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Supplementary information

The partial derivative of a function f(x1, ..., xn) with respect to the variable xi

is denoted by Dif.
Theorem 1 Consider an original problem:

min
x(·)∈X

∫ θ

τ

f(t, x(t))dt (1)

s.t. some additional constraints on x(·). Here X denotes the set of all continuous
functions x(·) : [τ, θ] −→ X, the set of admissible solutions. We assume that

1. X is a non-empty convex compact subset of R with non-empty interior
Int X;

2. f is continuous in [τ, θ]×X;

3. function f(t, ·) is strictly convex on X and differentiable on Int X for all
t ∈ [τ, θ];

4. D2f, the derivative of f w.r.t to the second variable, is continuous in
[τ, θ]× Int X and has continuous extension to [τ, θ]×X;

5. the optimal solution x∗(·) of (1) exists in the class of continuous functions
such that x∗(t) ∈ Int X ∀t ∈ [τ, θ].

We claim that the same optimal solution holds in the followingmodified (constraint-
free) problem:

min
x(·)∈Xpw

∫ θ

τ

[f(t, x(t))−D2f(t, x
∗(t))x(t)]dt (2)

where x∗ is the optimal solution in the original problem and X pw denotes the
set of all piece-wise continuous functions x(·) : [τ, θ] −→ X. Note that now
additional constraints are omitted and admissible solutions can be piece-wise
continuous.

Proof.
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• From a necessary and sufficient condition for a minimum in an elemen-
tary optimal control problem1, it follows that any piece-wise continuous
function x̂ : [τ, θ] → X that satisfies

min
x∈X

f(t, x)−D2f(t, x
∗(t))x = f(t, x̂(t))−D2f(t, x

∗(t))x̂(t) (3)

for every point of continuity of x̂ yields the global minimum in the modified
problem.

• Note that for any t ∈ [τ, θ]

x 7−→ f(t, x)−D2f(t, x
∗(t))x : X −→ R (4)

is a strictly convex function defined on convex set X. Hence, we have two
properties: (i) any local minimum is also a global one in X and (ii) the
point of the global minimum is unique.

• By properties (i) and (ii), any stationary point of function (4) that is
admissible (belongs to X) is the unique solution of the problem in the
left-hand side of (3).

• By combining strict convexity and the first-order condition for local ex-
trema, we obtain that for any t, x∗(t) is a unique stationary point of func-
tion (4), which is also admissible by the definition since x∗(t) ∈ Int X.
Hence, x∗ satisfies property (3): ∀t ∈ [τ, θ]

min
x∈X

f(t, x)−D2f(t, x
∗(t))x = f(t, x∗(t))−D2f(t, x

∗(t))x∗(t).

• Finally, x∗ is the unique solution of (2) in the following sense: any solution
of (2) will be equal almost everywhere to x∗ (in the sense of Lebesgue
measure). For example, the solutions may differ in a finite number of
points but this will not influence the optimal result in (2). □

Note that Theorem 1 allows a straightforward extension to the case of two
variables (x1 and x2):

Theorem 2 Consider an original problem:

min
x1(t),x2(t)∈X

∫ θ

τ

f(t, x1(t), x2(t))dt (5)

s.t. some additional constraints on x1, x2. Here X denotes the set of all contin-
uous functions x(·) : [τ, θ] −→ X such that x(t) ∈ X. We assume that

1. X is non-empty convex compact subset of R with non-empty interior;

2. f is continuous in [τ, θ]×X ×X;

1see p.160 in Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal Control. Springer
Science + Business Media, New York (1987)
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3. f(t, ·, ·) is strictly convex on X ×X and differentiable on Int X × Int X
for all t ∈ [τ, θ];

4. D2f, D3f are continuous in [τ, θ] × Int X × Int X and have continuous
extensions to [τ, θ]×X ×X;

5. the optimal solution x∗
1(·), x∗

2(·) of (5) exists in the class of continuous
functions such that x∗

1(·), x∗
2(·) ∈ Int X ∀t ∈ [τ, θ].

We claim that the same optimal solution holds in the followingmodified (constraint-
free) problem:

min
x1,x2∈Xpw

∫ θ

τ

[f(t, x1(t), x2(t))

− x1(t)D2f(t, x
∗
1(t), x

∗
2(t))− x2(t)D3f(t, x

∗
1(t), x

∗
2(t))]dt (6)

where x∗ is the optimal solution in the original problem and X pw denotes the
set of all piece-wise continuous functions x(·) : [τ, θ] −→ X such that x(t) ∈ X.
Note that now additional constraints are omitted and admissible solutions can
be piece-wise continuous.

How we use Theorem 2. In the paper, we dial with the problem

min
α,µ

∫ T

T0

fc(t, α(t), µ(t))e
−R(t−T0)dt, (7)

s.t. the additional scenario-specific constraints. For applying Theorem 2, we
need to transform variables α(t) and µ(t) such that their ranges of possible
values do not depend on time, i.e., we will introduce normalised versions of this
variables with the constant range.

