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ABSTRACT

This report presents a framework for assessing physical disruption of critical infrastructure
accessibility using an example of Greater Jakarta, a metro area of the Indonesian capital.
The goal is to inform decision makers and general public on the community’s social-physical
vulnerability. The first pillar of the framework is damage quantification from the real major
flood. Within this pillar, system states before and soon after the flood were compared. The
results suggest that in a result of flood access to facilities for people has been significantly
hindered, the transportation connectivity has distorted, and the system has become more
vulnerable to compound attacks. Poverty is found to be associated negatively with surface
elevation, which suggests that urbanisation of flood-prone areas has happened. The second
pillar of the report is flood simulation. 140 simulations allow to identify places and clusters
that are more vulnerable to floods. Finally, the report proposes a modified method for testing
vulnerability of inhabitants’ access to services, which is based on percolation technique. The
whole framework could be applied to other cities and urban areas and adjusted to account
for other disasters that physically affect urban infrastructure. Most importantly, this work
has demonstrated feasibility of damage quantification and vulnerability assessment with sole
reliance on open publicly available data and tools. Satellite data of flood occurence timely
shared by space agencies will allow rapid ex-post examination of social-physical consequences
of a disaster. This framework will save resources as the analysis can be run by a single person.
Ex-ante vulnerability assessment will help communities, urban planners, and emergency
personnel better prepare for the future shocks.
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1 Introduction

Since the early history of civilizations, the mankind has had to cope with disastrous events
(Gerrard, Forlin, and Brown 2020). Cities, as places of high concentration of population
and resources, played a major role in advancement of disaster management systems. Urban
areas attracted people for numerous reasons, be it presence of religious places, proximity
to markets of goods, access to vital natural resources, protection from bandits, search for
financial opportunities, or education (Gurevich 1984). Along with benefits of living in cities
there were costs, such as higher exposure to cascading events and negative feedback loops. If
something went wrong with the supply chain, the city could run out of food, which, in turn,
would worsen a criminal situation. During the plague outbreak, the rate of contagion would
increase manifolds in cities due to higher population density. Most of the time, the benefits
outweighed the costs, therefore cities maintained their attractiveness.

In the modern society, cities still play a special role. The revised projections estimate that
by 2050 at least 68 percent of world’s population will live in cities (UNDESA 2018). This
exposes even more people to the risk of experiencing extreme events. The United Nations
New Urban Agenda pledged to integrate disaster risk reduction into the “urban and territorial
development and planning processes, including greenhouse gas emissions, resilience-based and
climate-effective design of spaces, buildings and construction, services and infrastructure, and
nature-based solutions.” (UN 2017).

Urban infrastructure is crucial to the operation of a city and required for efficient emergency
response. Risk reduction strategies should ensure safety of infrastructure to make it possible
for facilities, such as hospitals, educational institutes, police, fire stations, communication
systems, energy systems, as well as transportation systems, continue providing services when
they are needed the most. The importance of infrastructure is recognized by the Sendai
Framework for Disaster Risk Reduction (2015-2030).

The framework of this report presents city as a complex living, self-regulating system
(Forrester 1969), consisting of a number of components that are compicated to such an extent
that we consider them systems within a system. Urban infrastructure together with social
organisation represent an ensemble of such systems, therefore we define the city as a hybrid
social-physical system or a network, where all components are embedded into its simplified
topological structures.

Growing number of facilities and installed devices and large-scale expansion of transportation
infrastructure make vital components of the city more dependent on each other. Crippling
one road junction may mean a transportation collapse for the city’s larger part. Over-relience
on various sensors and centralised data collection and decision-making mechanisms will
lead to serious issues during any minor power outage. One can conlcude that the more
complicated the city is, the more vulnerable it is (Vale and Campanella 2005). The discussion
of vulnerability inevitably brings us to the concept of resilience.

Resilience is studied from the perspective of both disaster risk reduction and systemic
approaches, where it is the ability of a system together with its components to anticipate,
recover, and improve from the effects of extreme events that have shattered infrastructure and
disrupted societies. I accept the definition of resilience provided by the Intergovernmental
Panel on Climate Change, which stated that resilience is “the ability of a system and its
component parts to anticipate, absorb, accommodate or recover from the effects of a hazardous
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event in a timely and efficient manner, including through ensuring the preservation, restoration
or improvement of its essential basic structures and functions” (2018). Thus, urban system
resilience is this ability of a city to effectively prepare for a catastrophe, withstand it, recover
from its consequences, and get better in the aftermath.

In view of extreme events that happen in cities and shift their normal system state into
a catastrophic state, we can highlight the phenomenon of tipping point. The tipping point
definition was adopted from physics. It can be explained as the moment when the system
passes a critical threshold and shifts to another state (Mrotzek 2011). For example, a disaster
happens and urban infrastructure is destroyed; when a critical share of valuable infrastructure
is nonoperating, a whole system ends up heavily distorted—this very moment we call the
tipping poing. Epidemics are another example. A number of sick people is growing, but for
the time being health facilities are able to cope with the inflow of patients. At some point,
the tipping point, the system, however, overheats. That ruins healthcare sector, drives up
the crime levels, and destabilises the political situation.

All this significantly increases interest of researchers, decision makers and practitioners
to resilience of urban systems to crises and disasters. Particular attention is given to floods.
Although flood is a natural phenomenon, which is important to the life cycle of a number of
organisms, including humanbeings, the uncontrollable urbanisation of floodplains has led to
huge problems involving material and financial losses and has taken numerous human lives
(Casale and Margottini 1999).

The research framework that is proposed in this report attempts to quantify damage to
social-physical system of the city caused by the real flood case and assess vulnerability of
critical infrastructure and communities to the future catastrophes. Jabodetabek, the Jakarta
metropolitan area in Indonesia, also known as Greater Jakarta, is my geographical focus. The
disaster that the report quantifies is 2020 Jakarta major flood, which has led to displacement
of sixty thousand people and claimed the lives of eighty people.

