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Abstract: Energy harnessing from renewable energy sources has become more flexible with power
electronic technologies. Recent advancements in power electronic technologies achieve converter
efficiency higher than 98%. Today, reliable power electronic devices are needed to design a PV-based
energy converter (inverter) to reduce the risk of failure and maintenance costs during operation.
Wide-bandgap SiC devices are becoming more common in power electronic converters. These devices
are designed to reduce switching loss and improve the efficiency of the system. Nevertheless, the
cost of SiC devices is a major concern. Hence, to improve the reliability of the PV inverter while
considering the economic aspects, this paper develops a highly reliable PV inverter with a hybrid
Si/SiC power module that consists of a Si-IGBT with a SiC anti-parallel diode. A test case of a 3 kW PV
inverter is considered for reliability analysis. The loading of the PV inverter is done under uncertain
environmental conditions by considering the yearly Mission Profile (MP) data related to Ambient
Temperature (AT) and Solar Irradiance (SI) at the India and Denmark locations. The effectiveness
of the proposed hybrid Si/SiC power module is tested by comparing it with a conventional IGBT
power module. The results showcase the marked improvement in PV inverter reliability with the
proposed hybrid power module.

Keywords: mission profile; Si/SiC-IGBT; Photovoltaic (PV) Inverter; Junction Temperature (Tj)

1. Introduction

The use of renewable energy sources has increased the demand for power electronics
devices for energy conversion in the last decade. In renewable energy systems, power
electronic converters share about 59% of the total cost. A survey in [1,2] shows that power
electronic converters are the most unreliable components. According to [3], thermal stress
is the critical stressor of power semiconductors and leads to failure. Solder-die fatigue and
bond wire lift-off are the two most common failures in power semiconductors. Hence, the
reliability of power electronics is a serious concern and needs to be modified to reduce
the risk of failure and maintenance costs during operation. Today, PV energy conversion
systems (i.e., inverters) require power electronics devices with low failure rates to provide
high reliability.

Conventional Si-based power electronics switches have reached their theoretical limits
and are not capable of addressing current power needs. Significant advancements are
made in Si-IGBTs, but in the case of Si diodes, these advancements are not up to the mark
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and restrict the performance of power electronic converters [4]. In [5], SiC-based power
electronic switches are provided with a wide bandgap that performs superiorly compared
to conventional Si-based devices. The notable advantages of SiC-based devices are low
switching losses, high switching speed, blocking voltage, etc. Hence, the performance of
the system will improve. Nevertheless, the cost of SiC devices is a major concern. Hence,
it is not economical to replace all the devices in the PV inverter with SiC devices. To
overcome this issue, hybrid applications of Si/SiC based devices have been proposed in
many studies [6–12].

An active gate-controlled technique is designed in [7] to improve the efficiency of
the hybrid Si/SiC-based inverter. The design of a hybrid module with Si-IGBT and SiC
MOSFET is discussed in [8]. In [9], the application of a hybrid module, i.e., Si/SBD, for the
current source ZCSI based on a DC-DC converter has been presented. To reduce converter
losses in [13], a model with a TJ controller was used. In [14], the author proposed the
design of a hybrid, three-level NPC inverter. It consists of four Si-IGBTs and two SiC
MOSFETs for reliability improvement. Additionally, the authors addressed the cost limit
constraint of SiC-based devices. The application of a hybrid Si/SiC power module in a
half bridge-traction inverter is presented in [15]. A comparative study between Si and
SiC-based devices for ANPC inverters is presented in [16]. Performance comparison studies
of the DC-DC converter in electric vehicles are presented in [10], considering hybrid Si/SiC
power modules. In [17], the authors presented an optimal gate control for Tj balance and
power loss minimization considering hybrid Si/SiC power modules. Related work is
also presented in [18–22]. In [23], the authors presented the experimental validation of
hybrid supercapacitors and battery-based renewable energy systems. Standalone inverter
experimental validation for hybrid PV and wind systems is presented in [24]. Still, there is
a gap in the reliability analysis of hybrid Si/SiC power modules needed to design a highly
reliable inverter.

