

# A decision-theoretic approach towards modelling resilience

Michael Kuhn and Stefan Wrzaczek (IIASA, Economic Frontiers)

### **Background:**

- Well-known measures of resilience based on ecosystems modelling.
- Some socio-economic conceptualisations but few decision-theoretic formulations to date.

### **Optimal policies in** (*R*, *C*)**-space:**

- Panel 1: Equilibrium structure (stage 2; and stage 1 for ε = 1): stable/high (resilient) and unstable/low (non-resilient) equilibrium (red/dots), and a Skiba threshold (blue line).
- Panel 2: Stage-1 anticipation of a fully destructive shock ( $\epsilon = 0$ ) shifts high

## **Objectives:**

- To set out a (simple) model of renewable resource use and conceptualise resilience in a rigorous decision-theoretic way.
- To derive a model-based measure of resilience and apply it to assess resilience of resource use.

## **Model ingredients:**

- (Optimal) behaviour leads to long-term sustenance of the resource stock if and only if the level of the stock is above a (Skiba-)threshold.
- Random shock may put resource stock below the threshold.
- Appropriate actions (e.g., pre-cautionary extraction) allow the decision-maker to increase

- equilibrium downward and low equilibrium and Skiba upward (red curve). Additional discounting compromises resilience.
- Panel 3: For  $0 \le \epsilon \le 1$  intermediate outcomes with extraction policy turning more precautionary with increasing  $\epsilon$ .



**Resilience measure (adapted to this model):** 

 $\mathcal{R}(R(t),t) = \mathcal{R}_1(R(t),t) + \mathcal{R}_2(R(t),t)$ 

• **Ex-ante resilience** (averting the shock)

the probability of remaining above the threshold.

### **Resource dynamics:**

- Economy in which consumption C(t) is harvested from a renewable resource stock  $R(t) \rightarrow decision$
- Resource dynamics:  $\dot{R}(t) = g(R(t)) C(t)$  with  $g(R(t)) = \frac{aR^2}{h+R^2}$  as replenishment  $\rightarrow$  state
- Shock arrives at exogenous rate  $\eta$  and destroys  $D(\tau) = (1 - \epsilon)R(\tau)$  of the stock at random time  $\tau$ .
- Two stages: 1 = before shock; 2 = after shock.

# **Decision problem:**

(extension of Skiba 1978, Econometrica, by including shocks)

Discounted stream of consumption divide the discounted continuation of the discounted stream of consumption divide the discounted continuation value from 
$$\tau$$
  

$$\max_{C(t)} \mathbb{E}_{\tau} \left[ \int_{0}^{\tau} e^{-\rho t} C(t)^{0.5} dt + e^{-\rho \tau} V(R(\tau^{+}), \tau^{+}) \right]$$

 $\mathcal{R}_1(R(t),t) = \frac{\mathcal{L}(t)}{\mathcal{L}(t)+1} \mathbb{I}_{R(t) \ge R_1^S}$ 

where  $\mathcal{L}(t) = \eta^{-1} =$  life-expectancy in stage 1 and where  $\mathbb{I}_{R(t) \ge R_1^S}$  indicates long-run sustained resource use if and only if the resource level exceeds the Skiba-threshold  $R_1^S$ .

- Resilient:  $\mathbb{I}_{R(t) \ge R_1^S} = 1$ ; Non-resilient:  $\mathbb{I}_{R(t) < R_1^S} = 0$ .
- **Ex-post resilience** (adapting to the shock)

$$\mathcal{R}_2(R(t),t) = \frac{1}{\mathcal{L}(t)+1} \int_t^\infty e^{-\eta s} \eta \mathcal{R}(s) ds$$

measures resilience for future shocks at  $s \in [t, \infty[$ 

• Value range:  $\mathcal{R}_i(R(t), t) \in [0, 1]$ 

polar values: 1... full resilience

0... no resilience

# **Resilience of optimal policy:**

with stage-2 value:

$$V(R(\tau^{+}),\tau^{+}) \coloneqq \max_{C(t)} \int_{\tau^{+}}^{\infty} e^{-\rho t} C(t)^{0.5} dt$$
  
Subject to:  $\dot{R}(t) = g(R(t)) - C(t), R(0) = R_0$   
 $R(\tau^{+}) = R(\tau^{-}) - D(\tau) = \epsilon R(\tau^{-})$   
Remaining resources

- Remaining resource stock following shock.
- Benchmark scenario:  $R_0 = 0.2$ ;  $\rho = 0.1$ ;  $\eta = 0.5$ ;  $\epsilon = 0.5$
- Resilience diminishes in (a) discount rate ρ; (b) arrival rate of unavoidable (!) shock η (note that this extends to stage 2 due to reduction in precaution);
- Resilience increases in (c) initial resource stock R(0) and (d) share of surviving resource stock



### Work in Progress. For further details and updates contact: kuhn@iiasa.ac.at or wrzaczek@iiasa.ac.at