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ORDINAL MULTIVARIATE ANALYSIS

Peter Nijkamp and Piet Rietveld

1. I d
. 1)

ntro uct~on

The essential feature of multivariate methods is that they aim at

reducing the complexity of phenomena in which many variables or attributes

are involved. Given this general feature , it is no surprise to see that these

methods have been applied in various fields of research, such as economics,

geography, medicine, biology, etc. (cf. Kendall [1975]).

The starting point of multivariate analysis is normally the data matrix

x

x = 0.1)

where I denotes the number of members observed and J the number of vari-

abies observed;

member.

x .. denotes the value of the j-th variable for the i-th
]~

..
In the majority of multivariate methods it is assumed that the variables

are measured on a cardinal (interval or ratio) scale. This means that it is

meaningful to apply numerical operations to these variables such as summation,

subtraction and multiplication (see Rietveld [1980] for a more accurate defini­

tion of a cardinal scale of measurement). However, in many fields of research

the assumption of cardinal measurability cannot be maintained. For example,

when the data are not accurate enough, when variables are involved which can

only be measured in a qualitative way (e.g., beauty of landscape), or when

latent variables are to be dealt with.

It is important, therefore, to consider the question whether it is possible

to develop multivariate methods which are not based on the assumption of

cardinal measurability. This has of course important implications for econo­

metric model-building, since the treatment of soft data has always formed a

bottleneck for estimating economic models. Soft econometrics is a recently

developed approach to overcome the problem of soft data.

This paper will be devoted to the development of some methods for ordinal-

1) The authors are indebted to Franz Palm for his valuable comments
concerning Subsection 2.2.
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ly measurable data and its implications for regional statistical and

econometric analyses. A variable j is ordinally measurable when for a

series of observations it is possible to indicate the rank order of the

observations, but not the differences between the observations. For example,

when the rank order of five observations - where the smallest value receives

rank 1, the one but smallest receives rank 2, etc. - is: 2, 3, 1, 5, 4, it

may be concluded that the first observation is smaller than the fourth one,

but not that the difference between the first and the fourth one is larger

than the difference between the first and the third one.

It is important to note that several techniques can be applied to perform

a multivariate analysis of ordinal data without the necessity to develop methods

for ordinal data.

1. The simplest way of achieving a short ~ircuit is to interpret ordinal data

as if they were cardinal. Obviously, in this way more information is

extracted from the data then is actually contained in them. Kendall [1970],

p. 125, indicates that sometimes such an approach may yield satisfactory

results. However, since it is based on a questionable assumption, it

cannot serve as a general device for dealing with ordinal data.

2. Another way of avoiding the necessity to develop ordinal multivariate

methods is the use of order statistics to asstgn cardinal values to the

observations (cf. Rietveld [1980]). A necessary step in this approach

is the determination of the probability distribution from which the

observations are drawn. This can only be done on a priori grounds which

makes the results arbitrary. The arbitrariness can be removed to a certain

extent by repeating the cardinalization of data for different probability

distributions. Obviously, the disadvantage of this approach is that it

gives rise to extensive computional work.

3. The third approach of cardinalization consists of applying multidimensional

scaling procedures (cf. Nijkamp [1979,1980]). These procedures have been

devised to transform the ordinal matrix X with dimensions J x I into a

cardinal matrix Y with dimensions K x I where K < J Thus, multi­

dimensional scaling procedures are a means to transform ordinal data about

many variables into cardinal data about less variables which reflect as

accurately as possible the configuration of the original data. Although

multidimensional scaling as such is a sound procedure, its use in the

present context may give rise to difficulties. For example, the variables

derived are sometimes difficult to interpret, which means that the results·

of the ensuing multivariate analysis may be less meaningful or require at

least an additional analysis.
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We conclude that it is meaningful to start a study on ordinal multi­

variate methods. In the field of (regional) economics this subject has-been

neglected up to now, although in other disciplines, especially sociology,

substantial work has been done on the subject. Given the exploratory charac­

ter of this paper, we will focus on the main ideas and pay less attention to

statistical aspects or the feasibility of numerical procedures.

We will deal with the following methods :

Section 2: multiple regression analysis (and related subjects such as

interdependence analysis and discriminant analysis).

Section 3: clustering and classification.

Section 4: principal component analysis (and related subjects such as

canonical correlations and partial least squares).

2. ~ultiple Regression Analysis

2.1. Introduction

Consider the following relationships between y - the variable to be

explained - and K explanatory variables xl' .. ,xK

y = (2.1)

In this section we consider the question: 'given that I observations are

available of the variables y and xl' •..• xK - measured on an ordinal

scale is it possible to estimate the values of the Bk (k = O. 1•...• K)

or to draw conclusions about the extent to which the variables ~ contribute

to the explanation of y '.

There are several ways to approach this question. In subsections 2.2­

2.4 we will deal respectively with a logit formulation. an approach based on

multiple rank correlation coefficients and a multiple regression procedure under

constraints.

