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1  |  MOTIVATION FOR THIS SPECIAL  
FE ATURE

In an era of rapid change, ecologists are increasingly asked to pro-
vide answers to big, urgent questions of global concern (Solé & 
Levin, 2022; Sutherland et al., 2013; Yates et al., 2018). Concurrently, 
technological advances allow ecological data to be collected at in-
creasingly high resolutions (e.g. temporal and/or spatial scales), 
leading to both new types of data and larger datasets becoming 
available (Farley et al.,  2018). These data provide the opportunity 
to investigate new, and even previously unanswerable, questions, 
including those concerning animal movements (Nathan et al., 2022) 
and those addressing conservation and sustainability issues (Runting 
et al.,  2022). Increasingly, realistic models need to be developed 
and fitted to these data (Fer et al., 2018), pushing the boundaries 
of the type and intricacy of questions that can be explored (Niu 
et al., 2020). However, big data and big models can lead to big trou-
bles across multiple aspects, from storing and processing the data to 
fitting of complex models to data and interpreting the output.

Close collaborations between ecologists, statisticians, mathe-
matical modellers, computer scientists and other disciplines offer 
exciting ways forward to solve these problems, leading to mutually 
beneficial advancements. For example, computer scientists can aid 
in the efficient storage and extraction of data, and the development 
of new algorithms; statisticians can help and guide ecologists in the 
analysis of data, fitting complex models to the data via efficient 

computational algorithms and propagating or quantifying uncertain-
ties throughout the process; mathematicians can ensure models are 
constructed in the most suitable fashion for the specific questions 
asked and demonstrate suitable properties (such as realistic territo-
rial ranges or population predictions); and ecologists can guide math-
ematical scientists on the biological characteristics of the systems 
studied and ecological interpretation of the corresponding results, 
thus informing future models and influencing policy decisions. The 
need to answer important ecological questions is unprecedented, 
with declines in biodiversity and ecosystem services which will im-
pact our ability to meet Sustainable Development Goals (Reyers & 
Selig,  2020), and it is through interdisciplinary collaborations that 
the biggest steps forward can be made.

Data analysis challenges arise across the full data analytic 
pipeline, including processing and visualising the data, developing 
ecologically relevant and interpretable models to fit to the data, 
adapting the associated algorithms to fit models to data efficiently 
and obtaining meaningful interpretations of the output. In practice, 
there are often many trade-offs between these different aspects 
due to the challenges that arise during the data analysis pipeline. 
For example, within the initial processing of the data, decisions 
may need to be made regarding cleaning the data (e.g. to remove 
recorded data errors) or the summarised form of the processed 
data to report (e.g. the temporal and/or spatial scale). This itself 
can be challenging and there will often be uncertainty within the 
process, leading to potential new errors being introduced. The 
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decisions made will typically impact the model fitted to these data. 
For example, for motion-sensor camera trap data, there may be a 
trade-off between the level of initial data processing (i.e. the level 
of advanced tools used for uniquely identifying individuals via, e.g. 
machine learning techniques) and associated models that may be 
fitted to incorporate the amount of uncertainty in the preprocessed 
data (e.g. from assuming no error in the matches; to incorporating 
matching uncertainty; to allowing for both marked and unmarked 
individuals). Alternatively, complex models often require compu-
tationally intensive algorithms for them to be fitted to the data, 
which may not scale as datasets increase in size. This may lead to 
the consideration of a simpler model that can be more easily fitted, 
thus reducing the level of fine-detail that may be extracted from 
the data; or adaptations to the model-fitting process such as using 
some form of approximate model-fitting approach that aims to be 
robust to the approximations used, but potentially could lead to bi-
ased parameter estimates.

This Special Feature provides a combination of review papers 
and scientific articles that address one or more of the challenges 
of modern day analyses of large and/or complex ecological data. 
Echoing the challenges facing the discipline, we present these in the 
natural statistical cycle, starting with the challenges of new types 
of data, to the limitations of statistical models and associated algo-
rithms (and computer packages) used to fit the models to the data 
to the interpretation and presentation of the corresponding model 
outputs.

2  |  BROAD THEMES

We consider each of the themes identified in turn relating to (i) 
data; (ii) statistical models and model-fitting; and (iii) visualisation 
and interpretation. However, we also emphasise that these are very 
closely interlinked and although we have used these coarse ‘pigeon-
holes’, there are many overlapping aspects and challenges.

