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ABSTRACT

Population growth and improved energy access are worldwide triggering investments in
power capacity expansion. Meanwhile, hydropower is experiencing a boom in many energy
portfolios, especially in developing regions where most of the untapped hydropower potential
lies. Strategic planning of hydropower development is crucial to reduce environmental and
social impacts, and provide good performance in multiple sectors with competing objectives
considering water, energy, economy and climate.

Nevertheless, due to the deep uncertainty involved in socio-economic projections, often
overlooked in strategic dam planning, policy makers are required to take planning decisions
with an unclear vision of the future. This is especially true for Africa, where projections for
population and energy demand are highly uncertain, and where more than 300 new hydropower
projects are under consideration, mostly in the least developed and most uncertain areas.
The development of these power plants is contingent on meeting future energy demands and
therefore strongly tied to the associated uncertainty.

Here, we examine energy portfolios considering each hydropower project reported in the
African Hydropower Atlas, using a continental power system model driven by uncertain final
energy demands based on the shared socioeconomic pathways (SSPs). We derive the most
important hydropower plants under consideration and study how planning changes over the
different future scenarios. We finally produce a two-stage plan which is adjusted as soon as
uncertainty is revealed: this ensures robustness in the short term while reducing its price in
the long term.
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1 Introduction

The required development of the energy system in Africa depends crucially on three main
sources of uncertainty. First, Africa’s economy is projected to experience a large expansion
during this century but population growth projections still remain uncertain: an increase is
projected but its magnitude remains largely unresolved (Gerland et al., 2014; Samir and Lutz,
2017) propagating uncertainty to a variety of socio-economic development scenarios affecting
prominently energy projections. Second, the African energy system is already undergoing
major changes reflecting the improving energy access: large gaps are still present and it
remains an issue to be solved in the next decades. Energy access is expected to continue
growing in the short term, and final energy demands will be affected by that, even though
the magnitude of the increase is still debated (Jones and Warner, 2016; Panos et al., 2016;
Falchetta et al., 2020; Dalla Longa and van der Zwaan, 2021). A third major driver of
uncertainty and change in the African energy system is climate policy and the consequent
transition to clean energy sources. While it has been shown that renewable energies can
represent a large share of new capacity with economic and environmental benefit (Sterl
et al., 2020) - whose cost is also rapidly going down (Lucas et al., 2015; Hafner et al., 2018;
Schwerhoff and Sy, 2019) - the development of a clean energy system is undermined by a
diversity of challenges ranging from trade-offs with other sustainable objectives (Mutanga
et al., 2018) to the historical dependency on coal of some regions (Steckel et al., 2020).

Hydroelectricity provides the lowest cost option for generation of large scale electricity
in Africa (Hafner et al., 2018), and is a central component of building a solution to the
intricate problems affecting the development of the African energy system. Indeed, African
hydropower is expected to boom in response to future demand (Cole et al., 2014; Zarfl et al.,
2015; Zhang et al., 2018) along with the development of some of the largest hydroelectric
schemes in the world (Taliotis et al., 2014; Sridharan et al., 2019). Nonetheless, hydropower
comes with a variety of impacts (Zarfl et al., 2015), from threatening biodiversity (Winemiller
et al., 2016), to compromising ecosystem services providing wide social and economic benefits
(Grill et al., 2019), and increasing GHG emissions (Deemer et al., 2016). In addition, large
cost overruns and projects delays are also frequently observed in hydropower projects (Ansar
et al., 2014; Sovacool et al., 2014). In order to tackle some of these issues, strategic dam
planning links hydropower development to associated consequences and aims to satisfy power
demand at the lowest cost for the environment (Schmitt et al., 2018; Almeida et al., 2019;
Siala et al., 2021).

Strategic dam planning can reveal strong interactions between the water and the energy
system. This water-energy nexus (Bazilian et al., 2011) requires more detailed energy system
modelling techniques beyond the improved integration methodologies (Khan et al., 2017). The
recent decade has seen an increasing number of open source energy system modelling projects
(Howells et al., 2011; Pfenninger and Pickering, 2018; Chowdhury et al., 2020). Among the
models available, OSeMOSYS -TEMBA is the implementation of one of these modelling
frameworks for the whole African energy system (Taliotis et al., 2016). These new energy
system models aim to answer policy-relevant questions, but have importance limitations
regarding the treatment of uncertainty (Pfenninger et al., 2014) and the representation of
hydropower (Ibanez et al., 2014). Indeed, most of these energy system models are run
over deterministic scenarios under the assumption of perfect foresight. Using the scenario
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analysis approach (Swart et al., 2004; Guivarch et al., 2017), energy policies can be studied
and evaluated over exogenous uncertainty. Although insightful on itself, scenario analysis
does not provide useful guidelines for planning under an uncertain future. In the face of
uncertainty, decision makers are instead focused on finding efficient energy solutions that have
acceptable performance independent of the socioeconomic development and future climate
policy. Regarding the representation of hydropower, most models are unable to capture
the power-plant specific hydrological variability, since aggregated power output is typically
reported using capacity factors or gross hydropower potential. This approach might blur
potential benefits deriving from reservoir hydropower flexibility (Ibanez et al., 2014) and
potential climate change impacts (Van Vliet et al., 2016; Turner et al., 2017).

Bearing in mind the discussed limitations of current energy system models, the contribution
of this work to the body of literature is twofold:

i The introduction of power system model refinements: Expanding on an existing energy
system model of the African continent, OSeMOSYS-TEMBA, we update information
on hydropower projects derived from the African Hydropower Atlas (Sterl et al., 2021)
to improve spatial and hydrological detail. Furthermore, we build different final energy
demands combining socio-economic and climate policy uncertainty based on the SSP
scenario database (Riahi et al., 2017).

ii The integration of uncertainty in the analysis of power systems: To account for uncertainty
in the final energy demands projections, we introduce multiple approaches for capacity
expansion planning. We adopt the standard scenario analysis technique (Alcamo, 2008;
Guivarch et al., 2017), and in addition we propose a two-stage approach that ensures
robustness in the short term (via robust optimization) while allowing for adaptation as
soon as the uncertainty is revealed to reduce the price of robustness.

The developed model allows us to address the following three research questions. First, does
power and, in particular, hydropower capacity expansion change significantly over different
socio-economic and climate policy scenarios? Second, what are the most robust hydropower
projects and what is their optimal timing? Third, can we reduce the price of robustness by
simulating the process of learning and adapting after the realization of uncertainty?

2



2 Methods

African Hydropower Atlas

OSeMOSYS-TEMBA

SSP Database

Scenario Analysis

Robust Scenario Analysis

African
energy 
futuresShort-term robust plans

Deterministic plans

Figure 1: Overview of the methodology: the OSeMOSYS-TEMBA model (Taliotis et al.,
2016) is updated with information based on the SSP databse (Riahi et al., 2017) and the
African Hydropower Atlas (Sterl et al., 2021). Subsequently, scenario analysis provides
deterministic energy plans, while robust scenario analysis provides short-term robust energy
plans that are adapted in the long term as uncertainty is revealed. Both the results obtained
are examined as potential African energy futures with a focus on hydropower development in
the continent.

In this work, we leverage on the OSeMOSYS modelling framework (Open Source Energy
MOdelling SYStem) (Howells et al., 2011) and its implementation for the African continent,
the TEMBA model (The Electricity Model Base for Africa) (Taliotis et al., 2016; Pappis
et al., 2019). This energy system model is used to analyze the evolution of the energy sector
in the African continent and its structure is described in Section 6.2.1. It minimizes the total
discounted costs of energy system planning and operations to meet the predefined final energy
demands. The solution provides as output the new capacity to be installed and the activity
(which includes the generation) from each technology over a multi-year horizon divided into
seasonal time-steps. We use the energy system model to analyze hydropower development
plans under future socioeconomic and climate policy scenarios.