2.2. Logit Analysis

In this subsection we will show how a logit analysis. based on data

about pairwise comparisons of observations can be used to determine the relative

importance of the explanatory variables. Consider all pairs of observations

(i. i' ; i * i') which will be numbered as n = 1•...• N. where N = I (I - 1).

We introduce new variables wand zk (k = 1, ...• K) which are related to

y and x
k

(k = 1••..• K) in the following way
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when for the pair (i,i') y. > y., then w = 1
~ ~ n

when for the pair (i,i') y. < y., , then w = a
~ ~ n (2.2)

when for the pair (i,i') x
ki > xki ' , then zkn = 1

when for the pair (i,i' ) x
ki < xki ' , then zkn = a

These variables can be summarized in a column vector w with N elements and-
an N x K matrix z:

wi 11
, . , zKl

w = Z = (2.3)-

w
N iN

, . . , zKN

Every row of Z consists of a series of zeros and ones. A certain

combination of zeros and ones will be called a re&ime

There are in principle L = 2
K

different regimes. Let

with a certain regime

number of rows of regime

(1 = 1, ... , L).1

F
l

denote the number

1. Let Fal and F
11

denote the

such that the corresponding value ofzin1

zof rows in

w is equal to a and 1, respectively. Then we have by definition:
n

= Fa + Fn
and r F. = N

1 1

A numerical example may clarify the meaning of the symbols defined above.

Assume that I = 4 and K = 2 and that the observations of the y and

are :

1 4 3

3 1 1
Y = ~1 = ~2 =

4 3 2

2 2 4

(2.4)

When the pairs of observations are considered in the following order:

(1,2), (1,3), (1,4), (2,1), (2,3), ... , (4,3), we arrive at the following

results for wand Z:
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0 1 1

0 1 1

0 1 0

1 0 0

0 0 0
I

1 0 0

1 0 0 (2.5)

1 1 1

1 1 0

1 0 1

0 1 1

0 0 1

The ensuing frequencies for the various regimes are summarized in Table 1

regime 1

1 = 1 1 = 2 1 = 3 1 = 4

(0,0) ( 1,0) (0,1) 0,1 )...

F
11

3 1 1 1

F01
1 1 1 3

F
l

4 2 2 4

Table 1. Frequencies for various regimes of explanatory variables.

The information contained in Table 1 can be used for a standard logit

analysis in the following way (cf. Theil [1971a,b] and Upton [1978]). Let

Pl denote the propability that w assumes the value 1 when regime 1 holds.

A regime 1 is described by a (K x 1) vector ~l consisting of 1 and 0

elements. Then the usual assumption in this type of problems is that Pl

depends on the structure of regime 1 in the following way:

p
ln (_1_)

1-p
1

(2.6)
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The right hand side of (2.6) shows an additive structure with dummy

variables. If desired, interaction effects between the variables k and k'

can be included by adding parameters 0kk' (k * k') when both and

are equal to 1 (cf. Theil (1971a]). The expression In (Pl/ (1 - Pl» at the

left hand side of (2.6) is termed the logit of Pl. Its main feature is that

it tranaforms in a monotone increasing way Pl falling in the (0,1]

interval to a variable ranging from - ~ to ~ For a further discussion

of the specification of (2.6) and its relationships with the entropy concept

we refer to Theil [1971a].

Equation (2.6) does not contain an error term. The reason is that in

the left hand side no observed variable is included. When we want to estimate

the parameters Yk , we have to replace the probabilities Pl by the

observed relative frequencies f l = F
11

/ Fl' In that case there is a

clear reason to include an error term, since the relative frequencies f
l

may

differ form the probabilities p . Thus the relationship to be estimated is:
1

where is the error term.

(2.7)

Theil (1971a] shows that a weighted least squares method is appropriate

to estimate the parameters when it may be assumed that the relative frequencies

f 1 are based on independent random samples of size F
l

from binomial distri­

butions with probability Pl of success. In that case it can be shown that the

large sample expectation and variance of £1 are 0 and 1 / (Fl (fl ) (l-f
l
»,

respectively. Consequently, weighted least squares (a special case of

generalized least squares) can be applied, the weights being proportional to

This means that regimes for which f
l

= 1 or 0 do not playa role in the

estimation of the y. We also see that the larger Fl ( the number of

observations in a regime), the heavier the weight of that regime in the determi­

nation of the parameters.

An important difficulty inherent in the estimation of (2.7) in the

context of ordinal data analysis is that Theil's assumption that the f l 's

are based on independent random samples of size F
l

is not valid. The

frequencies F
1l

refer to pairs of observations which are derived from the

original set of observations in a systematic way. For our numerical example

is this clearly displayed by Table 1, where we find that f 1 + f 4 = 1
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= 1.

We conclude that the £1 in (2.7) cannot be assumed to be distributed

independently. Therefore, a generalized least squares estimation of (2.7)

is adequate. The obvious difficulty is that the covariance matrix V is not

known and that it seems to be impossible to describe V by means of a small

number Qf parameters, as is sometimes done in time series regressions. How

can one proceed in this situation? Three directions can be chosen.

