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1. Introduction

This document considers a market economy where firms produce goods

from labor and capital and households save in capital, dictate the number

of their children and spend on health care to improve their survival. The

economy contains the externality that population growth and capital accu-

mulation boost pollution that threatens to trigger a lethal environmental

disaster. Could this externality be eliminated by (linear) taxation? This

research question is examined by a dynamic game where the benevolent gov-

ernment is the leader and the representative household the follower.

For the sake of clarity, the disaster is taken as a random regime shift that

occurs only once, with the post-event regime holding indefinitely. As pointed

out by de Zeeuw and Zemel (2012), this restriction is not essential and models

of recurrent events, where several shifts occur at random times with inde-

pendent intervals, can be analyzed using the same methodology. Because

the construction of different mortality rates for different cohorts would ex-

cessively complicate the analysis, then, following Becker (1981), it is assumed

that the whole population has a uniform mortality rate, for simplicity.

Polasky et al. (2011) analyze how the threat of future regime shift af-

fects the optimal management of natural resources. They focus on harvesting

a renewable resource (e.g., fishery), whose growth rate is dependent on the

regime and whose stock can trigger a regime shift. They show that the possi-

bility of the regime shift makes the central planner precautionary, i.e., willing

to maintain a larger stock of the resource. In this document, the government

faces the risk of disaster due to pollution and behaves in precautionary man-

ner by keeping the damaging stock (pollution) at a lower level.

Many dynamic models of pollution control assume smooth convex damage

functions (e.g., van der Ploeg and de Zeeuw 1992, and Dockner and Long

1993), which ignores the effect of a potential regime shift on the optimal

policy. Then, there is no need for precautionary measures against pollution:

the policy maker should respond at the moment pollution occurs, but not

beforehand. To examine the need for precautionary environmental policy,

de Zeeuw and Zemel (2012) consider the management of a system that is

subject to the risk of an abrupt and random jump in pollution damage. This

document applies the same idea for the management of a market economy
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when pollution-related mortality is the damage.

Haurie and Moresino (2006), Polasky et al. (2011) and de Zeeuw and

Zemel (2012) consider only the central planner that can fully control all re-

sources of the economy. In contrast, this document examines the government

in a market economy where microeconomic agents (households and firms) de-

termine production, fertility and capital accumulation, unintentionally gen-

erating lethal emissions, but the government can use only linear taxes. Public

policy is then constructed as a dynamic Stackelberg game where the govern-

ment is the leader. This approach has the benefit that the suggested policy

rules can be presented directly in terms of observable variables (e.g. prices

and the interest rate).

Tsur and Zemel (2008, 2009) ignore population growth, but examine the

possibility of climate change in a market economy where firms employ la-

bor, capital and two energy inputs that are perfect substitutes: clean input

that does not emit, and dirty input the emissions of which accumulate “haz-

ardous” stock that threatens to trigger the climate change. As a result, they

obtain a Pigouvian tax on the “hazardous” input. In contrast, this document

considers endogenous population growth that may trigger the catastrophe.

In order to avoid excessive complications in the model, the choice of en-

ergy inputs is ignored and it is assumed that population growth and capital

accumulation generate “hazardous” pollution as a by-product.

Harford (1997, 1998) addresses the issue of environmental and population

externality in a dynamic model where the individuals are altruistic toward

their descendants and environmental pollution is a joint product of output.

In his model, the social planner optimizes the utility of the representative

individual. By comparing this optimum with the individuals’ decisions, he

shows that Pareto optimality requires both a pollution tax and a parental

tax per child, because the former does not limit fertility enough to keep

population stationary. To contribute to the discussion on this matter, this

study adds Harford’s parental tax into the potential tools of the government.

Palokangas (2018) and Lehmijoki and Palokangas (2019) examine opti-

mal taxation in an economy where households dictate fertility and save for

capital, while firms produce output from labor and capital, and population

growth and capital accumulation generate pollution. In those studies, how-
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ever, there is no precautionary motive, for the current damage (mortality)

is a smooth function of current pollution. In this document, in contrast,

there is a precautionary motive: pollution triggers the damage (i.e., lethal

environmental disaster) randomly at any moment of time.

The remainder of this document is organized as follows. Section 2 presents

the basic structure of the economy, including the behavior of competitive

firms. Then, a stochastic Stackelberg game is defined, with the government

as the leader and the representative micro-household as the follower. Section

3 considers the household’s and section 4 the government’s behavior. Section

5 presents optimal public policy and section 6 summarizes the results.