Setting up the scene, we should identify form and context for this framework. The context
defines the problem, and the form provides a solution to the problem (Alexander 1964). In our
case, the context suggests that the very human background implies the need for safety. The
social-physical environment, where safety is enabled by emergency sites and social structures,
is the form.

The report raises and answers four major questions.

Research question 1. How did 2020 flood in Greater Jakarta affect urban structure?
Which types of objects and facilities suffered the most? What share of population ended up
without access to services?

Research question 2. What is relationship between loss of access, poverty, and elevation
in Greater Jakarta?

Research question 3. What is spatial social-physical vulnerability of Greater Jakarta to
future floods?
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Research question 4. How robust is in general access of population in Greater Jakarta to
specific services?

The structure of the report is the following. The Background section represents a brief
literature review with description of a flood-related situation in Jakarta. The Data section
lists sources of data and discusses specificities of data collection and cleaning, and data
reliability. Methods explain my approaches towards data analysis. Results discuss outcomes
of this research and their limitations. The Discussion part draws the way forward. The
report ends with Conclusions.
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2 Background

The risk of catastrophes is related to power-law distribution, where the probability of event
is in inverse relationship with its size, i.e. the larger the catastrophe, the less likely it occurs
(Page 2018), therefore there is a large number of minor catastrophes, and a relatively small
number of large ones.

The power law also governs the outcome of disasters. It is difficult to predict the occurence
of the event and it is even more difficult to guess its catastrophic outcome (Taleb 2012;
Cimellaro 2016; Blečić and Cecchini 2017; Blečić and Cecchini 2019). Taking this into account,
one should focus on preparadeness rather than prognostication. When a disaster hits, the
affected community requires immediate help to save as many lives as possible, and later it
needs resources to quickly recover. If the community is prepared, it is less vulnerable, hence
resilient (Cimellaro 2016).

This part briefly discusses major concepts related to system ability to cope with shocks,
gives an overview of selected papers that investigate floods in a way that is relevant to my
framework, and describes the flood, the impact of which I quantify.

2.1 Concepts

2.1.1 Vulnerability, robustness, resilience, antifragility

Researchers still struggle to clearly define system characteristics related to its ability to
withstand shocks. Vulnerability is usually understood as the degree of susceptability to
negative implications from disaster (Fuchs and Thaler 2018). If a system is vulnerable, it can
be easily damaged. UNDRO defines vulnerability as “the degree of loss to a given element, or
set of elements, within the area affected by a hazard” (UNDRO, 1980 in Fuchs and Thaler,
2018.

Transition of a system from a vulnerable state to a robust state means that it is no longer
that easy to break or damage the system. The system becomes more durable to any tension.
The accumulated damage from a hazard, however, may still become a tipping point and
shift the whole system into a broken state. The question is how quickly this will happen. In
my framework, robustness is the ability of a system to withstand damage of the flood and
continue to provide access to critical services for population.

The next quality level in system states is resilience. Resilience is a vague concept with
dozens of definitions that significantly differ one from each other. There are two major
dimensions of resilience definitions—disaster and crisis management view and hybrid social-
physical perspective.

This paper concerns social-physical dimension. Studying sociotechnical systems, i.e.
combining physical systems research with examination of communities and individuals, it is
possible to apply a relatively holistic approach. The roots of this approach lie in the post-World
War II practices with large restoration projects initiated. Current research on sociotechnical
systems focuses on networks of information and action, required for their sustainability
(Newman 2018). In this approach, physical and social systems are interdependent. Without
the technology, society faces limits, without society there is no technology at all.

In the majority of papers, resilience is understood as the system ability to quickly recover
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from stress. It is essentially different from robustness. The papers focus on minimisation
of time and resources to bounce back to the initial state. But is this resilient state of a
system an ultimate goal for practicioners and theoreticians? Can we imagine something
exceeding resilience? The book Antifragile: things that gain from disorder proposes an answer.
The antifragile system does not only resist shocks and quickly recovers; it goes beyond—it
becomes stronger in a result of imposed damage (Taleb 2012). I was tempted to use the term
antifragility of urban systems instead of resilience, but to avoid confusion, I utilise a more
popular concept of resilience, given the fact that the IPCC definition of resilience cited in
the Introduction, already includes the phrase “through ... improvement of its essential basic
structures and functions”.

A number of methodologies has been developed in an attempt to assess resilience of
settlements to disasters and crises. There are three types of resilience assessment: indices,
scorecards, and tools & models. Indices aggregate multiple indicators into a single value.
Scorecards are usually the checklists that evaluate current performance or progress towards
the resilient state. Models use mathematical language to simplify real world to allow some
extent of understanding of complex events. This framework employs the tools & models type
of assessment.

2.1.2 City as a hybrid social-physical network

Infrastructure is widely considered multilayer networks and studied jointly (Bianconi 2018).
Interconnectedness is observed, for example, between the layers of oil & gas infrastructure
(fuel and supply, compression stations), electric power (power plant, supply, substations),
communication (end office, switching office), emergency services (fire stations, ambulances, call
centers), transportation, and water (reservoir substation). Examination of interdependence
between these layers is crucial when assessing efficiency, robustness and resilience of the
systems (Buldyrev et al. 2010).

Though the researchers of interconnected infrastructure are mostly focused on robustness
and resilience, yet there is no complete understanding of the response of complex systems to
damage. It has been revealed that the more networks are interdependent, the more fragile
they are, because they become more prone to cascading failures (Bianconi 2018).

Brummitt, D’Souza, and Leicht 2012 found that it is beneficial to some extent to improve
connectivity between parts of networks as this gives the alternative paths. Higher levels of
connectivity, however, result in negative outcomes, because the system is more vulnerable
to cascades of failure. For instance, destruction of an increasing fraction of nodes leads to
dismantling of the whole interdependent multilayer network, which in case of isolation would
still remain functional (Brummitt, D’Souza, and Leicht 2012). Their main conclusion is that
the probability of large avalanches is related to a number of interlinks between layers. In
particular, a larger probability of interlinks increases the probability of more catastrophic
cascades. Lee, Goh, and Kim 2012 showed that multiplexity influences fragility of high-degree
nodes.