2.1  |  Data

Ecology, like environmental sciences and other branches of biol-
ogy, has entered into an era of big data, with enormous possibili-
ties for a better understanding of environmental state (Runting 
et al., 2022). Data can be ‘big’ due to different characteristics. The 
‘Four Vs Framework’ (see discussion in Farley et al. (2018) and ref-
erences therein) discuss four distinct aspects: (1) volume: quantity 
of data (2) velocity: time-varying data; (3) variety: multiple data 
types with complex relationships; and (4) veracity: trustworthiness 
of the data. These different aspects often do not occur in isola-
tion, leading to multiple intricate data challenges when analysing 
ecological data. We highlight just some of the problems and ap-
proaches to address specific associated ‘V’ challenges that the au-
thors of the papers within this Special Feature have encountered 
and discussed.

Biologging sensor technologies have been at the forefront of 
creating large volumes of available data, frequently at a range of 
different scales. Thus, the analysis of biologging data is often pi-
oneering within ecology in relation to big data, with the potential 
to rapidly transform our understanding of the ecology, particu-
larly in their application to animal movements (Nathan et al., 2022; 
Williams et al.,  2020). A key limitation of most current systems, 
however, is the trade-off between collecting ultra-fine sub-second 
scale movement and behaviour data over shorter periods of time vs. 
more coarse but longer-term movement and space use data. Wild 
et al.  (2023) take advantage of rapid developments in the field of 
the Internet of Things (i.e. methods for attaching electronic sensor 
devices, connected to a network, to everyday objects) to overcome 
key limitations in current biologging data networking systems and 
present new Wi-Fi solutions, combined with smart embedded soft-
ware, for big biologging data. The authors are able to demonstrate 
orders of magnitude of improvement in data retrieval efficiency, 
which is the biggest limitation of animal biologging systems. In 
particular, Wild et al.  (2023) discuss in detail challenges and solu-
tions concerning software architecture, on-board processing of bi-
ologging sensor data, difficulties of time synchronisation and the 
data transmission concept and the pros and cons of different Wi-Fi 
infrastructures.

Advances in technology has also led to (perhaps less foreseen) 
forms of data gathering mechanisms gaining momentum, and asso-
ciated build-up of large quantities of data, with the rise of citizen 
(or community) science initiatives. The resulting data from such 
initiatives are typically very varied in nature, often involving mul-
tiple data collection protocols with more limited/reduced struc-
ture than compared to traditional survey methods, including data 
arising from opportunistic events. While analysing citizen science 
data from designed surveys requires carefully developed methods, 
difficulties increase markedly with data from semi-structured proj-
ects, for example without fixed data collection protocols or data 
collected by observers of any degree of observer knowledge. This 
leads to new challenges across the whole spectrum of the 4 ‘V's. 
While these challenges have some commonality in terms of sim-
ilar issues to address and overcome, due to the large expanse of 
types of data collection techniques, the specific challenges and as-
sociated data analytic approaches will vary. Johnston et al. (2023) 
summarise four overarching categories of challenges: (i) observer 
behaviour, including, for example spatial bias, observer or re-
porting differences, and false-positive errors; (ii) data structures, 
relating to both measures of detectability and procedures for 
validation; (iii) statistical models, including not only the opportu-
nities provided by data integration and multispecies models but 
also sources of bias and computational limitations; and (iv) com-
munication, motivated by the application of citizen science within 
biodiversity monitoring.

The veracity of data within biodiversity also arises in less ob-
vious ways, outside the sphere of data collection protocols ‘in the 
field’, which are most commonly considered as the reason for que-
rying the trustworthiness of the data. In particular, there is a wealth 
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of information contained with many ecological and biodiversity 
databases. However, to combine this information, data must typi-
cally be uniquely associated with specific species and taxa. This in 
itself raises methodological challenges, due to, for example dynamic 
species names, the discovery of new species, changing biological at-
tributes, etc. As a result, homonyms, synonyms and errors may ac-
cumulate while for many taxa a general consensus on an accepted 
name and taxonomic and phylogenetic relationships may not have 
been reached so that taxonomy itself may resemble a confusingly 
intricate tangled bank. To address such issues, Grenié et al.  (2023) 
provide an extensive review of the tools, databases and best prac-
tices for harmonising taxon names in biodiversity studies. In partic-
ular, they categorise the ‘wild world’ of existing publicly available 
taxonomic databases and resources, along the axes of taxonomic 
breadth and spatial scope, and discuss the associated strengths and 
caveats of each database. In addition, on the practical computation 
side, they review the existing computational tools provided in dif-
ferent R packages for taxonomic harmonisation, and, perhaps rather 
fittingly, provide a ‘taxonomy’ of the R packages, classifying them 
according to their associated functions.