1. The simplest way is to ignore the problem and to apply ordinary least

squares. In that case the estimated parameters are unbiased, but the

variances will be higher compared to the results of generalized least

squares (cf. Theil [197lb]).

2. Another way is the use of iterative procedures. For example: start with an

estimation by means of ordinary least squares. Use the resulting estimated

errors to construct an estimated covariance matrix V and apply generalized

least squares based on V, and so forth.

3. A third approach aims at directly approximating the covariance structure

as follows=of the
,

£1 s

Consider the set of I original observations. This set can be used to

generate I sets of I - 1 observations, each set containing the I

original observations but one. For each set the values of f l and

In (f
l

/ (l-fl » can be determined. The series of I values for the

logits can be used to calculate the covariance matrix of the logits. This

matrix can be used as an approximation of V so that generalized least

squares can be employed.

It is clarifying to pay some attention to the number of observations

and parameters in specification (2.7). The number of parameters in (2.7) is

equal to K + 1 The maximum number of observations (regimes) is equal to 2K .

Thi~ means that when the actual number of observations is equal to the

maximum possible number, the number of degrees of freedom increases rapidly

with increasing K. However, there are several reasons why the actual number

of regimes in the estimation is smaller than 2K . Especially when I is not

so large, for some regimes FOl or Fll (or both) may be equal to zero and

- as shown above - such a regime cannot be used to estimate the parameters.
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Another reduction in the number of observations is due to the interde­

pendencies between the F
Ol

and F11 . We will analyze these interdependencies

by means of the concept of 'complementary regimes'. A regime l ' is a

complement of a regime 1 when the sum of m
-1

and E!l' is a vector .!.'

exclusively consisting of unit elements:

= t (2.8)

In our numerical example the complement of regime 1 is 4 and of regime

2 is 3. It follows from the definition of FOl and F11 that for

complementary regimes we have:

F01 = F11' F11 = F01 ' and Fl = Fl , ,and therefore: f l = 1-fl ,

Consequently for each pair of complementary regimes holds the following condi­

tion:

f, ,
+ In l.

1-f
l

, = o (2.9)

Combining (2.9) with (2.7) yields for all complem~ntary pairs:

f
l

In 1-f
1

f
l

,
+ In 1-f

l
, = = o (2.10)

We may conclude, therefore, that for all complementary pairs (1,1') and (m,m')

we have:

= e:
m

(2.11)

Consequently, when in (2.7) the relative frequency f is given for the regimes

1, l' and m, the value of f, does not add any useful information for the
m

determination of the parameters Yk . This means that when there are L

regimes (L even) , only the frequencies of ~ L + 1 regimes contain useful

information on the parameters (the set of ~ L + 1 regimes contains only one

pair of complementary regimes). In our numerical example we have K = 2 and

hence the number of parameters is equal to 3

The number of effective observations is ~ 2
K

+ 1 = 3.

In such a case, in general, the parameters can be determined, while the esti-

mated errors are zero. Indeed, we can derive that

Y = -Y = -y = In 3o 1 2

e: = e: = e: = 0123 and
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At ~he end of the presentation of this approach, we may conclude that,

although some estimation problems still remain, an ordinal analogon has been

developed for mUltiple regression which does justice to the ordinal character

of the data.

What is the essentially new idea of this approach? A close examination

shows that the approach consists of two building stones: 1) a method to trans­

form the ~rdinal data matrix X and the vector y in a vector of relative

frequencies f
1

, •.. , f
L

by means of pairwise comparisons; and 2) an estimation

procedure based on specification (2.6). The main elements of the. building stones

have been developed by Kendall [1970] and Theil [1971a], respectively. The novel­

ty of the method developed here is thus the combination of the two building

stones.

For another logit type treatment of ordinal regression - not being based

on pairwise comparisons - we refer to McCullagh [1980].

2.3 Ordinal Analogue of Multiple Regression

The approach discussed in this subsection is based on structural simil­

arities between product-moment correlation coefficients and rank correlation

coefficients. We will first show the nature of these similarities.

The ordinary product-moment correlation coefficient for cardinal data

u. and v. reads:
1 1

E (u. - u)(v. - V)
1· 1 1

r = -;::::~==~=====
IE Cu. - U)2 E (v. - V)2
i 1 i 1

(2.12)

where ~ and v are the mean values of the u. and v. respectively.
1 1

We also present the regression coefficient b following from the estima-

tion of the relationship:

v. = a + b u.
1 VU 1

The best linear unbiased estimater of breads:

bvu

~ (u. - u)(v. - v)
= 1 1 1

E (u. - u)2
. 1
1

(2.13)
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We turn now to some correlation coefficients proposed for ordinary data.

