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ABSTRACT

In alignment with the global initiative to slow biodiversity loss, the European Union has

committed to ambitious area-based conservation and restoration targets for the upcoming

decade. Ensuring that these area-based targets are meaningfully achieved, while land

requirements for commodity production and climate mitigation targets met, will require

strategic planning across land uses, management measures, and jurisdictional boundaries.

In this study we spatially optimize the allocation of restoration and conservation measures

across different land-cover types to maximize species conservation and carbon sequestration

objectives, subject to projected crop, pasture, and forestry production constraints by 2030.

We show how simultaneously prioritizing landscapes for restoration and conservation can

significantly improve the efficacy and coherence of area-based conservation initiatives compared

to currently available disparate optimization of these measures. Additionally, we explore

the impact of multilateral burden sharing and multi-objective weightings on optimal land

allocation for production and the expected biodiversity and climate mitigation benefits of

proposed solutions. Our results provide insight for the implementation of timely EU policy

measures and a baseline for EU member states to evaluate the potential of their conservation

pledges. Moreover, the methodology can easily be adopted to different contexts around the

world and showcase how conservation planning can meaningfully optimize land allocation

needs for both nature and people.
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1 Introduction

In an effort to halt biodiversity loss [1] and safeguard nature’s contributions to people (NCP)

[2], the Convention on Biological Diversity (CBD) is nearing the adoption a post-2020 global

biodiversity framework [3]. Largely coalesced around area-based conservation targets (e.g.,

protecting 30% of lands and waters by 2030), this framework is influencing hundreds of

national and sub-national conservation policies around the world as governments pledge to

improve the protection of their biodiversity assets [4, 5]. However, area-based conservation

measures are only as effective as the ecological objectives and NCPs (e.g., climate mitigation)

they successfully target and address [6, 7]. The strategic implementation of these area

targets, rather than meeting the area targets themselves, will shape the next decade of global

biodiversity outcomes and decide whether we are able to bend the curve on biodiversity loss.

In alignment with the global post-2020 biodiversity goals, the European Union (EU)

has committed to ambitious land conservation targets (EU Biodiversity Strategy for 2030).

Complemented by the Nature Restoration Law (European commission, 2022), these decadal

policies seek to not only expand the EU protected area network to cover at least 30% of land

and waters but also enact a binding commitment to restore 20% of degraded ecosystems

by 2030. With most EU land being under some form of human use and given anticipated

geopolitical and climate impacts on the bio-economy, it is necessary that these area-based

targets are achieved in a way so that land-use production needs are met, which will necessitate

strategic planning across land use and management measures. Moreover, because biodiversity

is not uniformly distributed across the EU, planning the implementation of these policies will

require thoughtful consideration and intergovernmental cooperation to avoid equal burden

sharing between member states of the EU.

Systematic conservation planning has long been applied to inform the spatial allocation

of conservation actions [8, 9], being able to identify optimal priorities and actions so that

the most complementary portfolio of species and NCPs is contained in a particular solution

and managed optimally. Recent advances in optimization methods (e.g., linear programming

1

https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en
https://environment.ec.europa.eu/topics/nature-and-biodiversity/nature-restoration-law_en


[10]) have allowed for exploring the optimal allocation of conservation measures at multiple

scales [11], under competing objectives [12], or by subjecting the allocation to land use

constraints [13]. Yet, much of these approaches have been applied in isolation and separately,

and concurrently optimizing conservation and restoration allocation has to our knowledge

never been attempted [12, 14]. It is furthermore necessitated by the EU policy agenda that

synergies and co-benefits are optimally identified to avoid any land management portfolios

to be left up to chance. For example, forest restoration in a given location might seemingly

provide the best benefits to biodiversity and carbon sequestration when considered alone,

however in a regional perspective it may be more preferable to allocate restoration to a

another land-cover type (e.g., grassland) if this benefits species who are less ubiquitous and

constrained to this region. Without planning conservation and restoration in concert, it is

not easily feasible to assess whether priorities are optimally contributing to the preservation

of species habitats and NCPs.

In this work, we aim to identify the areas that, if restored or conserved, would maximize the

achievement of a series of targets for species conservation and carbon sequestration. Opposed

to previous global conservation [12] and restoration [14] prioritizations, we estimate for the

first time how and where conservation and restoration targets could be met simultaneously,

while also considering existing and future constraints on land area (e.g. production needs of

the EU bio-economy by 2030). We estimate how landscape-scale habitat requirements for

European species of conservation concern (e.g. those in the Habitats and Birds directives)

could be met by ”maintaining” natural habitat (i.e., natural land cover not converted to

production) rather than legal protection. This definition of conservation recognizes that some

of the areas of conservation importance identified in our analyses will require specific national

or international designation (e.g. protected area) or governance.

Leveraging best available data on the current and potential distributions of EU species,

carbon sequestration, and land cover, we identify priority areas for how an optimal allocation

of conservation, restoration, and production across land cover types could be met in the
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EU. Through a series of different planning scenarios, we explore three main questions: (1)

What are the implications of simultaneously optimizing the allocation of conservation and

restoration measures across a landscape rather than considering the allocation of these

measures separately? (2) What are the trade-offs and synergies between optimizing the

allocation of conservation and restoration measures for biodiversity conservation and carbon

sequestration objectives? Finally, (3) What are the implications of multilateral burden-sharing

on the coherence, efficiency, and resilience of possible conservation and restoration allocation

solutions?

2 Methods

2.1 Problem formulation

We formulate the spatial optimization of land-use decisions as a mixed linear programming

problem, where the objective is to maximize the extent to which targets for species conservation

and carbon sequestration are met through optimal zoning of conservation and restoration

measures across land-use types in the EU (eq. 1), subject to spatial constraints in the

applications of these measures.

min[
P∑
p

Z∑
z

S∑
s

ws((ts −
P∑
p

Z∑
z

rs,pkz,sxp,z)/ts)] (1)

In the minimal shortfall objective (eq. 1), p ∈ P indicates a given 100 km2 planning unit,

z ∈ Z indicates a management zone (figure 1A), and ap,z is the area of the planning unit p

allocated to zone z in the solution. rs,p is the amount of feature s ∈ S in planning unit p

and has the same unit as the respective target, ts. Features include species of concern and

carbon (see below for additional details). kz,s is a zone-specific parameter that defines the

proportional contribution of zone z to achieving the target for feature s and is determined by

the habitat preferences and land use specific threats for the species (see SI and tables ??,
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and 3 for additional details), or the estimated carbon sequestration of that zone. ws is a

feature-specific weighting that gives higher or lower priority to achieving a given target when

not all targets can be met (see 2.8 for additional details).

2.2 Management zones

We consider 25 management zones (decision possibilities) that can be allocated proportionally

within each of the 43,498 planning units across the EU (figure 1A). Restoration zones consist

of both natural land cover restored from production landscapes and low-intensity production

landscapes restored from high-intensity production landscapes (table 1). Production zones

consist of varying intensity crop, pasture, and forestry areas that can be maintained or

created from other land-cover types. Finally, conservation zones capture the maintenance of

natural land-cover types (i.e., land not allocated to production or restoration). We bound the

allocation of each of these zones in a given planning unit based on the current and potential

land cover, improving the realism of our proposed solution space and minimizing unnecessary

and unrealistic ”reshuffling” (e.g. forests that should be restored to grasslands).

For the set of conservation zones in each planning unit, we consider the lower bound to

be the current area of a given land-cover type within the planning unit that is presently

within protected areas (Natura 2000 site [15]) or classified as primary forest [16]. The upper

bound of conservation zones is the total extent of a given natural land-cover type in the

planning unit (see below for additional information on land cover data). Note again that

conservation here is distinct from legal protection. Instead, ”conservation” is natural land

not allocated to production, urban area, or restoration. Importantly, this conceptualization

of conservation allows us to capture the habitat contributions of all natural land in a given

solution to optimize the biodiversity benefits of restoration allocation.

