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A B S T R A C T

The impacts of reduced precipitation on plant functional diversity and how its components (richness, evenness,
divergence and composition) modulate the Amazon carbon balance remain elusive. We present a novel trait-
based approach, the CArbon and Ecosystem functional-Trait Evaluation (CAETÊ) model to investigate the role of
plant trait diversity in representing vegetation carbon (C) storage and net primary productivity (NPP) in current
climatic conditions. We assess impacts of plant functional diversity on vegetation C storage under low precipita-
tion in the Amazon basin, by employing two approaches (low and high plant trait diversity, respectively): (i) a
plant functional type (PFT) approach comprising three PFTs, and (ii) a trait-based approach representing 3000
plant life strategies (PLSs). The PFTs/PLSs are defined by combinations of six traits: C allocation and residence
time in leaves, wood, and fine roots. We found that including trait variability improved the model's performance
in representing NPP and vegetation C storage in the Amazon. When considering the whole basin, simulated re-
ductions in precipitation caused vegetation C storage loss by ∼60% for both model approaches, while the PFT ap-
proach simulated a more widespread C loss and abrupt changes in neighboring grid cells. We found that owing to
high trait variability in the trait-based approach, the plant community was able to functionally reorganize itself
via changes in the relative abundance of different plant life strategies, which therefore resulted in the emergence
of previously rare trait combinations in the model simulation. The trait-based approach yielded strategies that in-
vest more heavily in fine roots to deal with limited water availability, which allowed the occupation of grid cells
where none of the PFTs were able to establish. The prioritization of root investment at the expense of other tis-
sues in response to drought has been observed in other studies. However, the higher investment in roots also had
consequences: it resulted, for the trait-based approach, in a higher root:shoot ratio (a mean increase of 74.74%)
leading to a lower vegetation C storage in some grid cells. Our findings highlight that accounting for plant func-
tional diversity is crucial when evaluating the sensitivity of the Amazon forest to climate change, and therefore
allow for a more mechanistic understanding of the role of biodiversity for tropical forest ecosystem functioning.

1. Introduction

Climate model projections based on future socioeconomic scenarios
indicate that the Amazon forest will experience more frequent and
more extreme moisture stress in the 21st century (Lee et al., 2021).

Moisture stress can induce biodiversity shifts, including changes in
functional diversity (Aguirre-Gutiérrez et al., 2019; Esquivel-Muelbert
et al., 2018) and associated effects on vegetation carbon

(hereafter C) storage (da Costa et al., 2010; Hubau et al., 2020).
However, how these climatic changes will affect different components

C, Carbon; PFT, Plant Functional Type; PLS, Plant Life Strategy; CAETÊ, Carbon and Ecosystem functional Trait Evaluation model; NPP, Net primary productivity
⁎ Corresponding author at: Earth System Science Lab, Center for Meteorological and Climatic Research Applied to Agriculture, University of Campinas (Unicamp),

Campinas, 1308-886 SP, Brazil
E-mail address: b211466@dac.unicamp.br (B.F. Rius).

https://doi.org/10.1016/j.ecolmodel.2023.110323
Received 26 March 2022; Received in revised form 8 February 2023; Accepted 13 February 2023
0304-3800/© 20XX

Note: Low-resolution images were used to create this PDF. The original images will be used in the final composition.

https://doi.org/10.1016/j.ecolmodel.2023.110323
https://doi.org/10.1016/j.ecolmodel.2023.110323
https://doi.org/10.1016/j.ecolmodel.2023.110323
https://doi.org/10.1016/j.ecolmodel.2023.110323
https://doi.org/10.1016/j.ecolmodel.2023.110323
https://doi.org/10.1016/j.ecolmodel.2023.110323
https://doi.org/10.1016/j.ecolmodel.2023.110323
https://doi.org/10.1016/j.ecolmodel.2023.110323
https://www.sciencedirect.com/science/journal/03043800
https://www.elsevier.com/locate/ecolmodel
mailto:b211466@dac.unicamp.br
https://doi.org/10.1016/j.ecolmodel.2023.110323
https://doi.org/10.1016/j.ecolmodel.2023.110323


CO
RR

EC
TE

D
PR

OO
F

B.F. Rius et al. Ecological Modelling xxx (xxxx) 110323

of functional diversity – composition, richness, evenness and diver-
gence (Carmona et al., 2016; Mason et al., 2005), and the role func-
tional diversity plays in determining vegetation C storage remains
poorly understood (Esquivel-Muelbert et al., 2017; 2018; Poorter et al.,
2015; Sakschewski et al., 2016).