Kendall [1970] proposes to use the method of paired comparisons in the

following way. Consider all ~ 1(1 - l} pairs of observations (i, if) of two

ordinal measured variables x and y. Let S+ be the number of pairs for which

x and yare concordant, i.e., the number of pairs for which {x. > x., and
1 1

y. > y,,} or {x. < x., and y. < y,,}, Let S- be the number of pairs for
1 1 1 1 1 1

which {x. > x., and y. > y.,} or {x. < x., and y. > y.,l. Let T and T
1 1 1 1 1 1 1 1 x y

be the number of ties in x and y, respectively. When no ties appear,

Kendall's coefficient of rank correlation is defined as the number of con­

cordant pairs minus the number of discordant pairs divided by the total

number of pairs:

"[ = (2.14)

When ties are present, the following correction is applied:

(2.15)

Finally, for the latter case, Somers [1962] provides an alternative measure

which will appear to be of importance:

S+ - S
d =-~--~-

yx S+ + S + T
Y

(2.16)

For these three measures it can be proved that the extreme values are -1

and +1, respectively.

At first sight there is not much similarity between these ordinal

measures and the measures for cardinal data mentioned above: the ordinal

measures being based on counting frequencies of discordant and concordant

pairs, and the cardinal measures being based on measuring distances with

respect to the mean. It can be shown, however, that the same structure is

underlying the ordinal and the cardinal measures (cf., Hawkes [1971] and

Ploch [1974]).

The first step to prove the similarity is to rewrite (2.12) and (2.13)

such that the mean values ~ and v disappear. It is not difficult to show

that
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.!. I: - 2 1
I: I: (u. - 2(u. - u) = 2"12 u.)I . 1 i j 1 J1

.!.I: (U. - U)(V. - V) 1
I: I: (U. - U.)(V. - v.)= 2"y2I . 1 1 i j 1 J 1 J1

Accordingly, when we set u .. = u. - u. and v .. = v. - v., (2.12) and (2.13)
1J 1 J 1J 1 J

can be rewritten as:

I: u .. v ..
r = -;;::::::;;1=J~~1J::::~

If. u2 .. IE v 2 ..
1J 1J

I: u .. v ..
b =__..;;;;1""J,=",""-,1J=..

vu 2I: u .,
1J

(2.12')

(2.13')

In (2.12') and (2.13') the sum extends over all possible pairs.

The second step is that we introduce the following operation for the

ordinal data. For all pairs i,j:

x .. .: 1 if x . > x.
1J 1 J

x .. .: 0 if x. = x.
1J 1 J

x .. = -1 if x. < x.
1J 1 J

The variable y .. can be defined in the same way. Thus we arrive at two
1J

vectors consisting of N2 elements being equal to 1, 0, or -1. The term

(s+ - S-) can be expressed in terms of x .. and y .. in a straightfoward way:
1J 1J

S+ - S =! I: x .. y ... Given this result it is not difficult to see that:
1J 1J

and

I: x .. y ..
T

b
= 1J 1J

~ x2 .. I: 2y ..
1J 1J

(2.15' )

d =yx

I: x .. y ..
1J 1J

IE x 2..
1J

(2.16' )
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When we compare (2.12') and (2.13') with (2.15') and (2.16') we conclude

that although the correlation coefficients are based on different concepts,

they give rise to completely identical analytical expressions.

Hawkes [1971] and Ploch [1974] argue that these similarities are a

sufficient base to develop coefficients for partial and multiple correlation

with ordinal data along the same lines as with cardinal data. Obviously,

this would be a very convenient result. Can such an approach be justified?

There is at least one argument in favor of it. Kendall [1970] has shown

that when one develops a partial correlation coefficient for ordinal data,

based on T, (assuming that no ties occur) one may arrive at a formulation

which is completely similar to the formulation of the partial product

moment correlation coefficient:

(2.17)

where x
mk

• l denotes the partial correlation between m and k, given 1.

Although Quade [1974] indicates that there are several ways to conceptualize

a partial correlation coefficient for ordinal data, not all of them leading

to relationships such as (2.17), this is obviously an indication that in

some cases ordinal partial correlation coefficients may be dealt with in

the same way as their cardinal counterparts.

Further similarity results between ordinal and cardinal measures in the

multivariate case have not been found, however, which means that the

approach of deriving regression coefficients by means of ordinal correlation

coefficients is only partially justified. For some empirical applications

we refer to Ploch [1974]. Namboodiri, Carter, and Blalock [1975] and

Blalock [1976] give a more thorough discussion of the above approach.

2.4. Multiple 'RegressIon .under Constraints

In this subsection we will approach (2.1), where y and xl' ... , ~

are ordinal, in the following way. Let cy , CX
1

' ... , c~ be the unknown

cardinal values corresponding to the ordinal variables. Thus, when Y3 > Y ,
- 4

then cY3 ~ cY4 ' etc. Accordingly we arrive at a series of 1-1 inequalities

for the cy. :
1

cy. > cy. >
1 - 1

1 2
(2.18)

where i
l

is the index of the largest observation, i
2

indicates the one but

largest observation, etc. Similar series of inequalities can be developed for

the explanatory variables.
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The information that there is a lineair relationship between y and the

~ can be used to determine the cardinal values corresponding to y and the

~ As a first step in the analysis we consider the following mathematical

programming problem:

min! L (cYi - 13 0 - a1cxli -
2... - 13K c~i)

cyi' x ki' Bk
i

Subject to cy. > cy. > > cy. = 1 (2. 19)
1.