For the set of restoration zones, the lower bound is 0 (no restoration is required in any

given planning unit). The upper bound is constrained by the potential distribution of the

restored land-cover type and the current land cover available to be restored to that future
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Figure 1: Schematic diagram of the prioritization analyses. (A) List of management zones,
whose spatial allocation is optimized under a suite of different scenarios 2.8 in the analyses.
(B) For each priority species, we set a target to meet by conserving or restoring habitat types
for the species within their present range. For carbon, the aim was to maximize the amount
of carbon stored in conserved or restored areas. Depending on the scenario variants, species
were weighted in importance differently relative to carbon to explore the implications of
putting more emphasis on different objectives. The area allocation of a planning unit to a
given management zone was bounded with the bounds depending on the planning unit and
zone (B2). In addition, the optimization included constraints on the area under restoration
and how much area needed to be under production (grazing, farming, timber harvesting, B4)
in 2030. The result of this constrained optimization is a series of maps identifying priorities
for conservation, restoration, and production of food and timber products (B6)

land cover (according to logical transitions; see SI 6.1, eq. 4, and table 1 for additional

details). For the set of production zones, the lower bound is 0 (no production is required in

any given planning unit), and the upper bound is the land area of the planning unit minus

the distribution of the natural land cover in currently protected areas.
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2.3 Meeting 2030 production demands

To avoid setting more land aside for conservation and restoration than what would be needed

given projected demands for timber and agricultural products, we included production area

requirements for each NUTS2 jurisdiction for each of the seven production zones (high-

intensity cropland, reduced intensity cropland, low-intensity cropland, high-intensity pasture,

low-intensity pasture, production forestry, and multi-functional forestry) (Figure 1B(4)). For

example, to ensure the allocation of sufficient high-intensity cropland to meet projected 2030

production needs, we require that the sum of the area allocated to the relevant cropland

zones across planning units within each NUTS2 jurisdiction is greater than or equal to

the specified 2030 target of that jurisdiction. These targets are derived from GLOBIOM

[17], a global partial equilibrium model that explicitly integrates different land-use sectors

(IIASA GLOBIOM, 2022), and which has been adapted specifically for EU contexts and

policy problems. In this work we made use of the ”Fit for 55” scenarios constructed as part

of the EUCLIMIT project and that following a ”Middle-of-road” design for the European

bio-economy in 2030 and is fully consistent with the EU Corine land cover product (see 6.4).

We formally implement these constraints using eq. 2:

P∑
p

Z∑
z

(Di,k,p,z ×Xp,z) θ ti,k ∀i ∈ I and ∀k ∈ K (2)

where i ∈ I denotes a set of planning units p (e.g., all planning units within a NUTS2

jurisdiction), and k ∈ K a set of zones relevant to a given target ti,k. Di,k,p,z denotes the

constraint data associated with planning units i ∈ I for zones k ∈ K .

2.4 Biodiversity data

We estimated the distribution of 1277 species included the EU habitats directive using

an integrated species distribution modeling (iSDM) approach where best-available data

sources (occurrence, preference, expert information - see SI section 6.5 for a full description
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of included data) are integrated into one joint prediction (see SI section 6.6 for prediction

variables) using different types of linear and non-linear modeling approaches (full methodology

for SDM in SI section 6.6.1). We also leverage species distribution models to depict the

potential distribution of the species (sensu [18]), understanding potential in this context as

the contemporary climatic, soil and natural vegetation conditions that would allow a species

to persist in an area (full methodology for potential SDMs available in SI 6.6.2). Critically,

and opposed to mapping current suitable habitat, the potential modelling approach considers

only contemporary differences in climate and soil, and not any land-cover or land-use, aligning

with the concept of the potential natural vegetation of Europe [19]. The predictions from

the species distribution models used here thus aim to depict where a species might exist

under current conditions while also allowing modest inter- and extrapolation from its current

distribution.

2.5 Land cover data

We used data on the distribution of land-cover types as distinguished by the Corine 2018

dataset. The thematic legend of the Corine land-cover data (level 2) was re-categorized into

different MAES habitat categories to allow for a crosswalk with species habitat preferences.

Our input land cover differed from the MAES categories slightly for production lands,

which we first split from natural lands using more disaggregate layers of the Corine dataset

where necessary (e.g., grasslands where split into natural grasslands and pasture lands).

We distinguished the current area of different management intensity classes of cropland,

forests, and pasture using the current distribution of those production lands multiplied by

the estimated percentage of intensity for a given production intensity at the 10 km2 scale

using outputs from G4M and EPIC models, constructed as part of the GLOBIOM Fit for 55

scenarios (see above).

To calculate the protected and unprotected land cover distributions within each PU, we

rasterized protected areas in the Natura 2000 network to align with reclassified 100-meter
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Corine land cover data. Then, we masked the 100-meter land cover data by the protected

areas and aggregated this from the 100m resolution to the 10km grain size by calculating the

proportion of 100m grid cells in each coarser grain for each land cover inside and outside of

current protected areas. This was done to separate areas inside and outside protected areas,

as in particular restoration inside such sites is specific objective in the EU Restoration law.

To identify potentially restorable land, we followed the concept of potential natural

vegetation (sensu [18]). We define potential in this context as the contemporary climatic,

topography, soil, and natural vegetation conditions that allow for a specific type of natural

habitat (e.g., Forest, Wetland) to occur in an area. The full methodology and input data

used for estimating potential land cover are available in the SI section 6.4.

2.6 Carbon data

For current carbon stocks, we used data on above-ground, below-ground, and soil organic

carbon at risk from land-use change from [12]. These data were created by selecting and

integrating the best available carbon maps for different vegetation types. All data are in

units of tC/ha. For the analysis, we combined the current carbon layers by calculating the

combined sum of above- & below-ground and soil organic carbon for Europe. We included the

total amount as an additional feature in the prioritization (see SI section 6.7.1 for additional

information). Similarly, for allocating restoration priorities in regard to carbon contributions,

we needed to identify areas with high carbon sequestration potential. Here followed an

approach that combined the different techniques from [14] and [20] for potential carbon

estimation, allowing for a estimation of carbon potential per planning unit and natural

land-cover types (see SI section 6.7.2 for full details on methodology).

2.7 Feature targets

Species targets are defined relative to the minimum habitat area (km2) necessary to qualify

the species for the Least Concern conservation status following IUCN criteria (see [12]). We
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equate this to the current area of habitat (AOH) within the range of the species, or 2200

km2 in the case that the AOH is less than 2200 km2 (eq. 3). To calculate the current AOH,

we assess the proportion of each species range that is within corresponding MAES land cover

preferences (”preferred” or ”suitable” habitat) for the given species. To differentiate the

habitat provided by low and high-intensity production landscapes, we leverage frequently

reported pressures on habitats and species associated with agriculture (EEA State of Nature

Dataset; see SI section table 3, 4, and 2 for more information on how we classified threats by

zone). Moreover, we set a maximum area target for any given species to 106̂ km2 to avoid

infeasibly large AOH targets [12].

ts = min(max(2200, AOHs), 10
6) (3)

As mentioned above (eq. 1), we define a zone-specific parameter kz,s that identifies the

proportional contribution of zone z to achieving the target for feature s and is determined by

the habitat preferences for the species. kz,s is 1 if zone z (e.g. mountain coniferous forest) fully

contribute to achieving the conservation target for species s (e.g. the three-toed woodpecker).

kz,s is 0 if the zone z does not contribute to the species’ habitat. kz,s can be between 0 and 1

for species that persist in agricultural habitat but are sensitive to threats associated with the

intensity and type of agriculture in zone z (see SI table 3, 4, and 2 for more details).