In addition, critical infrastructure and cascadial failures are examined by a particular line
of research (Rinaldi, Peerenboom, and Kelly 2001; Grubesic and Matisziw 2013; Pinnaka,
Yarlagadda, and Çetinkaya 2015; Cheng 2017; Mao and Li 2018; W. Wang et al. 2018).
Possible scenarios for improving robustness and resilience of networks were proposed in D.
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Zhou et al. 2013, Y. Zhou, Sheu, and J. Wang 2017 and Radicchi and Bianconi 2017. Sun,
Bocchini, and Davison 2020 review resilience metrics and measurement for transportation
infrastructure.

Currently there is a limited number of papers that consider the urban system as a
whole, which implies taking into account not only transport or critical infrastructure, but
also communities, socieconomic topographical characteristics, and urban space. One of
the research lines proposes and develops a network approach that transforms each of the
urban system element into nodes and edges and uses methods for complex network analysis
(Cavallaro et al. 2014; Bozza, Asprone, and Manfredi 2015; Bozza, Asprone, Parisi, et al.
2017).

Barthelemy 2019 attempted to model urban complex systems to try predicting their
behaviour. The author notes that a possibility to identify such generic behaviours is limited.
The author, however, believes that with help of machine learning it will soon become
practicable. Rise of big data, and increasing number of data sources (such as monitoring
sensors in cities) open a potential to improve our predictive abilities and inform urban
designers and planners more efficiently (Batty 2016).

2.1.3 Percolation as robustness measure of the network

Percolation theory from statistical physics and mathematics inspired many researchers in
network science to apply it to their studies of robustness properties of various networks. The
inverse percolation transition helps identify the impact of node failure on the overall integrity
of a network (Barabási and Pósfai 2016). In classical applications, the giant connected
component (GCC) is used as an indicator of the state of network functionality. Recently
researchers focused on the analysis of multimodal transportation systems (Yadav, Chatterjee,
and Ganguly 2020), critical facilities (Dong et al. 2020), power grid (Smith et al. 2019), and
universal models of resilience (Gao, Barzel, and Barabási 2016; Duan et al. 2019) potentially
applicable to different types of networks. In addition to examination of robustness to
failure, researchers look for optimal attack strategies and post-failure recovery and restoration
approaches.

Abbar, Zanouda, and Borge-Holthoefer 2016 claim that using percolation theory in
complexity science it is possible to generate a classification of fragility and service geographical
distribution imbalances in cities. They analyse robustness of road networks and services in 54
cities relying solely on publicly available data. The authors believe, it is possible to develop
objective methods for measuring urban resilience but there is more work to do. Yadav,
Chatterjee, and Ganguly 2020 urge researchers to examine various infrastrucural failures
jointly, not in separation from each other. They say that, given nowadays cyber-physical
threats, intentional targeted attacks on top of random failures during ongoing crises will
aggravate the severity of a situation.

Applying this method to real networks, however, one should demonstrate distinguished
accurateness, as it is generally known that spatial networks with real topologies significantly
differ in their properties from non-embedded networks. I address relevant concerns about
percolation usage for studying cities in the Methods section.
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2.2 Floods

2.2.1 Related literature

My framework is most closely situated within the following three papers.
Dong et al. 2020 developed an approach for assessing city’s physical vulnerability to floods

in terms of community’s ability to access critical facilities and tolerate access disruption. The
authors utilised a method of percolation, calculated disruption tolerance index, and revealed
spatial clusters of vulnerability in Houston, Texas. The critical facility type they considered
was hospitals. They found that vulnerable areas form spatial clusters. The information
that their framework reveals is of practical essence and is important for city planners and
emergency managers.

Yadav, Chatterjee, and Ganguly 2020 in their paper analysed urban transport network-
of-networks and developed the framework for its resilience assessment. They considered
five failure scenarios—flood, random, random-local, targeted, and compound failure (a series
of targeted attacks after flood failure), and two recovery methods – centrality-based and
greedy algorithm. They find that it is more important to maximise robustness rather than
efficiency, as the network with maximised efficiency is more vulnerable to compound crises
and cascading failures.

Budiyono et al. 2016 assessed future river flood risk in Jakarta under scenarios of climate
change, land subsidence, and change of land use. They simulated floods and calculated
economic losses with view of prospective sea level rise and precipitation change. The authors
developed probabilistic risk scenarios.

2.2.2 Greater Jakarta case: 2020 major flood

This report works with the real-world data and considers the flood case that occured in
Greater Jakarta in January 2020.

The major problem of the Jakarta metropolitan area is that its significant portion is
low-lying (ALOS 2021); large populated areas are located below sea level, which is the result
of uncontrollable urbanisation (Energydata.info 2020). In the case of January 2020 flood,
the heavy rainfall intensity coincided with high tides. The water was pushed into low-lying
areas from the side of the ocean and from the upland areas, which caused severe flood. The
drainage system did not manage the inflow, and flood occured even in higher-lying areas.
The hazard caused power outages and transportation system collapse. In a result, 10000
people in rural areas and 6000 in Jakarta city were displaced. 80 people died.
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3 Data

The framework of this research relies on availability of data. To successfully quantify
implications of flood on the network, we require high-resolution raster or detailed vector data
for topology of urban systems and flood occurence.

Despite the fact that more and more satellite data are becoming available, there is still a
limited number of high-quality sources depicting catastrophes. Major sources for these data
currently are Maxar, the U.S.-based space technology company, Copernicus, the EU Earth
observation programme, and Sentinel Asia, the Earth observation initiative for Asia-Pacific
region. Maxar within its Open Data Program provides optical satellite imageries of a number
of catasrophes across the world. Copernicus as well as Sentinel Asia give access to both
optical and radar satellite data. Some cases have vector data with information about the
asessed damage from catastrophes. In this research, I use publicly available vectorised data
of flood occurence provided by SentinelAsia 2020.

