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Abstract 

The relationships between species abundance or occurrence versus spatial variation 

in climate are commonly used in species distribution models (SDMs) to forecast 

future distributions. Under “space-for-time-substitution”, the effects of climate 

variation on species are assumed to be equivalent in both space and time. Two 

unresolved issues of space-for-time-substitution are the time period for species’ 

responses and also the relative contributions of rapid- versus slow reactions in 

shaping spatial and temporal responses to climate change. To test the assumption of 

equivalence, we used a new approach of climate decomposition to separate variation 

in temperature and precipitation in Fennoscandia into spatial, temporal and spatio-

temporal components over a 23-year period (1996-2018). We compiled information 

on land cover, topography and six components of climate for 1756 fixed route 
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surveys and we modelled annual counts of 39 bird species breeding in the mountains 

of Fennoscandia. Local abundance of breeding birds was associated with the spatial 

components of climate as expected, but the temporal and spatio-temporal climatic 

variation from the current and previous breeding seasons were also important. The 

directions of the effects of the three climate components differed within and among 

species, suggesting that species can respond both rapidly and slowly to climate 

variation and that the responses represent different ecological processes. Thus, the 

assumption of equivalent species’ response to spatial and temporal variation in 

climate was seldom met in our study system. Consequently, for the majority of our 

species, space-for-time substitution may only be applicable once the slow species’ 

responses to a changing climate have occurred. Whereas forecasts for the near 

future need to accommodate the temporal components of climate variation. However, 

appropriate forecast horizons for space-for-time substitution are rarely considered 

and may be difficult to reliably identify. Accurately predicting change is challenging 

because multiple ecological processes affect species distributions at different 

temporal scales. 

 

Introduction 

Understanding the mechanisms and predicting the impacts of climate on the 

distributions and abundances of species is necessary for key goals in conservation 

and management. The complexity of species’ responses to a changing climate may 

not be adequately characterised by the most commonly used form of forecasting 

based on species distribution models (SDMs, Adler et al., 2020; Illán et al., 2014; 

Rapacciuolo et al., 2012). In SDMs, associations are established between the 

occurrence or abundance of a species at sampling locations with climate and other 



 
 

environmental covariates (Franklin, 2009; Green et al., 2008; Jiguet et al., 2013; 

Stephens et al., 2016). Forecasts based on SDMs are typically implicitly based on 

space-for-time substitutions, which use current spatial patterns to forecast spatio-

temporal patterns into the future (Adler et al., 2020; Blois et al., 2013; Stephens et 

al., 2016; Veloz et al., 2012). A spatial climate difference associated with variation in 

occurrence or abundance of a species is assumed to have the same effect as an 

equivalent change in climate through time at a single location. SDMs built with data 

from one time period and forecast or hindcast to a different period have given robust 

spatial predictions, but exceptions are common across a range of taxa, including 

birds (Araujo et al., 2005; Soultan et al., 2022), mammals (Davis et al., 2014), 

butterflies (Kharouba et al., 2009) and plants (Dobrowski et al., 2011; Pearman et al., 

2008; Pearson et al., 2006; Veloz et al., 2012; Worth et al., 2014). Moreover, even for 

SDMs that accurately predicted future species distributions, occurrences or 

abundances at the sites where change occurred were often poorly predicted (Briscoe 

et al., 2021; Illán et al., 2014; Rapacciuolo et al., 2012). Systematic assessments are 

needed of the use of simple space-for-time substitutions versus more complex 

models of associations between species and environments. 

 

An unresolved issue of space-for-time substitution is whether there may be a specific 

time period during which spatial and temporal species-climate relationships are 

equivalent, which could explain some of the heterogeneity among species responses 

to climate variation. The time spans over which the climatic drivers of species 

distribution patterns are expected to act are reflected in the calculation of climate 

covariates for SDMs. Milanesi et al. (2020) distinguished between SDMs with static 

and dynamic covariates (Fig. 1a, b). For the commonly used static covariates, 



 
 

covariates are averaged over several years or decades and the forecasted 

distribution is then an average distribution for a future time period (Araujo et al., 2005; 

Dobrowski et al., 2011). Longer forecast horizons have been advocated for two 

reasons: (1) the influence of stochasticity on shorter time scales, and (2) because 

changes in species’ distributions may occur slowly (Blois et al., 2013; Pearman et al., 

2008). Delayed changes in distributions may occur for example if dispersal limitations 

hamper the ability of a species to reach new suitable areas. Species’ tolerances to 

climatic conditions may also be wider than the current realized niche while responses 

to climatic change in the environment of the species may be slow, including 

succession from open habitats to forests or between forest types (Dobrowski et al., 

2011; Schurr et al., 2012; Veloz et al., 2012; Wang et al., 2017; Zurell, 2017). If 

species’ responses are delayed, valid forecast horizons based on space-for-time 

substitutions with static covariates will be left- and right-truncated (Fig. 2); forecasts 

would be applicable for the time period after the delay has been overcome (left-

truncation) and until the point in the future when the species-climate relationship 

eventually changes (right-truncation). Space-for-time substitutions based on static 

covariates have been suggested for forecasting changes occurring over longer time 

periods of decades up to millennia (Adler et al., 2020; Blois et al., 2013; Pearman et 

al., 2008).  

 

In contrast, Damgaard (2019) cautioned against forecasting based on space-for-time 

substitution unless species’ responses to environmental changes occur relatively 

rapidly, because a changing environment may cause predictions to become 

unreliable. An example of a fast species response might be when local climate 

conditions determine the extent or water depth of wetlands and a wetland-dependent 



 
 

species reacts quickly to the suitable habitat conditions. Here, we would expect the 

same relationship between the species’ distribution or abundance and climate, 

regardless of whether the species-climate relationship is in space or time or is 

describing the imminent or more distant future (Fig. 2, 3). Fast species responses 

can be modelled with dynamic covariates, in which covariates represent variation at 

fine temporal resolutions, such as seasons or years, and the resulting forecasts can 

incorporate rapid changes in distributions or abundances (Figs 2, 3; Briscoe et al., 

2021; Devenish et al., 2021). Thus, the underlying approaches of SDMs with static 

and dynamic covariates are different, with rapid effects of climate conditions omitted 

when using static covariates, but included via dynamic covariates. For rapid species 

responses and forecasts based on space-for-time substitutions, forecast horizons are 

right-truncated, but not left-truncated, because they encompass the entire time period 

from the immediate future until the species-climate relationship changes (Figs 2, 3). 

The time horizons apply to forecasts with either static or dynamic covariates (static or 

dynamic forecasts, henceforth).  

 

A third type of SDMs, based on a decomposition of covariates (Fig. 1c), provide a 

novel framework for investigation of the assumptions inherent in space-for-time 

substitution. Oedekoven et al. (2017) separated three components of climatic 

variation: (1) the long-term average at each location (spatial component), (2) the 

annual variation across all locations (temporal component) and (3) all remaining 

variation (residual component or the spatio-temporal component or space-time 

anomaly). Then, all components are included as covariates to model species counts 

or occurrences recorded at multiple sample sites and over multiple years. Oedekoven 

et al. (2017) found that the spatial effects of a given climate covariate were not 



 
 

always matched by equivalent effects of the temporal or residual components in 

modelling distributions of five common species of birds in Great Britain (ca. 210K 

km2, ca. 900 km latitude, 20 years). 