The modeling framework improves upon the existing OSeMOSYS-TEMBA model in
multiple ways: two improvements related to model realism and two methodological improvements
regarding decision making under uncertainty. First, we improve the representation of
hydropower in the energy system model including information from the African Hydropower
Atlas. Each hydropower plant (existing, planned, committed or candidate) is considered
individually as a single technology and its power generation is now described over the different
seasons based on hydrological models’ output. This improved representation of hydrological
processes allows for more detailed representation of hydropower generation in space and time.
Details on the integration of this data into the OSeMOSYS-TEMBA model are provided in
Section 6.2.2.

Second, we build new final energy demand projections combining the existing ones from
OSeMOSYS-TEMBA model, which we trust more in the short term, and the ones obtained
via downscaling from the SSP database, which we trust more in the long term. These are
used to describe long-term socio-economic and climate policy scenarios and are useful to
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represent the range of potential socio-economic evolution in each country considered. The
procedure adopted is described in detail in Section 6.2.3.

Third, in the face of scenarios described above, we study the energy planning problem
using the scenario analysis approach to derive power, and in particular hydropower, capacity
expansion under all the scenarios. This step is further examined and described in Section 6.2.4.

Fourth, to explicitly account for the uncertainty in socio-economic and climate policy
scenario and to better represent the conditions under which the policy makers need to
take their decisions, we remove the perfect foresight assumption. We do so by leveraging
robust optimization to build a capacity expansion plan which is robust in the short term.
Furthermore, we simulate the policy maker’s learning process over time as we allow for
adaptation of decisions in the long term when uncertainty about the socio-economic and
climate policy scenario is revealed. We refer to this two-step methodology as robust scenario
analysis and we explain it extensively in Section 6.2.5.

The model outputs provide insights into the most relevant hydropower projects for the
African energy system, and demonstrates how hydropower development is affected by socio-
economic and climate policy uncertainty. Relaxing the assumption of perfect foresight, the
model provides us with a hydropower capacity expansion plan which is robust in the short
term and considers adaptation for the long term when uncertainty is revealed.

The data used in this work is composed of three main datasets: the African Hydropower
Atlas, the OSeMOSYS-TEMBA model data, and the SSP database. The African Hydropower
Atlas (AHA) (Sterl et al., 2021) collects information on 633 existing, committed, planned, and
candidate hydropower projects in Africa. Its main purpose is to provide information and data
to improve the representation of hydroelectric generation in power and energy system models
in order to better assess the role of hydropower in the energy transition. The OSeMOSYS-
TEMBA model (Taliotis et al., 2016; Pappis et al., 2019) is an energy system model for
long-term planning in the African continent and combines different sources to describe the
techno-economic parameters (e.g., costs, installed capacities, final energy demands) required
as inputs. The model finds the least cost plan to satisfy prespecified final energy demands
for electricity, coal, oil, natural gas, biofuel and waste for 47 African countries. The Shared
Socio-economic Pathways (Riahi et al., 2017) are plausible socio-economic narratives used
to project into the future - up to 2500 (Meinshausen et al., 2020) - population, economic,
social and energy trends in the different regions of the world. In this work, we use energy
consumption derived from the integrated assessment models run under the different scenarios
to build final energy demands and describe their uncertainty.
Detailed information on the data used in this work is available in Section 6.1.
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3 Results

In this section we examine and discuss the results obtained to discover the impact of
uncertainty and its propagating effects to hydropower capacity planning. After briefly
discussing the energy demands, we consider the results obtained under the standard scenario
analysis to quantify the variability of hydropower development resulting from socioeconomic
and climate policy uncertainty. These are modeled based on the same scenarios used in IPCC
AR6 and describe the spectrum of potential evolution from a sustainable to a fossil-fuel driven
world: SSP1-19, SSP1-26, SSP2-45, SSP3-Baseline, SSP5-Baseline. Second, we employ robust
optimization to develop a robust capacity expansion plan to highlight the most important
hydropower projects in the short-term, i.e., from 2020 to 2035, half of the full horizon. Last,
we study the value of information, i.e. how much the price of robustness can be reduced, by
learning and adapting power system and hydropower capacity expansion plans in the second
part of the horizon after the realization of uncertainty.

3.1 Final energy demands
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Figure 2: Final energy demands under the five scenarios examined

The final energy demands for electricity, coal, oil, gas, and biomass are reported in
Figure 2. SSP5 represents the scenario with the highest total final energy demand followed by
SSP3, SSP2-45, and finally by SSP1-26 and SSP1-19, which remains almost stable over the
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thirty year period. Even though the scenarios differ for their total demand, more differences
are visible looking at the different components of the demand. In SSP1-19 we have a strong
reduction of coal and oil over time, and we have a strong reduction in coal also in SSP1-26,
but oil demand grows most of the scenarios. Biomass, remains one the main components
except for SSP5 where it is replaced by oil and electricity. As for electricity, which drives
demand in the power sector that we will analyze more in detail, the most significant growth
is observed under SSP5. SSP2-45, SSP1-26 and SSP1-19 follow with similar values over the
horizon. Last we have SSP3 where elecitricity demand remains small describing a system
projecting business as usual demand share among the different energy types.

3.2 Different power and hydropower capacity expansions under
climate policy and socio-economic uncertainty

Using scenario analysis, energy plans, consisting of power capacity expansion and activity of
technologies, are deterministically built to satisfy the final energy demands of each scenario
considered. As a consequence, the main driver of results in this section is the final energy
demand with SSP5-Baseline requiring the largest total costs and power capacity expansion
among all the scenarios examined, as reported in Table 1 and Figure 3a. Among the other
scenarios, the second highest cost is associated with the ’middle of the road’ scenario, i.e.
SSP2-45, what is usually adopted as the most plausible scenario. Lower costs are associated
with SSP3-Baseline scenario, where regional rivalry prevents full development of the African
economy and most of the energy demand is still satisfied using thermal energy. Finally, the
lowest costs are associated with climate policy scenarios, where most of final energy demand
is electrified, allowing for a reduction of total costs.

Scenario Total Discounted Cost [1012USD]

SSP1-19 2.6
SSP1-26 3.0
SSP2-45 2.7

SSP3-Baseline 2.6
SSP5-Baseline 4.2

Table 1: Total discounted costs for the 5 SSP scenarios examined

The new power capacity installed under all scenarios is reported in Figure 3a. All the
scenarios substantially expand solar PV capacity, from 500 GW in SSP3-Baseline up to
around 1 TW for SSP5-Baseline. While coal is abandoned under climate policy scenarios, it
is expanding under all other scenarios. Importantly, hydropower is expanding and almost
doubling current capacity under all scenarios. Finally natural gas capacity increases in climate
policy scenarios and SSP5-Baseline, while it is reduced under other scenarios. As climate
policy scenarios must deal with a hard constraint on GHG emissions, they also need to install
a significant amount of nuclear power capacity, especially in the last years of the horizon
when emissions constraints become more stringent.

Power generation is instead reported in Figure 3b. Final electricity demand drives the
magnitude of generation with SSP5-Baseline generating the most electricity, followed by
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Figure 3: (a) Installed power capacity, and (b) power generation in Africa obtained under
the 5 SSP scenarios examined using scenario analysis
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Figure 4: (a) Share of power capacity and (b) power generation in Africa obtained under
the 5 SSP scenarios examined using scenario analysis
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SSP2-45, SSP1-26, SSP1-19 and SSP3-Baseline. Another major driver of differences is the
presence of emissions constraints. SSP1-19 and SSP1-26 are reducing their coal consumption
throughout the horizon and almost reach zero coal usage in 2050. For the same reason, they
rely on nuclear power and also on natural gas with CCS. These two scenarios are also the
ones most heavily relying on hydropower generation.

Shares of capacity and generation are reported in Figure 4a and Figure 4b. These plot are
interesting to better understand the large transformation that the African power system will
undergo moving from a system where capacity and generation are currently dominated by
coal, gas and hydro to a system mostly dominated by solar and coal if stringent climate policy
is not implemented. It is also interesting to notice that hydropower is a major component of
capacity and generation mix, and it will be crucial during the transition to the new system
with shares around 20% of both generation and capacity in all scenarios. Yet, at the end
of the horizon its role will be diminished by the large development of solar, and coal under
scenarios not considering climate policy.

