T
.k (k k k k k
min z_ = {p_ - I T Q > AD o+ (c - I Tm-a ‘) x (3)
t t gmt+] 8 8t t t gmt+l st t
k .k
s.t. Qe At + Attxt dt (4)
k
SP k,k
t -
5: A 1 (5)
k
>
At » X, 0 (6)
where
k .
P, is an | x k Trow vector
mk is an ! x o, Tow vector, s=t+l, ..., T
s ’
Qk is an m x k matrix, s=t, ..., T
Bt 8 1] ’ ’
Xt is an k x 1 column vector
c is aan | x n_ row vector
t t

x is an n_x 1| column vector

is an m x n_ matrix, s=t+l, ..., T

d is an m x| column vector

§ is an l x k row vector
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p:, Q:t and 6: are defined recursively as follows.

k, k _ - .
the jth component of Pyt pz.1 = clxi, J=1,...,k; W

k. k _ 3 h| ] 7
the jth component of p : Pey ¥ €1 Xpa1 + pt_l_xt_l » (7D

for j=1,...,k
t=3,...,T;

the jth column of Q:Z: qiz = Ail xi

for j=1,...,k

s=2,...,T;

> (8)
~ k., 3 - b 3
the jth column of Qst' q, Qit-l At-l + Ast—l X1
for j=1,...,k
=t,...,T
t=3,...,T; -
k, -1 3 point 1
the jth component of 62. sz -[o}if x3 is an extrem {ray } solution,
for j=1,...,k;
r(9)

point

. k, =J1 3
the jth component of Gt. 6tj -{0}1£ (x xj_l) is an extreme {ray

t-1""t
for j=1,...,k; t=3,...,T. “

} solution,
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We let SP: denote the t-th subproblem with k unspecified. The index

k denotes a cycle in the algorithm. SPt is then read as subproblem t at cycle k.

To simplify the notation, we assume that all subproblems at cycle k have

the same number of propcsals. For k=i, delete the terms involving A and

1
t

assume without loss of generality that (x:), (Ai.xl) for t=2, ..., T are

feasible solutions so that 6: = (1), t®=2, ..., T.

define (xl, A ) = (0,1) to be associated with the null proposal. We may

As a subproblem, SP: uses prices from SP:+I and generates a proposal

k+1

tel ° As a restricted master problem, SP: optimizes over the

(if any) for SP
available proposals and generates prices for SP:, swt=-1, ..., I.
Note that SP¥ acts only as a master and SPT only as a subproblem. The latter

has the form
I k
“’"‘(CI - I A.l) X

se Nixt 4y

—_

>
xl [v]
Each proposal from SPt consists of the following parts :

a scalar which is the actual unit cost for the proposal

Piels
q:t+l anm x | column vector representing the coupling between periods t and
s(t <s €T), in fact qk represents an accumulated coupling between

t+l el
periods 1, ..., t and t+l. Only this coupling is explicitly constrained.
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3.1. A Phase | Procedure

A phase | procedure is necessary to determine either a feasible starting
basis for each subproblem SPt. t=1, ..., T, or that the original problem (1)
is infeasible.

Let [SPI’ ooy SPt] denote the system comprising the first t subproblems.
Thus [SPI, ooy SPT] represents the nested decomposition of (1). The follo~
wing procedure is based on the observation that (1) is feasible if and only

if each [SPI' cevy SPt], tel, ..., T is feasible.
Phase |

Step (i) : Set t=l. Find an extreme point solution to SP’.

If none exists, stop : (1) is infeasible.
Step (ii) : If t=T,a feasible basis is available to SP:’ t=t, ..., T.
Otherwise, form a proposal for SPt+l-

Set t=t+{.

Step (iii) : Start with an artificial basis for SPt. Set the objective to be
an infeasibility form i.e. a sum of artificial variables in SP:’

minimize this objective over { SP . SP:], using the phase

R
2 procedure in section 3.2.
If the minimum is not zero, stop : (1) is infeasible.