Data Year Source

Physical
Elevation 2020 ALOS GDSM
Flood 2020 Sentinel Asia
Road 2020 Humanitarian OSM
Fire station 2020 Humanitarian OSM
Police station 2020 Humanitarian OSM
Hospital 2020 Humanitarian OSM
Pharmacy 2020 Humanitarian OSM
Shelter 2020 Humanitarian OSM
Grocery store 2020 OpenStreetMap
School, college, university 2020 OpenStreetMap
Social
Population density 2015 Energydata.info
Poverty severity in Jakarta 2010 Open Data Jakarta
Poverty severity in Jakarta Metro 2020 Open Data Jabar
Poverty severity in Jakarta Metro 2020 Badan Pusat Statistik
Hospital capacity 2020 Humanitarian OSM

Table 1: Overview of data types and sources

Besides disaster and damage-related sources, I must possess data on urban systems. For
that, I utilise free and open platform OpenStreetMap 2020, which is a project that unites
thousands of volunteers who digitise physical objects on surface. An additional source of
specialised data based on OSM platform is the HumanitarianOpenStreetMap 2021. These
sources are the treasury for analysts. It should be noted, however, that both professionals
and amateurs make their inputs to the platforms, which raises just questions like are these
sources reliable?

Researchers and GIS experts judge accurateness of OSM. For instance, Herfort et al. 2015
assess the quality of OSM database, concluding that critical asset types are well represented.
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Ludwig et al. 2019 estimated accurateness of public green spaces in OSM and found that the
spaces are mapped with a high degree of completeness. Sauter, Feldmeyer, and Birkmann
2019 report that “the spatial indicators deduced from points, lines and areas are able to mirror
socio-economic characteristics”, and they believe that OSM possesses important capacities
and assets for urban resilience assessment.

Returning to this report, it is known that the surface elevation plays important role
in flood occurence, therefore I use ALOS Global Digital Surface Model (ALOS 2021) to
add the elevation dimension to my framework. Social characteristics of Greater Jakarta
were extracted from Energydata.info 2020 (population density) and OpenDataJakarta 2018,
OpenDataJabar 2021 and BadanPusatStatistik 2020 (poverty severity). Poverty severity is
the index explainin a share of population below a minimum income threshold disaggregated
by district. Population density is initially a raster dataset for the whole country.

The data types and sources are summarised in the Table 1.

9



4 Methods

Christopher Alexander in his brilliant book Notes on the synthesis of form described fit as
the absence of misfit. To assess the object, it is possible to name all its good qualities, but
likely the list will be long. A more efficient way to do this is to make a list of detrimental
qualities—the qualities that are not only unfavourable but are severly harmful. “... it is
through misfit that the problem originally brings itself to our attention. We take just these
relations between form and context which obtrude most strongly, which demand attention
most clearly, which seem most likely to go wrong” (Alexander 1964).

This is why children are better off having antiheroes instead of heroes (Taleb 2012). One
hero cannot encompass all superior characteristics (unless she is infamous Mary Sue, which is
of no help to us), therefore picking one positive person as the prime example does not provide
a comprehensive guide to the moral ideal. Almost all Bible’s Commandments instruct on
what not to do. Probably, it is also not a coincidence that in the adolescense my favourite
book was Mikhail Lermontov’s Hero of our time featuring Pechorin, a constellation of the
worst man’s traits in the society.

My research framework revolves around the same principle. I analyse and reveal what is
wrong or what will go wrong, instead of focusing on some best practices.

In summary, I assess vulnerability of people’s access to critical infrastructure in the event
of flood and quantify damage from 2020 flood in Greater Jakarta, identifying its implications
for the system. I search for relationships between loss of access to services, poverty, and
elevation. I run 140 simulations of floods of various degrees to identify the most vulnerable
places. Finally, I conduct my modified version of percolation to test robustness of access
to every type of facilities. This framework is the combination of two major quantitative
methods–geographic information systems and network analysis.

The urban systems selected for this report are listed below. The selection is based on
review of literature and availability of open data.

1. TRANSPORTATION SYSTEM

(a) Road infrastructure

2. EMERGENCY SYSTEM

(a) Police stations

(b) Hospitals (with capacity)

(c) Fire stations

(d) Shelters

3. TRANSFORMABLE SYSTEM (public facilities convertable into shelters)

(a) Schools, colleges, and universities

4. SOCIO-ECONOMIC SYSTEM

(a) Approximate population count with poverty information

(b) Grocery stores
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5. ENVIRONMENTAL SYSTEM

(a) Land surface elevation

4.1 Geographic information systems

This method concerns data preparatory stage of research, and it is the most time-consuming
part. Road topography from OpenStreetMap usually requires simplification and cleaning
from geometrical errors. Initially all urban systems (facilities, roads, population) represent
an independent dataset or layer of data. Our task is to create a single dataset that embodies
all individual layers. This unification is done based on the road network. All other elements
are joined to the nearest road segment in the form of a vector’s attribute (See Figure 1 and 2
in Annex).

The same is done with flood occurence. Flood becomes a boolean property of each road
segment indicating 0, when there is no flood, and 1, when flood occurs on a segment.

I use other GIS techniques, such as fixing geometries, raster vectorization, joining attributes
by location, when necessary. The utilised software is QGIS, free and open desktop GIS
application (QGIS Development Team 2021).

4.2 Network statistics

The cleaned geospatial data are then transformed into a two-dimensional graph (network),
consisting of vertices and edges. Thus, road infrastructure becomes a network of road segments
(edges) that are connected to each other through road junctions (vertices). Critical facilities,
surface elevation, population density, and poverty data are embedded into the network as the
edge properties.