As far as hydropower capacity expansion is concerned, maps with optimal timing and
location of projects are reported in the appendix in figs. 10 to 14. It is evident that there
is a cluster of hydropower projects that are developed under most of scenarios early in the
horizon and geographically encompasses mostly West Africa and Sudan. Similarly, it can be
seen that new large hydropower and development in specific regions seem to be dependent
on the scenario, with climate policy being a crucial driver of more intensive expansion of
capacity, especially in the longer term.
Most importantly, the high variability of hydropower development plan can be observed
by looking at the number new projects and corresponding new capacity installed for each
scenario reported in Table 2 and Table 3. As can be seen, uncertainty can results in 77
additional hydropower plants and the maximum difference in installed hydro capacity is more
than 20 GW over the whole horizon.

Scenario Number of new hydropower projects
SSP1-19 215
SSP1-26 224
SSP2-45 151

SSP3-Baseline 147
SSP5-Baseline 173

Table 2: Number of new dams built for the 5 SSP scenarios examined

3.3 Optimal timing and location of new hydropower projects to
robustly meet future demand

We now examine the problem from the perspective of the decision maker that needs to
take decisions under uncertainty. Given the large variability of final energy demands, and
consequent variability in power system capacity expansion and hydropower development,
we employ robust optimization to design a capacity expansion plan to meet final energy
demands under all scenarios. We employ robust optimization and derive this plan by solving
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Scenario New hydropower capacity [GW]
SSP1-19 49.1
SSP1-26 60.2
SSP2-45 38.2

SSP3-Baseline 39.9
SSP5-Baseline 55.4

Table 3: New hydropower capacity in the 5 SSP scenarios examined

2020 2025 2030 2035 2040 2045 2050
0

250

500

750

1000

1250

1500

1750

GW

BIOMASS
BIOMASS w CCS
COAL

COAL w CCS
GAS
GAS w CCS

GEOTHERMAL
HYDRO
NUCLEAR

OIL
SOLAR CSP

SOLAR PV
WIND

(a)

2020 2025 2030 2035 2040 2045 2050
0

1000

2000

3000

4000

5000

6000

TW
h

BIOMASS
BIOMASS w CCS
COAL

COAL w CCS
GAS
GAS w CCS

GEOTHERMAL
HYDRO
NUCLEAR

OIL
SOLAR CSP

SOLAR PV
WIND

(b)

Figure 5: (a) Installed power capacity, and (b) power generation in Africa obtained by
solving the robust counterpart

the robust counterpart (see Section 6.2.5), to examine the future power system configuration
as well as the timing and location of new hydropower projects.

As we focus on the worst case, the solution of the robust counterpart is unequivocally
driven by the largest final energy demands, as emissions constraints are removed to allow
the problem to remain feasible. In fact, when emissions constraints are enforced final energy
demands of scenarios without any climate policy cannot be met. Indeed, total costs of the
robust counterpart solution are equal to the ones of the SSP5-Baseline scenario. Furthermore,
also the installed power capacity and power generation is also in line with the one of
SSP5-Baseline in the deterministic scenario analysis, as reported in Figure 5a and Figure 5b.

We report shares of capacity and generation in Figure 6a and Figure 6b and examine how
the large development of solar capacity and the usage of coal, which is not constrained to
any limit, result in a strong reduction of hydropower capacity and generation, in percentage
terms. Yet, as we are considering the worst case scenario, hydropower is developing at a fast
pace with almost 28 GW of added capacity in the short term, i.e., in the first 15 years of the
horizon.

In particular, for what concerns hydropower, the capacity is expanded by around 28 GW
until 2035. The location and optimal timing of such new projects is reported in Figure 7.
Among the selected power plants, many power plants are built in West Africa and Tanzania
as soon as possible in the horizon, i.e. 2020. Other hotspots of hydropower development are

10



2020 2025 2030 2035 2040 2045 2050
0.0

0.2

0.4

0.6

0.8

1.0

[%
]

BIOMASS
BIOMASS w CCS
COAL

COAL w CCS
GAS
GAS w CCS

GEOTHERMAL
HYDRO
NUCLEAR

OIL
SOLAR CSP

SOLAR PV
WIND

(a)

2020 2025 2030 2035 2040 2045 2050
0.0

0.2

0.4

0.6

0.8

1.0

[%
]

BIOMASS
BIOMASS w CCS
COAL

COAL w CCS
GAS
GAS w CCS

GEOTHERMAL
HYDRO
NUCLEAR

OIL
SOLAR CSP

SOLAR PV
WIND

(b)

Figure 6: (a) Share of power capacity and (b) power generation in Africa obtained by
solving the robust counterpart

located in Sudan and Ethiopia, with hydropower development within the first five years of
the horizon. It is interesting to highlight that larger dams, such as the Inga dams are not
built early by this plan and more in general the robust short term plan takes advantage of
small hydropower projects as it builds 149 projects for a total of 28 GW. This aspect requires
further investigation but we suppose that adding smaller capacity makes it easier to meet
demand over many different sets of constraints representing the different scenarios.

3.4 Adjustment of decisions and the value of information

We finally simulate the process of learning over uncertainty by studying the adaptation
of the energy system supposing the uncertainty over the scenario is revealed in 2035. We
do so by solving the deterministic linear program over the whole horizon for each scenario
imposing that the new capacity equals the robust solution capacity expansion in the first
fifteen years, from 2020 to 2035. These non-anticipativity constraints allow us to enforce the
robust capacity expansion in the short term while optimizing the operations and long-term
capacity decisions based on each scenario eventually realizing.

The solutions to these optimization problems and their associated costs can be used to
estimate the value of information, or conversely, the reduction in the price of robustness that
can be achieved by learning and adapting. The total discounted costs of each solution adopting
this approach are reported in Table 4. The cost of the robust solution is equal to the cost of
SSP5-Baseline showing that this is the one constraining the most the robust solution. All the
other scenarios result in lower cost after adaptation as capacity expansion and generation
can be adjusted to meet the demand of each specific scenario. The difference between the
total discounted costs in SSP5-Baseline and each scenario represents the reduction in the
price of robustness and quantifies the value of information on the realization of uncertainty in
year 2035. Conversely, most of scenarios incur in higher cost than under the perfect foresight
assumption adopted in scenario analysis, as expected. In addition to that, we observe that
ranking is changed with respect to scenario analysis as the value of cost for SSP1-26 is higher
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Figure 7: Location and optimal timing of dams for the short-term robust plan

than SSP3-Baseline. Indeed, the climate policy scenarios incur in higher costs as they are
forced by the short term robust plan to build new capacity which would not have been
considered under perfect foresight and that remains unused (e.g., coal and gas).

Power generation capacity and power generation are reported in Figure 8a and Figure 8b.The
overbuilding of capacity is evident in all the scenarios, except for SSP5-Baseline, as all the
remaining scenario slow or even stop capacity expansion for some time after 2035, especially
SSP3-Baseline, SSP1-19 and SSP2-45. Climate policy scenarios’ fossil fuel capacity shrinks
after 2035 while hydropower and solar increase substantially, especially towards the end of the
horizon. It is interesting to notice that coal is also overbuilt for SSP3-Baseline, a notoriously
fossil-fuel intensive scenario, where a small decline in capacity between 2035 and 2045 can be
observed.

The above comments can be further appreciated considering the shares of capacity and
generation reported in Figure 9a and Figure 9b. It is evident how the different plan react
after 2035 to realization of uncertainty: climate policy scenarios move towards hydropower
more decidedly right after, as they also realize that their emissions will be constrained. As
a result, hydropower gains of importance also in the generation mix until the last decade,
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Scenario Total Discounted Cost [1012USD]

Robust 4.2
SSP1-19 3.0
SSP1-26 3.3
SSP2-45 2.8

SSP3-Baseline 2.9
SSP5-Baseline 4.2

Table 4: Total discounted costs for the 5 SSP scenarios under robust optimization and after
the realization of the uncertainty

where the high demand results in more nuclear and solar, reducing the importance of hydro
in percentage terms. On the other hand, scenarios without climate policy, exploit carbon and
gas, and even reduce solar share of generation, until the end when solar is again needed to
satisfy the growing demand.