2.2  |  Models and model fitting

A vast array of different statistical models have been developed and 
fitted to ecological data in the last decade or so (Guisan et al., 2017; 
Hooten et al.,  2017; Kery & Royle,  2016; MacKenzie et al.,  2018; 
McCrea & Morgan, 2015; Royle et al., 2014; Schaub & Kéry, 2021), 
often with limited critical review of the characteristics and associ-
ated disadvantages and challenges of each. The advancement in 
models and associated model-fitting tools reflect the changing 
quantity of the data (as highlighted above), quality of the data (e.g. 
increased spatial/temporal resolution), emerging forms of data from 
new technologies (e.g. earth observation and/or drone data, eDNA) 
and advanced computational techniques (and associated compu-
tational power). Thus, summary overviews of these emerging and 
advancing areas are important and timely for ecologists and statisti-
cians to be able to understand what can, and often importantly, what 
cannot (or should not), be done and also provide tools for fitting 
such models to different data. These models encompass all areas of 
ecology from population and community ecology to landscape and 
ecosystem ecology. Interrogation of the associated modelling ideas 
motivates further advances in addressing the challenges and model 
development to account for additional data complexities or efficient 
model-fitting tools, for example. We briefly summarise here some 
of the types of models and associated challenges that arise across 
a range of different types of models, and data, within this Special 
Feature.

Developing or adapting general statistical models that can be 
applied to different forms of data can be very scientifically efficient. 
Such approaches also often permit the use of readily available soft-
ware packages, for example NIMBLE (de Valpine et al., 2017), R-INLA 
Lindgren and Rue (2015) and inlabru (Bachl et al., 2019) as well as 

specific application focused packages, such as MARK/RMARK (for 
capture–recapture models; Laake,  2013); momentuHMM (for hid-
den Markov models [HMMs] applied to movement data; McClintock 
& Michelot,  2018) and Distance (for distance sampling; Thomas 
et al., 2010). Areas which have accessible software are witnessing 
substantial statistical development, enhanced by the flexibility of 
the computational tools provided. For example, R-INLA and inlabru 
have been used by both Laxton et al. (2023) and Torney et al. (2023), 
while Newman et al.  (2023) discusses the relative merits of avail-
able software tools for fitting models. However, Barros et al. (2023) 
take one step further from the issue of readily accessible computer 
packages, suggesting that model fitting is not the primary challenge, 
rather that the models being used by ecologists need to be consid-
ered as predictive models, which can be used transparently and eas-
ily adapted following updated datasets or statistical methodology. 
Their proposal of the PERFICT workflow provides a framework by 
which these important challenges can be aligned.

Understanding the relationship between such general statis-
tical models and specific ecological models can be challenging, as 
can be structuring the data into the required general form. Two par-
ticular ‘umbrella’ models that have been applied extensively within 
ecological models are the closely related HMMs and state-space 
models (SSMs). Both these types of models are widely used in eco-
logical settings in the presence of longitudinal data (Auger-Methe 
et al., 2021; McClintock et al., 2021). One attraction of these models 
within the ecological applications is that they both directly separate 
out the distinct ecological and/or sampling processes. This often 
simplifies the model specification, permitting the consideration of 
the separate components independently. A common distinction 
between these models relates to whether the latent processes are 
defined to be discrete-valued (for HMMs) or continuous-valued 
(SSMs), although we note that this distinction is not universally 
used. Specific ecological areas where these models have been ex-
tensively applied, include, but are far from limited to, fisheries stock 
assessment (Aeberhard et al., 2018); population dynamics (Newman 
et al.,  2014); animal movement (Hooten et al.,  2017; Langrock 
et al.,  2012; Patterson et al.,  2017); and capture–recapture-type 
surveys (King, 2014; McCrea & Morgan, 2015). Glennie et al. (2023) 
and Newman et al. (2023) provide a methodological (and practical) 
review of HMMs and SSMs, respectively.