2. The economy as a whole

2.1. Population and labor supply

In the model, time t is continuous. Population L grows at the rate that

is equal to the fertility rate f minus the mortality rate m:

1

L

dL

dt
= f −m, L(0) = L0. (1)

The units are normalized so that one unit of labor is needed to rear one

newborn. Then, labor devoted to child rearing is equal to total fertility fL,

and the remainder of the population, N , works in production:

N
.
= L− fL = (1− f)L ⇔ n

.
= N/L = 1− f. (2)

2.2. The goods market

In the economy, there is only one good. The depreciation of capital is

included in the production function of that good, so that the accumulation

of capital K is given by dK
dt

. Because (private) capital is the only asset in the

model, private saving is equal to the accumulation of capital, dK
dt

. The output
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of the good, Y , is used in consumption C, health care H and investment dK
dt

:

Y = C +H +
dK

dt
. (3)

It is convenient to define consumption output Y , C, health care H and

capital K in proportion to population L:

y
.
=
Y

L
, c

.
=
C

L
, h

.
=
H

L
, k

.
=
K

L
. (4)

Noting (1), (3) and (4), investment per head in the economy is defined by

s
.
=
dk

dt
=

d

dt

(
K

L

)
=

1

L

dK

dt
− dL

dt

K

L2
=

1

L

dK

dt
+ (m− f)k. (5)

Because it is convenient to define investment per head s
.
= dk

dt
as a control in

dynamic programming, then, by (5), private saving dK
dt

is given by

dK

dt
= [s+ (f −m)k]L. (6)

2.3. Firms

The firms produce output Y from capital K and labor input N [cf. (2)]

according to neoclassical technology:

Y = F (K,N), FK
.
=
∂F

∂K
> 0, FN

.
=
∂F

∂N
> 0, FKK

.
=
∂2F

∂K2
< 0,

FNN
.
=
∂2F

∂N2
< 0, FKN

.
=

∂2F

∂K∂N
> 0, F linearly homogeneous. (7)

4



Noting (2), (4) and (7), output per head, y, can be defined as a function of

capital per head, k, and the fertility rate f as follows:

1− f = n
.
= N/L, Y/L = F (k, n) = F (k, 1− f)

.
= y(k, f),

yk
.
=
∂y

∂k
= FK(k, n) > 0, yf

.
=
∂y

∂f
= −FN(k, n) < 0. (8)

The representative firm maximizes its profit Π by capital input K and

labor input N according to technology (7), given the wage w and the interest

rate r. With (4) and (8), this implies

Π
.
= max

K,N

[
F (K,N)− wN − rK

]
= Lmax

k,n

[
F (k, n)− wn− rk

]
.

(9)

Because the production function F is subject to constant returns to scale

(i.e., linearly homogeneous), then, in equilibrium, the marginal products of

capital and labor, FK and FN , are equal to the interest rate r and the wage

w, respectively, and total profit Π is equal to zero [cf. (8) and (9)]:

y(k, f) = F (k, n) = FBn+ FKk = wn+ rk = (1− f)w + rk,

r = FK(k, n) = yk, w = FN(k, n), yf = −FN(k, n) = −w. (10)

2.4. Externality

It is assumed that aggregate capitalK and aggregate population L pollute

according to the geometric average P = KγL1−γ = kγL, where 0 < γ < 1 is

a constant. Then, the change of pollution, v
.
= dP

dt
, is obtained from (1) and

(6) as follows:

1

P

dP

dt
=
d lnP

dt
= γ

d ln k

dt
+
d lnL

dt
= γ

1

k

dk

dt
+

1

L

dL

dt
= γ

s

k
+ f −m

⇔ v
.
=
dP

dt
=

(
γ
s

k
+ f −m

)
P. (11)
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With result (11), population L can be replaced by pollution P as a prede-

termined state variable in the model.

The probability of the environmental disaster, π, is assumed to be an

increasing function of pollution P . Then, the disaster can be considered as

a random shock q with mean π(P ) as follows:

q =

{
1 with probability π(P ),

0 with probalility 1− π(P ),
where π′ > 0. (12)

The externality in the economy is the following: the environmental shock

q increases every individual’s mortality rate m simultaneously, but each indi-

vidual can decrease its personal mortality rate m by spending on its personal

health care h with increasing marginal costs. This function is specified by

m = χ(δq − h), χ′ > 0,
d2(−m)

dh2
= χ′′ > 0, (13)

where the constant δ > 0 is the effect of the shock q in terms of output per

head (= in terms of health care per head, h) and

∣∣∣∣dmdh
∣∣∣∣ = −dm

dh
= χ′ (14)

the marginal efficiency of personal health care h in decreasing the personal

mortality rate m.

The household chooses its saving per head, s = dk
dt

, fertility rate f and

heath care per head, h. Because of the one-to-one correspondence between h

and m through the function (13), then health care h can be replaced by the

mortality rate m as the household’s control in the model, for convenience.

Denoting the inverse function of χ by z(m)
.
= χ−1(m) in (13) yields

h = δq − z(m), z′
.
=

1

χ′(m)
> 0, z′′

.
= − χ′′

(χ′)2
< 0. (15)
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The factors affecting the mortality rate m [cf. (13)] affect also the level of

health, `, but in the opposite direction: the environmental shock q worsens

every individual’s health simultaneously, but each individual can improve its

personal health ` by its personal health care h. Because the definition of

health ` as a separate function of q and h would excessively complicate the

analysis, and because it is technically convenient to handle the mortality rate

as the household’s control in the model, health ` and the mortality rate m

are defined as negatively associated joint products of the same process:1

`(m), `′ < 0, `′′ exists. (16)

2.5. Public policy

The government sets a poll tax a ∈ < per head, the tax τ ∈ (−∞, 1) on

capital income rK, the parental tax x ∈ < on the number of children, fL,

and the tax b ∈ (−1,∞) on health care H. If a tax is negative, then it is a

subsidy. Any set of linear taxes that support Pareto optimum in the model

is equivalent to those taxes. The government’s budget is [cf. (4)]:

aL+ xfL+ τrK + bH = 0 ⇔ a+ xf + τrk + bh = 0. (17)

In the model, the setup of public policy is a Stackelberg game as follows.