As far as power generation is concerned, we can clearly understand how the coal capacity
built in the first fifteen years remains mostly unused by climate policy scenarios. They
are significantly more reliant on solar and hydropower, and this difference in even more
pronounced in the long term, when also nuclear provides a substantial share of the generation
mix. As for the other scenarios, the pattern does not change significantly from what can be
seen in the scenario analysis as they are not subject to hard emissions constraints. Indeed,
the adaptability of short term operational decisions is crucial to reach the ambitious emission
reductions target and a more complex approach leveraging decision rules should be adopted
to take this decision under uncertainty based on observations as time progresses. Indeed, the
generation mixes for the climate policy scenarios starts to change and diverges substantially
from other scenarios in 2024 when coal stops increasing to start declining by 2025.

Hydropower development in the period 2035-2050 is reported for each SSP examined in
the appendix in figs. 15 to 19. By looking at these figures, we can appreciate how strongly
climate policy scenarios and SSP5-Baseline insist on new hydropower development also after
2035. On the other hand, SSP2-45 and SSP3-Baseline have already built the hydropower
that would have been planned in the standard scenario analysis and add only a few projects.
Interestingly, in all the plans consider the Grand Inga dam in Congo, the largest by capacity
in the African Hydropower Atlas with a nominal power output of 11050 GW, is built in this
second stage of the problem, depending on the demand for electricity and on stringency of
emissions constraints.
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Figure 8: (a) Installed power capacity, and (b) power generation in Africa under robust
scenario analysis for the 5 SSP scenarios examined
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Figure 9: (a) Share of power capacity, and (b) power generation in Africa under robust
scenario analysis for the 5 SSP scenarios examined
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4 Discussion

The main results of this analysis of hydropower capacity expansion using an energy system
model whose final energy demands are affected by socio-economic and climate policy
uncertainty are reported in terms of total costs, number of new hydropower projects and
additional hydroelectric capacity in tables 5 to 7. With respect to costs, the robust solution
is hedging against the worst case scenario, represented by SSP5-Baseline. As a consequence,
the robust solution result in the highest costs. Yet, by adapting decision after half of the
horizon, the price of robustness, i.e. the additional cost to ensure meeting demand, can be
strongly reduced, up to 93% for scenarios without climate policy and up by 75% for climate
policy scenarios. The latter incur in higher costs due to fossil fuel capacity overbuilding as
emissions constraints cannot be enforced when solving the robust counterpart. Indeed, this
capacity remains unused as the operations of the system are designed after realization of the
uncertainty and taking into account emissions constraints, when present. Therefore, while
new capacity can be planned under uncertainty, operations cannot: the price of planning
capacity under uncertainty is capacity overbuilding, which has an effect also in the short term.
Additionally, we believe the two-step methodology to be also more realistic with respect to
the true unfolding of energy futures: some impact on decision will be paid in the short term,
but significant long-term impacts of robust choices can be reduced by adjusting choice when
more information is available.
In terms of number of new hydropower projects and their capacity, climate policy scenarios
are the ones developing the most projects under both scenario analysis and robust scenario
analysis. As a consequence, we believe that climate policy is the main driver behind
hydropower expansion, even though this should be further analyzed in further research.
Yet, as far as their capacity is concerned, SSP5-Baseline is always very close to the largest
hydropower expansion, meaning that socio-economic scenario plays an important role too.
Furthermore, climate policy scenarios seem to develop more small hydropower while SSP5
seems focused on large dams. A preference for small hydropower is instead evident in the
short-term robust plan which builds a large number of dams (149) in 15 years. While this is
almost comparable to the number of dams built over the whole horizon by SSP3-Baseline
in scenario analysis, it results in 28 GW of additional capacity, as opposed to the 40 GW
of SSP3-Baseline in scenario analysis. This highlights the relevance that small hydropower
projects play in the short-term robust plan.

- Total Discounted Costs [1012 USD]

Scenario Scenario analysis Robust scenario analysis
SSP1-19 2.6 3.0
SSP1-26 3.0 3.3
SSP2-45 2.7 2.8

SSP3-Baseline 2.6 2.9
SSP5-Baseline 4.2 4.2

Robust - 4.2

Table 5: Total discounted costs for the 5 SSP scenarios under the different solution methods
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- Number of new hydropower projects

Scenario Scenario analysis Robust scenario analysis
SSP1-19 215 211
SSP1-26 224 210
SSP2-45 151 154

SSP3-Baseline 147 154
SSP5-Baseline 173 174

Robust - 149

Table 6: Number of new dams built for the 5 SSP scenarios under the different solution
methods

- New hydropower capacity [GW]

Scenario Scenario analysis Robust scenario analysis
SSP1-19 49.1 58.8
SSP1-26 60.2 49.3
SSP2-45 38.2 40.6

SSP3-Baseline 39.9 40.4
SSP5-Baseline 55.4 56.3

Robust - 27.7

Table 7: New hydropower capacity in the 5 SSP scenarios under the different solution
methods

5 Conclusions and future research

In this work, we expand an existing energy model, OSeMOSYS-TEMBA, with data from the
African Hydropower Atlas and the SSP database, to examine alternative energy development
pathways in the African continent with a strong focus on hydropower and uncertainty. We
determine the energy and hydropower development plans in term of location and timing
under perfect foresight using scenario analysis. Due to the strong variability in hydropower
development, we adopt robust optimization to derive a plan to ensure the demand is met under
all the scenarios. Furthermore, we explore the potential to reduce the price of robustness by
adapting operational and long-term decisions after the realization of uncertainty, an approach
we called robust scenario analysis. Following this approach and focusing on the first 15 years,
hydropower projects located especially in West Africa and mostly of small size are part of
the robust capacity expansion plan ensuring that demand deficit is minimized under all
scenarios. The impacts of uncertainty and learning are examined on total energy system
costs, number of dams built and hydropower expansion capacity. Allowing for learning over
time can reduce costs between 75% and up to 93% for all scenarios with respect to the
non-anticipatory approach. We also observe that climate policy and, to a lesser extent, socio-
economic uncertainty, drive hydropower expansion both in terms of timing and preference for
small or large dams: small dams are preferred in the short term and strong climate action
requires sustained hydropower capacity expansion also after 2035. Without climate policy,
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we find that no robust solution is feasible and that the capacity of coal is always augmented,
stressing the relevance of climate policy in the immediate future and its impact on capacity
expansion plans.

We recognize nonetheless that several assumptions are affecting capacity expansion and
generation outcomes and should be carefully considered in future research:

• the idealized cooperative setting that allows for free exchange of energy and electricity
among regions;

• the omitted representation of other conflicting water uses, especially agriculture
and ecosystem conservation that could be negatively impacted by these hydropower
expansion projects;

• the absence of climate change impacts on hydrology and their consequent impact on
hydropower generation;

• the assumption of perfect knowledge over uncertainty realization after half of the
horizon;

• the assumption of perfect foresight for optimizing the rate of activity of the different
technologies considered;

• the conservative approach of robust optimization;

• the absence of emissions linked to new impoundments.