 

The aim of our study was to investigate equivalence in space and time of the 

relationships between local species abundances and climate for a diverse 

assemblage of bird species. A better understanding of whether and over which time 

periods the relationships between species abundance or occurrence and climate are 

equivalent in space and time is crucial because equivalence would provide greater 

confidence in forecasts. We applied SDMs with decomposed climate covariates to 39 

species of birds breeding in the mountains of Fennoscandia (Fig. 4) to obtain a better 

understanding of the spatial and temporal effects of climate. The study area is large 

with a complex biogeography comprising alpine, boreal, arctic, Atlantic and 

continental regions (Roekaerts, 2002), including the highest mountains of Northern 

Europe and a large range of climate variability that is bounded by a temperate 

climate in the south, an arctic climate in the north, a maritime climate in the west and 

a more continental climate in the east. Understanding the impact of climate variation 

on birds breeding in mountains and high latitudes is important given their vulnerability 

to climate warming (Freeman et al., 2018). We expected a similar response to 

climate across species for the spatial component because most bird species 

breeding in the mountains are expected to occupy the colder parts of Fennoscandia. 

Thus, the spatial component provides a useful baseline to compare relationships for 

the temporal and residual components. We considered the joint effects of 

temperature and precipitation on species distributions because both climatic 

variables can explain responses of mountain birds to a changing environment 



 
 

(Tingley et al., 2012). Specifically, for each species, we expect one of the following 

three outcomes, with consequences for time periods valid for space-for-time 

substitution: 

(1) Are the directions of effect between local abundance and climatic variation 

consistent in space and time? Equivalence of the direction of effect of the 

temporal and spatial relationship would support the assumptions underlying 

space-for-time substitution. Species’ responses that lead to consistent directions 

of effects are rapid species responses to climatic variation. Additionally, 

consistent directions of effect could also be expected for slow species responses 

if the species is already responding to a change in the long-term average climate. 

For rapid species responses, no left-truncation of the forecast horizon is required 

for either static or dynamic forecasts (Fig. 2, 3). For slow species responses and 

static forecasts, left-truncation of the forecast horizon is necessary, if the delay is 

not yet overcome. Dynamic forecasts based on space-for-time substitution are not 

valid for slow species responses, as short-term variation is assumed to be 

stochastic (Fig. 2, 3).  

(2) Is local variation in species’ abundances associated with temporal climate 

components? A lack of temporal effects would support the suggestion that 

species respond slowly to climate and have not yet responded to possible 

changes in the long-term average climate. Consequently, left-truncation may be 

necessary for static forecasts while dynamic forecasts are not valid using space-

for-time substitution (Figs. 2, 3). 

(3) Is local variation in species’ abundances associated with temporal climate 

components but the directions of effect between local abundance and climatic 

variation are not consistent in time and space? Species-climate relationships that 



 
 

are inconsistent in time and space would indicate that species respond differently 

across different temporal scales of climate variation. Consequently, SDMs with 

static covariates do not comprehensively capture species-climate associations. 

Static forecasts based on space-for-time substitution may need to be left-

truncated because an inconsistent pattern between space and time indicates that 

species responses to changes in the long-term average climate will be delayed. 

Dynamic forecasts based on space-for-time substitution are not valid (Figs 2, 3). 

Methods 

Bird monitoring data 

We used bird abundance data recorded on fixed routes of the three national bird 

monitoring schemes of Norway, Sweden and Finland: the Norwegian terrestrial 

breeding bird monitoring (Norsk hekkefuglovervåking, tov-e.nina.no/hekkefugl, 13 

years, 2006–2018), the Swedish breeding bird survey (Svensk Fågeltaxering, 

www.fageltaxering.lu.se, 23 years, 1996–2018) and the Finnish breeding bird 

monitoring scheme (www.luomus.fi/en/bird-monitoring, 13 years, 2006–2018). Fixed 

survey routes were laid out in a systematic grid across each country, and are 

representative of the major habitats in Fennoscandia because they covered a large 

and topographically varied area across the three countries (ca. 1.1M km2, ca. 1800 

km latitude, Fig. 4). Routes were surveyed once each year between the end of May 

and early July, but not all routes were surveyed in all years. Survey routes were 6 km 

(Finland and Norway) or 8 km (Sweden) in total length, each typically a square or 

rectangle and birds were recorded either along line transects (Finland), or on a 

combination of line transects and point count stations with 5 min survey durations 

(Sweden and Norway). Sections of a route were not surveyed if the terrain was 

inaccessible but the total length of transects or the number of points surveyed was 

https://tov-e.nina.no/hekkefugl
http://www.fageltaxering.lu.se/
http://www.luomus.fi/en/bird-monitoring


 
 

recorded to correct for occasional variation in sampling effort. In Sweden, birds were 

counted separately on point count stations and line transects. In Norway, all species 

were counted on point count stations, but a subset of rarer species were also 

counted on line transects. Consequently, we treated point counts and line transects 

as separate but spatially dependent surveys. The total numbers of individuals 

(Sweden) or pairs (Norway and Finland) detected were recorded per species for each 

route. Background details on each monitoring programme are summarized by Kålås 

et al. (2014); Lehikoinen (2013); Lehikoinen et al. (2014); Lehikoinen and Virkkala 

(2016); Ottvall et al. (2007) and in Methods S1. The Norwegian data were taken from 

470 routes with both point count and line transect data, and an additional seven 

routes with only point count data (route-years with transect data: 2765; route-years 

with point counts: 3101). In Sweden there were 716 routes with both transect and 

point count data (route-years: 8897), and the Finnish data were from 563 routes with 

transect data (route-years: 2845). In total, data from 1756 routes were included 

(routes with transect data: 1749; routes with point counts: 1186).  

We initially selected 52 bird species for modelling, which were listed on the Swedish 

natural history portal Artfakta (artfakta.se) as occurring in the Fennoscandian 

mountains. We present results for a subset of 39 diverse species of birds (Table S1) 

for which our fitted models exceeded a performance threshold (see below): 

Anseriformes (four species), Galliformes (two species), Charadriiformes (17 species), 

Cuculiformes (1 species) and Passeriformes (15 species). The species ranged in 

body size from 8.7g (willow warbler, Phylloscopus trochilus) to 1015g (red-breasted 

merganser, Mergus serrator) and contain invertivore, granivore, herbivore, omnivore 

and aquatic predator species (Tobias et al., 2022). Most species are migrants and 

spend the summer breeding season in the Fennoscandian mountains (Svensson et 

http://artfakta.se/


 
 

al., 2009). Only five species are resident or only partially migratory: willow grouse 

(Lagopus lagopus), rock ptarmigan (L. muta), white-throated dipper (Cinclus cinclus), 

northern raven (Corvus corax) and common redpoll (Acanthis flammea). Willow 

grouse and rock ptarmigan often move to more sheltered habitats and lower altitudes 

in winter. Common redpoll and white-throated dipper are partial migrants that depart 

the most northerly areas of the study area in winter. 