The representative household is the follower that determines its consump-

tion per head, c, its spending on health care per head, h, and its fertility

rate f , taking the taxes (a, x, τ, b) and the environmental shock q as given.

The benevolent government is the leader that maximizes the representative

household’s utility by the taxes (a, x, τ, b), observing the follower’s behavior,

the behavior of the firms, (10), the budget constraint of its own, (17), and

the risk of the regime shift (12, 15) due to pollution (11). The follower’s and

leader’s behavior are examined in sections 3 and 4.

1The mortality rate m is introduced as a factor of utility through health ` [cf. (18)]
only to ensure that the functions (26) and (42) can be strictly concave with respect to the
mortality rate m for realistic values of consumption per head, c, capital per head, k, and
the mortality rate m.
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3. The household

3.1. Utility

According to Becker (1981), an individual derives its utility c(t)f(t)α,

where α > 0 is a constant, from its consumption c(t) and the fertility rate

in its household, f(t), at each time t. This study extends that framework

by introducing personal health ` as the third factor of individual utility.

Consequently, noting (16), periodic utility u is a function of consumption

per head, c, the fertility rate f and the mortality rate m as follows:

u(t) = c(t)f(t)α`
(
m(t)

)
, α > 0, `′ < 0, `′′ exists. (18)

Let ρ be the constant rate of time preference for a hypothetical individual

who could live forever. When an individual faces the mortality rate m, its

probability of dying in a short time dt is equal to mdt. Then, the probability

of its survival beyond the period [ζ, t] is given by em(ζ−t), and its expected

periodic utility at time t ≥ ζ is em(ζ−t)u(t). Consequently, noting (16),

the representative member’s utility for the whole period t ∈ [ζ,∞) in the

household is given by

∫ ∞
ζ

u(t)σe(ρ+m)(ζ−t)dt with (18), 0 < σ < 1, (19)

where σ is a parameter and ρ+m the effective rate of time preference with

mortality. The closer σ is to one, the more eagerly the household transfers

resources from present to future by saving.

3.2. Saving

Investment dK
dt

is equal to private saving:

dK

dt
= wN + rK − C − hL− [a+ xf + τrk + bh]L, (20)

where w is the wage, r the interest rate, N labor supply, wN labor income,

rK capital income, C consumption, h spending on health care per head, hL
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total spending on health care and [a + xf + τrk + bh]L tax expenditures

[cf. (17)]. By (4), (6), (8), (15) and (20), consumption per head, c, can be

defined as a function of the household’s controls (s, f,m), capital per head,

k, taxes (a, x, τ, b), the wage w, the interest rate r and the shock q as follows:

s+ (f −m)k =
1

L

dK

dt
=
wN + rK − C

L
− (1 + b)h− a− xf − τrk

= (1− f)w + rk − c+ (1 + b)[z(m)− δq]− a− xf − τrk ⇔

c = c̃(s, f,m, k, a, x, τ, b, w, r, q)
.
=

w + (m− f + r − τr)k − s+ (1 + b)[z(m)− δq]− (w + x)f − a. (21)

3.3. Transformation from real into virtual time

The mortality rate m can be eliminated from the discount factor of the

utility function (19) by Uzawa’s (1968) transformation:

θ(t) = (ρ+m)t with dt =
dθ

ρ+m
. (22)

Because θ(ζ) = (ρ + m)ζ, θ(∞) = ∞ and dt
dθ

= 1
ρ+m

> 0 hold true, one can

define θ(t) as an alternative time variable and set the variables in terms of it.

Noting (10) and (22), the utility function (19) with (18) and the constraint

s = dk
dt

can be transformed into virtual time θ as follows:

∫ ∞
ζ

c(θ)σf(θ)ασ`
(
m(θ)

)σ
ρ+m(θ)

eζ−θdθ, (23)

dk

dθ
=

s(θ)

ρ+m(θ)
, k(0) = k0. (24)

3.4. Optimal behavior

The household maximizes its utility (23) by investment per head, s, the

fertility rate f and the mortality rate m subject to its consumption per head,

(21), and its accumulation of wealth per head, (24), given the wage w, the
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interest rate r, the environmental shock q and the taxes (a, x, τ, b). This

defines the value function at initial time ζ as

Φ(k, a, x, τ, b, w, r, q, ζ)
.
= max

(s, f,m) s.t. (21), (24)

∫ ∞
ζ

c(θ)σf(θ)ασ`
(
m(θ)

)σ
ρ+m(θ)

eζ−θdθ.