Due to differences in life-history strategies among plants (Adler et
al., 2014; Reich et al., 2003), functional diversity plays a vital role in
determining ecosystem functioning and its responses to environmental
changes (Díaz and Cabido, 2001; Song et al., 2014; Cadotte, 2017). Ulti-
mately, functional traits delineate plant communities' responses and ef-
fects to biotic and abiotic conditions and also shape ecosystem
processes and functions such as vegetation C storage (Lavorel and
Garnier, 2002; Funk et al., 2017; Violle et al., 2007). It is widely ac-
cepted that more taxonomically and functionally diverse communities
are less impacted by environmental changes (Cadotte et al., 2011; Mori
et al., 2013; Sakschewski et al., 2016; Schmitt et al., 2019). The “insur-
ance hypothesis”, for example, postulates that a higher diversity (rich-
ness) of plant functional strategies provides higher variability of plant
functional responses under new environmental conditions (Mori et al.,
2013; Yachi and Loreau, 1999), thus maintaining ecosystem function-
ing by providing a buffer effect against environmental fluctuations
(Fauset et al., 2015; Lohbeck et al., 2016; Yachi and Loreau, 1999).
Such a buffering effect is expected through the process of functional
density compensation which enables the functional composition of a
community to reorganize and adjust to new environmental conditions,
thus enabling types of plants that previously exerted a less relevant
functional role (low density) to increase their dominance and vice versa
(Mori et al., 2013; Smith et al., 2022).

Accordingly, it has been suggested that environmental fluctuations
lead to changes in the abundance of plant strategies that compose the
communities and, consequently, changes on how the available func-
tional trait space is occupied, then redefining plant functional diversity
components (Boersma et al., 2016; Carmona et al., 2019; de Bello et al.,
2021; Enquist et al., 2017). However, there is no consensus under
which condition whether environmental changes select traits and lead
to homogenization (decrease in functional diversity) or allow multiple
functional traits to persist generating diversification (increase in func-
tional diversity; Smith et al., 2022). For example, reduced precipitation
was found to exert a strong environmental filter by selecting a subset of
functional trait combinations that are more suitable to cope with mois-
ture stress (Mouillot et al., 2013a). In such a scenario, according to the
optimal partitioning theory (Cannell and Dewar, 1994; Metcalfe et al.,
2010; Thornley, 1972), a common strategy would be to invest more C to
fine root production to acquire limiting belowground resources, such as
soil water and nutrients required for aboveground plant productivity.
Such a selection for more conservative resource-use would restrict the
range of functional trait values and thus reduce the functional trait
space occupied by the community (lower functional richness; Cornwell
et al., 2006; Funk et al., 2017; Kleidon et al., 2009). On the other hand,
it has been found that disturbances, especially intermediate distur-
bances, can trigger an increase in the occupation of the functional trait
space (higher functional richness; Herben et al., 2018). In line with the
intermediate disturbance hypothesis (Bongers et al., 2009), which pre-
dicts that local species diversity is maximized at an intermediate level
of disturbance, it has been suggested that also functional diversity
should increase via the functional reorganization of the community al-
lowing new ecological strategies to be more abundant in the communi-
ties (Smith et al., 2022).

Vegetation models have been widely used to explore the fate of the
Amazon forest carbon balance under future potential climatic condi-
tions (Cox et al., 2004; Galbraith et al., 2010; Huntingford et al., 2013;
Lapola et al., 2009; Longo et al., 2018; Rammig et al., 2010). Some of
these models project a dramatic loss in Amazon forest C stocks due to
reduced precipitation (Cox et al., 2000, 2004; Lapola et al., 2009;
Oyama and Nobre, 2003). Most model simulations have not reproduced