We jointly modelled data across all three countries, which ensured that sites spanned 

a larger range of environmental variation than in either of the three countries. 

Predicting outside of the sampled range of environmental variation can result in 

inaccurate predictions (C.F. Dormann et al., 2013; Randin et al., 2006). We 

conducted a validation analysis to confirm that our choice of spatial extent did not 

influence the modelled relationships with the spatial climate component (Fig. S5). We 

modelled counts whereas many previous studies have modelled species occurrence. 

Occurrence and abundance are positively associated and abundance is a key 

quantity of interest for biodiversity studies (He & Gaston, 2003; Kunin, 1998). 

Abundance data contain more information than occurrence data (Johnston et al., 

2015) and SDMs based on abundance data with predictions converted to occurrence 

can outperform SDMs based on occurrence data (Howard et al., 2014). 

Environmental data 

To model the influence of climate on the local abundance of birds during the breeding 

season, we used daily mean temperature and daily precipitation for the 48-year 

period of 1971–2018 from the Nordic Gridded Climate Dataset (NGCD), provided by 

the Norwegian Meteorological Institute (Lussana, Saloranta, et al., 2018; Lussana, 

Tveito, et al., 2018). The NGCD is an interpolation of observed temperature and 

precipitation data for Norway, Sweden and Finland onto a high-resolution grid of 1 



 
 

km. To control for the expected effects of habitat on bird abundances, we included 

land cover information from the European CORINE land cover data (European Union, 

2019). CORINE data classify land cover into 44 classes at a 100 m spatial resolution. 

We pooled similar land cover classes into seven broader categories that were 

relevant for our focal species: (1) Sparsely Vegetated Mountain Areas (bare rocks, 

sparsely vegetated areas), (2) Mountain Vegetation (moors, heathlands and natural 

grasslands), (3) Deciduous Forest, (4) Other Forest (coniferous and mixed forest and 

transitional woodland-scrub), (5) Wetlands (inland marshes and peat bogs), (6) 

Inland Waters and (7) Agriculture. CORINE landcover classifications were available 

at 6-year intervals, for the years 2000, 2006, 2012 and 2018 and we matched bird 

counts from the periods 1996–2003, 2004–2009, 2010–2015 and 2016–2018 with 

the corresponding land cover data. We found relatively few changes between 

consecutive CORINE maps in mountain environments and therefore assigning bird 

counts to the nearest land cover map (≤ 4 years) should not introduce large errors. 

Last, elevation, slope and solar radiation are important explanatory variables for 

distributions of many species (Franklin, 2009). We extracted elevation from the 

Copernicus digital elevation model (DEM, 25 m spatial resolution, European Union, 

2019) and calculated slope and solar radiation from the DEM (Methods S1). 

Species-environment relationships are spatial-scale dependent and covariates may 

influence a response variable at multiple spatial scales and potentially in different 

ways (Bradter et al., 2013; Wiens, 1989). We restricted our choice of spatial scale of 

covariates to one scale as our models already contained a large number of 

covariates due to the climate decomposition. We used 300 m buffers to represent the 

main activity areas used by the detected individuals during the breeding season. 

Thus, all environmental covariates were summarised within 300 m buffers around 



 
 

each point count station and either side of line transects. Separately across all point 

counts and along the full length of transects for each survey route, we calculated the 

proportion of each of the seven land cover categories, and the mean value for each 

climatic and topographical covariate.  

To assess collinearity among the different covariates, we calculated variance inflation 

factors (VIFs, Zuur et al., 2009). Climate covariates and slope were included as 

covariates for each species. We removed elevation because the variable was 

correlated with temperature leading to a high VIF. Other covariates were selected 

based on existing knowledge of the habitat associations of each species and with the 

aim to keep VIFs between fitted covariates low (Methods S1). For each species, all 

VIFs between fitted covariates were < 4. 

Climate decomposition 

From the daily NGCD climate data, we calculated the mean temperature and 

cumulative precipitation during the breeding season within each 1 km2 for the years 

1971–2018, inclusive. We investigated the effect of climate variation both of the 

current and the previous year because settlement decisions of individuals may be 

influenced by the current local conditions, but also by past conditions if individuals 

preferentially return to locations where they nested successfully in previous years 

(Schaub & von Hirschheydt, 2009; Shitikov et al., 2015). Additionally, environmental 

conditions in the previous year can influence recruitment into a population through 

the number of individuals available to settle (Pearce-Higgins et al., 2015). For the 

current year, we investigated representing the breeding season as both May–July 

and May–June. The spatial component of May–July climate better represents the 

typical choice in SDMs with static covariates, where climate data are frequently 

aggregated over the breeding period. By contrast, the temporal and residual 



 
 

components of May-June better represent the temporal and spatio-temporal climate 

variation experienced by birds in a given year at the time when the surveys were 

conducted. We calculated both mean temperature and cumulative precipitation for 

each of these combinations of months and years.  

Following Oedekoven et al. (2017), we decomposed the May–July and separately the 

May–June climate data into the spatial, temporal and residual components. We 

conducted the decomposition in four steps. First, we calculated the global mean 

across the three countries and all years (1971–2018) for each climate variable 

(Temperature 10.7°C in May–July and 8.9°C in May–June; precipitation: 193 mm in 

May-July and 113 mm May-June) and centred the values of each climate variable 

across all years (1971–2018) and grid cells. Thus, for each climate variable C 

(breeding season temperature or precipitation), i = 1, …, N grid cells and t = 1, …, T 

years, we first calculated the global mean as:  
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where CC is the centered climate variable and C is the uncentered climate variable. 

Next, the spatial component was calculated as the long-term centred spatial average 

value for each of ca. 1.1M 1-km2 grid cells during the 48-year period of 1971–2018 

(Fig. 4): �������� =
∑ ���,�
�
�=1

�
  

Then, the temporal component was calculated as the annual deviations during the 

23-year study period 1996–2018 from the long-term average; deviations were 

calculated for each year by averaging centred values across all grid cells in all three 

countries (Fig. 4): ������� =
∑ ���,�
�
�=1

�
  



 
 

Last, the residual component of climate variation was calculated as the spatio-

temporal climate variation that remained after accounting for the spatial and temporal 

components. The residual component was calculated separately for each cell and 

year 1996–2018 (Fig 4): ����������� ,� =  ���,� − �������� − �������   

Statistical analysis 

For each bird species, we fitted three different models, with each model including the 

three climate components from either: (1) May–July of the current year, (2) May–

June of the current year, or (3) May–July of the previous year. Results were similar 

for the two models with climate components of the current year. Here we present 

results with climate components from May-July in either the current or previous year.  