We set the carbon sequestration target to the maximum potential value of carbon in

each planning unit and similar defined zone-specific parameters to understand the different

contributions of different land-cover types. We jointly optimize for both biodiversity and

carbon sequestration, and since we include only one target for carbon compared to multiple

targets for biodiversity outcomes, the weighting of target shortfalls is set accordingly (see

information on feature weighting scenarios below 2.8).
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2.8 Scenarios

We explore 45 different scenarios of optimal land allocation. First, we vary the weighting

of carbon shortfalls relative to biodiversity shortfalls (15 different weighting scenarios) to

understand the synergies and trade-offs between these two objectives. Second, we compare

solutions that only optimally allocate restoration to solutions that prioritize restoration

allocation in the context of conservation and broader landscape constraints. Third, we set

constraints (eq. 2) for meeting 20% restoration targets at (1) the EU scale and (2) the

member state scale, allowing us to assess the impact of burden sharing between countries

across different carbon/biodiversity objective weighting scenarios.

We use the prioritzr package [10] and the Gurobi solver (v9.5) [21] to build and solve

each of our spatial optimization problem scenarios.

3 Results

The resulting conservation plans provide insight into the optimal allocation of restoration,

conservation, and production measures under a variety of scenarios across the EU (a single

solution scenario is shown in figure 2). We first compare plans for meeting 20% restoration

commitments between scenarios that jointly optimize restoration and conservation (figure

3B) and scenarios that only consider restoration (figure 3A). We show that the two scenarios

result in significant spatial differences (figure 3C) and land cover differences (figure 3D) in

restoration priority. Because the coordinated prioritization framework integrates information

about the broader landscape within which restoration decisions are made, it presents a more

holistic perspective for both restoration and conservation, especially when compared to the

less informed optimization scheme (figure 3B).

Using the coordinated prioritization framework (jointly optimizing the allocation of

restoration, conservation, and production), we explore a suite of optimal land management

allocation scenarios by varying the weight of biodiversity and carbon objectives (figure 4A).
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Figure 2: Optimal allocation of conservation, restoration, and production across land-cover
types for one solution scenario ( carbon target weight set to 20% of the sum of all species
targets and restoration budgets defined at the member state scale). (A) The optimal allocation
of conservation (maintained natural land) across the EU and the breakdown of conservation
by land cover type. Notably, natural and multi-functional woodlands and forests make up over
50% of the conserved land priorities (B) The optimal allocation of restoration across the EU
and the breakdown of restoration by land cover type. Notably, natural and multi-functional
woodlands and forests make up over 50% of the conserved land priorities (C) Production
area targets, while constant throughout scenarios at the sub-national (NUTS2) level, do vary
in their spatial distribution as the result of the conservation and restoration priorities of that
given scenario. Urban areas remain constant throughout all scenario solutions and are set to
match 2018 urban area distributions in each planning unit.

11



Additionally, we explore how these trade-off curves vary depending on policy implementation

(namely, burden sharing between countries) (figure 4A). On the efficiency frontier with higher

shortfalls, we require that 20% restoration targets are not exceeded in any given member

state (figure 4A), meaning the burden to meet the EU target is evenly distributed across

countries. Notably, solutions are still optimized in the context of continental scale portfolios

of species and carbon features, just with additional constraints. Because optimization of

restoration targets at the EU scale is less constrained, we by definition see lower biodiversity

and carbon shortfalls overall (figure 4A).

We show how shifting the distribution of responsibility to reach area-based targets changes

the spatial priorities of restoration (figure 5A) and the distribution of natural land cover

prioritized for restoration (figure 4B). Notably, burden sharing has a less significant impact

on the distribution of restoration land cover types (figure 4B; figure 5D) and overall target

shortfalls than the relative weighting of biodiversity and carbon sequestration objectives

(figure 4A).

While the aggregate shortfall from biodiversity targets provides some insight into the

overall efficacy of different scenarios, we also aimed at understanding the ”winners” (species

which benefit most) and ”losers” (species which benefit least) of these different planning

scenarios. We show that some species groups (e.g., birds) have significantly shifted their

shortfall distributions due to objective weighting, while others (e.g., mammals) are less

influenced by exact objective weightings (figure 4). This is unsurprising given that birds

benefit disproportionately from the increased wetland restoration priorities that emerge in

scenarios that more heavily weight biodiversity. Changing the burden distribution between

countries does not appear to significantly impact any given species group more than others

(figure 4E), but may be impacting individual species within those groups differently.

Despite the benefits, EU scale restoration targets result in some countries bearing a more

substantial burden for meeting EU restoration targets (up to 49% of land prioritized for

restoration in a single country, as opposed to a maximum of 20% area per country in the

12



Figure 3: Using the same planning unit constraints and restoration transition matrix (fig 1)
from figure 2, we compare solutions of restoration prioritization when (A) jointly optimized
to meet restoration targets in the context of the optimal allocation of conservation and
production lands (same as figure 2B) and (B) only considering restoration priorities. (C)
Significant spatial differences and (D) land type differences in restoration priority emerge
between the two solutions.

13



Figure 4: (A) We explore a suite of scenarios varying the weight of biodiversity and
carbon objectives. Additionally, we explore how these trade-off curves vary depending on
policy implementation. On the efficiency frontier with higher shortfalls, we require that 20%
restoration targets are not exceeded in any given member state. In the lower frontier, we
allow restoration to occur anywhere in the EU to contribute to an overall 20% area target.
(B) Restoration per natural land cover also varies depending on the scenario. Here the
bar colors align with the solutions from (A) and the shade with the policy implementation
scenario (lighter colors align with EU scale priorities), showing that value weighting has a
more significant impact on priorities than formalizing equity of burden between countries in
this context. (C) While less constrained optimization allows for the allocation of conservation
and restoration measures that provide larger biodiversity benefits (C) these solutions can
result in up to 50% of individual member states being allocated to restoration as opposed to
that limit being set at 20% in the constrained optimization. (D) Despite this difference in
distribution, the total area restored in each scenario is only marginally different, driven by
countries where reaching 20% restoration is not feasible in the solution, given production and
restoration transition constraints. (E) We can see that some species groups (e.g., birds) have
significantly shifted shortfall distributions while other species groups (e.g., mammals) are less
influenced by exact objective weightings.
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Figure 5: distribution of the responsibility to reach area-based targets significantly changes
the spatial distribution of (A) restoration and (B) production priorities across the EU. Negative
values (blue) indicate that planning units with more area are prioritized for (A) restoration,
(B) production, and (C) conservation in the member-state target scenario. Positive values
(brown) indicate planning units with more area prioritized in EU scale target scenarios.

constrained scenarios) (figure 4D). We sought to understand if concentrating solutions in

some countries increased sociopolitical risks associated with the prioritized conservation and

restoration allocation. Our results suggest the contrary (figure 6A-C). Optimization scenarios

that allow for uneven distribution of restoration burden between countries generally resulted

in a more significant portion of the restoration solution space allocated in countries with

lower corruption indices, higher GDP, and higher political engagement (figure 6A-C) [22].

Our results show less significant difference in the distribution of conservation or production

across these sociopolitical metrics (figure 6A-C).
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Figure 6: While less constrained optimization results in lower biodiversity and carbon
shortfalls (figure 4A) understanding the risks on the resilience of conservation and restoration
that the resultant solutions pose as the result of uneven burden might place is critical,
particularly given the long time horizons of benefit accrual. Optimizations run with EU
scale targets have a larger portion of the restoration solution space in countries with lower
corruption indices (A), higher GDP (B), and high political engagement (C) in the EU context.
The map shows the distribution of these three categories given member state restoration
targets. Colors in the map align with land covers included in regression lines in A-C.