these patterns afterward but there is ongoing discussion on the likeli-
hood of such projections (Levine et al., 2016; Malhi et al., 2009; Malhi
et al., 2018; Lapola et al., 2018). Other models simulate an abrupt re-
placement of the dominant humid tree cover found in large parts of
Amazon forests with more arid-affiliated vegetation under reduced pre-
cipitation (Hutyra et al., 2005; Salazar et al., 2007). One of the underly-
ing reasons that models are challenged by simulating unprecedent cli-
matic conditions, is their underrepresentation of plant diversity
(Pavlick et al., 2013; Scheiter et al., 2013). Commonly, models repre-
sent plant functions based on a very small and discrete set of PFTs
(plant functional types) and plant functional traits parameters are pre-
viously (a priori) defined (Prentice et al., 2007). Consequently, the di-
versity of plant life strategies, i.e., the combination of traits, found in
these model ecosystems is oversimplified and the emergence of alterna-
tive trait combinations in response to a changing environmental sce-
nario is strongly limited or is not even captured due to the small num-
ber of PFTs that compose the communities (Fyllas et al., 2014; Mori et
al., 2013; Sakschewski et al., 2016). As a result, fixed a priori defined
parameters commonly lead to an overestimation of the impacts of envi-
ronmental changes due to abrupt changes in plant performance and es-
tablishment success (Berzaghi et al., 2020; Pavlick et al., 2013;
Sakschewski et al., 2016; Verheijen et al., 2015) and important mecha-
nisms involved in ecosystem resilience, such as the functional reorgani-
zation of the plant community (Enquist and Enquist, 2011; Fauset et al.,
2012, 2015; Wieczynski et al., 2019), are not represented in such model
approaches.

The development of the models with a higher representation of trait
variability, so-called trait-based vegetation models (e.g., Fyllas et al.,
2014; Joshi et al., 2020, 2022; Pavlick et al., 2013; Sakschewski et al.,
2015; Scheiter et al., 2013; Schmitt et al., 2019) is an attempt to over-
come these limitations of underrepresenting functional diversity with
PFTs. Such a modeling approach allows replacing the small number of
PFTs with a more realistic representation of functional diversity, and
thus increasing the representation of possible functional traits combina-
tions by several orders of magnitude (Pavlick et al., 2013; Reu et al.,
2014; Webb et al., 2010; Wullschleger et al., 2014). This provides the
opportunity to explore multiple aspects of plant ecology and commu-
nity composition in combination with biogeochemical fluxes and pools
(Berzaghi et al., 2020; Sakschewski et al., 2016; Zakharova et al.,
2019). For example, trait-based vegetation models are able to explore
the role of different components of plant functional diversity on ecosys-
tem functioning, the processes that determine community assembly and
structure, and how these interact with environmental changes (Fisher
et al., 2018; Mason et al., 2005; Mouillot et al., 2013b; Song et al.,
2014).

An increasing number of trait-based models has been applied to un-
derstand the impacts of climate change on ecosystem functioning and
the role of functional diversity on these impacts. Nonetheless, most of
the functional ecological aspects highlighted in the scientific literature
remain underexplored (but see: Hofhansl et al., 2021). Few studies ap-
plying trait-based vegetation models have explored how environmental
changes affect plant functional diversity per se, and when they do, the
focus is specially on functional richness (Pappas et al., 2015;
Sakschewski et al., 2016; Scheiter et al., 2013). None of them investi-
gated how these changes affect the underlying components of func-
tional diversity (i.e., functional richness, evenness and divergence) and
how these different components affect ecosystem functioning. Hence,
despite the proposed mechanistic linkage between functional diversity
and ecosystem functioning (Mason et al., 2005; Mouillot et al., 2013b),
the ability of trait-based models to conjointly capture plant functional
diversity and ecosystem functional responses to environmental changes
has yet to be tested.

Building on these previous efforts, we here present a new trait-based
vegetation model, the CArbon and Ecosystem functional-Trait Evalua-
tion (CAETÊ) model. To assess the effect of including trait variability in
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vegetation models, we compare two approaches of CAETÊ: a standard
PFT approach that represents vegetation through three PFTs (i.e., low
functional diversity) and a trait-based approach (hereafter called as PLS
approach) that represents a higher level of functional diversity by using
3000 combinations of trait values that seeks to express the variability of
plant life strategies (PLSs) found in nature. Six traits are used to charac-
terize the PFTs and the PLSs: C allocation and C residence time in three
plant structural compartments (leaves, wood and fine roots). We com-
pared the performance of the two modeling approaches in representing
vegetation C storage and NPP for the Amazon basin region to evaluate
whether plant trait diversity improves the representation of biogeo-
chemical cycling. We also applied a scenario of reduced precipitation in
the study area and by comparing model results generated from either
the low-diversity (i.e., PFT) versus the high-diversity (i.e., PLS) parame-
terization, we assess whether the degree of plant functional diversity af-
fects the response of ecosystem to moisture deficits using vegetation C
stocks as an indicative. Additional analyses are made with PLS ap-
proach to evaluate the impacts of lower water availability on simulated
functional composition and functional diversity components (richness,
evenness and divergence) and its association with the impacts on C stor-
age.