(25)

Following Dixit and Pindyck (1994), and noting s = dk
dt

[cf. (5)], the Bellman

equation for the household’s program (25) is constructed as follows:

Φ(k, a, x, τ, b, w, r, q, ζ) = max
(s, f,m) s.t. (21)

Λ(s, f,m, k, a, x, τ, b, w, r, q, ζ) with

Λ(s, f,m, k, a, x, τ, b, w, r, q, ζ)

.
=
cσfασ`

ρ+m
+
∂Φ

∂k

dk

dθ
=

1

ρ+m

[
cσfασ`(m)σ +

∂Φ

∂k
s

]
.

(26)

The first-order conditions for maximizing the function (26) by the controls

(s, f,m) subject to (21) are given by

∂Λ

∂s
=

1

ρ+m

(
σcσ−1fασ`σ

∂c̃

∂s
+
∂Φ

∂k

)
=

1

ρ+m

(
∂Φ

∂k
− σcσ−1fασ`σ

)
= 0

⇔ ∂Φ

∂k
= σcσ−1fασ`σ, (27)

∂Λ

∂f
=

1

ρ+m

(
ασcσfασ−1`σ + σcσ−1fασ`σ

∂c̃

∂f

)
= σ

cσ−1fασ`σ

ρ+m

(
α
c

f
− ∂c̃

∂f

)
= σ

cσ−1fασ`σ

ρ+m

(
α
c

f
− w − x− k

)
= 0 ⇔ f =

αc

w + k + x
, (28)

∂Λ

∂m
=

1

ρ+m

[
σcσ−1fασ`σ

∂c̃

∂m
+ σcσfασ`σ−1`′ − Λ

ρ+m

]
=

1

ρ+m

{
σcσ−1fασ`(m)σ[k + (1 + b)z′(m)] + σcσfασ`(m)σ−1`′(m)

− Λ

ρ+m

}
= 0 ⇔ k + (1 + b)z′ =

Λ/(ρ+m)

σcσ−1fασ`σ︸ ︷︷ ︸
+

−c `′

`︸︷︷︸
−

> 0. (29)
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When the mortality rate m is held constant, the function Λ is strictly

concave in controls s and f . To obtain a unique equilibrium for the household,

the strict concavity of Λ must be extended for all controls (s, f,m). This is

done by examining the second-order partial derivative of Λ with respect to

m, which is obtained by (15), (19), (21) and (29) as follows:

∂2Λ

∂m2
=

1

ρ+m︸ ︷︷ ︸
+

{
(σ − 1︸ ︷︷ ︸
−

)σcσ−2fασ`σ︸ ︷︷ ︸
+

[k + (1 + b)z′]2︸ ︷︷ ︸
+

+σcσ−1fασ`σ(1 + b)︸ ︷︷ ︸
+

z′′︸︷︷︸
−

+ σ2cσ−1fασ`σ−1︸ ︷︷ ︸
+

[k + (1 + b)z′︸ ︷︷ ︸
+

] `′︸︷︷︸
−

+(σ − 1︸ ︷︷ ︸
−

)σcσfασ`σ−2(`′)2︸ ︷︷ ︸
+

+ σcσfασ`σ−1︸ ︷︷ ︸
+

`′′ +
Λ

(ρ+m)2︸ ︷︷ ︸
+

}
.

If, in this equation, the negative effects of the mortality rate m dominate over

the positive intertemporal effect of the effective discount rate ρ+m and the

ambiguous effect of the mortality rate m through the second derivative `′′,

then ∂2Λ
∂m2 < 0 holds true and the function Λ is strictly concave. Furthermore,

by (29), one obtains

∂2Λ

∂m∂b
=
σcσ−1fασ`σ

ρ+m
z′ > 0.

Thus, differentiating equation (29) totally yields the mortality function

m = M(k, w, r, q, a, x, τ, b, ζ) with
∂M

∂b
= − ∂2Λ

∂m∂b

/
∂2Λ

∂m2
> 0. (30)

Results (28) and (30) can be explained as follows. An increase in the

parental tax per child, x, decreases incentives to rear children (i.e., the fer-

tility rate f falls relative to consumption c). When capital per head, k,

increases, it is more difficult for the household to save that capital k for each

newborn. This as well decreases incentives to rear children (i.e. f falls). An

increase in the tax on health care, b, discourages health care, increasing the
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mortality rate m.

The solution of dynamic programming is based on finding a specification

for the value function Φ. Then, one can use Merton’s (1971) rule as follows.

In the steady state s = 0, from the Bellman equation (26) it follows that

(
arg max

(s, f,m) s.t. (21)
Λ

)
s=0

=

(
arg max

(s, f,m) s.t. (21)

cσfασ`σ

ρ+m

)
s=0 .