As for the first, constraints could be imposed to force countries to produce a set percentage
of their final energy consumption that would make the model more realistic to current
energy exchange conditions in the countries of Africa. The second is probably the strongest
limitation of the work: as population grows, not only final energy demand, but also food
demand increases with associated agricultural water demand. This could actually result
in less water available for hydroelectricity with significant changes in the results of the
analysis. While this aspect would add realism to the analysis, it was not included due
to the additional computational requirements needed. Similarly, the third point would
result in improved temporal and spatial representation of hydrological processes underlying
hydropower generation and strengthen the validity of the results obtained. These model
limitations merit further development in future research. For the three following points, more
complex methodologies allow for a more nuanced representation of the problem of dealing
when uncertainty, especially for what concerns adaptability of solutions and pessimistic
approaches. We refer in this case to adjustable robust optimization and distributionally
robust optimization, whose application could add realism to the decision-making process.
Finally, for what concerns emissions from reservoirs, data were not directly available to
perform a computation of emissions due to new reservoirs but we think this would also unveil
new interesting conflicts and trade-offs especially under strong climate policy scenarios.
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6 Appendix

6.1 Data

6.1.1 African Hydropower Atlas

The African Hydropower Atlas (AHA) (Sterl et al., 2021) is a dataset collecting information on
existing and future hydropower projects in Africa. Its main purpose is to provide information
and data to improve hydropower representation in power and energy system models in order
to better assess the role of hydropower in the energy transition. Additionally, it should also
support the quantification of the ability of hydropower to balance variable renewable energy
sources by providing the operational flexibility needed by future power and energy systems.
Indeed, the African Hydropower Atlas is the largest publicly available dataset collecting
information on the hydropower sector in Africa and it describes both storage and run of the
river power plants: 266 existing, 60 committed, 44 planned and 263 candidate projects for a
total of 633 hydropower plants.
It combines technical information such as the power plant nominal capacity, the reservoir
volume, the geographical location, as well as some crucial information such as inflow to
the reservoirs, and an estimation of the monthly capacity factor. The capacity factor is a
parameter often used in power and energy system modelling to describe the power output of
hydroelectric power plants as a ratio of their nominal capacity. In the African Hydropower
Atlas this parameter is estimated for every month of the year using an hydrological model
(SWAT+) simulated with meteorological data over the time period 1980-2016.
The data is freely available on Hydroshare and the code for reproducing figures and capacity
factors is available on GitHub.

6.1.2 OSeMOSYS-TEMBA model data

The OSeMOSYS-TEMBA model (Taliotis et al., 2016; Pappis et al., 2019) is an energy
system model for long-term planning in the African continent. It describes the least cost
plan to satisfy prespecified final energy demands for electricity, coal, oil, natural gas, biofuel
and waste for 47 African countries. The plan determines the investment in new capacity,
new transmission lines and the activity for each technology considered. It also includes
information on water consumption and withdrawal using water factors for each technology
considered.
The data needed to run the model are provided together with it and the model is available
on GitHub. The data include:

• final energy demands for each country based on population data (United Nations, 2017),
energy balances (United Nations, 2018; International Energy Agency, 2017a) and Gross
Domestic Product (GDP) projections (Keramidas et al., 2018);

• data on primary energy such as fossil fuel reserves and renewable energy potential,
combined from different sources (Hermann et al., 2014; Ndhlukula et al., 2015; United
Nations, 2016; IRENA, 2018; EIA, 2019; World Bank, 2019);
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• the installed capacity and cooling system technology in place in each country derived
from the Global Platts database (S&P Global Platts, 2018);

• techno-economic parameters (such as variable, fixed and capital costs) of the power
generation and conversion technologies, based on different sources (E3MLab / ICCS at
National Technical University of Athens, 2014; International Energy Agency, 2017b;
IRENA, 2018; IEA-ETSAP, 2019);

• water factors for the different technologies and fuel processes (Medarac et al., 2018)

The OSeMOSYS-TEMBA model is run under three climate policy scenarios: the first,
TEMBA Refer, is a reference scenario where no emissions limit is imposed (but emissions
penalty related to carbon taxes already in place are anyway considered). The second scenario,
TEMBA 2.0, is a scenario compatible with a 2°C temperature increase and the third one,
TEMBA 1.5, is in line with the objective of remaining within 1.5°C of atmospheric temperature
warming. These scenarios are obtained by constraining the annual emissions of the African
energy system to a cap obtained using the MAGICC 6 model (Van Vuuren et al., 2011) and
information from the JRC GECO report (Keramidas et al., 2018). For these two climate
policy scenario, also final energy demands are reduced in the OSeMOSYS-TEMBA model,
with electricity consumption reduced by 11% and 27% and fossil fuel consumption reduced
by 39% and 71% in TEMBA 2.0 and TEMBA 1.5 respectively (Pappis et al., 2019).

6.1.3 SSP database

The Shared Socio-economic Pathways (Riahi et al., 2017) are plausible socio-economic
narratives used to project into the future - up to 2500 (Meinshausen et al., 2020) - population,
economic, social and energy trends in the different regions of the world. These are key
inputs needed to run integrated assessment models and derive emission pathways to be used
in climate change assessment by the United Nation’s Intergovernmental Panel on Climate
Change (IPCC), as well as for a variety of different purposes such as climate policy design,
and energy and agricultural policy evaluation among others (Rogelj et al., 2015; Cai et al.,
2017; Hasegawa et al., 2018; Rogelj et al., 2018; Van Meijl et al., 2018).
At the core of these, there are 5 socio-economic scenarios: SSP1, SSP2, SSP3, SSP4 and SSP5.
Each of these is associated to specific assumptions on technological growth and relationships
among the country and regions. Indeed, each scenario can be shortly described by keywords
that hint at their overall behavior, as well as to corresponding challenges to climate mitigation
and adaptation: ’Sustainability’ is used to refer to SSP1, ’Middle of the road’ for SSP2,
’Regional rivalry’ for SSP3, ’Inequality’ for SSP4 and ’Fossil-fueled development’ for SSP5.
Additionally, to each of the SSP scenarios, different level of climate policy strength can be
associated based on the Shared Policy Assumptions (SPA) (Kriegler et al., 2014) in order to
develop the SSP-SPA scenario matrix (Van Vuuren et al., 2014) where those two dimensions
are combined. Those scenarios are identified by adding to the SSP scenarios the end of
century radiative forcing resulting out of greenhouse gases emissions: as an example, SSP1-1.9
would indicate the scenarios SSP1, ’Sustainability’, run under an ambitious climate policy
scenario aiming for a end of century radiative forcing of 1.9 [W/m2]. The radiative forcing
levels covered by the Shared Policy Assumptions enlarge the ones adopted for the RCP
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scenarios (Moss et al., 2010) and are the following: 1.9, 2.6, 3.0, 3.4, 4.5, 6.0, 7.0, 8.5. Some
of these socio-economic and climate policy combinations now appear less likely than others
but these scenarios, especially the ones deemed as the most plausible and representative, i.e.,
SSP1-19, SSP1-26, SSP2-45, SSP3-Baseline (7.0), SSP5-Baseline (8.5) (O’Neill et al., 2016),
are still at the core of climate change impacts assessment across the uncertain dimensions of
socio-economic and climate policy futures (O’Neill et al., 2020).
The SSP database combines information about the different integrated assessment model
simulations used to quantify and examine these narratives. It is publicly available online and
it consists of several components:

• projections of basic components such as GDP and population at the country level;

• projections for energy, technology, economy, population, land cover, emission and
agriculture from integrated assessment modelling scenarios at the regional level (five
regions are considered: OECD, Reforming Economies, Middle East and Africa, Asia
and Latin America);

• emissions for the different pollutants considered for the CMIP6 project.

In this work, we are interested in the energy consumption derived from the integrated
assessment models run under the different scenarios as they will be used to describe uncertainty
in future final energy demands. Specifically, we rely on the ”Tier 1” scenarios proposed after
the Scenario Modelling Intercomparison Project (ScenarioMIP) (O’Neill et al., 2016) and
used in the IPCC AR6 report; we map them coherently with existing OSeMOSYS-TEMBA
model configurations as reported in Table 8.