We modelled counts of each species per survey route and per year (hereafter ‘local 

abundances’). Ecological count data are often overdispersed (Lindén & Mäntyniemi, 

2011) and some focal species had many survey routes with zero counts. To identify 

the most appropriate way to account for potential overdispersion and zero-inflation, 

we conducted preliminary analyses where we used a log link and four alternative 

candidate error structures for the models with climate components of the current 

year: a Poisson distribution, a negative binomial distribution (NB), and zero-inflated 

versions of both models (ZIP and ZINB). The ZIP and ZINB are mixture models 

combining a Bernoulli distribution with either a Poisson or negative binomial 

distribution, respectively. Species-specific model selection between these four 

distributions was based on rankings with AIC (Akaike’s Information Criterion), and the 

model with the lowest AIC was chosen (Burnham & Anderson, 2004). For all bird 

species, the model with minimum AIC value was either the NB or the ZINB model. 

Due to problems with model convergence in some models for white-throated dipper, 

we used a Poisson distribution for this species. 



 
 

In addition to the habitat and topographical covariates (see above and Methods S1), 

we used the spatial, temporal, and residual components of both temperature and 

precipitation as covariates. We allowed for interactions between temperature and 

precipitation for each component of the climate decomposition. We accounted for 

temporal variation in abundances not explained by the covariates by fitting second-

order polynomials for year. We accounted for differences in protocols among the 

national monitoring schemes by including two categorical variables: (1) “Survey”, 

which could be either Point or Line to account for differences in abundances between 

point count and line transect methods; (2) “Unit”, with the levels Individual or Pair, to 

account for differences in counts due to recording observed birds as either individuals 

or pairs. We used the natural logarithm of survey effort (the length of the transect line 

or the number of point count stations per route) as an offset to account for differences 

in survey effort. To account for the repeated measures from the same routes in 

different years and between-route differences not explained by the covariates, we 

fitted route as a random intercept. The same suite of covariates was fitted both to the 

count and the zero-inflation part of the model, with the exception of the covariates for 

monitoring schemes which were not expected to influence the recording of zeros. We 

present results based on model selection using AIC (Methods S1). Results based on 

full models led to the same conclusions and therefore we do not present details 

related to model selection uncertainty. Despite the large extent of the study region 

and long-term dataset, we had relatively few observations per year for some species 

(Table S1). Therefore, for rarer species, we expected the statistical power of our 

models to be lower and with higher uncertainty in model selection. 

Our modelled abundances were relative indices rather than absolute abundances 

because we were unable to account for imperfect detection. The bird monitoring data 



 
 

did not contain the repeated counts necessary to estimate detection probability with 

occupancy models (MacKenzie et al., 2003) and only a subset of the sampling 

protocols used distance bands, which are necessary for distance sampling methods 

(Buckland et al., 2001). Nevertheless, survey methods were standardized and counts 

were not carried out in rainy or windy conditions and we assumed the ability of 

surveyors to detect birds was relatively constant among years. Potential differences 

in detectability by site were also accommodated by the random effect for site. Climate 

change has advanced the beginning of the breeding season of 73 species in Finland 

by an average of 4.6 days over four decades (Hällfors et al., 2020). By contrast, in 

Northern Sweden, only three out of 14 species advanced their breeding season over 

32 years, though years with warmer temperatures in May led to earlier breeding of 

most species (Ram et al., 2019). Variability in phenology can impact species 

detectability but effects in UK and Finnish monitoring schemes were relatively small 

(Lehikoinen, 2013; Massimino et al., 2021). 

Assessing the effects of the climate components 

To assess the effects of spatial, temporal, and residual variation in climate on local 

relative abundance of a species, we predicted the relative abundance of each 

species at each of the 1749 routes of line transects while varying the values of 

temperature and precipitation for each component within their observed ranges in the 

study area (Fig. 4d, h). We fixed all other covariates to typical values (Methods S1). 

To assess the effects of only the spatial climate components, we set the temporal 

and residual climate components to zero and created new combinations of values of 

covariates by varying temperature and precipitation for the spatial component along 

ten evenly spaced values between the observed minimum and maximum values for 

the study region. Then, we made predictions from the model for all possible 



 
 

combinations of the ten temperature and ten precipitation values. To assess the 

effects of the temporal and residual climate components, we repeated the procedure, 

but holding the spatial component constant at observed values and varying the 

temporal or residual component. We then summed the route-specific predicted 

abundances over all 1749 survey routes for each combination of temperature with 

precipitation and each climate component. Finally, we calculated Spearman’s rank 

correlation coefficients (rs) between predicted relative abundances of: (1) the spatial 

and temporal components, (2) the spatial and residual components and (3) the 

temporal and residual components. We calculated three sets of correlation 

coefficients: (1) along temperature and precipitation gradients, (2) along a 

temperature gradient and (3) along a precipitation gradient (Fig S6).  

Model performance and robustness tests 

To assess model performance, we computed the Pearson correlation coefficient 

between the fitted local abundances and the observed counts for each species 

across all routes, separately for Norway, Sweden, Finland and then for all three 

countries combined. We present results for the 39 of 52 species of birds (75%) with 

at least an intermediate level of correlation in the models in which climate data were 

summarized for the current year: rp ≥ 0.4 for each country and rp ≥ 0.5 for 

Fennoscandia as a whole. The other 13 species were mainly rare species with many 

zero counts from the survey routes. We assessed how well the models generalized to 

predicting relative abundances by holding one year out during model fitting, and then 

by computing the Pearson correlation coefficient via a cross-validation procedure 

(Wenger & Olden, 2012; Methods S1). 

We assessed the sensitivity of our results to three elements of our data and models 

(Methods S1). First, we tested the robustness of our models to spatial and temporal 



 
 

sample selection bias. Our data were spatially and temporally biased because survey 

coverage in more remote areas tended to be sparser and monitoring started in 

different countries and regions in different years. Such biases can potentially bias the 

conclusions from models and forecasts (Bradter et al., 2018; Bradter et al., 2021; 

Johnston et al., 2020). Second, we tested the robustness of our joint analysis of data 

from three national monitoring schemes. Last, we assessed robustness to residual 

spatial or temporal autocorrelation which can increase Type I error rates (Dormann et 

al., 2007). Our three sets of robustness tests indicated that conclusions from the 

models were robust to the spatial and temporal bias in the data and to the joint 

analysis of data from the three national monitoring schemes (Methods S1). Thus, we 

present findings based on data from the full time series and all three countries.  

Software 

All analyses were conducted in R 4.1.2 (R Core Team, 2021). VIFs were calculated 

using the function corvif from Zuur et al. (2009). Models were fitted using package 

glmmTMB (Brooks et al., 2017). Model validation was aided by functions from 

package DHARMa (Hartig, 2018). We assessed spatial autocorrelation of model 

residuals with function Moran.I from the package ape (Paradis & Schliep, 2019).  

Results 

Temporal cross-validation demonstrated that our models were able to generalize to 

held-out years for most species. The Pearson’s correlation coefficient between 

observed and predicted relative abundances was 0.66 (median, range: 0.27 – 0.83, 

climate data of the current year), indicating that predicted abundances for most 

species in held-out years had an intermediate or high level of correlation with 

observed counts. Models based on the same climate data retained the spatial climate 

component after variable selection for all 39 species. As might be expected for birds 



 
 

breeding in mountain habitats, most species were more abundant at colder sites, 

demonstrated by a negative association between abundances and long-term average 

temperatures (spatial component, Fig. 5, Table S3, Fig. S8). Only six species (15%) 

had their highest predicted abundance in locations with warmer long-term average 

temperatures (Fig. 5): mallard (Anas platyrhynchos), common gull (Larus canus), 

Northern raven, common redpoll, fieldfare (Turdus pilaris), and willow warbler. These 

six species are widespread and abundant in Fennoscandia and were not restricted to 

the mountain region. Thus, we opted to focus on the subset of 33 species that had 

their highest predicted abundances in colder locations for the spatial component as a 

common baseline against which to compare associations between species 

abundances with the temporal and residual climate components.  