Thus, one can try the simplest case where the value function Φ is a positive

constant ϑ times the maximized periodic utility in virtual time:

Φ
.
= ϑ max

(s, f,m) s.t. (21)

cσfασ`σ

ρ+m
. (31)

Plugging (31) into the Bellman equation (26) in the steady state s = 0 yields

ϑ = 1. (32)

Thus, the value function (31) becomes

Φ
.
= max

(s, f,m) s.t. (21)

cσfασ`σ

ρ+m
. (33)

Inserting this into the first-order condition (27) and noting (21) yield

σcσ−1fασ`σ =
∂Φ

∂k
= σ

cσ−1fασ`σ

ρ+m

∂c̃

∂k
⇔ ρ+m =

∂c̃

∂k
= m− f + r − τr

⇔ f = (1− τ)r − ρ. (34)

The household’s response functions are the fertility rate relative to consump-

tion, (28), and the fertility rate (34). The government takes these together

with the firm’s responses (10) as constraints in its optimization.
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4. The government

4.1. Setup for public policy

The definition of pollution, (11), determines the fertility rate f as a func-

tion of the controls (s, v,m) and state variables (k, P ):

f(s, v,m, k, P )
.
= m+

v

P
− γ s

k
,

∂f

∂s
= −γ

k
< 0,

∂f

∂v
=

1

P
> 0,

∂f

∂m
= 1,

∂f

∂k
= γ

s

k2
,
∂f

∂P
= − v

P 2
. (35)

The government balances its budget (17) by the poll tax a. Because there is

one-to-one correspondence from the other taxes (τ, x, b) to (s, v,m) through

the system (21) [with (34)], (35) [with (28)] and (30), investment per head,

s = dk
dt

, the change of pollution, v = dP
dt

, and the mortality rate m can replace

the taxes (τ, x, b) as the government’s controls in the model.

Inserting the production function (10), the government’s budget (17) and

the fertility function (35) into the household’s consumption per head, (21),

it is possible to define consumption per head, c, as a function of the govern-

ment’s controls (s, v,m) and the state variables (k, P ) as follows:

c = ĉ(s, v,m, k, P, q) = c̃ = y(k, f) + (m− f)k − s− δq + z(m), (36)

with the partial derivatives

∂ĉ

∂s
= (yf − k)

∂f

∂s
− 1,

∂ĉ

∂v
= (yf − k)

∂f

∂v
=
yf − k
P

,

∂ĉ

∂m
= k + z′ + (yf − k)

∂f

∂m
,

∂ĉ

∂q
= −δ, ∂ĉ

∂P
= (yf − k)

∂f

∂P
,

∂ĉ

∂k
= yk +m− f + (yf − k)

∂f

∂k
. (37)

By (22), the constraint v = dP
dt

can be written in virtual time θ as follows:

dP

dθ
=

v(θ)

ρ+m(θ)
, P (0) = P0. (38)
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4.2. Optimization

The government maximizes the representative household’s welfare (23) by

its controls (s, v,m) subject to the occurrence of the environmental shock,

(12), the accumulation of capital per head and aggregate pollution, (24) and

(38), and the determination of the fertility rate and consumption per head,

(35) and (36). Thus, its value function at initial time ζ is defined by

Ψ(k, P, q, ζ)
.
= max

(s(ζ), v(ζ),m(ζ))
s.t. (24),(35),(36),(38)

∫ ∞
ζ

c(θ)σf(θ)ασ`
(
m(θ)

)σ
ρ+m(θ)

eζ−θdθ, (39)

where q = 0 holds true before and q = 1 after the shock. Noting (39), one

can define the relative damage of the shock in terms of welfare as follows:

D(k, P, ζ)
.
=

Ψ(k, P, 0, ζ)−Ψ(k, P, 1, ζ)

Ψ(k, P, 0, ζ)
. (40)

The following result is proven in the Appendix:

Proposition 1. If the loss of income due to the shock, δ, is small relative

to consumption per head before the shock, c|q=0, (e.g., if δ
c|q=0

is less than

10%), then the relative damage of the shock in terms of welfare, (40), is

approximately in fixed proportion σ to it, D(k, P, ζ) ≈ σ δ
c|q=0

.

The parameter σ ∈ (0, 1) tells, how willing the households are to save for

future in capital, i.e., 1
1−σ is the elasticity of intertemporal substitution. [cf.

(19)]. If σ is close to zero, then relative damage of the shock is insignificant

in terms of current consumption. The closer σ is to one, the greater the

relative damage D is in terms of current consumption.

At the occurrence of the environmental shock, q jumps permanently from

0 to 1 [cf. (12)], changing welfare (39) from Ψ(k, P, 0, ζ) into Ψ(k, P, 1, ζ).