To improve the reliability of the PV inverter considering the economic aspects, this
paper proposes a highly reliable PV inverter with a hybrid Si/SiC power module that
consists of Si-IGBT with SiC Schottky anti-parallel diodes. The cost of the SiC material
is very high, and it is not economical to use SiC-IGBT. As a result, SiC is used for diodes
because it absorbs the majority of the diode’s losses. A test case of a 3 kW PV inverter
for grid-connected applications is considered for reliability analysis. The loading of a PV
inverter under uncertain environmental conditions, i.e., MP (AT, SI), impacts its reliability;
hence, yearly MP at India [25] and Denmark [26] locations are considered during reliability
analysis. The effectiveness of the proposed hybrid Si/SiC power module is tested by
comparing it with a conventional IGBT power module. The results showcase the marked
improvement in PV inverter reliability with the proposed hybrid power module.

2. Reliability Analysis of Hybrid Si/SiC Module Based PV Inverter

The flow chart for reliability analysis of a hybrid Si/SiC module-based PV inverter is
shown in Figure 1.
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For the MP-oriented reliability analysis, real-time SI and AI data (1-minute resolution
for 1 year) from various locations must be logged. Annual MP at the India and Denmark
locations are considered in this paper and shown in Figure 2a,b, respectively.
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From the yearly MP shown in Figure 2, Junction Temperature (Tj) needs to be calcu-
lated. Nevertheless, Tj cannot be measured directly from the hybrid Si/SiC power module;
hence, an indirect method, i.e., the foster electro-thermal model (FETM), is used in this
paper as shown in Figure 3.
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The mathematical expression of Tj is calculated by Equation (1) below.

Tj = Zth (j−c) ∗ PT + TC (1)

where Zth(j−c) is the impedance between the junction and the case, PT is the total loss of
power, and Tc is the temperature of the case.

From the yearly Tj, Ni, Tjm, and ∆Tj, which are obtained using the rainflow-counting
algorithm [27]. The lifetime can be calculated using Miner’s rule, as shown in Equation (2).

LT =
1

LC
(2)
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where LC is the life consumption and is expressed as:

LC = ∑
ni

K
(
∆Tj

)β1 .e
β2

(Tj+273K) . tonβ3 . Iβ4 . Vβ5 . Dβ6

(3)

The parameters in LC are considered from the Bayerer’s lifetime model [26] and
tabulated in Table 1.

Table 1. Parameters of the lifetime equation.

Name Number

Factor (A) 9.340 × 1014

β1 −4.42

β2 1285.00

β3 −0.46

β4 −0.72

β5 −0.76

β6 −0.50

Foot Bond Current (I) 3–23 A

Class of Voltage (V) 6–33 V

Diameter 75–500 µm

In the above lifetime model, all the parameters are constant, i.e., all the devices should
fail at the same rate, but practically this is not feasible, so to overcome this, a variation of
5% is implemented. A Monte Carlo simulation is used to generate 10,000 samples. All
the generated lifetimes are distributed in the Weibull distribution to obtain the reliability
function as given in Equation (4):

Ri(t) = e−( t
∝ )

γ

(4)

where:
∝ is the scale parameter;
γ is the shape parameter.
In Equation (4), the shape parameter γ is obtained from the Weibull distribution,

and the scale parameter ∝ is the characteristic lifetime where 63.2% of the population
has failed [28]. The above reliability function is used to calculate the component and SL
reliability as defined in Equation (5):

Rtotal(t) = ∏n
i=1 Ri(t) (5)

where Ri(t) is the individual component reliability.
The B10 lifetime can be calculated using Equation (6):

Bx =

[
ln
(

100
100 − x

)
× (∝)γ

] 1
γ

(6)

where:
x is the percentage of the population;
∝ is the scale parameter;
γ is the shape parameter.
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3. Results and Discussions

In this paper, a test case of a 3 kW PV inverter for a grid-connected application is
considered for the reliability analysis, as shown in Figure 4. A PV inverter consists of four
600 V/30 A hybrid switches (Si-IGBT (IGW30N60H3) or SiC-Schottky diodes (C3D20060D))
as shown in Figure 5. Its effectiveness is analyzed by comparing it to a conventional switch
(Si-IGBT (IGW30N60H3) or Si-Schottky diode (IGW30N60H3)).
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The specifications for this test case are taken from the research in [23].
In this paper, the following cases are considered for evaluation:

• Reliability-oriented performance evaluation of a PV inverter at the India location;
• Reliability-oriented performance evaluation of a PV inverter at the Denmark location.