16



4 Discussion

Leveraging a suite of scenarios (figure 4A), our analysis provides insight into the optimal

allocation of conservation, restoration, and production across land-cover types in the context

of current EU policies (figure 2). We show that joint prioritization of multiple area-based

conservation measures (i.e., conservation and restoration) produces significantly improved

ecological and NCP outcomes from these measures compared to uncoupled planning (figure

3). Additionally, we explore how burden-sharing and cooperative planning between countries

in multilateral agreements can improve the efficacy of area-based conservation and restoration

measures (figure 4A), while not increasing the sociopolitical dimensions of risk associated

with priorities (figure 6) [23].

Unlike existing approaches to spatial planning of conservation and restoration measures

(which have to-date have been implemented separately [12, 14]), our analysis concurrently

optimizes the allocation of both measures. This advance in coordinated spatial planning

provides important insight for the EU and individual Member States on devising strategies

to meet commitments under both the Nature Restoration Law and the EU 2030 biodiversity

strategy. Moreover, because our analysis optimizes biodiversity and NCP portfolios across the

entire EU, even in scenarios where restoration targets are set at the Member State scales (figure

4A; top line), our resulting plans provide information on how Member State implementation

can be strategized to maximize benefits in the context of continental biodiversity portfolios and

climate mitigation opportunities. Additional constraints at the Member State (or subnational;

e.g., NUTS2) scale could be integrated into this framework (e.g., to reflect different values or

priorities) and resulting plans would still provide more optimal EU-wide benefit to biodiversity

and carbon sequestration than if Member States planned their strategies entirely independent

of one another.

Recognizing that conservation priorities are normative at their core, we do not suggest

that there is a single optimal allocation of conservation and restoration measures across

the EU. Rather we showcase how the weightings of different objectives and policy targets
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might shift biodiversity and carbon sequestration outcomes (figure 4A). Providing a suite of

spatial plans and their synergies can help decision-makers understand the feasibility different

strategies, as well as identify places and measures that will likely be prioritized regardless of

precise problem formulation or objective weightings.

We stress that while our analysis provides restoration priorities that align with area-based

policy targets (figure 3) outlined by the EU restoration law, we do not claim or propose any

areas for legal or strict protection as outlined by the EU 2030 Biodiversity Strategy (30% of

land area in protected areas and 10% under strict protection). Such decisions need to be

taken following in-depth and bottom-up investigations, also considering factors that were not

available for inclusion in this work and at this scale (for example land tenure). The definition

of conservation used in this study more closely aligns with the contemporary emphasis of

biodiversity conservation on the importance of areas outside of traditional protected areas

(”Other Effective Conservation Measures” (OECMs) [6, 3]). Our solutions reflect that legal

designations will only be a subset of the areas identified as meaningfully contributing to

biodiversity and carbon sequestration targets. Regardless, some portion of the conservation

and restoration priority areas identified in our solutions would likely benefit from national

or international protected area designation. Legal protection can be valuable where narrow-

ranging and threatened species occur or where there is a need for active site management.

Post-hoc analysis of solutions (e.g., identifying areas with high synergies across scenarios,

high risk for development, or high importance for species of particular concern) might help

provide priorities for expanding legally protected area networks across the EU.

While conservation planning at multilateral scales (e.g., global, continental) is more

efficient along the dimensions specified in an optimization (as shown in figure 4A), and allows

for consideration of large scale ecological processes otherwise overlooked, there are several

potential shortcomings. For example, large-scale planning can be detrimental across important

problem dimensions not explicitly included in the optimization. These excluded dimensions

often reflect areas or values that do not have consistent data at aggregate scales. This can
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lead to disparities in the distributional equity of plans due to the lack of quantification of

local natural resource use, land tenure, or the inability to consider cultural components of

conservation benefits in standardized data formats [24]. Conservation planning that integrates

knowledge and values across multiple scales may provide the most promising path forward [25].

Our methods provide insight into how we can, at once, set conservation targets acknowledging

jurisdictional boundaries and differences, while concurrently considering the broader species

distributions and habitat needs when prioritizing areas to meet those targets.

4.1 Next steps

Improving the realism of 2030 biodiversity policy implementation in our optimization problem

will be a critical next step in this study. For example, our current solutions (across all

scenarios) allocate only a small amount of restoration budgets to reducing the intensity

of production lands (figure 3D). This solution pattern emerges because natural landscapes

benefit species and carbon sequestration more than production landscapes in most contexts,

even when production is done at low intensities. Furthermore, because we do not consider the

opportunity costs of restoration, if plans can meet 2030 production requirements in a NUTS2

jurisdiction without low-intensity restoration allocation, the plans will favor natural land

restoration. Therefore, exploring scenarios that require a specified distribution of restoration

between natural land cover restoration and reduced intensity production restoration might

provide more realistic insight into how incentive allocation would change biodiversity and

carbon sequestration outcomes of the EU restoration law.

There are several other limitations to our current analysis, which will motivate subsequent

work on this project. First, we do not consider the sensitivity of our results to uncertainties

in underlying spatial data. Comparing solutions across different probability thresholds for

species distribution models and land cover potential maps will be critical for understanding

the sensitivity of our results to these underlying data. Second, in these analyses, we set species

habitat targets at the EU scale when, in reality, setting habitat targets at the biogeographic
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or country scale will better align with policy goals set out by the EU commission. Moreover,

disaggregating habitat targets might help improve the climate resilience of scenario solutions.

Notably, we do not consider the implications of climate change risk and uncertainty on

ecosystem threats or expected species range shifts [26]. Including projected species ranges

under climate change scenarios (similar to [27]) as a component of biodiversity targets might

help propose conservation and restoration measures that provide resilient biodiversity benefits

beyond 2030. Finally, we do not yet consider connectivity of proposed conservation and

restoration measures [28].

5 Conclusions

In this study, we explore the impact of multilateral burden sharing and multi-objective

weighting on optimal land conservation and restoration allocation. We highlight the implications

of these land management measures on expected biodiversity and climate mitigation outcomes

across the EU. Our methodology allows for simultaneous planning of conservation and

restoration measures under land use constraints, showing that strategic planning across land

management measures can significantly improve the efficacy and coherence of area-based

conservation implementation when compared to disparate planning. Our results provide

insight for strategic implementation of the EU restoration law and 2030 biodiversity policy

commitments, while creating a baseline for EU Member States to evaluate the potential of

their conservation pledges. Our methods are broadly relevant to contexts around the world

and showcase how spatial planning methods can meaningfully optimize land allocation in a

way that benefits both nature and people.
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6 Supporting Information

6.1 Restoration potential

Area of restoration potential within each 10 km2 planning unit was further refined from the

10km grid cell potential using the existing land cover distributions within each PU. Restoring

current land cover to a potential land cover is defined as possible only up to the probability

potential of a given planning unit (from potential distribution model) that is currently within

managed land cover types defined as feasible for restoration to a given potential land cover

(table 1). Meaning the upper bound of potential area of restoration for a given land cover j

in a given planning unit is given by eq 4

Pr(j)
I∑
i

aiTi,j (4)

Where Pr(j) is the probability of a given potential land cover in the PU, ai is the percent

of the PU area that is a given current land cover i and Ti,jis the logical transition between

the current land cover and potential land cover (see table 1)

6.2 Management intensity threats

We map EEA land use threats onto our seven production zones. Species are then mapped

to threats that they are sensitive to. If a species is sensitive to 3 or more threats but is

considered suitable to the land use, ks,z is set to 0.1. If a species is sensitive to 1-3 threats but

considered suitable to the land use, ks,z is set to 0.5. If a species is sensitive to 1-3 threats

but considered suitable to the land use, ks,z is set to 1.