In particular, Glennie et al.  (2023) highlight the potential diffi-
culties that may be encountered when specifying HMMs for differ-
ent systems, including issues which arise when model assumptions 
are not valid and the challenges of defining and fitting a suitable 
model in an HMM framework when the underlying hidden process 
increases in complexity. Providing descriptions of these general sta-
tistical models that can be applied to a variety of different forms 
of ecological data and associated discussion of issues to be aware 
of are a very useful resource for practitioners, particularly when 
describing the pitfalls that may arise. The rapid growth of the appli-
cation of HMMs has also been aided by associated efficient model-
fitting algorithms, due to the Markovian structure of the model 
(Zucchini et al., 2016).
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The practical issues of fitting general and flexible SSMs, assum-
ing a continuous-valued ecological (latent) process, is highlighted 
and addressed by Newman et al.  (2023). Importantly, they discuss 
and contrast a wide-range of model-fitting techniques, dependent 
on the underlying assumptions of the specified model. In particular, 
they describe model-fitting algorithms that can accommodate more 
complex modelling dynamics, such as nonlinear processes and/
or non-Gaussian stochasticity. Such models are less familiar/used 
within the ecological community, most likely due to the associated 
model-fitting challenges, however such adaptations of SSMs have 
great potential for the modelling of ecological data. The important 
aspect of what software can be used to fit such complex models is 
also highlighted in the paper.

The challenges of fitting models to data can concern both the 
associated algorithms required (as for SSMs) and the increase in 
computational expense, particularly as the complexity of the model 
increases. With increasingly large datasets, such as those routinely 
collected in bioacoustics or biologging studies (see Wild et al., 2023), 
many standard methods break down and cannot be practically ap-
plied. There is hence a necessity to identify and develop suitable 
modifications to improve computational efficiency and scalabil-
ity, adapting traditional (and developing new) methods to big data. 
Providing successful examples, and the associated strategies that 
were most successful, including for example, computational efficien-
cies (Newman et al., 2023) and as demonstrated in King et al. (2022), 
as well as model simplifications that retain the signal within the data, 
are promising avenues going forward. The challenges that arise re-
garding scalability due to large (and new) datasets are also an oppor-
tunity for the development and use of machine learning algorithms. 
However, off-the-shelf algorithms may not be sufficient or may be 
too limiting, as described by Wang et al. (2023), so additional devel-
opments may be required for ecological applications. For example, 
it will generally be important to incorporate known ecological pro-
cesses within the data analysis.

There are numerous opportunities, risks and trade-offs in 
building structurally complex models to increase insight on the 
underlying ecological processes. For example, Laxton et al. (2023) 
use the very popular species distribution models (SDMs) to high-
light the importance of increasing model complexity based on eco-
logical theory. The authors showcase the usefulness of a marked 
point process approach, which permits the inclusion of key popu-
lation dynamic processes linked to ecological covariates (relating 
to landscape structure and the range of movements of the study 
species), and highlight the importance of maintaining an under-
standing of the roles and effects of each model component, to 
ensure interpretability and useful ecological insight. Alternatively, 
Torney et al.  (2023) show that, in relation to the study of move-
ment behaviour, including complex mechanisms driving animal 
distributions into the statistical models can substantially increase 
model performance and predictive ability. Furthermore, they 
demonstrate that the relationship between model complexity and 
model performance is non-monotonic, highlighting the impor-
tance of robust procedures for checking models.

2.3  |  Interpretability and visualisation

It is now possible to fit a wealth of complex models to datasets, 
but where is the line drawn between fitting a model for complex-
ity's sake and because the output is required for an understanding 
of the dynamics exhibited by the data? In many cases, could a sim-
ple model actually be more useful/informative? Such questions are 
long-standing in many areas, including ecology (Murtaugh,  2007). 
Statistical models continue to be developed to represent the under-
lying data generating ecological processes—but these will always be 
a simplification of reality—with more complex models aiming to ex-
tract meaningful and useful interpretable ecological insight. In gen-
eral, there is a trade-off between the complexity of the model being 
fitted and the associated intricacy of the information that can be 
extracted (given suitable and available data). Furthermore, statisti-
cal learning (or machine learning) techniques are rapidly increasing 
in their prominence and usage within ecology (Ho & Goethals, 2022; 
Pichler & Hartig, 2022), with such techniques often demonstrating 
good predictive performance, but at the lack of ecologically inter-
pretable parameters. It is becoming increasing important to extract 
interpretable and meaningful results/output from appropriate 
models fitted to real data, combined with intelligent visualisations, 
within and beyond the wider scientific community, for example, with 
policy-makers