3.1. Reliability-Oriented Performance Evaluation of a PV Inverter at the India Location

In this case, the reliability evaluation of the PV inverter is performed considering
the MP data at the India location. During the reliability evaluation, a hybrid Si/SiC
switch is used in the PV inverter, and its effectiveness is analyzed by comparing it with a
conventional Si switch.

3.1.1. Calculation of Tj

The Tj of the proposed hybrid Si/SiC power module and conventional Si power
module are calculated for yearly MP using FETM, as shown in Figure 6. From Figure 6, it is
observed that overall, Tj is decreased with the proposed hybrid Si/SiC power module. The
maximum and minimum Tj values recorded for the proposed hybrid Si/SiC power module
are 99.33 ◦C and 11.39 ◦C, respectively. Similarly, the conventional Si power module values
are 103.88 ◦C and 11.41 ◦C, respectively.
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3.1.2. Rainflow-Counting Algorithm

The Tj variations for the proposed hybrid Si/SiC power module and conventional Si
power module are analyzed using the RF algorithm. The parameters Ni, Tjm, and ∆Tj, from
Tj are obtained using the rainflow-counting algorithm.

A Tj variations histogram, i.e., Ni, Tjm, and ∆T for a proposed hybrid Si/SiC power
module and conventional Si power module, are plotted in Figure 7. The Tjm, i.e., 55.66 ◦C, is
recorded for a hybrid Si/SiC power module. Similarly, 53.9 ◦C is recorded for a conventional
Si power module, as shown in Figure 8.

Energies 2022, 15, x FOR PEER REVIEW 6 of 14 
 

 

are 99.33 °C and 11.39 °C, respectively. Similarly, the conventional Si power module val-
ues are 103.88 °C and 11.41 °C, respectively. 

 
Figure 6. Yearly Tj in India. 

3.1.2. Rainflow-Counting Algorithm 
The Tj variations for the proposed hybrid Si/SiC power module and conventional Si 

power module are analyzed using the RF algorithm. The parameters Ni, Tjm, and ΔTj, from 
Tj are obtained using the rainflow-counting algorithm. 

A Tj variations histogram, i.e., Ni, Tjm, and ΔT for a proposed hybrid Si/SiC power 
module and conventional Si power module, are plotted in Figure 7. The Tjm, i.e., 55.66 °C, 
is recorded for a hybrid Si/SiC power module. Similarly, 53.9 °C is recorded for a conven-
tional Si power module, as shown in Figure 8. 

 
Figure 7. RF Matrix in India. 

Figure 7. RF Matrix in India.
Energies 2022, 15, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 8. Mean Tj comparison. 

A Tjm of 1.76 °C is lower with the proposed hybrid Si/SiC power module. 

3.1.3. MCS-Based B10 Lifetime Evaluation 
In this paper, a Monte Carlo simulation is used to generate 10,000 samples with a 5% 

variation, and LT is calculated at each sample using Equation (2). All the generated life 
times are distributed in a Weibull distribution to obtain the reliability function, as shown 
in Figure 9. 

 
Figure 9. Lifetime distribution. 

The reliability of a PV inverter is evaluated for a proposed hybrid Si/SiC power mod-
ule and a conventional Si power module at both the CL and the SL using Equations (4) 
and (5). A B10 lifetime is calculated using Equation (6) as shown in Figure 10. For a con-
ventional Si-IGBT, a scale parameter, ∝, is 49.72 and a shape parameter, γ, is 5.74. Simi-
larly, for a hybrid Si/SiC-IGBT scale parameter, a scale parameter, ∝, is 63.15, and a shape 
parameter, γ, is 5.65. 

55.66

53.9

53

54

55

56

Conventional
Si-IGBT

Hybrid Si-
SiC IGBT

Te
m

pe
ra

tu
re

 
(D

eg
re

es
)

Mean Junction Temperature

Figure 8. Mean Tj comparison.



Energies 2022, 15, 8612 7 of 13

A Tjm of 1.76 ◦C is lower with the proposed hybrid Si/SiC power module.