1
1.

2 - 1.
1

cx1 · > cx1 · > > cx1 · = 1
• J 1 J 2 - J I

c~l > cXKl > > c~l = 1
1 2 I

Obviously, in (2.19) the cardinal values of y and ~ and the values of the

parameters 13k are determined simultaneously. It is a programming problem

with (K + 1) (I + 1) variables and (K + 1) I constraints~ The variables cy

and c~ have been standardized by imposing that the smallest value is equal

to one.

It is not difficult to see that (2.19) as it s~ands here attains it minimum

when all cardinal values are equal to 1 and when L 13k = 1. This result - that

all variables show one large tie - is less meaningful; it is an indication that

(2.19) has been designed to serve too many ends on the basis of too little infor­

mation. When more restrictions can be imposed on the problem, better outcomes

may be expected, however.

A first way of improving the result arises when for some of the variables

in (2.1) the cardinal values are known beforehand. For example, when all ex­

planatory variables are cardinally measured (i.e. the c~i are known before­

hand), (2.19) can be transformed into the following quadratic programming problem:

(2.20)

subject to > cy. = 1
1.

1

Nievergelt [1971] arrives at essentially the same formulation when he tries to

estimate the weights 13k of a utility function, where the xk's are the argu­

ments of the utility function and where a series of I alternatives has been

placed in order of attractivity.
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Another source of additional information to improve the results of (2.19)

can be obtained when the explanatory variables can be distinguished in various

classes. For example, Nijkamp [1980] classifies the explanatory variables of

regional income in an economic profile and a socio-geographical profile. Multi­

dimensional scaling methods are then used for each profile to derive cardinal

values for one or several variables representing the profiles. This cardinal

informatio~ can then be used for an ordinary multiple regression procedure when

y is measured on a cardinal scale. When y is measured on an ordinal scale,

formulation (2.20) can be used.

This approach is obviously a two-step procedure: first the number of ordi­

nal variables is replaced by a smaller number of cardinal variables. Then the

derived cardinal values are used to estimate the weights ek . In our opinion

it is worthwile to consider the possibility of integrating the two ste?s. This

would mean that in the derivation of cardinal variables by means of multidimen­

sional scaling, also information is used concerning the place of these variables

in a larger causal structure. The integration can be formulated in the following

way. Let the K variables be divided in L profiles (L < K). Assume that

per profile 1 only one cardinal variable will be deter~ined. This variable

will be denoted by zl' A short-hand description of a multidimensional scaling

procedure is the following:

min!

zli
(2.21)

Here stress (zll' ... , zlI) is a measure of the discordance between the ordinal

data and the zli and (zll' ... , zlI) E Al denotes the transformation relation­

ships from ordinal to cardinal data used in multidimensional scaling. For the

ease of notation the multidimensional scaling variables referring to the variable

y will be denoted by an index o. Then the integration we are aiming at can

be reached by solving:

min!

L
+ ~ Al stress (zll' ... , zlI)

1=0
(2.22)

subject to 1 = 0,1, •.• , L

The outcome of (2.22) depends on the weights ~ and ~O,Al' ... , AL attached

to the various terms of the objective function.. It is not difficult to see
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that the two-step procedure mentioned above is a special case of (2.22). It

implies that first (2.22) is solved with ~ = 0 and subsequently with the

values for the zli obtained in the first step, so that Ao = A1 = ... = A
L

= 0 •

2.5. Interdependence Analysis

Interdependence analysis is a method aiming at selecting a set of variables

from a larger data set such that the selected variables represent the original

data set as good as possible (see Kendall [1975] and Blommestein et al [1980]).

This method is based on mUltiple regression, since the criterion in the selection

procedure is the multiple correlation coefficient between each of the discarded

variables (the variables to be explained) and the selected variables (the expla­

natory variables). We conclude, therefore, that as soon as one of the approaches

to ordinal mUltiple regression dealt with in subsections 2.2 - 2.4 is feasible,

also ordinal interdependence analysis is feasible.

2.6. Discriminant Analysis

The aim of discriminant analysis is the determination of a decision rule

so that individuals can be assigned to certain predetermined classes on the

basis of their characteristics so that the probabi11ty of misclassification is

as small as possible. Let the characteristics of the individuals be denoted by

Xl' ..• , xK and assume that there are only two classes. Then a frequently

used form of the decision rule is (assuming that the variables are measured on

a cardinal scale):

if ~ ~k xki > c , assign x to class A

(2.23)

if L ~k ~ . < c, assign x to class B
k 1<1 -

and the characteristics ,
ifor which

belongs.