One particular area of ecology in which increasing model com-
plexity leads to further interpretability challenges is that of species' 
distribution modelling. Traditionally, such models have been used 
to establish a correlation between a single species and the envi-
ronment that it occupies in order to gain an understanding of hab-
itat suitability, or to predict the impacts of environmental change. 
However, there has been growing interest for these models to go 
beyond a single species in isolation and to include interactions be-
tween species (Kissling et al.,  2012; Pollock et al.,  2014) and/or 
the underlying mechanisms (Buckley et al., 2010) in order to im-
prove predictability of multispecies models. However, in increas-
ing the complexity of the model, the associated interpretability of 
the model parameters can become more difficult. To address this 
issue, Powell-Romero et al.  (2023) use a feature-based approach 
to describe community structure within ensemble modelling ap-
proaches to improve the practical interpretability of multispecies 
models. Through the inclusion of simple features to describe com-
munities, it is possible to obtain insight of not only which models 
outperform others, but also why this is the case. Furthermore, 
within more complex dynamic SDMs, Laxton et al.  (2023) argue 
that any increased complexity in the model needs to be grounded 
in ecological theory. This in turn permits greater interpretability 
since the different mechanisms or patterns of each component 
of the model can be identified leading to increased interpretable 
ecological insight.

As models and data become more complex and high dimen-
sional, obtaining meaningful and useful visualisations of the data 
and/or model outputs for improved insight also becomes more 
challenging. Traditional methods, such as dimension reduction 
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and considering pair-wise correlations, may lead more nuanced 
and/or intricate ecological insights being masked, or even lead to 
biases in their presentation (McInerny et al.,  2014; McInerny & 
Krzywinski, 2015). This is particularly challenging in more complex 
data/model structures, such as networks or graphs structures. 
For example, food web visualisation should allow us to gain an 
understanding of the structure of foodwebs and provide insight 
into the detail of the complexity; however, current approaches 
tend to simplify the structure and therefore cannot provide the 
insight needed. To address some of these challenges, Pawluczuk 
and Iskrzyński (2023) propose methods for visualising increasingly 
complex foodweb (and other network) structures by combining 
heatmaps, interactive and animated graphs. Alternatively, Van 
Moorter et al.  (2023) have developed the package ConScape (in 
Julia) which allows users to efficiently analyse and visualise land-
scape and habitat connectivity more simply. Further issues arise 
when attempting to analyse objects that contain multiple distinct 
(non-independent) parts that make up the complete object (e.g. 
when analysing skeletons rather than individual bones). With this 
focus, Thomas et al.  (2023) propose a method based on regular-
ised consensus principal components analysis to be able to sum-
marise and compare shape variation in multipart morphospaces. 
Importantly, they also provide an accompanying R package, to per-
mit wider usage and impact within the large scientific community.

3  |  CONCLUDING COMMENTS AND 
FUTURE OUTLOOK

The opportunities for gaining an understanding of ecological sys-
tems from the range of different forms of available data (and new 
emerging data) are immense. However, to fully capitalise on these 
opportunities, addressing the associated challenges and achieving 
academic and societal impact, a multidisciplinary approach consider-
ing the whole data analytic pipeline is required. We discuss a num-
ber of important aspects that will contribute to advancing ecological 
knowledge and address important societal issues (though we note 
that this is far from an exhaustive list):

3.1  |  Interdisciplinarity

Immersive interdisciplinarity in the ecological community's re-
search approach has the largest potential for achieving research 
step-changes within the discipline. The cross-fertilisation of 
knowledge from, for example ecologists, engineers (designing data 
collection devices), statisticians (developing advanced modelling 
techniques to fully exploit the available data and designing survey 
sampling strategies) and computer scientists (offering expertise 
in machine learning and automation) provides the opportunity 
for the co-creation of new and exciting approaches to address 
challenging ecological problems. Close collaboration with math-
ematical ecologists allows a better realistic connection of models 

to ecological theory; equally important is the collaboration with 
ecologists at the model output stage to build confidence that the 
results are biologically realistic.