 

The spatial component for temperature was always retained in variable selection for 

each of the 33 species, regardless of whether the climate data were summarized for 

the current or the previous breeding season (Table 1). Furthermore, the spatial 

component for precipitation was retained for 31/33 (94%) species. The temporal 

components for either temperature, precipitation or both variables were retained for 

most species (82–88% of species). The spatio-temporal residual components for 

either temperature, precipitation or both were less frequently retained, but were still 

retained for most species (73-76%, Table 1). 

 

The decomposition method allowed us to separate the spatial and temporal climate 

components associated with species abundance. Higher abundances of these 33 

species were associated with colder locations in the spatial component, but 



 
 

associations with the temporal component were more variable (Fig. 6). For these 

species, higher local abundances were associated with colder places, but not 

necessarily with colder years. Rank correlation coefficients between the spatial and 

temporal components were high for only a few species whether temperature and 

precipitation were considered together, or each climate variable on its own (Fig. 6). 

Negative rank correlation coefficients indicated that the direction of effect between 

the spatial and temporal components was even opposite for some species. For 

several species, correlation coefficients were zero or near zero, indicating either that 

an association between climate and the species local abundance was only found for 

one component, or that associations for at least one climate component were more 

complex, such as an association with lower temperatures when precipitation was 

high, or conversely with higher temperatures when precipitation was low (Figs. 6, S6, 

S8, Table S3).  

 

The decomposition method also allowed us to separate the residual from the spatial 

and temporal climate components. The residual component describes the potential 

interaction between the spatial and temporal components, such as an annually 

increasing temperature varying with space. The climate conditions in which the 

highest local abundances were predicted with the residual component often did not 

match the climate conditions producing highest predicted abundances for either the 

temporal or the spatial climate component (Fig. 6). Therefore, for most species, 

neither the temporal nor the residual climate variation had the same direction of effect 

on local species abundances as the spatial climate variation. Qualitatively similar 

results were also obtained for models with climate data from the previous season 

(Fig. S9). 



 
 

 

For models with climate data from the current season, the subset of species with 

highest predicted local abundances both in colder locations and in colder years were 

common snipe (Gallinago gallinago), jack snipe (Lymnocryptes minimus), red-necked 

phalarope (Phalaropus lobatus), white-throated dipper and redwing (Turdus iliacus). 

These five species had rank correlation coefficients > 0.5 between the spatial and 

temporal climate components for temperature. Similarly, the subset of species with 

highest predicted local abundances in colder locations, and in warmer years were 

dunlin (Calidris alpina), whimbrel (Numenius phaeopus), long-tailed skua 

(Stercorarius longicaudus), Western yellow wagtail (Motacilla flava), Northern 

wheatear (Oenanthe oenanthe) and Lapland bunting (Calcarius lapponicus). These 

six species had rank correlation coefficients < -0.5 between the spatial and temporal 

climate components for temperature. Regression coefficients for the nine climate 

coefficients were only moderately correlated between models with climate 

decomposition based on the current year versus the previous year (rank correlation 

coefficients for full models, median: 0.67, min: -0.30, max: 0.97). Thus, higher local 

abundances may be associated with certain temperature or precipitation conditions in 

the current breeding season, but not necessarily with the same climatic conditions in 

the previous breeding season. Our conclusions were unchanged if models were 

based on climate components from May-June of the current year (Results S2). 

Discussion 

Our results show that avian responses to climatic variation are highly species-specific 

and that common SDM forecasting methods may not sufficiently account for diverse 

responses. First, in addition to the expected effects of the spatial climate 

components, both temporal and spatio-temporal climate components were 



 
 

associated with local changes in counts for a majority of bird species. The same 

pattern was observed whether we considered climate variation based on the current 

or the previous breeding season. Second, while the majority of the bird species had 

higher predicted local abundances in areas with colder long-term average 

temperature, the direction of the effects of climate variation for each species often 

differed among the spatial, temporal and residual components. Therefore, our results 

suggest that the most widely used form of space-for-time forecasting, where average 

climate is used to predict average responses, will fail to account for dynamic changes 

in local counts. For space-for-time substitution to be valid for predicting the impacts of 

climate change, a direct linkage is needed between species’ responses to spatial and 

temporal variation in climate. This key assumption was seldom met for our focal bird 

species at the temporal scales we examined. Thus, for the majority of species 

considered, useful forecasts based on space-for-time substitution cannot be 

generated for the immediate future. Instead, if space-for-time substitution is 

applicable at all, then it will only be valid for forecast horizons that are both left- and 

right-truncated. However, appropriate forecast horizons are rarely considered in 

forecasts with SDMs and are difficult to ascertain. Our third major result was that our 

findings applied both for species’ responses to variation in temperature, as well as to 

responses to variation in precipitation. Models of species responses to climate 

variation often focus on temperature, but our results join previous work in indicating 

that precipitation is also an important driver (Duclos et al., 2019; Illán et al., 2014; 

Pearce-Higgins et al., 2015; Tingley et al., 2012). Species’ responses to spatial and 

temporal variation in climate were rarely equivalent for the species that we examined; 

nevertheless we did identify a subset of bird species for which predicted local 

abundances increased with colder conditions in both space and time. Species with 



 
 

negative associations with the temporal climate components may be among the first 

to be negatively impacted by climate warming in our study regions, as colder 

breeding seasons are expected to become rarer in the future (Bärring et al., 2017). 

 

Overall, our results for 33 bird species in Fennoscandia extend earlier work by 

Oedekoven et al. (2017) for five bird species in the UK in showing that the 

assumptions of space-for-time substitutions were not consistent with the temporal 

species-climate relationships indicating that limitations to forecast horizons will often 

exist. Together, our findings indicate that forecasts of bird species’ responses to 

climate change can be made more consistently reliable in several ways. First, we 

advocate for the routine use of SDMs with dynamic covariates with appropriately 

selected descriptors of climatic variation. Second, we argue that the forecasting 

horizon – for when in the future reliable forecasts can be made – should be routinely 

considered when interpreting and discussing forecasts. Last, we discuss how 

decomposition SDMs can facilitate the identification of species that are immediately 

vulnerable to climate change versus species that are initially resilient. 