From this formulation of a decision rule it is clear that there is a large simi­

larity between regression analysis and discriminant analysis. For example,

Kendall [1975, p. 94] considers linear regression with a nominally measured

regressand y as identical to discriminant analysis.

When the scale of measurement of the ~ is ordinal, a decision rule can

be conceptualized in the following way. It can no longer refer to ~ individual,
and therefore we propose referring it to a pair of individuals (i,i ). It indi-

cates to which class (A or B) individual i has to be assigned, given' the charac­,
teristics for which individual i is larger than i,

i is smaller than i and given the class to which alternative
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This formulation of a decision rule enables one to employ the logit

function (2.7) for ordinal discriminant analysis. The only necessary adapt­

ation is that on the right hand side of (2.7) a dummy variable has to be added

indicating whether or not alternative i' belongs to class A. It is not dif­

ficult to determine the reference value c as introduced in (2.23). This value

is in ordinal discriminant analysis equal to zero, since In p/(l-p) = a implies:

p = .50

It is interesting to note finally that also in discriminant analyses with

discrete explanatory variables similar specifications of the decision rule are

used (cf. Goldstein and Dillon [1978]).

3. Clustering

Consider the following ordinal data matrix:

x =

J1'

(3.1 )

where I is the number of individuals and J the number of variables. The

main aim of clustering is the derivation of sets of "similar" individuals or

variables. Some authors use the term clustering only in connection with indivi­

duals and employ the term classification in connection with variables.

We will only use the term clustering; when misunderstandings might arise we will

indicate whether we mean clustering of individuals or clustering of variables.

It is interesting to note that clustering implies the transformation of numerical

data to data measured on a nominal scale.

There are many types of clustering methods (see Hartigan [1975]). Clustering

methods can be distinguished among others according to:

- the similarity criterion

- the objective function (e.g. the objective may be: maximize the similarity

within clusters, minimize the similarity between clusters, or employ some

mixed objective)

- the way in which clusters are combined (hierarchical versus non-hierarchical).

In this paper we will only deal with the first mentioned feature: the similarity

criterion.

When the aim is a clustering of originally measured variables, it is not difficult

to find a similarity criterion. Kendall's rank correlation coefficient defined
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in (2.13) is a good indicator of the interdependence between two variables,

which is closely related to the notion of similarity between two variables.

When a cluster C consist of more than two variables, an adequate similarity

index (based on the rank correlation coefficient) is:

s (C) = min
j,j'EC

T •• ,
] ,J

Thus, s(C) indicates the minimum correlation between all pairs of variables

in cluster C

Large difficulties arise when the aim is a clustering of individuals

given ordinal data. This is clearly exemplified by the following data matrix,

describing the outcomes for four individuals according to two variables:

x =
2

4

3

2

( 3.3)

It is tempting to state that in (3.3) the first anc second individual are

better candidates to form a cluster than the 2-nd and 3-rd individual,

since

2
L (x'l - x· 2 )
, ] ]
]

(3.4)

However, if we would know that the underlying cardinal values were

y = t:
60 65

100 90

100]

10

(3.5)

a cluster between the 2-nd and 3-rd individual should be preferred. Obviously,

the root of this problem is a mis ~interpretation of the ordinal data matrix X.

In ~ present section we will s~ that it is yet possible to draw certain

conclusions about clusterings based on ordinal data, although in most cases

the conclusions will not be strong.
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Consider a pair of individuals (i, m). Let s ( i, m) denote the similarity

between i and m Then the following statement is in accordance with an

ordinal Tlatrix X = (~l' ~2 ' ... , ~I)

if x. < x < x
-~ -m -n

than s(i,m) > s(i,n) and
(3.6)

s (m, n) > s ( i, n )

Thus we arrive at an ordinal similarity measure.

It is not difficult to prove that this measure has the following properties:

if s(l,n) > s(k,r)

V (i,m), O,n), (k,r)

s(i,m) ~ s(i,m) V (i,m)

if s(i,m) > s(l,n) and

then s(i,m) > s(k,r)

reflexivity

transitivity

It cannot be proved that this measure is complete, however. Completeness

would mean that for all combinations of pairs (i,m), (l,n) either s(i,m) >

s(l,m) or s(i,m) < s(l,n); in other words, it would imply that it is

possible to indicate for all combinations of pairs which of either pair is

most similar.

We will illustrate the similarity measure s(i,m) by means of the

matrix X in (3.3). An incomparable combination of pairs will be denoted

by u. In Table 2 we represent the results of a combination-wise comparison

of the similarity index for all pairs of individuals.

O,n)
(1,2 ) (1,3) (1,4) (2,3) (2,4) (3,4)

(1,2 ) = u u u u u

(1,3) u = > u u u

(1,4 ) u < = u u <- -
( 2,3) u u u = > u

( 2,4 ) u u u < = <- -
(3,4 ) u u > u > =

Table 2. Results of a combination-wise comparison of the similarity
index s (.,.) for the pair of alternatives (i,m) and the
pair °,n)
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The table clearly shows that most of the combinations are incomparable.