First, let us recall the definitions of cost functions:

fc(t, α(t), µ(t)) = E(t)(

∫ α(t)

0

fα(t, a) da+

∫ µ(t)

0

fµ(t, a) da)

fi(t, a) = Qi(t)
( a

Ui(t)− a

)Ci

, Ci > 0, i = α, µ,

where Qi, Ui : [T0, T ] → (0,∞) are given continuous functions.
Second, by using the following transformations for variables

α̃(t) =
α(t)

Uα(t)
, µ̃(t) =

µ(t)

Uµ(t)
, (8)

we modify the cost functions:

f̃i(t, a) = Qi(t)
( a

1− a

)Ci

, i = α, µ;

f̃c(t, α̃(t), µ̃(t)) = E(t)
(
Uα(t)

∫ α̃(t)

0

f̃α(t, a) da+ Uµ(t)

∫ µ̃(t)

0

f̃µ(t, a) da
)
.
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The relationship between functions is quite straightforward:

f̃c(t, α̃(t), µ̃(t)) = fc(t, α̃(t)Uα(t), µ̃(t)Uµ(t));

f̃i(t, a) = fi(t, aUi(t)), i = α, µ.

Note that tilde sign ( ˜ ) indicates that the object operates with transformed
variables.

Third, we specify Theorem 2 for our case:

f(t̂, x̂1, x̂2) = f̃c(t̂, x̂1, x̂2)e
−R(t̂−T0);x1 = α̃, x2 = µ̃, τ = T0, θ = T.

We assume that X = [ϵ, 1− ϵ], where ϵ > 0 is small enough to not influence the
optimal solution. Given the form of the function of total costs, the existence of
optimal solutions is sufficient for such ϵ to be well defined. Hence the normalised
abatement rate at instant t can be in the range [ϵ, 1 − ϵ]. Introduction of such
ϵ is also a standard practice in numerical optimisation.

Then

D2f(t, α̃, µ̃) = e−R(t−T0) D2f̃c(t, α̃, µ̃) = e−R(t−T0)E(t)Uα(t)f̃α(t, α̃),

D3f(t, α̃, µ̃) = e−R(t−T0) D3f̃c(t, α̃, µ̃) = e−R(t−T0)E(t)Uµ(t)f̃µ(t, µ̃).

Thus, the original problem is

min
α̃(t),µ̃(t)∈[ϵ,1−ϵ]

∫ T

T0

f̃c(t, α̃(t), µ̃(t))e
−R(t−T0)dt, (9)

s.t. the same constraints as in (7) that are accordingly adjusted. Note that
solutions of (7) after normalisation (8) are exactly the solutions of (9). This
follows from our definitions of all functions with tilde sign2. The modified
problem for (9), in the context of Theorem 2, is as follows

min
α̃(t),µ̃(t)∈[ϵ,1−ϵ]

∫ T

T0

[f̃c(t, α̃(t), µ̃(t))

− E(t)f̃α(t, α̃
∗(t))Uα(t)α̃(t)

− E(t)f̃µ(t, µ̃
∗(t))Uµ(t)µ̃(t)]e

−R(t−T0)dt (10)

By using (8), we restore our original variables obtaining the equivalent of
(10):

min
α(t)∈[ϵUα(t),(1−ϵ)Uα(t)],
µ(t)∈[ϵUµ(t),(1−ϵ)Uµ(t)]

∫ T

T0

[fc(t, α(t), µ(t))

− E(t)fα(t, α
∗(t))α(t)

− E(t)fµ(t, µ
∗(t))µ(t)]e−R(t−T0)dt (11)

2We thank Mikhail Gomoyunov for hinting us to use the elegant transformation instead of
proving Theorem 2 for a more general case.
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Recall that e(t) = E(t)(1 − α(t)) and r(t) = E(t)µ(t). Since Pα(t) =
fα(t, α

∗(t)), Pµ(t) = fµ(t, µ
∗(t)), we have that (11) takes the form

min
α(t)∈[ϵUα(t),(1−ϵ)Uα(t)],
µ(t)∈[ϵUµ(t),(1−ϵ)Uµ(t)]

∫ T

T0

[fc(t, α(t), µ(t))

+ Pα(t)E(t)(1− α(t))︸ ︷︷ ︸
e(t)

− Pµ(t)E(t)µ(t)︸ ︷︷ ︸
r(t)

−∆(t)]e−R(t−T0)dt (12)

where ∆(t) = Pα(t)E(t) does not depend on α, µ hence can be omitted since
we aim only for optimal α, µ. In this sense, problem (12) is equivalent to the
following problem

min
α,µ

∫ T

T0

[fc(t, α(t), µ(t)) + Pα(t)e(t)− Pµ(t)r(t)]e
−R(t−T0)dt. (13)

Finally, we conclude that (13) is indeed solved by optimal α∗, µ∗ of (7); this
result was used in the main text.

Remark: Theorem 2 requires for f̃c(t, ·, ·)e−R(t−T0), in particular, to have
continuous partial derivatives and to be strictly convex in [ϵ, 1− ϵ]× [ϵ, 1− ϵ] for
any t ∈ [T0, T ]. Note that the multiplier e−R(t−T0) does not play an important
role since it is a positive constant for any instant t, so we focus only on f̃c(t, ·, ·).
The costs are defined such that for a fixed t ∈ [T0, T ], instantaneous cost function
f̃c(t, ·, ·) is twice continuously differentiable in [ϵ, 1− ϵ]× [ϵ, 1− ϵ], which implies
continuous differentiability. This allows us to consider the Hessian matrix for
f̃c(t, ·, ·) being a function of two variables:

H(α̃, µ̃) =

(
E(t)Uα(t)D2f̃α(t, α̃) 0

0 E(t)Uµ(t)D2f̃µ(t, µ̃)

)
.

For α̃, µ̃ ∈ [ϵ, 1− ϵ], this matrix is positive definite since E(t)Ui(t) > 0, i = α, µ,
and both derivatives are positive. Hence, this implies strict convexity of f̃c(t, ·, ·).
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