Species distribution models with static, dynamic and decomposed covariates 

Our results suggest that a more dynamic modelling approach to SDMs may improve 

on SDMs with static covariates. Accounting simultaneously for the effects of seasonal 

and annual climate variation, potential interannual to decadal climate cycles and 

climate warming is important because the use of the average future distribution of a 

species may not be sufficient for efficient conservation action (Dupont-Doare & 

Alagador, 2021). It is also vital to understand the pattern of species distributions in 

the intervening time, the variation in distribution patterns in response to climate 

variation at different temporal scales and the mechanisms causing the variation in 



 
 

distribution pattern. For example, long-term average conditions were adequate to 

explain the average distribution and catch of a fish species, but deviations in average 

catch were best explained by interannual variability of the marine environment 

(Brodie et al., 2021). For some bird species in the US, SDMs with dynamic covariates 

described the breeding distributions and their dynamic changes better than SDMs 

with static covariates (Bateman et al., 2016). Similarly, years with extreme conditions 

such as drought or cold winters can have a strong impact on species abundances 

and distributions (Pearce-Higgins et al., 2015), but may be less well represented 

when future climate data is averaged over many years for forecasts based on SDMs 

with static covariates. 

 

Our results suggest that temporal changes in local relative abundances were not 

uniform in space because the spatio-temporal residual component of climate 

variation was retained in variable selection for the majority of bird species. Retention 

of the residual climate component suggests that settlement decisions of individuals 

were dependent on local conditions in specific years. Thus, naïve extrapolation of 

responses to climatic variation to new regions should be made with caution. 

 

Our finding that climate conditions of both the previous and the current breeding 

season can influence local abundances of our focal species is consistent with 

previous results for abundance of bird species in England (Pearce-Higgins et al., 

2015) and population trends of aerial insectivores in North America (Michel et al., 

2021). Strong effects of climate during the current breeding season for generalist 

species in England were explained by warm-adapted species either settling further 



 
 

north or becoming more detectable during warmer breeding seasons (Pearce-Higgins 

et al., 2015). Species settling in greater or smaller numbers in Fennoscandia 

depending on climatic conditions could also explain some of the variation in species 

abundances in our study. Here, we evaluated changes in local abundances allowing 

for increases in local abundances in some regions and decreases in others. 

Differences in survey protocols restricted our ability to model the detection process 

and variation in species detectability could have influenced our results. If variation in 

detectability had confounded our results, we might expect a similar direction of effect 

on predicted local abundances between the temporal and spatio-temporal climate 

components, which is not what we found. Davey et al. (2012) controlled for imperfect 

detection in a study on British birds and found that species richness increased, and 

the habitat specialism of bird communities decreased in warmer years, which also 

suggests that climate of the current year can affect species distribution pattern. Thus, 

our study joins a growing body of evidence that settlement decisions and abundance 

of birds are influenced by both recent-past and current climate conditions, and thus 

SDMs with dynamic covariates are likely to outperform SDMs with static covariates 

for predicting species distributions. 

 

The direction of effects from the temporal and residual climate components 

sometimes differed between models based on climate from the current breeding 

season versus the previous breeding season. The same climate variable can have 

opposing effects on species abundances depending on the time lag between climate 

and abundance estimates (Elston et al., 2017; Pearce-Higgins et al., 2015). The 

influence of the climate of the current breeding season is likely driven by settlement 

decisions or early abandonment of territories based on current conditions. In contrast, 



 
 

climate conditions of the previous or earlier breeding seasons may influence annual 

production and recruitment whereas conditions at staging and wintering areas will 

influence survival of all age classes and the number of individuals available to settle 

in the current breeding season (Jørgensen et al., 2016; Pearce-Higgins et al., 2015; 

Sanderson et al., 2006). Past climatic conditions may also affect settlement decisions 

if sites with past reproductive success are preferentially occupied (Doligez et al., 

2004; Shitikov et al., 2015). Such multiple temporal and spatio-temporal effects of 

climate are unlikely to be fully accounted for by using year and site-specific climate 

covariates. Decomposition SDMs offer a promising way forward to make SDMs 

dynamic while accounting for the complex spatio-temporal patterns and multiple 

temporal effects. For example, the temporal component in our models for the 

previous or current year could be replaced by a more complex temporal component 

that accounts for lag effects of climate from multiple previous seasons and the 

current season (Elston et al., 2017). A limitation is that climate data for future 

scenarios is only available as long-term averages. However, it may be possible to 

simulate realistic pattern of annual or seasonal variation for future climate scenarios, 

which could be used to estimate the range of variability in dynamic forecasts. 

Forecasting horizons 

For most of our focal species, the assumption of equivalent pattern in space and time 

was not met for the most general form of space-for-time substitution where forecast 

horizons are truncated only to the right when the modelled species-climate 

relationships change (Figs. 2, 3). The spatial climate component did not describe the 

variation in local annual abundances 1996–2018 and the direction of effects of 

climate variation differed between space and time. If space-for-time substitution 

based on the spatial component is valid, it is only for static forecasts and for forecast 



 
 

horizons that are left- and right-truncated. Forecasting under changing species-

climate relationships is currently beyond the purpose and capability of correlative 

SDMs and the potential of species-climate relationships to change via evolutionary 

adaptation or changes in species interactions have wider implications for right-

truncation of the forecast horizon (Araujo & Peterson, 2012; Dormann, 2007; Pearson 

& Dawson, 2003; Singer et al., 2016; Urban et al., 2016). Appropriate time thresholds 

for left-truncation (Figs. 2, 3), where delays of species responses occur, will be 

difficult to identify for several reasons. First, climate variation affects multiple 

ecological processes simultaneously and at different temporal scales (Damgaard, 

2019). For example, most of 13 forest birds were affected by the direct effects of 

climate, and by the indirect effects of climate on forest structure and composition, 

with effects manifesting themselves at different temporal scales (Duclos et al., 2019). 

Additional factors, such as predation pressure may change at yet other temporal 

scales and may also interact synergistically with habitat structure (Kubelka et al., 

2022; Layton-Matthews et al., 2020). Second, even for a single ecological process it 

may be difficult to accurately forecast when and where the impacts on species 

distributions will be manifested. For example, succession of alpine mountain habitats 

to forests may lag behind climate change and can be affected by topographic 

conditions or land use practices, such as grazing (Bryn, 2008; Kullman, 2001; Wang 

et al., 2017). Accurately predicting the future distribution of habitats is therefore 

difficult, even more so when fine thematic and spatial resolutions are needed 

(Prestele et al., 2016). Similarly, invertebrates are an important food source for many 

bird species but may be less available in both cold or hot/dry conditions (Barras et al., 

2021; Curry, 2004; Pearce-Higgins, 2010; Pearce-Higgins & Yalden, 2004; Perez et 

al., 2016). However, the data are rarely available to determine optima where initially 



 
 

positive effects of warmer conditions on food availability transition into negative 

effects of hot conditions.  