We illustrate its oeaning for the clustering problem by means of the second

row. This row implies that a necessary condition for a cornmon membership by

individuals 1 and 4 of the same cluster is, that also individual 3 is

a member of that cluster. Thus, the information contained in this row implies

is not consistentC = {l,4}
2

andthat a clustering such as Cl = {2,3}

with the ordinal data matrix X.

It appears, however, that in general several clusterings exist which are in

accordance with the information of the type of Table 2. For example, when we

consider the ways in which two clusters can be formed which are consistent with

Table 2, we arrive at:

l. C
l = {l,2} C2 = {3,4}

2. Cl = {l} C2 = {2,3,4} (3.7)

3. C1 = {2} C2 = {l,3,4}

4. Cl = {4} C2 = {1,2,3}

We conclude that we need an additional criterion to reduce the number of
m

feasible clusterings. One positive way is to use the median x as a

reference point. For example, when J = 2, we arrive at four clusters:

Cl = {x x > xm}- -

C2 = {~ x < xm}-
(3.8)

{~ I
m m

C3 = xl > xl x2 < x
2

}-

C = {~ I
m

x~}xl < xl , x2 >4 -

When (3.8) is applied to (3.3) we find:

C = C = <P C3 = {l,2} C4 = {3,4}
1 2

which is one of the feasible clusters in (3.7) .
It is not difficult to show that a clustering along these lines is always

in accordance with the information contained in Table 2 (and hence with (3.6 n ,
irrespective of the number of variables J, the number of individuals I , or

the number of reference points used (e.g., in addition to the median one may

also use the quartile positions). The proof reads as follows:



-20-

A general way to describe an arbitrary cluster in this situation is:

where xr and xS are vectors with reference values.

Conditi;n (3.6) says that when x. < x < x and when individuals i and
-1. - 4Il - -n

n are in the same cluster, also individual m should be in that cluster.

This condition is satisfied by (3.9), since when x. E Crs and x E Crs
-1. -n

(3.9) implies that also x E C
rs

.
4Il

We may conclude that given an ordinal data matrix X, the clustering of

variables is not essentially different from a situation with cardinal data.

The clustering of individuals is more difficult with an ordinal X, however.

We proved that a consistent clustering can be achieved by using reference

points (such as the median). Of course, the clustering results depend on the

reference points used.

4. Principal Components

The aim of principal components analysis is the representation of J

variables by a smaller number of variables (called components) with a high

degree of accuracy. When the data matrix X

as follows. We describe X as a series of J

is cardinal, this can be achieved
, ,

row vectors : ~1' ... , ~

Then the first component £' has to be determined such that the difference

betwean each x~ and a. £ is as small as possible. The factor a. is a
J J J

scaling factor to allow for the fact that the J variables can be measured in

different dimensions. Thus the first component £ can be found by solving:

min
a., p.

J 1.

I: I:
i j

(x .. - a. p.)
1.J J 1.

2
(4.1)

This means that the matrix X consisting of I J parameters is approximated

by the matrix ~ £' based on I + J parameters.

The second component can be found by repeating this procedure for the data

matrix consisting of the errors remaining after the first step. In general,

component n is based on the errors remaining after step n - 1
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Is it possible to extract components when X is ordinal? We will

discuss several proposals all dealing with the extraction of~ component.

1. Kendall [1970] proposes to base the component on the I sums of the

elements in the columns of X. Thus, first one calculates :

s. = t x ..
1. j J1.

i = 1, ... , I (4.2)

individuals are ranked according to theI s. .
1.

For example, when s.' is the largest among the s.
1. 1.

then Pi' is set equal to I, etc. Kendall proves that this procedure yields

the maximum average correlation (of the Spearman type) between the rankings

Subsequently the

in X and the component. Thus by means of this procedure we maximize:

(4.3)1 ~ P.-
J j J

where p. is
J

variable j

the Spearman type correlation between the component and

This component is very easy to compute, and Kendall [1975]

shows an application of it for an analysis of crop productivity in various

countries. He reports that there was a striking agreement between the first

principal component based on cardinal data and the component based on (4.2)

for ordinal values being in accordance with the cardinal ones.

~et, there is a weak point in this approach. It can be illustrated by

means of the following data matrix :

X =
2

3

4

1

(4.4)

In this case the column sums are all equal, which means that the component

consists of equal outcomes for all individuals. This is a strange result when

we realize that in (4.1) the scaling factor a. may be positive as well as nega-
J

tive. Following the lines of (4.1) we should conclude that in (4.4),

(1 2 4 3) or (4 3 1 2) would be perfect components, since they do not

give rise to any remaining errors.

In more general terms this objection against (4.2) can be formulated as

follows:
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criterion (4.3) is not meaningful since it ignores the possibility of negative

correlations. Better criteria would therefore be:

1 r: Ip ·1max
J j ]

or:

max!
1 t R,2-
J ] ]

(4.5.a)

(4.5.b)

It is not difficult to see that these criteria - when applied to (4.4) -

yield the desired outcomes. It is important to note, however, that there is no

straightforward way to determine the solution of (4.5.a) or (4.5.b), as

was the case with (4.2) .