6.3 Management zones and constraints

As described in the main text, we set planning unit constraints on each zone as well as linear

constraints that consider targets or budgets across zones and multiple planning units. These
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Table 1: Restoration transition matrix: we restrict restoration of a current land cover type
(row) to a potential land cover type (column) based on logical and desirable transitions. For
example, native vegetation is not proposed for restoration to another land cover type even if
that vegetation is within the potential zone of another land cover type. Human modified
land cover (cropland, pastureland) can be restored to a set of “native” land cover types only
within the potential range of those land covers.

constraints are outline in table 5.

6.4 Land cover data

6.4.1 Potential distribution of natural land cover

Similar as for the distribution of species, for the identification of potentially restorable

land we followed the concept of potentially natural vegetation (sensu [29]). We understand

potential in this context as the contemporary climatic, topography, soil and natural vegetation
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Table 2: Mapping EEA threats onto cropland intensity zones. Threat codes align with
species, allowing for the differentiation of biodiversity contributions of different intensities of
production

conditions that allow for a specific type of natural habitat (e.g. Forest, Wetland) to occur in

an area. Critically this approach considers only contemporary and not future conditions and

aligns with the concept of potential natural vegetation of Europe [19]. We first assembled

a Europe-wide database on the distribution of habitats in Europe where we followed the

thematic legend of the MAES habitat classification system at level 2, while ignoring any
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Table 3: Mapping EEA threats onto pasture intensity zones. Threat codes align with
species, allowing for the differentiation of biodiversity contributions of different intensities of
production

strictly anthropogenic habitats (e.g. Urban, Cropland, Pasture) as well as Rivers and Lakes.

Different data sources on the distribution of habitats differ in terms of their geographic spread

and biases, thus in order to not rely on any single data source of European ecosystems we

integrated habitat data from three different sources collated for Europe:

We took habitat information from the European Habitat Directive which gives the

occurrence of all EUNIS habitats listed in the Article 17 of the habitats directive at a

10km resolution. We used a crosswalk developed by the European Environment Agency and

Biodiversity Topic Centre to translate the EUNIS types to Corine CLC and subsequently to
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Table 4: Mapping EEA threats onto forestry intensity zones. Threat codes align with
species, allowing for the differentiation of biodiversity contributions of different intensities of
production

MAES level 2 categories. We further made use of point occurrence datasets for key habitats

in the new EEA suitability predictions. Here the habitat categories were reclassified into

the respective MAES types, following the CLC to MAES crosswalk. Finally, we prepared
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Table 5: Summary of management zones and constraints

point occurrence data from the openly available land-cover and land-use database LUCAS

[30]. The LUCAS database contains stratified and repeated survey records of local land-cover

and land-use types for Europe [30] with the latest one being available for the year 2018. We

took the lucas survey records and reclassified the land-cover type (”lc1lable”) to the natural

MAES ecosystem categories, discarding all anthropogenic created habitats (Cropland, Urban,

...) in the process.

As predictors for the potential habitat modelling, we considered data on the potential

distribution of land cover ([31], [19]) as well as long-term average climatic conditions in

Europe where we used downscaled bioclimatic ERA5 indicators over the last 40 years (1979 to

2018) from the European Copernicus program. These climatic indicators represent Essential

Climate Variables (ECV) such as the surface energy, drought or moisture all of which are

known to be important factors in delineating the range and environmental niche. Specifically,

we made use of the BIOCLIM data BIO01 to BIO19, average aridity and cloud cover, the

annual sum of frost days, potential evaporation and volumetric soil water as well as different

characterizations of the number of growing degree days and the start, end and length of the

growing season. We also included a predictor that quantified the Euclidean distance to the
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ocean from each terrestrial grid cell, given the importance of some wetland habitats to brackish

water and coastal conditions. We prepared data groundwater and soil conditions, specifically

data on the Ph value and Calcium Carbonate content of groundwater resources as well as

estimates of the depth to groundwater in meters. We also included data from a thematic layer

of a European soil lithology classification system [32] owing to the importance of difference

soil types. The individual lithology classes were included as factorial combinations in the

modelling.

We estimated the potential distribution of the habitat by relating and contrasting presence-

only and pseudo-absence points with another [33]; [34]. This is a widely applied approach

usually for species distribution modelling, which although being scale-dependent, is in this

context desirable since our aim is to map the potential natural distribution of a habitat.

Although it is possible to create predictions of potential natural habitat as multi-nominal

problem, e.g. where each class has a different and exclusive probability to potentially occur

[29], we decided instead to estimate the distribution of the habitat non-exclusively, since in

many areas of Europe there is a potential for more than one habitat to potentially occur

under natural conditions especially when succession trajectories are unknown. Thus, for each

habitat dataset we created pseudo-absence points randomly distributed within the modelling

domain. We rasterized these 10-km Article 17 data and applied a distance transform to them,

e.g. there is a monotonically decreasing probability of a habitat type to occur outside the

Article 17 reporting data. The resulting layer was then included as additional predictor.

We used non-linear and tree-based Bayesian Regression Trees (BART) for the estimation

of the potential habitat, which have the benefit of being able to quantify complex non-linear

interactions between variables and the consideration of prior information in a Bayesian

framework [35], [36]. For the regression trees we used a logistic model formulation of the

response by assuming the habitat presence and pseudo-absences to be Bernoulli distributed,

e.g. yhabitat Pr(y = 1|x|).

We fitted the BART models with 500 tree and 50 burn-in iterations across four MCMC
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chains through the use of the ‘dbarts’ R-package [35]. From the resulting posterior of the

fitted model and for each grid cell, we summarized the median and lower (5%) and upper

(95%) percentile of the posterior, thus allowing us to spatially represent the uncertainty of

each individual habitat type prediction. The resulting predictions thus contain an estimate

of the probability of a potential occurrence of a given natural habitat for each 10km grid cell.

6.5 Biodiversity data

6.5.1 Biodiversity data collation

Openly available biodiversity data sources in Europe are heterogeneous in type, format and

purpose; and to be able to use them in an integrated SDM type of approach, a considerable

amount of data harmonization and format control is necessary. Throughout we followed the

taxonomic “backbone” of GBIF and codified functions to harmonize and match taxonomic

names from different data sources to the GBIF taxonomy backbone of 2021, (GBIF Secretariat

(2021)). We focused throughout on terrestrial species listed in the EU Article 12 (Birds

directive) and Article 17 (Habitats directive).

Firstly, we obtained presence-only records from GBIF for all animal and plant species

in the database. We excluded fossil specimens, and those with invalid spatial coordinates,

and applied standard data pre-preprocessing steps for unstructured citizen science data

using the ‘CoordinateCleaner‘ R package [37]. We removed duplicate points (those within a

2-km distance within the same year) and highly uncertain records. Additionally, we collated

taxonomic group specific data for bird and plant species. For birds we made use of eBird

data, which we processed similarly as GBIF records above. Potential absence data were

inferred from sites where full communities were recorded and for which the focal species had

never been recorded. To further limit the number of total absence sites, we first took eBird

sites where the species had been recorded, and spatially buffered these by 200 km, excluding

any sites within this buffer zone. From the remaining potential absence sites, we randomly

selected an equal number of absences as presences sites in which the species was recorded, up
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to a maximum of 500 per species. For plant species, we obtained presence-absence data from

comprehensively inventoried vegetation plot data collated on the SPlotOpen database [38].

We filtered these data to Europe, and the representative subset species, as well as excluding

any observations prior the year 2000 as above, and to records with a positional uncertainty

of less than 2 km. We inferred absence data similarly to eBird but using a lower maximum of

100 absences at maximum, because of the smaller size of this dataset.