Otherwise go to step (ii).
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3.2. A Phase 2 Procedure

Phase 2
Step (i) : Set k=l.
Step (ii) : Set t=T.
sas k
Step (iii) : Solve SPt.
If SP: has an optimal solution and

ki
t

a) ¢t <T : send extreme point proposal (if any) to SP ::;

b) t > 1 : send prices to SP:. s=1, ..., t=1;

If SP: is #nbounded from below and

k+1

t+] 3nd g0 to step (ii).

c¢) t <T : send extreme ray proposal to SP

d) ¢t =T : stop, the problem is unbounded from below.

Step (iv) : Set t=t-]. Return to step (iii) if t > 0.
Step (v) : If no proposal is generated by any SP:, i.e.
K=ok a0, e, ..., 11

t t+l
Stop, a minimum is achieved. Otherwise, set k = k+l and return

to step (ii).

3.3. A Phagse 3 Procedure

We shall describe a procedure for the reconstruction of a feasible so-
lution to the original problem at the end of cycle k (more precisely right

after SP¥ has been solved). We call this procedure Phase 3. We assume that
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SP: is bounded. Denote the feasible solution vectors by Ve and M. Let
k+1 I 33 (k+l k+l). . . _

My AT and YT xT where AT , xT is an extreme point optimal so

lution of SP:. The remaining vectors are determined by solving a sequence

of LP problems SY:, t=T-1, ..., |, defined as follows :

min P M, * Y

t't
subject to Q::“: + Att Ve " dt
QM +A y =d - X Ay
SY: st t st't 8 rmgel BT
for s=t+l, ..., T
ch: =1
He» 7,20
and
min &N
subject to Alyl = d1
SY
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—
Ay Ay2 Ay Ass ds
level |
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22 [ < S 1 s ] prices
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4. AN IMPLEMENTATION BASED ON MPSX/370

The necessary data structure and computational strategies for an efficient
implementation of decomposition algorithms have been discussed in [ 6] and
[9]. only straightforward adaptation or simple extensions are required for
the algorithm in section 3. The advantages of the modularity of MPSX/370 are
algo studied in some detail in [ 9] and {14 ].We proceed directly to describe
briefly LIFT, an implementation of the nested decomposition algorithm coded in

PL/I, with major services provided by MPSX/370. Details are given in [ 2].

4.]. Procedures in LIFT

The services required and the MPSX/370 procedures used are listed in
table 4.1. Procedures written in PL/I for LIFT are called external procedu-
res. These are interfaced with MPSX/370 procedures by means of a bootstrap
procedure called DPLBOOT. It loads the appropriate modules on the first cali
of any MPSX/370 procedure, thereby establishing all the 1 inks necessary for
subsequent calls. This linkage is completely transparent to the user. LIFT
consists of |l external procedures (totalling 2 200 instructions) and two
libraries of macros. One library is that of MPSX/370 ECL macros and the
other contains LIFT specific macros.

The file organizhtion is illustrated in Figure 5, Table 4.3. lists the
purpose and frequency of use for each file. Two problem files are used in a flip-
flop manner. Repeated problems ravision leads to a waste of storage space. When

the current problem file is about ta over-flow; it is compressed while copied to

the other file.




-396-

SERVICE FREQUENCY MPSX/370
procedure

Reading and checking the subproblem once CONVERT
data
Adding convexity row and Phase 3 ob- once REVISE
jective row and right-hand-aide
Setting up and scaling the uubproblej cycle SETUP
Forming the objective row itera:ion+ FORMC*
Solving the subproblem cycle PRIMAL*
Multiproposal generation tests iteration+ PRIMAL*
Forming an extreme point proposal several times current solution

during a cycle |[in work region

Forming an extreme ray proposal several times PTRANL followed by
during a cycle |FTRANU®*, MODIFY to

fix the column at

ite bound
Adding new proposais cycle REVISE
Purging unprofitable proposals several cycles REVISE
Saving and restoring the basis cycle SAVE and RESTORE
Computing the dual solution cycle BTRANU followed by
BTRANL
Setting up the subproblem right- once REVISE

hand-side in Phase 3

Table 4.1

*These MPSX/370 procedures have been modified to service the subproblems
(see [3 ]).