3.1.3. MCS-Based B10 Lifetime Evaluation

In this paper, a Monte Carlo simulation is used to generate 10,000 samples with a 5% vari-
ation, and LT is calculated at each sample using Equation (2). All the generated life times are
distributed in a Weibull distribution to obtain the reliability function, as shown in Figure 9.
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The reliability of a PV inverter is evaluated for a proposed hybrid Si/SiC power
module and a conventional Si power module at both the CL and the SL using Equations
(4) and (5). A B10 lifetime is calculated using Equation (6) as shown in Figure 10. For
a conventional Si-IGBT, a scale parameter, ∝, is 49.72 and a shape parameter, γ, is 5.74.
Similarly, for a hybrid Si/SiC-IGBT scale parameter, a scale parameter, ∝, is 63.15, and a
shape parameter, γ, is 5.65.

The B10 lifetime at the Indian location for the proposed hybrid Si/SiC power module
at CL and SL is 42 and 34 years, respectively. Similarly, the CL and SL of conventional Si
power modules are 34 and 26 years old, respectively. Reliability improvements of 8 years at
both CL and SL were achieved with the proposed Si/SiC power module.

3.2. Reliability-Oriented Performance Evaluation of PV Inverter at the Denmark Location

In this case, the PV inverter’s reliability is evaluated using MP data from the Denmark
location. A hybrid Si/SiC switch is used in the PV inverter during reliability evaluation,
and its effectiveness is analyzed by comparing it with a conventional Si switch.

3.2.1. Calculation of Tj

Tj of the proposed hybrid Si/SiC power module and conventional Si power module
are calculated for the yearly MP using FETM as shown in Figure 11. From the figure, it
is observed that overall, Tj is decreased with the proposed hybrid Si/SiC power module.
The maximum and minimum Tj values measured for the proposed hybrid Si/SiC power
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module are 90.65 ◦C and −17.76 ◦C, respectively, while the conventional Si power module
measures 96.37 ◦C and 17.83 ◦C.
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3.2.2. Rainflow-Counting Algorithm

The Tj variations for the proposed hybrid Si/SiC power module and conventional Si
power module are analyzed using the RF algorithm. The parameters Ni, Tjm, and ∆Tj, from
Tj are obtained using a rainflow-counting algorithm.

The Tj variations histogram, i.e., Ni, Tjm, and ∆T for the proposed hybrid Si/SiC power
module and conventional Si power module, are plotted in Figure 12. The Tjm, i.e., 16.37 ◦C,
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is recorded for the hybrid Si/SiC power module; similarly, 15.91 ◦C is recorded for the
conventional Si power module, as shown in Figure 13.

Energies 2022, 15, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 11. Yearly Tj in Denmark. 

3.2.2. Rainflow-Counting Algorithm 
The Tj variations for the proposed hybrid Si/SiC power module and conventional Si 

power module are analyzed using the RF algorithm. The parameters Ni, Tjm, and ΔTj, from 
Tj are obtained using a rainflow-counting algorithm. 

The Tj variations histogram, i.e., Ni, Tjm, and ΔT for the proposed hybrid Si/SiC power 
module and conventional Si power module, are plotted in Figure 12. The Tjm, i.e., 16.37 °C, 
is recorded for the hybrid Si/SiC power module; similarly, 15.91 °C is recorded for the 
conventional Si power module, as shown in Figure 13. 

 
Figure 12. RF matrix in Denmark. Figure 12. RF matrix in Denmark.

Energies 2022, 15, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 13. Mean Tj Comparison. 

Tjm of 0.46 °C is lower with the proposed hybrid Si/SiC power module. 

3.2.3. MCS Based B10 Lifetime Evaluation 
In this paper, Monte Carlo simulation is used to generate 10,000 samples with 5% 

variation, and LT is calculated at each sample using Equation (2). All the generated life-
times are distributed in the Weibull distribution to obtain the reliability function, as 
shown in Figure 14. 

The reliability of the PV inverter is evaluated for the proposed hybrid Si/SiC power 
module and the conventional Si power module at the CL and SL using Equations (4) and 
(5), and the B10 lifetime is calculated using Equation (6) as shown in Figure 15. For con-
ventional Si IGBT, the scale parameter ∝ is 97.50 and the shape parameter γ is 5.89. Simi-
larly, for hybrid Si/SiC-IGBT scale parameter ∝ is 134.14 and the shape parameter γ is 6.19. 