We furthermore obtained from the (Natura2000 database), a source commonly used

for biodiversity accounting in Europe. For the course of this work, we treated the species

information reported at various sites (polygons) in the Natura2000 network as presence-

absence information, recognizing that surveys in some sites might be incomplete or outdated

and not all species are necessarily recorded during. A R-package was created to format

these data for the modelling (https://github.com/iiasa/rN2000). We supplemented these

data with species checklists for Important Bird Areas (IBAs, [39]) across Europe, adding

presence-absence records per species for the polygon area of the IBAs where the species was

recorded or not.

We further obtained polygonal global, European, and Mediterranean species ranges from

the IUCN Red List version 2021-2 (IUCN 2021) and from BirdLife International (BirdLife

International and Handbook of the Birds of the World 2020). These data were filtered

to only include areas where species were recorded as extant, possibly extant, or possibly

extinct, and included all seasonal occurrences. Where existing for a given species, we further

compiled habitat preference (land-cover and elevation) and threat information using data

from the IUCN Red List (IUCN 2021) and (EEA preferences). Those estimates were linked

to species-specific priors (see below).

Finally, we also obtained the 2020 spatial distribution data for birds listed in the Article

12 Birds Directive and for animals and plants listed in the Article 17 Habitats Directive,

excluding sensitive species. Although these data do include population estimates recorded at

the (sometimes sub-) Member State level, for this work we used these data only as occurrence
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data recorded as presence-only atlas data on a 10-km grid across Europe. For each species

with sufficient data we fitted integrated species distribution models (see below). For those

listed in the directives and for which we could not find enough raw data to fit a distribution

model (see below), we used the provided distribution data from the EEA.

6.6 Predictor variables

For the statistical modelling to develop data we prepared a series of environmental predictors

related to topography, soil conditions, climate and land cover.

In both planning and species distribution modelling we make use of land cover and

land-use data that is consistent with the European Ecosystem accounting framework such

as the Mapping and Assessment of Ecosystems and their Services (MAES) system. For

the current distribution of land cover, we used data from the (Corine 2018 dataset). For

mapping the potential natural distribution of a species (see below) we additionally considered

data on the potential distribution of land cover ([19]; [29]) matched to the same legend.

The thematic legend of the Corine land-cover data was then recategorized into different

MAES categories through a crosswalk (Source), however, differed from the MAES categories

as we split the class Pasture (2.3.1) from other Grasslands as considered by the MAES

Grassland class. We furthermore separated the Forest class in the MAES categorization as

“Natural”, “Production” and “Multifunctional” forest following the stratification used in the

G4M-GLOBIOM link (see above). These steps were taken to align the thematic legend of the

MAES level 2 categorization more with the legend returned from GLOBIOM and furthermore

to allow for some level of management intensity in the distinguishment of the classes.

In addition to land cover and land use we also considered data on topography of European

landscapes making use of the (EU DEM ver1.1). We considered the mean elevation (in

m), the topographic position index (TPI, [40]) and the aspect of the topography, which

we transformed into eastness and northness estimates through a sinusoidal and cosinus

transformation respectively. This transformation is necessary to avoid circularities in units
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caused by the degrees-based characterization of an aspect layer.

We used long-term average climatic conditions in Europe. Specifically, we leveraged

downscaled bioclimatic ERA5 indicators over the last 40 years (1979 to 2018) from the

European Copernicus program. These climatic indicators represent Essential Climate

Variables (ECV) such as the surface energy, drought or moisture all of which are known

to be important factors in delineating the range and environmental niche. Specifically, we

made use of the BIOCLIM data BIO01 to BIO19, average aridity and cloud cover, the

annual sum of frost days, potential evaporation and volumetric soil water as well as different

characterizations of the number for growing degree days and the start, end and length of the

growing season [41]. For those parts of European member states which are missing in the

European downscaled Copernicus Climate products (Such as the Spanish Canary islands) we

used the average values of the global rather than the downscaled climate product instead.

For current and future species projections of species distributions we considered only

variables related to land cover as well as temporally static variables which are unlikely to

change in future scenarios such as for instance altitude. On the other hand, for predictions of

the potential natural distribution of a species we made use of all predictors excluding those

related to land cover and land use. Further, not all predictors were used for each species-

specific prediction. For bird species we additionally included a layer depicting the Euclidean

distance to the ocean from each land grid cell, given the importance of marine waters to many

onshore nesting grassland and wetland species. For plant species we furthermore included

spatial-explicit predictors related to groundwater and soil conditions, specifically data on the

Ph value and Calcium Carbonate content of groundwater resources as well as estimates of

the depth to groundwater in meters from [42]. In particular, groundwater Ph and Calcium

carbonate do not cover small islands (Madeira, Canary Islands) as well as Cyprus, which is

why we filled any remaining missing values of the predictors with a spatial prediction from a

random forest model, using spatial proximity and climatic variables as covariates [29]. We

also included data from a thematic layer of a European soil lithology classification system
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owing to the importance of different soil types to growth and niche space of plant species.

The individual lithology classes were included as factorial combinations in the modelling.

Most observational species occurrence points in Europe are known the be biased towards

areas with higher accessibility and wealth, with critically Easter European member states

having a comparably lower density of records compared to western and northern European

member states. Besides the integration of multiple datasets, we attempted to control for such

sampling biases through a model-based control following [43]. To do so, we first took the

presence-only and presence-absence localities of all biodiversity sources considered in this work

(see above) and rasterizing them for the target background, resulting in a counted number of

points for any coarser grained grid cell, which we then aggregated overall as the total sum of all

occurrences. Furthermore, we prepared data on the accessibility of land ([44]) and the human

population density per grid cell using data from the GHSL product for Europe ([45]). The

biased background grid was then created by first calculating an adjusted log transformation

of each individual layer through the following equation (log(1 + x−min(x) ∗ w)), where w

stands for a numerical weight reflective of the direction of bias (-1 for accessibility, 1 for all

others), and afterwards the individual layers normalized to a range of 0 to 1 and averaged.

Finally, all layers were aggregated from their original resolution to a 10-km (Lamberts

Equal Area projection) grain size determined by the background modelling domain layer by

either calculating the proportion of grid cells in each coarser grain if these binary data, by

calculating the bilinear resampled average of all values within the coarser grain, or – in the

case of multinominal categorical data – calculating the mode of all finer grained classes. For

the modelling (see below) all continuous variables were standardized to the mean and divided

by their standard deviation, thus ensuring compatibility in terms of units. All covariates

were matched against the modelling extent and made consistent with NUTS2 representation

of European countries. Any missing data at the pixel level not filled or extrapolated at

this stage was filled with missing data across all covariates. All calculations and variable

preparations were done in the Lambertz equal-area projection for Europe and aggregated
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using GDAL and R packages such as “Raster” or “sf”.

6.6.1 Current distribution of a species

We estimated the distribution of species using an integrated species distribution modelling

(iSDM) approach where different best-available data sources (occurrence, preference, expert

information) are integrated into one joint prediction using different types of linear and

non-linear modelling approaches.