2. Material and methods

2.1. The CAETÊ model: an overview

We present an overview of the CAETÊ model and how the two used
levels of diversity parametrization are defined. In this study, and for
both approaches, we employed a non-transient version of the CAETÊ
model, which calculates equilibrium solutions based on long-term

mean monthly climate variables. The difference between the PFT and
the PLS approach is only the degree of trait variability represented, the
model process formulations and principles are the same for both. Each
plant functional type (for PFT approach) or plant life strategy (for PLS
approach) represents an average individual like in LPJ model (Sitch et
al., 2003). The next section presents the procedures of model setup for
this study, and the Supplementary Material SM.1 provides a more de-
tailed description of the CAETÊ model.

For the PLS approach, the underlying premise for creating the PLSs
is that the range of values of a functional trait observed in nature can be
regarded as one axis of a multidimensional hypervolume formed by the
combination of n chosen functional traits (Fig. 1; Blonder, 2017;
Villéger et al., 2008). In that sense, each point inside of this hypervol-
ume is a unique combination of values for each of the functional traits
representing a PLS. The values of traits that compose them are sampled
from the complete range of values used as reference (see SM.1.1.1.).
The volume occupied by the sampled traits can be seen as a potential
functional space with tens of thousands of combinations. Like other
trait-based models (e.g., Pavlick et al., 2013; Reu et al., 2011), CAETÊ
assumes that sampling an appropriate number of PLSs from the poten-
tial functional space (see sensitivity test in SM.2.), combined with an
environmental filtering mechanism, allows the model to produce rea-
sonable biogeochemical and functional diversity patterns. On the other
hand, in its PFT approach, the model's user previously defines the num-
ber of PFTs, and their traits values are based on previous vegetation
models.

The physiological processes and the interaction of each PLS/PFT
with the environment are determined by several functional traits, for
example the maximum rate of Rubisco carboxylation (Eq. SM.16) and
nitrogen to carbon ratio on plant tissues (Eq. SM.25). However, in this

Fig. 1. Schematic diagram of the model CAETÊ in its trait-based approach. From the initial plant functional trait ranges (the axis of the hypervolume), values are
uniformly sampled and combined to create hundreds of thousands of what we define as plant life strategy (PLS). The set of all created PLSs composes a hypervolume
that represents the potential functional trait space in which each point inside the volume is a unique combination of functional trait values. From the potential func-
tional trait space, 3000 PLSs are randomly sampled. Environmental filtering, the trade-offs between functional traits and the physiological processes determine the
performance of a PLS (abundance), if it survives (positive carbon balance) or dies and is excluded from the grid cell. Then, the grid cell is filled as a mosaic of PLSs,
in which each of them occupies an amount of space proportional to its abundance, calculated from the PLS’ relative contribution to the total carbon storage in that
grid cell. From the PLSs occupation, the ecophysiological variables are updated and return to the model for iteration. This modeling framework allows us to assess
the model results not only regarding biogeochemical variables but also in terms of trait distribution and, therefore, the different components of functional diversity.
NPP: net primary productivity; C Leaves: amount of carbon allocated to leaves; C Roots: amount of carbon allocated to fine roots; C wood: amount of carbon allo-
cated to wood.
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study six functional traits are used to distinguish each PLS or PFT. Since
the analyses presented here are focused on the assessment of vegetation
C storage, three traits represent the C allocation percentage of the NPP
distributed to different plant tissues/compartments (leaves, fine roots
and wood), and the other three traits represented C residence time in
the respective plant tissues. The combination of allocation and resi-
dence time for each tissue define its C stock and, then, the total plant C
stock.