Table 8: SSP scenarios considered and their mapping to OSeMOSYS-TEMBA model
configurations

SSP scenario TEMBA Energy Demand TEMBA Emission Limit Temperature Target

SSP1-19 TEMBA 1.5 TEMBA 1.5 1.5 °C
SSP1-26 TEMBA 2.0 TEMBA 2.0 2.0 °C
SSP2-45 TEMBA Refer TEMBA Refer -

SSP3-Baseline TEMBA Refer TEMBA Refer -
SSP2-Baseline TEMBA Refer TEMBA Refer -

6.2 Model

6.2.1 OSeMOSYS-TEMBA

OSeMOSYS (Open Source Energy MOdelling SYStem) (Howells et al., 2011) is a modelling
framework used to describe energy systems and since its development has found many
applications in the scientific literature (Moksnes et al., 2017; Burandt et al., 2019; Sridharan
et al., 2019; Jayadev et al., 2020; Sridharan et al., 2020). It is modular and it can be easily
adapted to the necessities of the case study examined. In its simplest term, OSeMOSYS
determines the the least cost planning and operations of the energy system in order to meet
specified final energy demands, such as electricity, residential heating, industry, transport and
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others. It can describe various features of modern energy systems such as storage components,
renewable energy targets, emissions reductions targets, different sectors and types of energy
and it can be easily connected to a variety of modelling tools to analyze climate-land-energy-
water interactions (Beltramo et al., 2021). Mathematically, OSeMOSYS formulates a linear
programming problem where the decision variables are the annual additional capacity to
be built and the rate of activity of different technologies over each time step considered.
These technologies represent also extraction and usage of energy carriers and therefore do not
necessarily correspond to a power plant. The full formulation of the optimization problem is
reported in Section 6.2.6.
In this work, we adopt the implementation of OSeMOSYS for the African continent, the
TEMBA model (The Electricity Model Base for Africa) (Taliotis et al., 2016), that has also
been used for many studies available in the literature both at the continental and regional
level (Taliotis et al., 2014; Rocco et al., 2021). We adopt the most recent version of the
model, which is available on GitHub and whose results are publicly available and published
in a technical report (Pappis et al., 2019).

6.2.2 African Hydropower Atlas in OSeMOSYS-TEMBA

In our case, we improve the representation and granularity of information about hydropower
in the OSeMOSYS -TEMBA model by describing each of the projects reported in the African
Hydropower Atlas: to do so we need to know their nominal capacity and their capacity factors,
i.e., the ratio of their actual power output to their nominal capacity, which is influenced by
the hydrological variability of each specific hydropower plant.
In the OSeMOSYS-TEMBA model hydropower is described by aggregating all hydropower
plants into a single technology, with a common capacity factor. To improve the level of detail,
we first add new hydropower technologies corresponding to each of the hydropower projects
reported in the African Hydropower Atlas in the countries where these are present and update
the installed capacity of aggregate hydropower in such countries, in order to account for
hydropower plants not described in the Afrian Hydropower Atlas. We also ensure that no
new hydropower can be built, except for the candidate, planned and committed power plants
in the African Hydropower Atlas. We employ an optional OSeMOSYS parameter to enforce
that if an hydropower project is built, this is built according to its nominal capacity which
results in formulating a mixed integer linear programming problem. Further explanation is
given in Section 6.2.7.
Capacity factors from the African Hydropower Atlas are used for the hydropower plants that
are described individually while for aggregate hydropower OSeMOSYS-TEMBA capacity
factors are left unchanged. It is important to highlight that we are taking into account
hydrological variability with higher detail with respect to the OSeMOSYS-TEMBA model
but we are not considering the impacts of climate change on the hydrological cycle as the
capacity factors are computed over the horizon 1980-2016.
For what concerns the capital and variable costs, since no specific information is available in
the African Hydropower Atlas, hydropower projects capital and variable costs are based on
cost data (IRENA, 2021). This step is important in order to reduce the symmetry of the
resulting mixed integer linear programming problem to be solved and speed up computational
time. This step if further explained in Section 6.2.8

30



Most of the remaining hydropower parameters are left unchanged with respect to traditional
hydropower in OSeMOSYS-TEMBA as no other information is available.

6.2.3 Building SSP-driven final energy demand projections

In its original formulation, the OSeMOSYS-TEMBA model is solving a deterministic linear
program with hard constraints on demand satisfaction. In this work, we introduce uncertainty
in final energy demands as we build five demand projections based on 5 SSP scenarios
encompassing socio-economic and climate policy uncertainty. The SSP-driven final energy
demands are computed by combining the OSeMOSYS-TEMBA projections, more reliable in
the short term, and the SSP scenarios, to which is given more importance in the long term.
This is represented as follows:

DSSP,ene
r,t = αtD

TEMBA,ene
r,t

DSSP,ene
MAF,t

MSSP [DSSP,ene
MAF,t ]

+ (1− αt)DSSP,ene
MAF,t

GDP SSP
r,t

GDP SSP
MAF,t

(1)

αt = α2020 − (t− 2020)/80 (2)

α2020 = 1 (3)

α2100 = 0 (4)

where MSSP [·] represents the median over SSP, DSSP,ene
r,t is the demand for energy type ene,

in scenario SSP , for region r, at time t. The demand is computed as a convex combination
of the OSeMOSYS-TEMBA original demand (DTEMBA,ene

r,t ) and the SSP projection at the

regional level (DSSP,ene
MAF,t , MAF stays for Middle East and Africa) downscaled using the GDP

of the country as a proxy variable. The downscaling of SSP scenarios is carried out using the
pyam package (Gidden and Huppmann, 2019). In contrast to what would have been a more
intuitive formulation for building the final energy demands, reported below:

DSSP,ene
r,t = αtD

TEMBA,ene
r,t + (1− αt)DSSP,ene

MAF,t

GDP SSP
r,t

GDP SSP
MAF,t

(5)

αt = α2020 − (t− 2020)/80 (6)

α2020 = 1 (7)

α2100 = 0 (8)

we are shifting the original energy demand depending on the SSP scenario considered, by
considering OSeMOSYS-TEMBA final energy demands as a reference central projection.
For this reason, we multiply the OSeMOSYS-TEMBA projections by the total final energy
demand in that SSP scenario over the median final energy demand under exam for the SSP
scenarios considered. Therefore, if we’re in a high demand scenario, also the projection in
the short term will be influenced by that and will moderately increase with respect to the
original TEMBA projection smoothly moving towards the SSP downscaling level pprojection.
This allows for a representation of uncertainty in the short term which is also aligned with
the original projections.
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6.2.4 Scenario Analysis

Environmental systems planning and management usually has to deal with substantial
uncertainties, especially when long-term horizons are considered (Swart et al., 2004). One
of the most standard ways of dealing with such uncertainties, especially when they are not
easily reducible to a small set and hard to define, is the scenario analysis approach. It is also
called the scenario planning approach or just scenario approach and it was first used to aid
decision-making under social and political uncertainty (Kahn and Jones, 1960; Kahn, 1962;
Kahn et al., 1967). In recent decades, it also became more common practice in the field of
environmental systems decision-making. In brief, in the scenario approach future storylines
are built and used to develop possible future states of the system under exam upon which
decisions can be based (Swart et al., 2004; Alcamo, 2008). This methodology is still very
much used in many environmental decision-making problems regarding energy, climate, water
and other sectors (Guivarch et al., 2017).
In our case, we start our analysis by employing this method over the scenarios examined. This
means that we run the optimization model assuming perfect foresight over the socio-economic
and climate policy scenario under exam. From the decision-making point of view, this is by
no means different from current usage of the OSeMOSYS-TEMBA model. The difference
with respect to the standard OSeMOSYS-TEMBA model lies in the information from the
African Hydropower Atlas and in the SSP-driven final energy demands.