The mathematical formulation of the network is as follows. Let G = (V,E) be an
undirected network of an urban transportation system, where V is a set of vertices representing
road junctions (intersections) and E is a set of edges representing parts of the road that
link those junctions. Each edge (u, v) in G has a corresponding feature vector φuv that
indicates the closest to an edge physical object (critical facility) or relevant surface elevation,
or associated with this edge social characteristic (population number, poverty). Vd and Ed

are the sets of vertices and edges affected by the flood. Let G′ = (V ′, E ′) be a copy of the
initial network with all vertices from Vd and edges from Ed removed.

Using Python NetworkX (Hagberg, Swart, and S Chult 2008) and graph-tool (Peixoto
2014) specialised modules, I obtain basic network statistics and do all other calculations.

Number and share of roads and services of certain type. I collect data on what
types of roads there are (e.g. trunk, primary, secondary, residential), what is a total share of
affected edges of each type, how many and which critical services are available, what is a
fracture of disabled services due to disasters.

Population without access to facilities. A share of population left with no access to
critical facilities is calculated for the global system and for each district.
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Betweenness centrality of edges. The edge betweenness centrality denotes a number
of shortest paths that go through an edge in the network. Knowing betweenness of edges
will help to see how important the roads that are damaged during catastrophes are. If, for
example, some critical amount of important roads are prone to disaster, vulnerability of the
whole system should be our concern. If the most important roads are still available or some
other roads can take their function even in case of a major catastrophe, then this may be the
indication of system robustness.

Average betweenness. We can also take the average of edge betweenness as one of the
network robustness measures. Intuitevely, the smaller the average is, the more robust the
network is. Average betweenness is the linear function of the average distance.

Highest betweenness. This is the value of the top edge in the betweenness centrality
distribution. One also wants this number to be as low as possible.

Comparison of network states. Summarising all the collected statistics, I compare two
networks: the initial network G = (V,E) and the network affected by the flood G′ = (V ′, E ′).

4.3 Relationship identification

This concerns running linear regressions to reveal associations between loss of access and
poverty, loss of access and elevation, and elevation and poverty.

4.4 Flood simulation

Having confirmed existence of negative relationship between flood damage and elevation, I
run flood simulations based on surface elevation level. Overall, I have fourteen intervals of
elevation degrees (from elevation lower than 0.62 meters to elevation lower than 3.78 m), and
for each interval I run ten simulations. For each simulation I create a new feature vector in
the network that describes weight attributes assigned based on certain occurence probabilities.
Probabilities in an individual simulation are distributed as follows:

• p = 0.95 of flood occurence for lower cap elevation level

• p = 0.90 of flood occurence for higher cap elevation level

• 0 < p < 0.1 for all the rest elevation values

Recorded weighted probabilities help us construct a spatial vulnerability map.

4.5 Percolation

The idea of percolation is to test system robustness. Edge by edge or vertex by vertex we
disintegrate the system, applying certain strategies. The most common strategies are failure
(removal of a random element) and attack (targeted removal of an element based on its
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properties). The majority of papers use size of a giant connected component (GCC) as the
main measurement of network robustness in the course of inverse percolation. The elements
are removed and the GCC slowly or rapidly decays. Although this approach is sufficient in
certain situations, GCC is not relevant or informative for some types of networks. We are in
this position with urban systems.

During a catastrophe, a city sometimes ends up being broken into parts (e.g. try disabling
the Danube bridges in Budapest). When we have two parts of a city (Buda and Pest), and
one is slightly larger (Pest), we will not give up on the smaller part (Buda) if the misfortune
comes. Both parts are equally important to us and we want them to function independently
as fine as they do together.

To account for this GCC limitation, I have adjusted the methodology of robustness
assessment. Instead of recording what happens solely in GCC, at each step I record the
population number that loses access to particular services in every disconnected part of a
network. I iterate through each disconnected part and algorithmically ask—is this part still
supplied with at least one service of a certain type? If the population of that island has access
to at least one service of the selected type, it is considered to be fine and nothing is recorded.
If the part is not supplied, I record the number of people living on that disconnected island.
In a result, the sum of population with no access to services is what in my model percolates at
each step. In other words, the problem is defined as follows. Let C(n) be a set of connected
components at an attack step n. The robustness of the network is measured by the rate
at which the population loses access to critical services in the course of edge destruction.
To capture that, the population number with no access to at least one service inside each
connected component c at each step n is calculated and summed up.

In this report, I consider only the worst-case scenario, when destruction of the network
is done by targeted attacks on the edges with the highest betweenness centrality. This way
I destroy about 2.5 percent of the network and see how quickly the population of Greater
Jakarta loses access to critical facilities.
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5 Results

5.1 System state description: before and after 2020 Greater Jakarta
flood

5.1.1 Global level

Table 2 summarises statistics for two systems—Greater Jakarta network before the flood (J0)
and Greater Jakarta network after the flood (J1). ne describes the number of edges. One can
see that the hazard directly affected 9.6 percent of the studied area. Completeness of the
network is represented by the parameter κ that indicates a number of connected components
within the whole system. The first network is the monolythic unaffected network, therefore
it has only one component. After the event the system breaks down into 62772 individual
components.

Table 2: Network information and robustness properties

ne κ P Fe F bmax
e be

J0 995074 1 100 10739 2363* 0.207 0.000254

J1 899628 62772 87 10035 2231* 9.506 0.005946

δ -9.6% 6277100% -13% -6.6% -5.6% 4492% 2241%
* except groceries

The share of population P with access to all critical facilities is 100 percent in the first
case and 87 percent in the second. Fe and F correspond to the number of facility edges and
facilities. The reason why we distinguish facility edges from facilities is grounded in the way
the edge properties have been assigned. Figures 5 and 6 in Annex explain how an individual
facility is embedded into its nearby edges, constituting a multiedge-facility. Comparison of
Fe in two systems shows how many edges regardless of their facility attachment are flooded.
This may or may not mean that a certain facility is flooded. Comparison of F suggests how
many facilities are completely flooded, which happens only when all facility-edges, attributed
to a certain facility, are affected by the flood. For example, if a multiedge-facility consists of
five edges and of these five four edges are disabled, the facility is still considered functional,
although we assume that access to it is to some extent hindered.