The functional trait values assigned to each PLS/PFT determine its
ecophysiological behavior and its responses and effects to the environ-
ment. For example, each PLS/PFT, as a distinct combination of func-
tional traits, constitutes a differential way of storing C and capturing
water and light. Thus, the functional traits of a PLS or a PFT ultimately
determine its performance and survivorship. During each iteration, in a
daily time step, the distinct performances of PLSs/PFTs determines the
ecosystem scale processes and properties (Eq. (6)) such as GPP (growth
primary productivity), evapotranspiration and C storage, which to-
gether with environmental conditions will determine the composition
of PLSs and PFTs in each grid cell for the next iteration. The perfor-
mance is determined as the relative abundance (Eq. (1)) of a PLS/PFT in
a specific grid cell.

From now on, the symbol refers to an average individual of a PLS
or PFT, to a grid cell and to a plant compartment. The values for the
allocation ) and residence time ( ) traits can be found on Table SM.1
for the PLS approach and on Table SM.2 for the PFT approach. The rela-
tive abundance ( ) of a PLS/PFT is the fraction of the grid cell that it
occupies based on the relative contribution of this strategy to the total
carbon stock in this grid cell ( ) considering the number of living
PLS/PFT ( ):

(1)

(2)

where is the carbon stock of a PLS/PFT (Eq. (3)). This procedure
has support on the biomass-ratio hypothesis (Grime, 1998) which pre-
dicts that immediate effects of a species are proportional to its relative
contribution to the total C storage of the community.

The is the sum of carbon stored ( ) in each of the three plant
compartments:

(3)

and the in a certain time step is determined by the percentage
of allocated to each plant C compartment ( ) and the carbon
residence time ( ) in these compartments:

(4)

is the carbon available for allocation derived from gross primary
productivity ( ; Eq. SM.3) discounting the costs of autotrophic res-
piration ( ; Eq. SM.23):

(5)

From the relative abundances, it is possible to aggregate the biogeo-
chemical variables from the PLS/PFT scale to the grid cell scale. That is,
the flux or state of a variable in a grid cell is given by the sum of the val-
ues of this variable for each existing PLS/PFT ( ) weighted by their rel-
ative abundance. For example, the net primary productivity in a grid
cell scale ( ) is:

(6)

Accordingly, the composition of PLSs/PFTs and their respective
traits in a grid cell determine ecosystem scale processes and properties.

Each functional trait ( is represented in a grid cell scale ( ) by
a unique value, which is the sum of this trait value ( ) calculated for
each PLS/PFT alive in the grid cell, weighted by their relative abun-
dances ( ):

(7)

This community weighted mean value can be understood as the
dominant trait value in a community (Díaz et al., 2007).

Differential survival and performance between PLSs/PFTs are also
possible because each functional trait is related to at least one trade-off
(Pavlick et al., 2013; Reu et al., 2014). Trade-offs are here defined as re-
lationships of costs and benefits that impact the ecophysiological
processes of a PLS or functional type. They ultimately determine the
PLS/PFT's performances and whether they will be able to deal with a
specific environmental condition (Pavlick et al., 2013; Reu et al., 2011).
Importantly, the trade-offs also prevent the model from enabling the
survivorship of the so-called “Darwinian demons” (Law, 1979), in other
words, optimal but rather unrealistic strategies that maximize all the
functions that contribute to plant fitness and survival (Pavlick et al.,
2013; Scheiter et al., 2013). For example, to respect mass conservation
(Scheiter et al., 2013), any C investment (i.e., allocation and residence
time traits combination) in one tissue will always be at the expense of
other: investing C in leaves can increase photosynthesis rate by increas-
ing solar radiation absorption (Eq. SM.21 and SM.22), however, such
investment is at the expense of investing in fine roots, which is responsi-
ble for water uptake, also a limiting resource for photosynthesis (Eq.
SM.35). Beyond that, an intrinsic trade-off emerges from the allocation
traits: per principle, their combination for all plant tissues must add up
to 1 and the traits combination that do not respect this rule is excluded
before model starts running (see SM.1.1.1). Carbon allocation strategies
also lead to indirect competitive ability for light, what may also exclude
life strategies (see SM.1.6). The ecophysiological processes linked to
each functional trait, its trade-offs, and associated formulations are
summarized in Table SM.3.