The B10 lifetime at the Denmark location for the proposed hybrid Si/SiC power mod-
ule at the CL and the SL is 93 and 74 years, respectively. Similarly, the CL and SL of con-
ventional Si power modules are 67 and 53 years old, respectively. Reliability improve-
ments of 26 years at the CL and 21 years at the SL were achieved with the proposed Si/SiC 
power module. 

 
Figure 14. Lifetime distribution. 

Figure 13. Mean Tj Comparison.

Tjm of 0.46 ◦C is lower with the proposed hybrid Si/SiC power module.

3.2.3. MCS Based B10 Lifetime Evaluation

In this paper, Monte Carlo simulation is used to generate 10,000 samples with 5% variation,
and LT is calculated at each sample using Equation (2). All the generated lifetimes are distributed
in the Weibull distribution to obtain the reliability function, as shown in Figure 14.

The reliability of the PV inverter is evaluated for the proposed hybrid Si/SiC power
module and the conventional Si power module at the CL and SL using Equations (4) and (5),
and the B10 lifetime is calculated using Equation (6) as shown in Figure 15. For conventional
Si IGBT, the scale parameter ∝ is 97.50 and the shape parameter γ is 5.89. Similarly, for hybrid
Si/SiC-IGBT scale parameter ∝ is 134.14 and the shape parameter γ is 6.19.

The B10 lifetime at the Denmark location for the proposed hybrid Si/SiC power
module at the CL and the SL is 93 and 74 years, respectively. Similarly, the CL and
SL of conventional Si power modules are 67 and 53 years old, respectively. Reliability
improvements of 26 years at the CL and 21 years at the SL were achieved with the proposed
Si/SiC power module.
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3.3. B10 Lifetime Comparison

Reliability evaluation of a PV inverter at the India and Denmark locations are per-
formed considering the proposed hybrid Si/SiC power module and conventional Si power
module. A B10 lifetime is calculated in both cases, and comparative analyses at the CL and
SL are shown in Figure 16. At both locations, the B10 lifetime of the PV inverter records
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the highest value with the proposed hybrid Si/SiC power module in comparison with a
conventional Si power module, and hence the reliability performance of a PV inverter is
improved. A reliability improvement of 8 years at the CL and the SL was achieved at the
Indian location. Similarly, a reliability improvement of 26 years at the CL and 21 years at
the SL was achieved with the proposed Si/SiC power module. The cost comparison of
conventional Si-IGBT and hybrid Si/SiC-IGBT is presented in Table 2.
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Table 2. Cost comparison.

Conventional Si-IGBT
(In INR)

Hybrid Si/SiC-IGBT
(In INR)

237.02 1095.28

4. Conclusions

This paper presents the reliability evaluation of a PV inverter at the India and Denmark
locations, considering a hybrid Si/SiC power module in comparison with a conventional
Si power module. A test case of a 3 kW PV inverter for a grid-connected application is
considered for reliability analysis. Annual MP (AT, SI) at the India and Denmark locations is
considered for this study. Tj at both locations is calculated with the proposed hybrid Si/SiC
power module, and its effectiveness is evaluated by comparing it with the conventional Si
power module. Tj variations are analyzed using a rainflow-counting algorithm. A hybrid
Si/SiC power module records a lower mean Tj than a conventional Si power module.
The MC simulation is used to generate 10,000 populations with 5% variation, and LT is
calculated at each sample. All samples are fitted into the Weibull distribution. B10 lifetime
is calculated at both locations, proposed hybrid Si/SiC power module records the highest
value in comparison with the conventional Si power module, and hence the reliability
performance of the PV inverter is improved. The current limitation and future step of this
work is experimental validation.
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Abbreviations and Nomenclature
PV Photo Voltaic
Si Silicon
SiC Silicon Carbide
IGBT Insulated gate bipolar transistor
MP Mission Profile
AT Ambient Temperature
SI Solar Irradiance
Tj Junction Temperature
FETM Foster Electro-Thermal Model
Zth(j−c) Impedance between junction and case
PT Total losses of power
Tc Temperature of case
Ni No. of Cycles
Tjm Mean Junction Temperature
∆Tj Cycle Amplitude
MCS Monte Carlo Simulation
CL Component Level
SL System Level
RF Rain Flow
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