Betweenness centrality comparison allows us to see how importance of the edges is
redistributed after the flood. Edges high in betweenness centrality tell us that their positionhas
significant influence on connectivity in the whole graph. It may be a case when the street
has a little number of connections, but it is located in such a way that, if it is taken out,
some large parts of the graph will be disconnected. We want this measure to be as small
as possible, because a small number is a sign of less dependancy on certain edges. Here we
observe a dramatic increase in both highest (bmax

e ) and average betweenness centrality (be),
which suggests that after the tipping point the system has become more vulnerable. This
assumption finds support in Yadav, Chatterjee, and Ganguly 2020, who demonstrate how
natural hazards make technical system increasingly more fragile to compound attacks.
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Table 3: 2020 flood direct impact on road infrastructure, number of edges

J0 J1 δ

Trunk 9199 8795 4.4%
Primary 23156 22177 4.2%
Secondary 21365 19935 6.7%
Tertiary 45115 41851 7.2%
Residential 675285 601080 11%
Other 220954 205790 6.9%
Bridge 18093 17008 6%

Table 3 shows flood effect on the types of roads. The roads that suffered the most from
flood occurence are residential, tertiary, and secondary. Trunk and primary roads are usually
of a paramount importance in the urban transportation system, therefore even 4.2-4.4 percent
of damage is considered a significant loss.

The direct impact of flood disaggregated by services is shown in Table 4.

Table 4: 2020 flood direct impact, number of facility edges (in parentheses—facilities)

J0 J1 δ

Hospital 6753 (1393) 6356 (1308) 5.9% (6.1%)
Police station 597 (178) 559 (173) 6% (2.8%)
Fire station 283 (96) 254 (91) 10% (5.2%)
Pharmacy 287 (98) 254 (88) 11.5% (3.4%)
Shelter 45 (21) 43 (20) 4.4% (2.2%)
Public space 670 (577) 628 (551) 6.3% (4.5%)
Grocery store 2104 1941 7.7%

In Table 5, I show indirectly affected population and total population left without access
to all services. The population that was directly affected by the flood and, in a result, lost
access was equal to 2082678, which amounted to 9.22 percent. I calculate Ptotal simply adding
up directly affected population and indirectly affected population. All services are ranked
from 1 to 4. The smallest share of population lost access to hospitals, the largest share
ended up without access to police stations, fire stations, pharmacies, and shelters. Figure 1
visualises edges that were flooded, edges that lost access to at least one service, and a robust
fully functional component.

5.1.2 District level

To get a more detailed picture of the flood implications on the urban system I conduct
calculations for each district in Greater Jakarta. Table 6 shows comparison of population
share with access to all services P , poverty severity index S, number of facility edges Fe, and
number of facilities F before and soon after the flood.

Figure 2 is the illustration of access variability across districts with background layer
of the surface elevation. The access is excellent in the districts coloured in green, and it is
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Table 5: Approximate population and its share left without access to facilities in a result of
indirect and both direct and indirect impact from 2020 flood

Pindirect (%) Ptotal (%) Rank

Hospital 678120 (3) 2760799 (12.22) 4
Police station 778468 (3.44) 2861147 (12.66) 1
Fire station 772541 (3.42) 2855220 (12.64) 1
Pharmacy 768178 (3.49) 2850857 (12.62) 1
Shelter 789672 (3.47) 2872351 (12.71) 1
Transformable 721112 (3.19) 2803790 (12.41) 3
Grocery store 743529 (3.29) 2826208 (12.51) 2

difficult in the districts coloured in red. The lighter (whiter) areas of elevation correspond
to lower sea levels and dark areas—to higher sea levels. One can see that the northern
part of the city is situated on the low grounds. We might assume that elevation and flood
vulnerability are interrelated. To do this, we need to fit those distributions, which will be
done in the next subsection of the report.

Table 7 is a closer look at the access to all facility types. Here I show poverty severity
index with population share with access to all facilities of a certain type. To give some idea
about availability of services within the district, I calculate the number of facilities of certain
types per 10000 persons.
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Figure 1: Greater Jakarta network after major flood in January 2020: flooded edges, edges
with no access to services, and robust edges

17



Table 6: Network statistics and robustness properties by district before and after the 2020
flood

P S Fe F

Kota Jakarta Utara (0) 100 1210 356
Kota Jakarta Utara (1) 89.9 0.26 1129 337
Kota Jakarta Barat (0) 100 1326 278
Kota Jakarta Barat (1) 76.4 0.18 1143 246
Kota Jakarta Pusat (0) 100 977 212
Kota Jakarta Pusat (1) 95.5 0.31 935 205
Kota Jakarta Selatan (0) 100 1582 408
Kota Jakarta Selatan (1) 94.2 0.18 1523 392
Kota Jakarta Timur (0) 100 1615 384
Kota Jakarta Timur (1) 91.5 0.07 1494 358

Tangerang* (0) 100 404 67
Tangerang* (1) 62.5 0.22 328 61
Kota Tangerang (0) 100 440 106
Kota Tangerang (1) 89.5 0.15 419 102
Kota Tangerang Selatan (0) 100 590 89
Kota Tangerang Selatan (1) 91.1 0.08 570 89
Karawang* (0) 100 191 82
Karawang* (1) 28.8 0.25 184 76
Bekasi (0) 100 346 68
Bekasi (1) 77.5 0.18 298 57
Kota Bekasi (0) 100 589 79
Kota Bekasi (1) 85.7 0.15 563 76
Kota Depok (0) 100 728 114
Kota Depok (1) 90.3 0.06 710 112
Bogor* (0) 100 309 64
Bogor* (1) 96.3 0.11 307 64
Kota Bogor* (0) 100 429 78
Kota Bogor* (1) 100 0.26 429 78