2.2. Simulation setup

For both CAETÊ approaches, we employed mean monthly climate
variables and atmospheric CO2 concentration from 1980 to 2010 for the
Amazon basin (Fig. SM.1) at a spatial resolution of 0.5º x 0.5º (see
SM.1.2. for input data). For the modeling experiment, the precipitation
was reduced in 50% for the same 1980–2010 monthly climatology used
in the control. This reduction was homogeneous: it was applied for the
whole period of the study and for all the grid cells equally. We are
aware that the frequency and intensity of droughts are not homoge-
neous over time or along environmental gradients across the basin. Fur-
thermore, this precipitation reduction is quite severe, despite having
occurred in isolated events in the past (Marengo et al., 2008) and it is
also within some projections (Cox et al., 2000; 2004; Betts et al., 2004).
This massive decrease in water availability is also justifiable for model-
ing purposes as extreme scenarios can be used to test the sensibility of
ecological processes and properties simulated. Then, for this study, we
did not intend to make reliable predictions of drought for the region. In-
stead, we used this 50% precipitation reduction scenario as a proof of
concept and as a mean to test our hypotheses once the effects of ex-
treme drought events to ecosystem processes and biodiversity it is still
not entirely clear (Allen et al., 2010).
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For the PFT approach we defined 3 tropical PFTs, and their traits
values were chosen based on those used by other vegetation models
(Table SM.2). For the PLS approach we used 3000 PLSs, and this num-
ber was defined based on a sensitivity test (see Supplementary Material
SM.2). The ranges of values of each functional trait considered in this
approach were based on empirical/experimental literature and are pre-
sented in Table SM.1

In both approaches, all grid cells are initialized with the same set of
PLSs or PFTs, under conditions that are analogous to bare soil. How-
ever, in each grid cell the PLSs/PFTs will perform differently such that
some strategies will survive, each of them occupying a different portion
of the cell, while others will be excluded from the spatial grain in the
simulation and cannot be reestablished. Importantly, for this study,
there is no repopulation of the PFTs or PLSs excluded. Rather, the
model is run until equilibrium with 3000 PLSs/3 PFTs and regular cli-
mate condition and, after, it is run again with the same 3000 PLSs/3
PFTs but with reduced precipitation. That is why it is possible that
PLSs/PFTs can be excluded with regular climatic conditions but in-
crease/decrease their abundance with reduced precipitation.

Before the model execution a model initialization phase is per-
formed: (i) to determine the initial C content in plant compartments
and it is run until the attaining the stability attained for the total C stock
(i.e., the sum of C in all plant compartments) in all the grid cells (see de-
tails in SM.1.1.2); and (ii) to check the viability of each newly created
PLS (see SM.1.1.1). After the initialization phase, the model runs by
continuously repeating the input data series (under regular climate or
under reduced precipitation) until the stability of simulated results was
attained.

2.3. CAETÊ performance evaluation

The performance of the two modeling approaches in representing
the spatial distribution of vegetation C storage and NPP in the Amazon
region was compared with reference data. For C storage we used data
from Baccini et al. (2012) and Saatchi et al. (2011); and for NPP the
data came from MODIS NPP Project (MOD17A3; Running and Zhao,
2021). These comparisons were made under current climatic conditions
(1980 – 2010). We considered that 47.5% of living dry biomass from
reference data is comprised of C (Thomas and Martin, 2012). Following
the reference data, only the aboveground component was considered.
For the model performance evaluation, we estimated the absolute dif-
ference between maps from CAETÊ simulations and maps from refer-
ence data and a scatterplot analysis was performed to identify the
trends in the model approaches simulations.

2.4. Assessing functional diversity and composition

In this study we focused on large-scale analyses of functional diver-
sity and its components across the Amazon basin. It means that trait dis-
tributions used to evaluate functional diversity corresponds to the dis-
tribution of the set of dominant trait values obtained for each grid cell,
as explained in Section 2.1 (Eq. (4)). As mentioned in the introduction,
using only a small number of PFTs to represent variability precludes ac-
cess to functional diversity analyses. Hence, functional diversity analy-
ses are here limited only to the PLS approach.

Functional diversity and functional composition of communities
were analyzed both considering each functional trait independently
(single-trait analyses) and the combinations of traits (multi-trait analy-
ses). The single-trait and multi-trait analyses allow a broader under-
standing of how the community occupies the functional trait space and
how it is functionally organized by computing its composition (occur-
rence and abundance of trait values), the relative dominance between
trait values and the functional diversity components.