We collated for each species the available suitable data (see above), separating between

different types, namely presence-only, presence-absence and presence-only data to be used in

the form of spatial-explicit offsets (e.g. expert range). For species occurring in Natura 2000 or

Important Bird area (IBA) sites, we assumed that the species occur in all Natura 2000 sites

in which a presence was indicated and that suitable habitats are homogeneous within Natura

2000 sites (which, given the small size of many sites and the SDM modelling grain of 10km is

a reasonable assumption). We sampled at random across all sites presence point estimates up

to a number of two-times as many as there are other occurrence observations (see above), to

broadly characterize the environmental conditions prevalent in those sites. We furthermore

created an equal number of absence point data which we sampled at random across all sites

excluding the ones where the species has been recorded as present. Because of computational

reasons and to further reduce sampling biases, we applied thinning on point data for all

species with more than 200 records. The process of spatial thinning removes occurrence

points at random from areas that are oversampled, for example because of sampling or spatial

biases in the database [46]. Notably thinning only removes points from grid cells where there

are multiple and never removes all points from any grid cell completely. For presence-only

records from GBIF – usually the largest data source by size – we first applied a bias thinning,

where we preferentially removed observations from 10km grid cells considered as biased (based

on occurrence information across all species). In addition, and across all point occurrence

datasets, we also removed at random observations until a minimum number of 10 points at
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maximum has been reached. This approach ensures that presence and absence information

(where existing) are relatively homogeneously distributed in density across the European land

area, thus representing average conditions for suitable species habitats across the modelling

period.

Whenever presence-only atlas or expert-delineated information on the occurrence of

species existed, such as for example from the global, Mediterranean or European IUCN

assessments, the SER Amphibian and Reptile atlas, the Atlas Hymenoptera data or for

polygon information from the EU Habitats directive or Bird directive data, we included this

information as spatial offsets. For IUCN we only used those parts of the range where the

species is permanently resident or which are part of its breeding distribution. We then followed

an approach by Domisch et al. and first binarized the range estimates and then calculated

the Euclidean distance from the boundary of the range to all other grid cells in the modelling

background [47]. The resulting distance layer was then rescaled to a range from 0 (furthest

away) to 1 (within the range). Notably we used different approaches depending on whether

bird or non-bird species were estimates, using infinite and 20-km distance transformations

respectively. All offsets created in this way were log-transformed before adding them to any

model using presence-only information and in the case multiple offsets were supplied, these

were combined first via simple multiplication.

To avoid overprediction into novel areas, the predictions were spatially constrained by

a broad environmental zoning layer [12]. This was done by removing broad zones in which

there are no contemporary occurrence points to avoid, for instance, extrapolations from a

Mediterranean into boreal climatic zones, while also allowing modest extrapolations within

similar environmental conditions. It should be noted that this zoning was only included

for current projections and not for any future scenarios. We tested for co-linearity between

included variables, removing those that were highly co-linear (Pearson’s r ¿ 0.7) unless they

were known to be of particular importance to a species.

We estimated the potential distribution of the species through an ensemble modelling
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approach (stacked SDM, [48] [49])) using state-of-the-art machine learning and Bayesian

algorithms that complement each other’s strengths. Model structure and response were

determined based on data type, with Poisson Process models being fitted for presence-only

datasets and logistic regressions for presence-absence data. We fitted tree-based regressions

using the XGBoost modelling approach [50]. XGBoost makes use of gradient descent boosting,

supports variable regularization and also non-linear tree-based regressions. XGBoost Models

were fitted using a total of 10000 boosting iterations, a learning rate of 0.001 and Gamma

parameter of 4 (larger is more conservative) for regularization. We also used another gradient

descent boosting algorithm (GDB) available from the ‘mboost’ R-package [51]. GDB models

makes use of non-linear baselearners (splines) for additive inference similar to the popular

Generalized Additive Models (GAMs), however in contrast to GAMs it also supports variable

regularization directly through boosting and additional baselearners (see below on priors).

Here models were fitted using a total of 2500 boosting iterations and a learning rate of

0.001 per iteration. Bayesian regularized regressions were fitted using the ‘BoomSpikeSlab’

R-package (Scott 2022) and 10 000 MCMC iterations and four MCMC chains. Lastly we

used non-linear and tree-based Bayesian Regression Trees (BART) for estimation which,

compared to the other two models, have the benefit of being able to quantify complex

non-linear interactions between variables and the consideration of prior information in a

Bayesian framework. We fitted the BART models with 200 tree and 50 burn-in iterations

across four MCMC chains through the use of the ‘dbarts’ R-package [35].

Models were only fitted for those species for which at least – after thinning - 20 data

points were available, assuming that species with fewer records have not been sampled

comprehensively enough to make inferences about their potential distribution. Further,

we made use of simple rules to avoid fitting overly complex models for limited number of

observations. Only linear models (boosted and non-boosted) were fitted for species with fewer

than 100 observational points and for species with point observations fewer than 1.5 times the

minimum data size of 20, we did only fit linear Bayesian Poisson Process models and not use
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any non-linear or boosted approaches to avoid overfitting [52]. Linear regressions, compared

to non-linear ones, usually fare better when the goal is extrapolation and are less prone to

model overfitting. In case only presence-only information from GBIF was available for a

species, we furthermore included spatial effects as covariate using polynomial-transformed

coordinates [53].

Integrating prior information on species habitat and elevational preferences and distances to

known occurrences can improve range estimates. We obtained information on the susceptibility

of species to certain habitat and elevational preferences from the EEA habitat preference

database and IUCN. Preferences to certain land-cover types in the IUCN habitat preferences

or respectably Corine land-cover categories were remapped to MAES categories. Priors can

help to stabilize and avoid mapping unrealistic response functions to certain covariates [54].

Elevational preferences were included as specific threshold transforms on the raw elevation

data and were used instead of the raw elevation data instead. This approach thus creates two

separate discrete elevational bounds in which a species might or might not exist. For GDB

and xgboost we used monotonicity constrained priors [55] assuming either increasing, in case

the habitat was preferred or suitable, or positive constraints. We specified monotonically

constrained baselearners for both XGBoost and GDB [55], which are constrains placed on the

linear and non-linear effects to follow certain directions. Previous studies have shown that the

use of such monotonicity constrains in SDMs can results in more ecological plausible response

functions [55]. For Bayesian Poisson-Process models we used Zellner-style spike and slab

priors with two parameters, a coefficient for a Gaussian prior on the mean coefficient of the

covariate and a inclusion probability which states the probability by which a certain variable

is to be used or allowed to be regularized from the model [56]. For habitats preferred by a

species we used mean coefficients of 3 and an inclusion probability of 1, for suitable habitats

we used a coefficient of 1 and 0.5 respectively and for occasionally occupied habitats we used

0.1 in both cases. Similarly, for BART models we specified priors as transition probabilities

for the variable so that the regression tree is forced - with a certain probability, here 0.75 –
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to generate a split for a given variable.

On the full point occurrence dataset, we then applied a spatial block cross validation

scheme using the blockCV R-package [57] [58]. Specifically, we created three spatial folds of

training and testing data to evaluate each of the three algorithms on. However for species

with very few occurrence records overall (¡ 50) and where the creation of spatial folds failed

(owing to points being too close in distance), we instead implemented default randomized

folds where 25% of data was removed at random. All predictors were scaled prior to model

fitting by subtracting the mean from each value and dividing by their standard deviation to

ensure comparable unit scales. We included among the final predictors also the bias variable

(see above), which was controlled during the prediction [43], thus helping to reduce some of

the spatial biases in available occurrence datasets. Ensemble of different datasets per species

were integrated and thus separate models were estimated for each spatial block and for each

data type [59].

Each separate model prediction was binarized using a 0.05 percentile threshold and then

validated using the withheld data to obtain an estimate of the True-Skill-Statistic (TSS).

We used the TSS values to create a weighted mean ensemble of all predictions. Individual

predictions from different models were first normalized before this step owing to the different

units (relative rate of occurrence compared to relative occurrence probability). We then

thresholded all ensembles using a 5% minimum percentile threshold on all observed data

points (across datasets), thus creating a conservative estimate of where suitable habitat for a

species might or might not persist in Europe [52]. We used percentile-based thresholds [12]

opposed to approaches maximizing any performance metric since they can be applied across

different predictions and dataset types (presence-only and presence-absence). Furthermore it

assumes that the least suitable habitat at which the species is known to occur is the minimum

suitability value for the species, while allowing for some flexibility so that outliers do not

bias the threshold. For each species the validation statistics, the predicted suitability and the

thresholded map is then retained. All modelling was done by in the integrated modelling
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framework ibis.iSDM coded for R (Jung, 2022, https://iiasa.github.io/ibis.iSDM/).