Thus, by Kamien and Schwartz (1981) and Dixit and Pindyck (1994), the

Bellman equation for the government’s program is [cf. (12) and (39)]

Ψ = max
(s(ζ), v(ζ),m(ζ)) s.t. (24),(35),(36),(38)

Υ(s, f,m, k, P, q, ζ) with (41)

14



Υ(s, f,m, k, P, q, ζ)
.
=
cσfασ`σ

ρ+m
+
∂Ψ

∂k
(k, P, q, ζ)

dk

dθ
+
∂Ψ

∂P
(k, P, q, ζ)

dP

dθ

+ π(P )
[
Ψ(k, P, 1, ζ)−Ψ(k, P, q, ζ)

]
=

1

ρ+m

[
cσfσα`σ +

∂Ψ

∂k
(k, P, 1, ζ)s+

∂Ψ

∂P
(k, P, 1, ζ)v

]
+ π(P )

[
Ψ(k, P, 1, ζ)−Ψ(k, P, q, ζ)

]
,

(42)

where the fertility rate f and consumption per head, c, are determined by (35)

and (36), π(P ) is the probability of the environmental shock [cf. (12)] and

the difference Ψ(k, P, 1, ζ)−Ψ(k, P, q, ζ) is the immediate change of welfare

due to that shock. Note that the latter term π
[
Ψ(k, P, 1, ζ) − Ψ(k, P, q, ζ)

]
vanishes entirely after the shock when q = 1 holds true.

From the equilibrium condition yf = −w [cf. (10)] and the household’s

first-order condition (28) it follows that

x = αc/f − w − k = αc/f + yf − k. (43)

Noting (35), (37) and (43), the first-order conditions for the maximization

(41) subject to (42) are obtained as follows:

0 =
∂Υ

∂s
=

1

ρ+m

[
cσfασ`σ

(
σ

c

∂ĉ

∂s
+
σα

f

∂f

∂s

)
+
∂Ψ

∂k

]
=

1

ρ+m

{
σcσ−1fασ`σ

[(
yf − k + α

c

f

)
∂f

∂s
− 1

]
+
∂Ψ

∂k

}
=

1

ρ+m

[
σcσ−1fασ`σ

(
x
∂f

∂s
− 1

)
+
∂Ψ

∂k

]
=

1

ρ+m

[
−σcσ−1fασ`σ

(
x
γ

k
+ 1

)
+
∂Ψ

∂k

]
,

(44)

0 =
∂Υ

∂v
=

1

ρ+m

[
cσfασ`σ

(
σ

c

∂ĉ

∂v
+
σα

f

∂f

∂v

)
+
∂Ψ

∂P

]
=

1

ρ+m

[
σcσ−1fασ`σ

(
yf − k + α

c

f

)
∂f

∂v
+
∂Ψ

∂P

]

15



=
1

ρ+m

(
σcσ−1fασ`σx

∂f

∂v
+
∂Ψ

∂P

)
=

1

ρ+m

(
σcσ−1fασ`σ

x

P
+
∂Ψ

∂P

)
,

(45)

0 =
∂Υ

∂m
=

1

ρ+m

[
cσfασ`σ

(
σ

c

∂ĉ

∂m
+
σα

f

∂f

∂m
+ σ

`′

`

)
− Υ

ρ+m

]
=

1

ρ+m

{
σcσ−1fασ`σ

[(
yf − k + α

c

f

)
∂f

∂m
+ k + z′ + c

`′

`

]
− Υ

ρ+m

}
=

1

ρ+m

[
σcσ−1fασ`σ

(
x+ k + z′ + c

`′

`

)
− Υ

ρ+m

]
⇔

1

σcσ−1fασ`σ
Υ

ρ+m
− c`

′

`
= x+ k + z′. (46)

The function Υ [cf. (42)] is strictly concave in (s, v). To ensure that the

government’s equilibrium is unique, this property is extended by assuming

that the function Υ as well is strictly concave in its arguments (s, f,m).

4.3. Solution

In a steady state with s = v = 0, from the Bellman equation (41) with

(42) it follows that

(
arg max

(s(ζ), v(ζ),m(ζ)) s.t.
(24),(35),(36),(38)

Υ

)
s=v=0

=

(
arg max

(s(ζ), v(ζ),m(ζ)) s.t.
(24),(35),(36),(38)

cσfασ`σ

ρ+m

)
s=v=0 .

Thus, one can try the simplest case where the value function Ψ is a positive

constant $ times the maximized periodic utility in virtual time:

Ψ(k, P, q, ζ) = $ max
(s(ζ), v(ζ),m(ζ)) s.t. (24),(35),(36),(38)

cσfασ`σ

ρ+m
> 0,

$ > 0, Ψ(k, P, ζ)
.
= Ψ(k, P, 1, ζ), (47)

where Ψ is the value after the disaster when q = 1. Noting (35), (37), (43)

and (47), the partial derivatives of the value function (47) with respect to

16



the state variables (k, P ) are obtained as follows:

∂Ψ

∂k
= Ψ

∂ ln Ψ

∂k
= Ψ

σ

c

∂ĉ

∂k
+
σα

f

∂f

∂k
= Ψ

σ

c

(
∂ĉ

∂k
+ α

c

f

∂f

∂k

)
= Ψ

σ

c

[
yk +m− f +

(
yf − k + α

c

f

)
∂f

∂k

]
= Ψ

σ

c

(
yk +m− f + x

∂f

∂k

)
= Ψ

σ

c

(
yk +m− f + xγ

s

k2

)
,

(48)