3.2  |  Data-centric methodological innovation

It is important to ensure that data analytic methods are being de-
veloped to make the most of the diverse and sizeable amounts of 
ecological data now being efficiently collected at increasing scale 
and quantity (Zipkin et al., 2021). However, the advancement of data 
collection technology continues at a rapid pace, and necessarily the 
associated data analytic tools are developed at a lagged timescale 
(there is no point in developing analytic tools for data that do not 
exist and/or cannot be collected). Again, an interdisciplinary outlook 
will help identifying novel data collection tools and methods not 
used yet in ecology.

3.3  |  Robust data integration

There has been a natural development towards integrating datasets 
within a single model in recent years (Frost et al., 2023), spanning 
both multiple data types of a single species (Isaac et al., 2020) and 
data from multiple species (Barraquand & Gimenez,  2019). This 
means that one of the biggest challenges facing statistical ecologists 
is to think about whether the types of data being combined in an 
analysis are indeed comparable—do they have differing quality and 
will this affect the model performance? For example, will combining 
small structured datasets with large unstructured data, for example 
from the Global Biodiversity Information Facility (GBIF), help to limit 
the bias in the latter, or the context dependency in the former (Isaac 
et al., 2020)?

3.4  |  ‘All models are wrong, but some are useful’

This phrase, attributed to the statistician George Box, continues to 
provide useful insight. In particular, we apply this reasoning to the 
idea that being able to fit complex statistical models to data (acces-
sible through advances in associated software) does not mean that 
the models are appropriate (or useful) for the data. There is a need 
to consider the philosophy of ‘should we’ fit a model to a given data-
set, and ask whether it is necessary and/or appropriate given the 
particular ecological question of interest and available data. Gain in 
knowledge should trump model complexity or methods sophistica-
tion per se.

3.5  |  Machine learning and artificial intelligence

Such approaches are likely to have an important role in the future di-
rection of methods in the ecological domain (Pichler & Hartig, 2022), 
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particularly when prediction is a primary objective. However, such 
methods should not simply be blindly applied to align with popular 
analytical trends—it is important that there is a methodological driver 
underpinning their usage. The interpretability of such models is more 
challenging due to the ‘black-box’ nature of the algorithms and lack 
of ecological constraints or input, for example. Considerable debate 
and uncertainty remains in the validity and best practices of these ap-
proaches particularly in relation to generalisability, conceptual simplic-
ity, robustness and transparency. There is a need to increase research 
efforts into machine learning and artificial intelligence approaches so 
that their power can be appropriately harnessed for ecology and evo-
lution. For example, novel understanding from carefully fitted and in-
terpreted machine learning methods could be more often also used to 
guide the development of new likelihood-based methods.

3.6  |  Software

This is an increasingly prominent feature of statistical analyses. The 
type of software ranges from general statistical packages to which 
ecological models and data analyses can be conducted (such as inla-
bru Bachl et al., 2019 or NIMBLE de Valpine et al., 2017), to special-
ised packages for very specific problems (Van Moorter et al., 2023). 
However, the variety of computer packages (and in different lan-
guages, such as R or Python or Julia) leads to additional challenges of 
identifying the most relevant and/or efficient for the given problem 
at hand. Clear guidance regarding the advantages and disadvantages 
of different approaches is a particularly useful resource, though 
often difficult as there may be many different data and question de-
pendent decisions in practice.

3.7  |  Communication

The importance of improved communication for addressing and 
solving the inherent challenges of citizen science data are high-
lighted in Johnston et al. (2023). In particular, the authors focus on 
the importance of disseminating new statistical methods beyond the 
limited circle of technical groups. This requires moving beyond code 
sharing, investing also in software development and teaching activi-
ties and resources. They also conclude that a ‘democratisation’ of 
data analysis may emulate the progress brought by the democrati-
sation of data collection through citizen science and help make the 
most of these data, which has to be one of the most pressing issues 
facing statistical ecologists at this current time.

The papers in this Special Feature only scratch the surface of the 
challenges present with large data and complex models, and pro-
pose some possible approaches for dealing with different issues and 
advance our ecological understanding. These areas of research will 
continue to provide a rich and diverse set of challenges for ecological 
researchers, but recognising the challenges, building interdisciplin-
ary data analytic pipelines and providing interpretable results will 
ensure the research produced by this cross-disciplinary academic 

community will reach its full potential, leading to step-changes in 
our ecological understanding, and be a firm basis for informed policy 
decision-making.
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