2. Another approach discussed by Kendall [1970] will be illustrated by

the following X matrix :

x =
2

3

3

3

1

2
~l4 _

(4.6)

It is based on the number of variables with outcome I, 1-1, etc. obtained

by each individual. For example, individual 4 will receive rank 4 since it

includes two outcomes 4 in its column. Individual 1 will receive rank 3 since

it has the other outcome 4 Further, the second individual gets rank 2

since it has two values equal to 3 and rank 1 is for individual 3

Kendall dismisses this approach, however, since it is not self-consistent.

This can be seen when the same procedure is followed, but now starting with the

value 1. It is easy to see that a ranko~der is achieved which is different from

the order when we start with value 4 This is obviously an unattractive property.

3. Another approach, suggested by Ehrenberg [1952], is to base a component

on the number of variables according to which individual i is ranked higher

than i' . It is interesting to note the similarity between this idea and the

principle of majority voting between pairs of alternatives. Indeed, the problem of

deriving a common component from a series of rankings is very similar to the

problem of finding a social welfare function based on a series of preference

relationships. Arrow [1951] has shown that such an aggregation of preferences

is only possible under rather restrictive assumptions.

A well-known illustration of the difficulties in this respect is based on

the following ranking of three alternatives i by three persons j :
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~
2 3l

x = 1 2; (4.7)

3 1j

When majority voting is used to select an alternative from the pair (1,2) ,

alternative 2 will be chosen. Voting between alternatives 2 and 3 leads to

the selection of alternative 3. Voting between alternatives 1 and 3 leads to

the selection of alternative 1. The aggregated preference relation obtained

in this way is intransitive (cf. Section 3) which is obviously unsatisfactory.

We conclude that this third approach will give rise to the same problems

as in social welfare theory. Up to now there has not been much progress in

solving these problems. Therefore, this approach is not very promising.

4. The last approach is related to the proposals in (4.5), but in stead

of Spearman's correlation it uses Kendall's correlation.

Thus the component has to be determined such that a maximum is attained for

one of the two following criteria:

1 L I T-I
J j ]

or:

1 L T~J j ]

(4.8.a)

(4.8.b.)

At the end of this section we will also pay some attention to canonical

correlation and partial least squares, since these methods are closely related

to principal component analysis (cf. Kendall [1975] and Wold [1979] ).

The aim of canonical correlation analysis is the determination of components

from two data sets Xl and X2 such that the correlations between the

components are as high as possible. Partial least squares can be conceived

of as a generalization of canonical correlation analysis since it deals with

the analysis of correlations between components derived from more than two

data sets.

We will illustrate for canonical correlation analysis how it can be

carried out when Xl and X
2

are ordinal. Let the number of variables in

Xl and X
2

be J 1 and J
2

respectively. Then the' components £1 and £2
are the solution of
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1 T I'j I
1 r IT. I 1'1,2 1max

J 1
+

J 2 J2 +
1 1 J2

or

1 L 2 1 L , 2 2
max ,. + + 't'1,2J h J 1 J 2 j2 j2

(4.9.a)

(4.9.b)

In these formulations,

components 1 and 2

't' denotes Kendall's correlation coefficient between1,2

denote Kendall's correlation coefficient betweenFurther, T. and T.
J1 J2

co~ponent 1 and variable jl for 1 = 1,2 , respectively.

In (4.9), an equal weight is given to the correlations internal to an and

the external correlations between the Xl's.

Finally, a discussion of distance properties of multivariate techniques

(inter alia in the case of qualitative variates) can be found in Gower (1966).

5. Conclusion

We conclude that it is in principle possible to develop multivariate

methods for ordinal data which are related to corresponding methods for

cardinal data without making mis-interpretation co~cerning the character

of ordinal data. The methods developed in this paper are to a certain extent

provisional since they have not been discussed in an exhaustive way. For

example, in further elaborations more attention has to be paid to

statistical tests related to the methods

computational aspects

the occurrence of ties

the possibility that part of the variables are ordinal and others are

cardinal.

An important question concerning the newly developed methods is whether

they give rise to outcomes which differ much from the outcomes of methods based

on cardinal data. In a subsequent series of applications we will therefore

follow the scheme of Fig. 1.
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cardinal
multivariate
methods

....
statements about
the structure of
the data

b. cardinal data ....
ordinal

ordinal data .... multivariate
methods

statements
.... about the

structure
of the data.

Fig. 1. Input-output schemes for multivariate methods.

In these cases we will make use of an ordinal data matrix of which the

corresponding cardinal values are known. Thus we will be able to compare

the specificity of the outcomes of ordinal and cardinal methods.

This comparison is important for several fields of research or decision­

making where ordinal data are already used as a source of information (e.g.

certain multiobjective decision methods). We conc~ude that the subject of

this paper may have important side-effects on various numerical methods.
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