* incomplete network
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Figure 2: Share of population with access to all services after the flood in January 2020
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Table 7: Access to and availability of facilities by district after the flood in January 2020

S hp hf psp psf fsp fsf php phf shp shf tp tf gp

Kota Jakarta Utara 0.26 90.21 0.374 89.97 0.069 89.81 0.035 89.66 0.071 89.72 0.008 89.66 0.042 89.66

Kota Jakarta Barat 0.18 77.41 0.172 76.7 0.046 76.96 0.021 76.95 0.01 76.41 0.003 77.05 0.023 76.4

Kota Jakarta Pusat 0.31 95.51 0.296 95.51 0.069 95.51 0.03 95.51 0.012 95.51 0.002 95.55 0.081 95.51

Kota Jakarta Selatan 0.18 94.21 0.366 94.15 0.039 94.15 0.017 94.15 0.012 94.15 0.008 94.15 0.017 94.15

Kota Jakarta Timur 0.07 91.79 0.243 91.55 0.022 91.57 0.022 91.55 0.009 91.55 0 91.55 0.018 91.55

Tangerang* 0.22 65.37 0.054 62.45 0 62.45 0 63.07 0.006 62.45 0.002 65.99 0.082 65.99

Kota Tangerang 0.15 89.62 0.04 89.54 0.001 89.62 0 89.62 0.009 89.54 0.003 89.54 0.103 89.59

Kota Tangerang Selatan 0.08 91.1 0.088 91.08 0.002 91.08 0 91.08 0.004 91.08 0 91.08 0.063 91.08

Karawang* 0.25 91.15 0 28.85 0 28.85 0 28.85 0 28.85 0 94.94 15.208 28.85

Bekasi 0.18 79.27 0.065 77.51 0 77.51 0 77.51 0.012 77.51 0 77.65 0.042 77.79

Kota Bekasi 0.15 85.67 0.036 85.67 0 85.67 0 85.67 0.001 85.67 0 85.69 0.037 85.71

Kota Depok 0.06 90.36 0.048 90.35 0 90.35 0 90.35 0.003 90.35 0.001 90.35 0.108 90.35

Bogor* 0.11 96.35 0.035 96.34 0 96.34 0 96.34 0 96.34 0.002 96.34 0.069 96.34

Kota Bogor* 0.26 100 0.138 100 0 100 0 100 0 100 0 100 0.26 100

Total – Greater Jakarta 0.15 87.78 0.618 87.34 0.079 87.36 0.043 87.38 0.043 87.29 0.009 87.59 0.256 87.49
* incomplete network

S – poverty severity index
hp – population share with access to hospitals
hf – number of hospitals per 10000 person
psp – population share with access to police stations
psf – number of police stations per 10000 person
fsp – population share with access to fire stations
fsf – number of fire stations per 10000 person
php – population share with access to pharmacies
phf – number of pharmacies per 10000 person
shp – population share with access to shelters
shf – number of shelters per 10000 person
tp – population share with access to transformable facilities (public buildings)
tf – number of transformable facilities (public buildings) per 10000 person
gp – population share with access to grocery stores
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5.2 Poverty, lack of access, elevation. All related?

To understand better the relationships between poverty, population’s lack of access to facilities
in a result of a flood, and elevation, I run simple linear regressions.

I find that there is the negative significant association between elevation and poverty. This
tells us that in Greater Jakarta poor people tend to settle in the lowland areas (Figure 7),
which is confirmed by a visual check of the map (Figure 2). The association between loss of
access to services and elevation also exists; it is negative and statistically significant (Figure
8). These two findings suggest that elevation in case of Jakarta is an important indicator and
can be used as the defining parameter when running flood simulations.

A test on the existence of relationships between loss of access and poverty is less successful.
Though the association is positive and significant, the R2 value is weak (Figure 9).

One more attempt to identify relationships between these two uses 14 observations on
access to facilities and poverty severity from the Table 6. The relationships appear to be
negative but insignificant (Figure 10).

5.3 Vulnerability simulation

Table 8 summarises 140 flood simulations conducted on the real Greater Jakarta network.
The simulations were based on the lower cap of elevation value in meters (with 95 percent
probability of failure), higher cap (with 90 percent probability of failure), and any elevation
failure (with probability of failure varying from 1 to 10 percent).

Table 8: Simulation results

P S I W

sim1 98.33 0.1707 < 0.31 < 0.62 0.5

sim2 98.32 0.1703 < 0.48 < 0.96 0.2

sim30 96.44 0.1729 < 0.6 < 1.22 0.1

sim40 96.46 0.1725 < 0.73 < 1.47 0.05

sim5 96.46 0.1724 < 0.9 < 1.81 0.02

sim6 94.17 0.176 < 1.03 < 2.07 0.01

sim7 92.79 0.1719 < 1.15 < 2.33 0.005

sim8 91.39 0.1686 < 1.32 < 2.67 0.002

sim9 91.38 0.1682 < 1.4 < 2.82 0.0013

sim10 89.92 0.1666 < 1.45 < 2.93 0.001

sim11 86.8 0.1704 < 1.52 < 3.08 0.0007

sim12 85.19 0.1682 < 1.58 < 3.18 0.0005

sim13 83.4 0.1661 < 1.74 < 3.52 0.0002

sim14 81.6 .0164 < 1.87 < 3.78 0.0001
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Figure 3: Greater Jakarta vulnerability map based on simulated flood occurence probability
accounted for elevation and random failure

In the table, the average for ten simulations within each elevation interval is calculated
for population share with access to all facilities and for poverty severity index in the affected
edges. The third column of the table presents the higher and lower elevation caps (in meters).
The last column is the weight. Having this information, it is possible to create a vulnerability
map (Figure 3) that depicts probabilities of failure in the spatially-embedded network. Bright
red gradient colours present the edges that are very likely to fail during floods, orange colours
indicate medium probability, and grey colours mean low probability. There are also edges of
green colour. They are supposedly safe, however, they are not that numerous.