∂Ψ

∂P
= Ψ

∂ ln Ψ

∂P
= Ψ

σ

c

(
∂ĉ

∂P
+ α

c

f

∂f

∂P

)
= Ψ

σ

c

(
yf − k + α

c

f

)
∂f

∂P
= Ψ

σ

c
x
∂f

∂P

= −Ψ
σ

c
x
v

P 2
. (49)

Dividing the Bellman equation (41) and (42) by the value function (47)

and noting the definition of the relative damage, (40), yield

1 =
Υ

Ψ
=
cσfασ

ρ+m

1

Ψ
+

1

Ψ

∂Ψ

∂k

dk

dθ
+

1

Ψ

∂Ψ

∂P

dP

dθ
+ π(P )

Ψ(k, P, 1, ζ)−Ψ(k, P, q, ζ)

Ψ(k, P, q, ζ)

=

{
1
$

+ 1
Ψ
∂Ψ
∂k

dk
dθ

+ 1
Ψ
∂Ψ
∂P

dP
dθ
− π(P )D(k, P, ζ) for q = 0,

1
$

+ 1
Ψ
∂Ψ
∂k

dk
dθ

+ 1
Ψ
∂Ψ
∂P

dP
dθ

for q = 1.
(50)

In this study, the steady-state value of a variable is denoted by superscript

( ∗). There are different steady states before (q = 0) and after (q = 1) the

shock. Because (50) holds in both of these steady states where dP
dθ

= dk
dθ

= 0

hold true, the multiplier $ is piecewise constant as follows:

$
∣∣
q=0

=
1

1 + π∗D∗
< 1, $|q=1 = 1, (51)

where π∗
.
= π(P ∗|q=0) is the probability of the disaster [cf. (12)], D∗

.
=

D(k∗|q=0, P
∗|q=0, ξ) the relative damage [cf. (40)] and π∗D∗ the expected

relative damage in the steady state before the occurrence of the shock.
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5. Optimal policy

5.1. The parental tax per child

It is assumed that the relative change of pollution, v
P

, is either negative

or positive, but small enough for v
P
< ρ+m

$
. Inserting the value function (47)

and its partial derivative (49) into the government’s first-order condition (45)

and noting the government’s fertility function (35) yield

0 = (ρ+m)
∂Υ

∂v
= σcσ−1fασ`σ

x

P
+
∂Ψ

∂P
= σcσ−1fασ`σ

x

P
−Ψ

σ

c
x
v

P 2

=
Ψ

P

σ

c
x

(
cσfασ`σ

Ψ
− v

P

)
=

Ψ

P

σ

c
x

(
ρ+m

$
− v

P︸ ︷︷ ︸
+

)
⇔ x = 0. (52)

Thus, in contrast to Harford (1997, 1998), the parental tax per child is not

positive in this case:

Proposition 2. The parental tax per child can be eschewed, x = 0.

Because the other taxes eliminate the externality through pollution and mor-

tality, this tax is unnecessary.

5.2. Taxing capital income

Plugging x = 0 [cf. (52)], the profit maximization condition yk = r [cf.

(10)] and the value function (47) into the partial derivative (48) and the

first-order condition (44), one obtains

0 =
∂Ψ

∂k
− σcσ−1fασ`σ

(
x
γ

k
+ 1

)
= Ψ

σ

c

(
yk +m− f + xγ

s

k2

)
− σcσ−1fασ

(
x
γ

k
+ 1

)
= Ψ

σ

c

(
r +m− f

)
− σ

c

Ψ

$
(ρ+m) = Ψ

σ

c

(
r +m− f − ρ+m

$

)
⇔ r = f −m+

ρ+m

$
. (53)
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Because the ratio of the difference between the fertility and mortality rates

to the sum of the rate of time preference and the mortality rate, f−m
ρ+m

, is

insignificant, one can approximate the first-order condition (53) as follows:

r

ρ+m
=
f −m
ρ+m︸ ︷︷ ︸
≈0

+
1

$
≈ 1

$
⇔ ρ+m

r
≈ $. (54)

Plugging (51), (53) and (54) into the household’s response (34) yields the

optimal tax

τ =
r − f − ρ

r
=

1

r

(
ρ+m

$
−m− ρ

)
=
ρ+m

r

(
1

$
− 1

)
= $

(
1

$
− 1

)

=

{
$|q=0

(
1

$|q=0
− 1
)

= π∗D∗

1+π∗D∗
for q = 0,

0 for q = 1.

This result can be rephrased by the following proposition:

Proposition 3. Before the disaster, the optimal tax on capital income is an

increasing function of the expected relative damage π∗D∗ as follows:

τ
∣∣
q=0
≈ π∗D∗

1 + π∗D∗
.

After the disaster, that tax can be eschewed, τ |q=1 = 0.