Immediately vulnerable versus initially resilient to climate warming 

An important result of our decomposition SDM was identification of a subset of five 

bird species which may be among the first to be negatively impacted by climate 

warming. Based on climate data from the current breeding season, predicted local 

abundances increased with colder conditions in both space and time and the birds 

were mainly species associated with freshwater habitats (red-necked phalarope, 

white-throated dipper) or inundated areas (common snipe, jack snipe). A possible 

mechanism for an immediate positive effect of colder years for these species may be 

through the patterns of snow melt and water levels, with spring floods typically less 

intense in colder years while water from snow melt continues to be available for 

longer. For example, common snipe are dependent on wet soil for foraging, that 

remain suitable for probing throughout the breeding season, while spring floods may 

be detrimental for early nesting (Green, 1988). Conversely, based on climate data 

from the current breeding season, the six species with highest predicted local 

abundances in colder locations but also warmer years may be initially resilient to a 

warming climate. Many of these bird species depend on terrestrial invertebrates, at 

least during the breeding season (dunlin, whimbrel, Western yellow wagtail, Northern 

wheatear and Lapland bunting). A possible mechanism for a potential immediate 

negative effect of colder years on these species may be a reduction in invertebrates 

in the Fennoscandian mountains in colder breeding seasons, leading to individuals 

not settling to breed or prematurely abandoning their territories. A more 

comprehensive assessment of species that are immediately vulnerable and species 

that are initially resilient to climate warming would require taking into account 



 
 

additional effects of the climate of previous breeding, migration and wintering 

seasons. Multiple climatic effects from different seasons could enhance or counteract 

each other. Accounting for lag effects would require replacing the temporal 

component in our decomposition SDMs with a more complex component that 

includes multiple years (Elston et al. 2017). 

For longer forecast horizons in a warming world, the decreases in local abundance 

that would be predicted by space-for-time substitution are realistic for many of our 

focal species, including birds dependent on open mountain habitats. Even though 

climate warming may not initially be detrimental to many of these species, in the long-

term strong negative effects are expected where open mountain habitats are 

replaced by forests through rising tree lines, or through other factors, such as 

increased predation from expanding populations of generalist species. However, 

forecasts are now needed that go beyond correctly forecasting the broad direction of 

change, but that can accurately forecast change at a fine resolution in both space 

and time.  

In our study area, a landscape monitoring programme in Sweden found no change in 

the extent of the alpine or mountain birch forest areas between the periods 2003-

2007 and 2008-2012 (Hedenås et al., 2016). Over longer time scales, tree line rises 

have mainly been confined to wind-sheltered and snow-rich areas in the Swedish 

mountains (Kullman, 2001). In Norway, upper altitudinal limits of forests have raised 

during previous decades, mainly driven by regrowth of woody plants after cessation 

of livestock grazing (Bryn, 2008). Our results suggest that expansion of forests is not 

yet a primary driver of abundance changes in bird species breeding in the 

Fennoscandian mountains over large spatial extents as for most species the direction 

of effect of climate variation was not consistent in time and space.  



 
 

 

Concluding remarks 

SDM forecasts with static covariates and space-for-time substitution have accurately 

predicted future species’ distribution for some species, but have performed poorly for 

others (Araujo et al., 2005; Kharouba et al., 2009; Pearman et al., 2008; Soultan et 

al., 2022). Moreover, even for SDMs that accurately predicted future species 

distributions, prediction accuracies for sites at which distribution changes occurred 

were often low suggesting that improvements to forecasting based on SDMs are 

needed (Briscoe et al., 2021; Illán et al., 2014; Rapacciuolo et al., 2012). Our models 

with climate variation decomposed into a spatial, temporal and residual spatio-

temporal component revealed that climate variation from both the current and 

previous breeding season affected local abundances and that species-climate 

relationships were equivalent in space and time for only a few species. Our results 

suggest that forecasts based on SDMs can be improved by (1) making SDMs more 

dynamic so that forecasts can be produced at the finer temporal resolutions, such as 

those required for spatial conservation planning (Dupont-Doare & Alagador, 2021) 

and (2) obtaining a better understanding of the time spans over which drivers of 

changes in species distributions and abundances are expected to act. Our results 

indicate that more dynamic SDMs need to consider spatio-temporal variation in 

addition to multiple temporal effects of climate variation. Models that integrate 

extensive occurrence or abundance data from surveys that cover large areas with 

intensive demographic data collected in smaller areas where patterns of species 

distributions emerge from population dynamics should help with a better 

understanding of the temporal scales over which ecological processes act (Zipkin et 

al., 2021). However, the comprehensive population data needed to parameterize 

alternative models including population dynamics is available for few species (Bradter 



 
 

et al., 2021; Urban et al., 2016), suggesting that correlative SDMs will remain 

important as they can be parameterized with more widely available data. Our results 

suggest that SDMs based on a decomposition of covariates can increase our 

understanding of species responses to climatic variation and that caution is required 

when using space-for-time substitutions based on correlative SDMs. 
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4294-aad1-9727e5c24041 (Norway), www.gbif.org/dataset/91fa1a0d-a208-40aa-
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077df8224ae0 (Finland). Information for sensitive species and sites have been 

redacted to ensure protection from unlawful use. Complete datasets are available 

from the programme coordinators for approved projects. The Nordic Gridded Climate 

Data (NGCD) are available from thredds.met.no/thredds/catalog/ngcd/catalog.html. 

CORINE land cover data are available from: land.copernicus.eu/pan-

european/corine-land-cover. The digital elevation map (DEM) was obtained from 

land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1. R scripts for our analysis 

are available at https://github.com/UteBradter. 
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Figure legends and tables 
 

Fig. 1: Static, dynamic and decomposed covariates in species distribution models (SDMs) 

In SDMs with static covariates (a), time-varying covariates such as temperature or precipitation are averaged over coarser temporal 

resolutions, such as several years. In SDMs with dynamic covariates (b), time-varying covariates represent variation at finer 

temporal resolutions, such as per season or year, and are used to model corresponding seasonal or annual occurrence or 

abundance data. In SDMs with covariates decomposed into multiple components (c), time-varying covariates are decomposed into 

the long-term average spatial pattern, the temporal trend across the area of interest and any residual (spatio-temporal variation). All 

three components are then used as covariates to model annual occurrence or abundance data.



 
 

Fig. 2: Conceptual figures illustrating the conditions under which static 

forecasts are appropriate when using space-for-time substitution 

The average temperatures for several periods are shown (row a). Space-for-time 

substitution, based on identifying associations between species abundance and 

temperature in Period 1, will lead to identical predictions regardless of the rapidity of 

species’ responses to annual variation in temperature in the future Periods 2 - 6 (row 

b). However, these predictions do not always match simulated species abundances, 

and green borders around panels in rows c – f show when space-for-time substitution 

produces valid predictions of species abundances. Applying static forecasts based 

on space-for-time substitution to species with immediate responses to changes in 

long-term averages of climate (slow responses) are appropriate for as long as the 

species-temperature relationship remains unchanged (row c). Applying static 

forecasts based on space-for-time substitution to species with slow, delayed 

responses (row d) are only appropriate after the delay has been overcome (from 

Period 4 onwards) and for as long as the species-temperature relationship remains 

unchanged. Forecasts are thus ‘left-truncated’ in time. Applying static forecasts 

based on space-for-time substitution to species with rapid responses (row e) is 

appropriate for as long as the species-temperature relationship remains unchanged. 