5.4 Robustness of community access to critical infrastructure

Finally, I apply my modified percolation technique to test robustness of access to each service
(Figure 4). Approximately 2.5 percent of the network is destroyed. The population with no
access to certain services at the end of all attacks varies at about 4.5-5 percent.

Looking at the plotted lines, we observe how access is more or less stable for all services
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Figure 4: Percolation of population share that loses access to services in a result of attacks
on the most central edges.

for the first 15000 steps. Then the lines begin to deviate from each other. By the end of
percolation, the difference is sound. To quantify this difference, I calculated slopes of fitted
lines between the pairs of each service type with hospitals (Table 9). The access to hospitals
was the most stable, therefore I used it as the reference point.

The results suggest that the most robust access for population is provided to hospitals.
The least robust access is ensured for fire stations, police stations, pharmacies, and groceries.

Let us compare this ranking to the ranking from the Table 5. It is curious that, except for
access to shelters, the rankings are identical. This stimulates me to investigate this method
more. In the report, I use only one percolation technique—betweenness centrality attack—and
only for a limited number of steps (2.5 percent of the network). Further application of this
method may reveal more information about system robustness.
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Table 9: Slope comparison for fitting decay of access to hospitals vs decay of access to all
other types of services

Slope Rank

Hospitals 1 4

Transformable places 1.01175007 3

Shelters 1.03087868 2

Groceries 1.03408133 1

Pharmacies 1.03467889 1

Police stations 1.03469094 1

Fire stations 1.03469094 1

6 Discussion

This report is only a segway to a wider discussion of resilience of urban systems. In the
Background section, I have mentioned vulnerability, robustness, resilience, and antifragility.
So far my framework has covered only vulnerability and robustness stages; and these all
are the matter of future research—strategies for restoration of a crippled network, time
and resources required for restoration, strategies for not simply bouncing back to the initial
condition but rather for building back better, pursuit for constant improvement and utilisation
of shocks as opportunities to rise from the ashes in the form of a more robust, more resilient,
and antifragile system.

The framework that considering access to facilities vulnerability also opens the door to a
discussion on facility placement under uncertainty and facility location problem in general.

The major challenge with this research was computation. Working with this size of a
network was intriguing. Certain chunks of code had been running for more than a hundred
hours. It is not, however, a bottleneck for users and researchers. The code can be improved
and rewritten in the lower-level programming language, which will shorten the process
substantially. Apart from that, in the world there are still not many metro areas of size of
Greater Jakarta. Smaller cities will be assessed in a matter of minutes and hours.

The framework has generated data for many more insights that have been covered here.
The simulations can be improved, accounting for more flood factors—environmental, social,
and technological, although, simulations are not that important, as it is always more beneficial
for the system to prepare for a hit from any direction.
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7 Conclusion

Major flood in Jakarta that occured in January 2020 was the devastating catastrophe that
affected lives of hundreds thousands of people. The proposed in this report framework allowed
to quantify direct and indirect damage to physical infrastructure and loss of population’s
access to critical facilities. It was found that 9.6 percent of all edges were flooded. The hazard
broke the urban network into dozens of thousands of disconnected components, drove the
betweenness centrality up, making the whole system more vulnerable for potential compound
attacks, and significantly distorted road connectivity and people’s access to critical facilities.
Both important and less important roads were affected (among those residential streets the
most). The damage to trunk and primary roads was enough to cause transportation collapse
in other major streets. All types of facilities were directly affected.

From 12.22 to 12.71 percent (more than 2.7 million people) of population lost access to
at least one critical facility in a result of a disaster. Access to police stations, fire stations,
pharmacies, and shelters was hindered the most.

The tests show that poor people, on average, settle more in the lowland areas, which
confirms the hypothesis of uncontrollable urbanisation of flood-prone zones in Greater Jakarta.
The positive relationship exists between poverty and loss of access, although one cannot make
any predictions based on that.

The flood simulations have shown that northern coastal areas and all suburban areas
are most vulnerable to floods. The simulation model, used for calculations, however, is
too simplistic—it relies on the elevation data, but many more factors should be taken into
account. Currently, the produced risk map does not reflect vulnerability of Kota Depok and
Kota Bekasi, and it does not explain large occurences of real flood in Kota Jakarta Barat, as
well as it does not explain why low-lying poor Kota Jakarta Pusat is relatively safe.

The novel percolation technique that takes into account what happens in all connected
components instead of focusing on only one giant connected component generated some
curious results. The calculated robustness of access to facilities is to a large extent congruent
with access loss to relevant services in the real 2020 flood. The results suggest that in Greater
Jakarta the least robust access is provided to fire stations, pharmacies, groceries, and police
stations. The most robust access is provided to hospitals.

Geospatial data transformation into a network and embeddedness of social-physical
characteristics into this network in the form of edge properties with consequtive analysis
provides a simplified enough (simple but not simpler) framework for quantification of damage
from disasters, assessment of vulnerability of access to services, and discussion of robustness
and resilience. This framework relies solely on the open publicly available data and will be
interesting for urban planners, decision makers, and emergency specialists as the tool for
rapid quantification of hazard implications without the necessity for ground surveys and for
preliminary assessments of access to critical facilities vulnerability.
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Annex

Figure 5: Approach for embedding critical facilities into the network

Figure 6: Flood occurence in Greater Jakarta, January 2020. Data: SentinelAsia 2020,
OpenStreetMap 2020
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Figure 7: Linear regression – elevation vs poverty

Figure 8: Linear regression – loss of access vs elevation

Figure 9: Linear regression – loss of access vs poverty
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Figure 10: Linear regression – population access to services index vs poverty severity index
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