5.3. Taxing health care

Because optimal public policy leads to the Pareto optimum, where con-

sumption per head, c, the fertility rate f and the mortality rate m are equal

in the household’s and the government’s problems, then, by (26), (32) and

(41), the ratio of the household’s and the government’s value functions, (33)

and (47), is Υ/Λ = Ψ/Φ = $/ϑ = $. From this, (13), (15), (51) and the

comparison of the household’s and the government’s first-order conditions,

(29) and (46), it follows that

0 = (ρ+m)
∂Υ

∂m
= σcσ−1fασ`σ(k + z′)− Υ

ρ+m
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= σcσ−1fασ`σ(k + z′)− $Λ

ρ+m

⇔ k + z′ =
1

σcσ−1fασ`σ
$Λ

ρ+m
= $[k + (1 + b)z′] ⇔

b =

(
1

$
− 1

)(
k

z′
+ 1

)
=

(
1

$
− 1

)
(kχ′ + 1)

=

{
(kχ′ + 1)π∗D∗ > 0 for q = 0,

0 for q = 1.
(55)

Noting (15), the result (55) can be rephrased as follows:

Proposition 4. Before the disaster, the tax on health care should be in pro-

portion (kχ′ + 1) to the expected relative loss for the disaster π∗D∗,

b|q=0 = (kχ′ + 1)π∗D∗ > 0,

where k is capital per head and χ′ the marginal efficiency of personal health

care h in decreasing the mortality rate m [cf. (14)]. After the disaster, that

tax can be eschewed, b|q=1 = 0.

Because a single household ignores the effect of its health care h on the

other households’ mortality rate m through the increase of population L and

pollution P , its demand for health care exceeds the socially optimal level

before the occurrence of the disaster. Thus, the demand for health care

must be discouraged by the tax b. The more efficiently personal health care

decreases mortality (i.e., the greater χ′), or the more capital k each surviving

person needs, the higher the tax b must be. If health care is very inefficient

in decreasing mortality (i.e., χ′ is close enough to 0), then the tax is roughly

equal to the expected relative loss for the disaster, b ≈ π∗D∗.

6. Conclusions

This study examines the optimal management of a market economy where

(i) households decide on saving, health care and the number of their children,

(ii) the government controls their activity only by linear taxes, and (iii)
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population growth and capital accumulation generate pollution, increasing

the risk of a lethal environmental disaster. In this situation, it turns out that

a rational government should perform the following precautionary policy.

To implement Pareto optimality – i.e., to internalize the external link

from population growth and capital accumulation to welfare though pollution

and mortality – it is necessary to set precautionary taxes (i.e., taxes prior

to the disaster) on capital income and the demand for health care. These

are increasing functions of the expected relative damage of the disaster. The

specific tax rules are given by Propositions 2, 3 and 4. In particular, Harford’s

(1997, 1998) parental tax is wholly unnecessary in this setup. In addition,

only the revenue raising-poll tax is needed.

There are two reasons for this sharp result. First, because there is no

incremental contribution of pollution to the mortality rate, then there is

only the precautionary, but no maintenance motive for the government to

intervene. Second, because the mortality rate can be decreased by spending

on health care, then the mortality shock turns into an increase in the cost of

health care, which has the same effect as an exogenous fall of income.

Appendix: the approximation of the relative damage D

Because, by (35) and (37), the fertility rate f doesn’t, but consumption

per head, c, does depend on the shock q, the partial derivative of the value

function (47) with respect to the shock q is negative:

∂Ψ

∂q
(k, P, q, ζ) =

∂

∂q
max
s,v,m

$cσfασ`σ

ρ+m
= σ

Ψ

c

∂c

∂q
= −σδ

c
Ψ(k, P, q, ζ) < 0. (56)

Consider now what happens for the value function (47) if q jumps discretely

from 0 to 1. Applying the mean value theorem to (47), and noting (56), one

obtains the following: there exists a value ξ ∈ (0, 1) so that

Ψ(k, P, 1, ζ)−Ψ(k, P, 0, ζ) =
∂Ψ

∂q
(k, P, ξ, ζ) = − σδ

c|q=ξ
Ψ(k, P, ξ, ζ) < 0. (57)

Furthermore, from (37) it follows that c|q=ξ = c|q=0 − δξ. Given this, (47)
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and (57), the relative damage (40) can be approximated by

D(k, P, ζ)
.
=

Ψ(k, P, 0, ζ)−Ψ(k, P, 1, ζ)

Ψ(k, P, 0, ζ)
=

σδ

c|q=ξ
Ψ(k, P, ξ, ζ)

Ψ(k, P, 0, ζ)

=
σδ

c|q=ξ

(
c|q=ξ
c|q=0

)σ
=

σδ

c|q=0

(
c|q=ξ
c|q=0

)σ−1

=
σδ

c|q=0

(
1− ξδ

c|q=0

)σ−1

> 0

with lim
δ

c|q=0
→0

[
c|q=0

σδ
D(k, P, ζ)

]
= lim

δ
c|q=0

→0

(
1− ξ δ

c|q=0︸ ︷︷ ︸
→0

)σ−1

= 1

and lim
δ

c|q=0
→0
D(k, P, ζ) =

σδ

c|q=0

. (58)

Noting (19), the result (58) leads to the approximation D(k, P, ζ) ≈ σ δ
c|q=0

.
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