6.6.2 Potential distribution of a species

The goal of the potential distribution modelling is to obtain a depiction of the potential

distribution of the species (sensu [18]). We understand potential in this context as the

contemporary climatic, soil and natural vegetation conditions that would allow a species

to persist in an area. Critically, and opposed to the mapping of current suitable habitat,

this approach considers only contemporary differences in climate and soil, and not any

land-cover or land-use, aligning with the concept of potential natural vegetation of Europe

[19]. The predictions from the species distribution models used here thus aim to depict where

a species might exist under contemporary conditions, while also allowing modest inter- and

extrapolation from its current distribution.

While for the current estimation of species distribution (see above) we considered

each biodiversity data type separately, for the potential distribution of the species we

merged presence-only and pseudo-absence points with each other [33] [34]. This is a widely

applied approach for SDM mapping, which however is scale dependent and can result in an

overestimation of the niche [60] [54], yet in this context this is acceptable given that our aim is

to map the widest possible potential distribution of species (although we modestly constrain

the prediction, see below). We first combined all cleaned and filtered point occurrence data

into one joint dataset, removing duplicates per grid cell in the process. Although there can

be benefits in modelling these datasets jointly for more constrained predictions [61], our aim

is to identify and characterize the maximum potential extent of the environmental niche

of a species given contemporary conditions. For each dataset we created pseudo-absence

points randomly distributed within the modelling domain, but spatially weighted them so

that pseudo-absences preferentially fall into areas with high bias (see above).

We used a similar ensemble modelling approach as for the current estimates of species

ranges (see above), however used logistic regressions throughout, using pseudo-absence points
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for presence-only datasets. Further for validating the ensemble models we evaluated the

predictions in terms of their accuracy through the F1 score, which is calculated as the ratio of

the model precision (true positives) and the recall (also known as sensitivity). We specifically

chose the F1 score for evaluation since it maximizes correct predictions and thus can help to

ensure that most training occurrence points are retained. The final ensemble prediction was

then created as a weighted mean of the nine different F1 scores (3 spatial blocked subsets

per algorithm). All modelling was done by in the integrated modelling framework ibis.iSDM

coded for R (Jung 2022, https://iiasa.github.io/ibis.iSDM/).

6.7 Carbon data

6.7.1 Current distribution of carbon

For current carbon stocks we used data on above-ground, below-ground and soil organic

carbon at risk from land-use change from [12]. These data were created by selecting and

integrating best available carbon maps for different vegetation classes. For more detail on the

integration and handling of individual data layers see [12]. All data are in units of tC/ha and

for the analysis we combined the current carbon layers by calculating the combined sum of

above- & below-ground and soil organic carbon for Europe and included it as an additional

feature in the prioritization.

6.7.2 Potential carbon

To spatially allocate specific restoration priorities, we would need to identify areas with

high carbon sequestration potential. Here we used an approach that combined the different

techniques from [14] and [20]. First, we created a regular sampling grid at 1km for each

current MAES ecosystem type reclassified from Corine 2018 (see above) and extracted the

fraction of the respective land cover type. We then extracted estimates of current reference

carbon data (in tC/ha) from the above, below and soil organic carbon data layers from [12] as

well as from the European specific JRC Biomass map [62] and the FAO Soil organic carbon
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map (ver 1.5.0). For each of the different types of carbon products (below, above and soil

carbon) we then calculated a consensus estimate (arithmetic mean) per gridded 1km point.

We further extracted estimates on whether a given point locality was situated in a peat land

as considered by the European peatland map or land covered by primary forest [16]

From the resulting extracted estimates, we then selected for each natural land cover type

(e.g. Grassland, Heathland, Marine inlets, Sparsely vegetated land, Wetland and Forest

Woodland) a total for 10000 reference points for modelling training. We ensured that (a)

the respective land cover type currently covers at least 50% of a given 1km grid cell, (b)

average carbon density estimates are in the largest 95% percentile of values, (c) the reference

points were preferentially sampled in remaining European peat and primary forest sites for

the Wetland, Marine Inlets and Forest & Woodland classes, (d) points were geographically

representative by covering each European biogeographical regions (adjusted for area) and (e)

that extracted mean carbon density estimates were corrected for the fraction of non-natural

land contained within them. Instead of using a single reference value for the carbon contained

in non-natural systems [14], we calculated the average estimate of all non-natural land cover

types in MAES (e.g. cropland and urban).

As above for potential species distributions and land cover, we then subjected these

reference estimates to a spatial extrapolation approach. Here we followed an approach set out

by [20] and estimated potential carbon density as CDensPo = f(S, T, C), where potential

carbon density is predicted as a function of soil, S, topographic, T , and climatic, C, factors.

We used the same predictors as for potential land cover and species occurrences. Finally, we

corrected each estimate by the amount of potentially occurring natural land cover.
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Zsolt Molnár, Rosemary Hill, Kai MA Chan, Ivar A Baste, Kate A Brauman, et al.
Assessing nature’s contributions to people. Science, 359(6373):270–272, 2018.

[3] Convention on Biological Diversity. First draft of the post-2020 global biodiversity
framework. 2021.

[4] Haigen Xu, Yun Cao, Dandan Yu, Mingchang Cao, Yuxiao He, Michael Gill, and
Henrique M Pereira. Ensuring effective implementation of the post-2020 global
biodiversity targets. Nature Ecology & Evolution, 5(4):411–418, 2021.

[5] Lindsay M Dreiss and Jacob W Malcom. Identifying key federal, state and private lands
strategies for achieving 30x30 in the us. bioRxiv, 2021.

[6] Sean L Maxwell, Victor Cazalis, Nigel Dudley, Michael Hoffmann, Ana SL Rodrigues,
Sue Stolton, Piero Visconti, Stephen Woodley, Naomi Kingston, Edward Lewis, et al.
Area-based conservation in the twenty-first century. Nature, 586(7828):217–227, 2020.

[7] Robert L Pressey, Piero Visconti, Madeleine C McKinnon, Georgina G Gurney, Megan D
Barnes, Louise Glew, and Martine Maron. The mismeasure of conservation. Trends in
Ecology & Evolution, 36(9):808–821, 2021.

[8] Christopher Robert Margules and Robert L Pressey. Systematic conservation planning.
Nature, 405(6783):243–253, 2000.

[9] Emma J McIntosh, Robert L Pressey, Samuel Lloyd, Robert J Smith, and Richard
Grenyer. The impact of systematic conservation planning. Annual Review of Environment
and Resources, 42:677–697, 2017.

[10] JO Hanson, R Schuster, N Morrell, M Strimas-Mackey, ME Watts, P Arcese, J Bennett,
and HP Possingham. prioritizr: Systematic conservation prioritization in r. R package
version, 3(1.1), 2017.

[11] Li Zhu, Alice C Hughes, Xiao-Qian Zhao, Li-Jing Zhou, Ke-Ping Ma, Xiao-Li Shen,
Sheng Li, Ming-Zhang Liu, Wu-Bing Xu, and James EM Watson. Regional scalable
priorities for national biodiversity and carbon conservation planning in asia. Science
Advances, 7(35):eabe4261, 2021.

41



[12] Martin Jung, Andy Arnell, Xavier De Lamo, Shaenandhoa Garćıa-Rangel, Matthew
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