In mixed responses found in this study and in Oedekoven et al. 2017, species 

respond both slowly and rapidly to temperature variation, but with the direction of 

effect for fast and slow responses being inconsistent. Applying static forecasts based 

on space-for-time substitution to species with mixed responses (row f) is only 

appropriate after the delay has been overcome (from Period 4 onwards) and for as 

long as the species-temperature relationship remains unchanged. Forecasts are thus 

‘left-truncated’. Changes in counts were based on simulated abundances (Methods 



 
 

S1). All forecasts are also “right-truncated” (not shown), which means that at some 

point in the future the current-day relationship between species abundance and 

temperature will have changed due to an evolutionary response or another change. 

The time periods when the response lag is overcome or when the species-

temperature relationship changes are typically not known a priori. 

 



 
 

Fig. 3: Conceptual figures illustrating the conditions under which dynamic 

forecasts are appropriate when using space-for-time substitution 

Annual changes in temperature are shown (row a). Space-for-time substitution, 

based on identifying associations between species abundance and temperature, will 

lead to identical predictions regardless of the rapidity of species’ responses to annual 

variation in temperature in the future Years 2 - 6 (row b). However, the predictions do 

not always match simulated species abundances, and green borders around panels 

in rows c – e show when space-for-time substitution produces valid predictions of 

species abundances. Applying dynamic forecasts based on space-for-time 

substitution to species with slow responses (row c) is inappropriate as forecasts 

based on the spatial pattern predict that species’ abundances vary with temperature 

at fine temporal resolutions (row b) although the only source of variation in species’ 

counts at fine temporal resolutions is stochastic. Applying dynamic forecasts based 

on space-for-time substitution to species with fast responses (row d) reproduces the 

year-to-year variation in the simulated abundances. In mixed responses, such as 

those found in this study and in Oedekoven et al. (2017), species respond both 

slowly and rapidly to different facets of temperature variation, but the direction of 

effects for fast and slow responses are inconsistent. Applying dynamic forecasts 

based on space-for-time substitution to species with mixed responses (row e) is 

inappropriate and does not correctly reproduce the year-to-year variation in the 

simulated abundances. All forecasts are also “right-truncated” (not shown). Changes 

in counts were based on simulated abundances (Methods S1). 

 



 
 

Fig. 4: Spatio-temporal variation in temperature and precipitation in 

Fennoscandia, 1996-2018 

The four panels on the top show the spatial (a), temporal (b) and residual (c) 

component of breeding season temperature (May-July) and (d) the range of variation 

per component. The four panels on the bottom show the spatial (e), temporal (f) and 

residual (g) component of breeding season precipitation (May-July), and (h) the 

range of variation per component. The plotted values show the difference in 

temperature and precipitation to the overall mean across all years and cells of the 

study area (10.7°C, 193 mm).



 
 

Fig. 5: The conditions with highest relative abundances predicted by the spatial 

climate component relative to temperature and precipitation for the 39 bird 

species breeding in the Fennoscandian mountains. 

The green polygon shows the percentages of species for which the spatial climate 

component predicted highest abundances in locations with different climates. The 

majority of species had highest predicted abundances in locations that are on 

average colder and we focused on these 33/39 species (within the blue polygon). 

Only six species had highest predicted abundances in locations that are on average 

warmer (outside the blue polygon) and these six species were not considered for the 

analysis of the temporal and residual climate components. For most species, the 

highest predicted abundances fell on only one of the eight climate axes of the 

spidergraph. For the few species which had highest predicted abundances on two of 

the eight climate directions, we split their contributions in the spidergraph 

proportionally to their distribution of highest predicted abundances (50:50 or 75:25).



 
 

Fig. 6: Correlations between the abundances predicted from any two climate 

components (spatial, temporal, and residual) indicate that the direction of 

effect was typically not consistent between any two climate components. 

Violin plots of rank correlation coefficients of pair-wise comparisons between 

predicted local species abundances based on the spatial versus temporal climate 

component, the spatial versus residual climate components and the temporal versus 

residual components for (a) temperature and precipitation combined, (b) temperature 

and (c) precipitation. 

Rank correlation coefficients for models with decomposition data from May-July of 

the current year are shown. For a graphical description of how correlation coefficients 

were calculated, see Fig. S6. Violin plots show the probability density of the data at 

different values of the correlation coefficient. Black crosses and blue circles represent 

individual species. Blue circles with correlation coefficients of zero represent species 

for which no association between a species local abundance and one of the climate 

components was found while an association was found with the other. Blue circles 

with correlation coefficients of one represent species for which no association was 

found between the local abundance of the species and either of the climate 

components. Thus, there is an agreement in conclusions of no effect of either climate 

component. Crosses represent species for which associations between the local 

abundance of the species and both climate components were detected. High 

correlation coefficients indicate that predicted local abundances vary with the climate 

variable (temperature, precipitation, or both) in the same direction for both climate 

components (spatial-temporal, spatial-residual, or temporal-residual). Low correlation 

coefficients indicate that predicted local abundances vary with the climate variable in 

the opposite direction, for example local abundances may decrease with temperature 



 
 

for the spatial climate component but increase with the temporal climate component. 

Correlation coefficients at or near zero indicate that no association was found 

between the local abundance of the species and one climate component (blue 

circles) or that associations were complex, such as an increase of predicted local 

abundance with temperature at low precipitation, but a decrease at high precipitation 

(Fig. S6).



 
 

Table 1:  

Retention of the spatial, temporal and residual climate components for the climate 

variables temperature and precipitation in models for 33 species with climate data 

summarized within either May-July of the current year or the previous year. 

 

  Current year Previous year 
 Climate component Number of species / % Number of species / % 

Temperature, Spatial 33 / 100 33 / 100 
precipitation Temporal 29 / 88 27 / 82 

or both Residual 25 / 76 24 / 73 

Temperature 
Spatial 33 / 100 33 / 100 
Temporal 28 / 85 19 / 58 
Residual 20 / 61 18 / 55 

Precipitation 
Spatial 31 / 94 31 / 94 
Temporal 28 / 85 25 / 76 
Residual 23 / 70 19 / 58 
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Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

 (a)  Temperature

 (b)  Static predictions with space−for−time substitution for the four virtual species shown in (c)−(f)

 (c)  Simulated abundances for virtual species with slow, immediate responses

 (d)  Simulated abundances for virtual species with slow, delayed responses

 (e)  Simulated abundances for virtual species with rapid responses

 (f)  Simulated abundances for virtual species with mixed responses

colder warmer

Temperature

low abundance high abundance

Abundance Appropriate forecast horizon



Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

 (a)  Temperature

 (b)  Dynamic predictions with space−for−time substitution for the three virtual species in (c)−(e)

 (c)  Simulated abundances for virtual species with slow responses

 (d)  Simulated abundances for virtual species with rapid responses

 (e)  Simulated abundances for virtual species with mixed responses

colder warmer

Temperature

low abundance high abundance

Abundance Appropriate forecast horizon



(a) Spatial – breeding season temperature (°C) (c) Residual – breeding season temperature (°C)

(b) Temporal – breeding season temperature (°C) (d) Range of variation



(e) Spatial – breeding season precipitation (mm) (g) Residual – breeding season precipitation (mm)

(f) Temporal – breeding season precipitation (mm) (h) Range of variation
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