*a simplex iteration.
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. Frequency
File Type Purpose of use
INFILE sequential used to specify the sub- once
problems characteristics
and control parameters
DECFILE sequential cycle log for the algo- cycle
rithm
SVRFILE sequential save and restore file for once
the algorithm
SYSIN sequential file containing the sub- once
problems data in MPS
format
SYSPRINT sequential iteration log of the sim- simplex
plex algorithm iteration
PROBFILE direct problem files for the sub~ cycle
and access problems, used ina flip-
OLDPFFILE flop way.
MATRIX1/2 direct work matrix files (in-
access ternal file of MPSX/370) each
-1 -1 subproblem
ETAl/2 direct eta files (U  and L ') at each
access of basis inverse repre~- cycle
sentation (internal file
of MPSX/370).

Table 4.3.
LIFT has been designed to handle problems with up to 99 periods (i.e.
a maximum of 99 subproblems). The maximum number of coupling rows for a subproblem
is 1000. Both limits could be easily changed but the proposal buffer storage requi-
rements may become prohibitive for a large number of coupling rows. The subpro-
blems could theoretically have up to 16000 rows, but a practical limit is in the

2000-4000 range.
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4,2. Input data for LIFT

For a problem with T periods, the data for the T subproblems comprise
T contignous, complete data sets in the MPS format [ 11]. They are entered
in the reversed period order (i.e; T,T-1,...,1). In the row section of each sub-
problem, the coupling rows that are active (i.e. having non zero coeffi-
cients in that subproblem) must be declared first, alomg with the objective
row, Note that a subproblem SPt inherits all active coupling rows of SPt-l
in periods t+l,...T. The date partitioning is very natural and allows
independent generation of the subproblems as long as the names and units of

the coupling rows are consistent.

It remains to specify the control parameters for LIFT in a separate file.

The most important ones are the strategic parameters which,

1) indicate the subproblems are to bs solved backwards or slternately
backwards and forwards;

ii) specify the percentags improvement, frequency and maximum number of
proposal in the mechanism for multi-proposal generation;

iii) control the proposal purging mechanism ;

iv) determine whether the prices or coupling rows of a subproblem have
changed significantly to call for its resolution; and

v) control printing.
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5. COMPUTATIONAL EXPERIENCE

We have experimented with LIFT on a series of test problems. Table 5.1
summarizes the statistics of the test problems. The nature and origin of all
the test problems (except MODGLOB and BEDYOO) are given in [10]. SCAGR7/2S
(group A) are agricultural planning models. SCSD1/6/8 (group B) are
structural design optimization problems. SCFXM1/2/3 (group C) are production
scheduling problems. SCTAP1/2/3 (group D) are dynamic traffic assigmment
problems. SCORPION, SCRS8, MODGLOB and BEDYOO (group E) are energy models.
Note that only the last two have a truly lower block-triangular structure.

All test problems were solved with standard MPSX/370. The parameters
were set to their default values and the macro OPTIMIZE [11] was called in
these runs. Table 5.2 reports the corresponding statistics. All runs were
made under VM/CMS on an IBM/370 model 158 in a 1000K virtual machine (1500K
for BEDY00).

We solved all the test problems with LIFT in a 1000K virtual machine
(1200K for BEDYOO). The same control parameters were used in all the
experiments. All runs were stopped with a primal-dual gap of less than O.1Z.
Table 5.3 summarizes the statistics of the runs. Phase 3 alwavs terminated
in one cycle, because of little purging (if any) in phase | and 2. In
addition to input, phases 1,2 and 3: the total CFU time accounts for table
construction for the program, initializations, computing proposal scaling
factors, saving the problem, etc.

Qur experiments were aimed at testing the robustness of LIFT and
efficiency as compared to standard MPSX/370  but not at validating its

computational strategies. This has be