6.2.5 Robust Scenario Analysis

In the real decision-making process, we do not have information about which one of the
SSP scenarios will realize; actually, we don’t even have information on which one of them is
more probable, unless we rely on expert judgement (Ho et al., 2019). Our decisions today
must deal with this deep uncertainty and many methods have been developed and used in
socio-environmental system modelling (Lempert, 2002; Hall et al., 2012; Kasprzyk et al., 2013;
Haasnoot et al., 2013; Moallemi et al., 2020; van der Pol et al., 2021). Their tractability is
usually limited to fast simulation models and their application is not straightforward in energy
systems analysis as most of the models are self-optimizing models that solve for the least cost
option adopting mathematical programming techniques. On the other hand, when large-scale
optimization models are considered, robust optimization is a methodology often used. It is
indeed the only approach coherent with the absence of probabilities on SSP scenarios and for
this reason it has been usually applied in this context (Cai et al., 2017; Lincke and Hinkel,
2018).
Robust optimization is a field of mathematical optimization focusing on preventing that
stochastic, parametric and model uncertainty put at risk the optimality of a solution: indeed,
the field aims at finding solutions to problems which perform well even under the worst
realization of multiple uncertainties (Ben-Tal et al., 2009). It is indeed often used in energy
system for decision-making under uncertainty (Dehghan et al., 2013; Gacitua et al., 2018).
Additionally, in our work, we want to describe how energy system’s decisions will adapt to
the scenario realization after some time, when additional information on uncertainty will be
gained. This adaptation and learning modelling effort is an emergent trend in environmental
system decision-making models and it has been implemented for flood protection (Haasnoot
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et al., 2013), but it’s also used in energy systems modelling (Mejia-Giraldo and McCalley,
2014), in this case based on adjustable robust optimization (Ben-Tal et al., 2004; Caunhye
and Cardin, 2018).
To do so, we adopt a simplified two stage approach assuming that we have full realization
of the uncertainty at the beginning of the second stage. In the first stage (from 2020 to
2035), as we don’t know what scenario will realize we solve a robust optimization problem,
i.e. we hedge against the worst case outcome, by solving the robust counterpart (Ben-Tal and
Nemirovski, 1999) for the whole horizon, i.e. finding the solution that minimizes the costs
while satisfying constraints under all the scenarios. The solution of the robust counterpart
produces a trajectory of decisions regarding new capacity to be installed and rate of activity
of each technology. In the second stage, we suppose to know the realization of the scenario
and we optimize again over the whole horizon but we suppose the new capacity of the first
15 years to be set equal to the one obtained by solving the robust counterpart. Therefore, in
the second stage, we are optimizing rate of activity for all the model horizon (from 2020 to
2050) and new capacity for the long term (from 2035 to 2050). Mathematically, we solve a
robust optimization problem over the whole model horizon fomulated as follows:

min
[NCrobust

r,t,y ,ROArobust
r,t,y ]

max
s∈SSP

TotalDiscountedCost (9)

s.t. A ∗ NCrobust
r,t,y +B ∗ ROArobustr,l,t,m,y ≥ Ds,t y ∈ [2020, 2050], s ∈ SSP (10)

other constraints (11)

and then use the solution obtained to solve the following problem exhaustively for each SSP
scenario considered:

min
[NCr,t,y ,ROAr,t,y ]

TotalDiscountedCost (12)

s.t. A ∗ NCr,t,y +B ∗ ROAr,l,t,m,y ≥ Ds̄,t y ∈ [2020, 2050] (13)

NCr,t,y = NCrobust
r,t,y y ∈ [2020, 2035] (14)

other constraints (15)

There are multiple reasons behind the choice of solving the robust optimization problem over
the full horizon, even if we then only use the first 15 years of the solution. First, we want to
avoid the optimization being affected by border effects. Additionally, we also want the plan
to be designing capacity expansion in light of what could be the worst case over the following
15 years from 2035 to 2050.
The robust scenario analysis methodology allows us to study potential energy plans that
allow to reach a satisfactory performance under all SSP scenarios, and to examine how they
adapt under each scenario after their realization. Furthermore this methodology can also
provide an idea of the information that is lost because of the uncertainty in each scenario,
but also how much can be gained by using adaptation.
It is important to note here that in order for the robust optimization problem to be feasible,
emissions constraints are removed. They are reintroduced in the deterministic problem
describing adaptation to the realization of uncertainty. Similarly, the constraints on annual
maximum technology activity are relaxed in the robust optimization problem so that the
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maximum value between TEMBA Refer, TEMBA 2.0 and TEMBA 1.5 was used for each
technology to allow the solver to find a feasible solution. All the constraints which are
modified for the robust optimization problem are then enforced correctly in the second stage
of the approach, also for the first fifteen years in the upper level problem. The steps used to
solve the two stages are discussed more in detail in Section 6.2.9.

6.2.6 OSeMOSYS-TEMBA model equations

The full name of the sets, variables and parameters used in the model is reported in the
nomenclature.

min
u

∑
r,t,y

[
AFCr,t,y + AV Cr,t,y

(1 + ρ)(y−y0+0.5)
+

ACCr,t,y
(1 + ρ)(y−y0)

−DSVr,t,y −DTEPr,t,y

]
(16)

s.t. AFCr,t,y = FCr,t,y ∗
∑

yy: y−yy<OLr,t && y−yy≥0

[
NCr,t,y

]
+RCr,t,y (17)

AV Cr,t,y =
∑
m

∑
l

V Cr,t,m,y ∗ROAr,l,t,m,y ∗ Y Sl,y (18)

ACCr,t,y = CCr,t,y ∗NCr,t,y (19)

DSVr,t,y =
SVr,t,y

(1 + ρ)yend−y0 (20)

SVr,t,y =

0, y +OLr,t − 1 ≤ yend

CCr,t,y ∗NCr,t,y ∗ (1+ρ)(y
end−y)

(1+ρ)(OLr,t−1)
, else

(21)

u =

[
NCr,t,y, ROAr,l,t,m,y

]
(22)

OSeMOSYS-TEMBA model formulates a linear programming problem whose objective
function to minimize is the sum of various annual components of cost summed over the
years, the technologies and the regions considered. As reported in (16), the total costs are
composed by: annual fixed costs, described in (17), and annual variable costs, described in
(18), discounted at mid-year as these costs occur during all over the year; additionally we
have also annual capital costs, discounted at the beginning of each year and described in
(19), discounted salvage value, described by (20) and (21), and discounted emissions penalty
by technology, whose computation is described later in the text in (35).
Finally, in (22), the decision variables with respect to which the total costs are minimized are
reported. These are the new capacity to be installed in year y for technology t in region r
(NCr,t,y) and the rate of activity in time-slice l (i.e. time step associated with season and day
night conditions) during year y for technology t in region r with mode of operation m (for
technologies that operate in multiple directions such as transmission lines, pumped-storage
hydro) (ROAr,l,t,m,y).
Additional constraints are imposed so that generation from each technology is constrained
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by the installed capacity of the technology in a specific year, its capacity factor and its
availability factor, that take into account for planned maintenance of technologies. This is
described in (23) and (24).∑

m

ROAr,l,t,m,y ≤{ ∑
yy: y−yy<OLr,t && y−yy≥0

[
NCr,t,y

]
+RCr,t,y

}
∗ CFr,t,l,y ∗ CTAUr,t

(23)

∑
m

∑
l

ROAr,l,t,m,y ∗ Y Sl,y ≤

∑
l

{ ∑
yy: y−yy<OLr,t && y−yy≥0

[
NCr,t,y

]
+RCr,t,y

}
∗ CFr,t,l,y ∗ AFr,t,y ∗ CTAUr,t

(24)

Energy balances are formulated at the time-slice level in (25) and at the annual level (26). In
their simplest terms, these equations ensure that enough energy is generated to meet demand
from other technologies and pre-specified final energy demands, defined at the annual or
time-slice level.∑

m

∑
t

ROAr,l,t,m,y ∗OARr,t,f,m,y ∗ Y Sl,y ≥

SADr,f,y ∗ SDPr,f,l,y +
∑
m

∑
t

ROAr,l,t,m,y ∗ IARr,t,f,m,y ∗ Y Sl,y
(25)

∑
m

∑
t

∑
l

ROAr,l,t,m,y ∗OARr,t,f,m,y ∗ Y Sl,y ≥∑
m

∑
t

∑
l

ROAr,l,t,m,y ∗ IARr,t,f,m,y ∗ Y Sl,y + AADr,f,y

(26)

The following constraints, eqs. (27) to (30), ensure that the capacity and the new capacity
installed remains between predefined maximum and minimum capacity and capacity investment.∑

yy: y−yy<OLr,t && y−yy≥0

[
NCr,t,y

]
+RCr,t,y ≤ TAMaCr,t,y (27)

∑
yy: y−yy<OLr,t && y−yy≥0

[
NCr,t,y

]
+RCr,t,y ≥ TAMiCr,t,y (28)

NCr,t,y ≤ TAMaCIr,t,y (29)

NCr,t,y ≥ TAMiCIr,t,y (30)
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Annual and whole horizon (or model period) activity limits are enforced for each technology
using eqs. (31) to (34). ∑

l

ROAr,l,t,m,y ∗ Y Sl,y ≤ TTAAULr,t,y (31)∑
l

ROAr,l,t,m,y ∗ Y Sl,y ≥ TTAALLr,t,y (32)∑
y

∑
l

ROAr,l,t,m,y ∗ Y Sl,y ≤ TTMPAULr,t,y (33)∑
y

∑
l

ROAr,l,t,m,y ∗ Y Sl,y ≥ TTMPALLr,t,y (34)

The discounted emissions penalty for each technology are computed in (35), while annual
and model period emission limits are constrained using (36) and (37).∑

e

∑
l

∑
m

EARr,t,e,m,y ∗ROAr,l,t,m,y ∗ Y Sl,y ∗ EPr,e,y ∗
1

(1 + ρ)(y−y0+0.5)
= DTEPr,t,y (35)∑

l

∑
m

∑
t

EARr,t,e,m,y ∗ROAr,l,t,m,y ∗ Y Sl,y + AEEr,e,y ≤ AELr,e,y (36)∑
l

∑
m

∑
t

∑
y

EARr,t,e,m,y ∗ROAr,l,t,m,y ∗ Y Sl,y + AEEr,e,y ≤MPELr,e,y (37)

6.2.7 Additional constraints for including the African Hydropower Atlas in
OSeMOSYS-TEMBA

To enforce that the new capacity built for a specific hydropower project is aligned to the
nominal capacity reported in the African Hydropower Atlas, we adopt a set of built-in
variables, parameters and constraints available in the standard OSeMOSYS model framework.
We use the optional variable NNTUr,t,y, defining how many new units of technology t are
built in year y in region r, the optional parameter COTUr,t,y, describing the minimum amount
of capacity that has to be added when building technology t in year y in region r, and we
add the additional constraint that relates these to the decision variable NCr,t,y using (38).

COTUr,t,y ∗NNTUr,t,y = NCr,t,y (38)

It should be noted that the variable NNTUr,t,y is defined as an integer variable and constrained
to be 0 or 1, as building one technology unit for the hydropower project examined would
result in its realization. Furthermore, the parameter TAMaC, set equal to the hydropower
plant nominal capacity for each hydropower project, ensures that the project is built only
once during the model period considered. As a result, we are now formulating a mixed-integer
linear programming problem, whose computational complexity is notoriously higher than the
one of a linear program.
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6.2.8 Capital and variable costs for African Hydropower Atlas projects in OSeMOSYS-
TEMBA

As information is not available on capital and variable costs from the African Hydropower
Atlas, we derive two simple relationships to estimate the capital and variable costs of
hydropower, rather than simply using values for the aggregate hydropower in each country
available from OSeMOSYS-TEMBA.
With respect to capital costs we take the average capital cost for small (i.e. ¡10 MW) and
large (i.e. ¿10 MW) hydropower projects in Africa from IRENA (2021). We then assign:

• the average capital cost between small and large hydropower projects to the capacity
of 10 MW (i.e. 2836.5 USD/kW)

• the average capital cost for small hydropower projects to the capacity of 1 MW (i.e.
3256 USD/kW)

• the average capital cost for large hydropower projects to the capacity of 500 MW (i.e.
2446 USD/kW)

• we set an further higher point for capital cost by multiplying the average cost of small
hydropower by 1.15 to capacity of 0.1 MW (3744.4 USD/kW)

• we set a lower point for capital cost by multiplying the average cost of average hydropower
by 0.85 and we assing it to a capacity of 11 GW (2054.5 USD/kW)

Between the point defined above we adopt linear interpolation. Out of these point we
adopt the same linear function used in the preceding interval. It should also be noted that
hydropower projects in the African Hydropower Atlas have a capacity in the range between
0.09 MW and 11050 MW.
As far as variable costs are concerned, we stick to the value used in OSeMOSYS-TEMBA,
but we introduce some variation based on the fact that observed cost are higher for smaller
hydropower projects (IRENA, 2021). We adopt here a much simpler approach as data is not
available: the variable costs of hydropower in OSeMOSYS-TEMBA (which is very low with
respect to other technologies, 10−6 MUSD/PJ ) is multiplied by a factor by a factor linearly
dependent on the nominal capacity of the power plant. This factor is decreasing from 1.1, in
the case of the smallest hydropower projects, to 0.9, in the case of the largest power plant.
These slight cost modifications are not only useful to represent more realistic information
on the hydropower. They also ensure a reduction of symmetry in the mixed integer linear
problem formulated. Symmetry in mixed integer linear program is a result of many similar
alternative decisions slowing the ability of the solver to find a gradient among the possible
decisions available using their corresponding total final cost. As an example, let’s imagine
the case where we would need to build 200 MW of hydropower in a country and we were
given two options: building two dams of 100 MW each or a single one of 200 MW. If the
costs were equal in the two options, both the options would produce the same result and the
optimization would progress very slowly. On the other hand, if we give more information
on true costs of the two options, the optimization proceeds faster towards the minimum
cost option. If the example is scaled to more than 300 hydropower projects located in many
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neighboring countries, it can be easily seen that symmetry problem can arise and preclude a
fast convergence to the optimal solution (Alemany et al., 2014).

6.2.9 Robust scenario analysis - technical issues

For the robust optimization problem, an additional set has to be defined, SCENARIO, which
is now indexing also the final energy demands, represented by AACr,f,y,sc and SADr,f,y,sc.
The energy balance constraints now must hold also over all the set of scenarios considered,
and that is how the robust counterpart of the robust optimization problem is formulated.
For the second stage of the robust scenario analysis, the deterministic linear program used to
describe adaptation to the scenario realization, NCr,t,y is not enforced directly, but rather the
minimum annual capacity to be installed is constrained using the parameter TTAMiCIr,t,y
and TTAMaCIr,t,y and setting them equal to the new capacity variable of the solution of
the lower level problem for the first 15 years of the horizon, i.e. from 2020 to 2035. The
variable ROAr,l,t,m,y is left free to vary also in the first over the 30 year span, i.e. also in
the first 15 years of the horizon, in order to allow for finding a feasible solution. Indeed, if
the rate of activity would have been set equal to the robust counterpart solution the annual
emission limits for 1.5°C and 2°C temperature target would have made the mixed integer
linear program infeasible.
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6.3 Hydropower development maps
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Figure 10: Location and optimal timing of dams for SSP1-19
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Figure 11: Location and optimal timing of dams for SSP1-26
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Figure 12: Location and optimal timing of dams for SSP2-45
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Figure 13: Location and optimal timing of dams for SSP3-Baseline
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Figure 14: Location and optimal timing of dams for SSP5-Baseline
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Figure 15: Location and optimal timing of dams for SSP1-19 under robust scenario analysis
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Figure 16: Location and optimal timing of dams for SSP1-26 under robust scenario analysis
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Figure 17: Location and optimal timing of dams for under SSP2-45 robust scenario analysis

46



2036

2038

2040

2042

2044

2046

2048

2050

Figure 18: Location and optimal timing of dams for under SSP3-Baseline robust scenario
analysis
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Figure 19: Location and optimal timing of dams for under SSP5-Baseline robust scenario
analysis
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