In the single-trait analyses, distribution curves were generated by
using the functional traits’ occurrence following the study by Carmona

et al. (2016), emphasizing that each trait value is derived from a grid
cell. In this method, the full range of trait values is considered as the to-
tal functional trait space, and the occurrence and abundance of the trait
values express the occupancy of this space calculated through probabil-
ity density distributions, i.e., the trait probability density distributions.
From these distributions, we assessed the three functional diversity
components as defined by Carmona et al. (2016): (i) functional rich-
ness: the amount of functional space occupied by the community, i.e.
the total range of trait values for a specific functional trait considering
all organisms (PLSs in our case); (ii) functional evenness: the regularity
of the density distribution of the PLSs’ trait values in the functional trait
space; and (iii) functional divergence: the degree to which the abun-
dance of trait values of PLSs are distributed toward the extremes of
their functional trait space.

For the multi-trait analyses, we used the hypervolume metric pro-
posed by Blonder et al. (2014), which combines the distribution of n
trait values to create a multidimensional functional space and calcu-
lates functional diversity component metrics. Within such a hypervol-
ume, the functional richness can be interpreted as the amount of vol-
ume that is occupied by the community relative to the potentially avail-
able functional space, based on the frequency of trait values that com-
pose this community. The distribution of trait values around the cen-
troid, that is, the variation around the mean value, can be used to evalu-
ate the functional composition of the system (Barros et al., 2016). Fol-
lowing the recommendation by Barros et al. (2016), we performed a
principal component analysis (PCA) with a centered and scaled method
before creating the hypervolumes (for more detail, see SM.3). Using the
factor scores on the chosen principal components, we were able to ful-
fill the statistical assumptions for constructing the hypervolumes.

Despite the focus of our analyses being on the basin scale, we made
some additional functional diversity analyses on a finer scale using
three spatial windows of 10×10 grid cells each along a northwest to
southeast axis (Fig. SM.2). Looking into finer scales enables the evalua-
tion whether the results obtained from the whole amazon basin scale
analyses are not only a product of the natural environmental hetero-
geneity, once the basin is well known to present a large-scale variation
in climatic and edaphic properties (Ter Steege et al., 2006; Quesada et
al., 2012; Sombroek, 2000).

2.5. Assessing effects of decreased precipitation

In the experiment of 50% reduction in precipitation, we compared
the degree of change in C stock between the two modeling approaches
used in this study to evaluate if trait variability influences C storage un-
der environmental change.

Further, from the results simulated by the PLS approach we also
evaluated the role of the different components of functional diversity in
this change. For this, we assessed whether the plant communities were
functionally reorganized in the scenario of reduced precipitation by
computing the dissimilarity index (degree of overlap) between the trait
probability density distributions from the regular climate scenario and
those from the reduced precipitation scenario (Carmona et al., 2016).
This index varies from 0 (completely functionally similar; overlapping
density curves) to 1 (completely functionally different; no overlap). To
estimate the changes in hypervolumes due to precipitation reduction
we computed their overlap degree through the Jaccard similarity index,
which ranges from 0 (completely different; no overlap) to 1 (completely
similar, overlapping hypervolumes). In addition, we assessed whether a
centroid displacement occurred with the applied precipitation reduc-
tion. The displacement indicates how much the mean values of the
communities were dislocated from their previous location within the
hypervolume. To test the degree of communities’ functional reorganiza-
tion we analyzed the changes in trait abundance throughout the func-
tional space generated by the trait probability density distributions.
From this analysis we were able to observe, for example, the exclusion
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of trait values and/or the increase in the occurrence of trait values that
were rare under regular climatic conditions. To understand the impacts
of precipitation reduction on functional diversity facets (richness, even-
ness, and divergence) for the single-trait analysis, we computed the per-
centage change in their values between regular and reduced precipita-
tion climatic conditions. For the multi-trait analysis, we compared the
hypervolume sizes before and after the reduced precipitation applica-
tion once change in volume sizes represents a shift in the community
functional richness. We also performed these analyses for the finer
scale: we estimated the change in trait distributions with reduced pre-
cipitation using the same method described before (for single and
multi-traits), but, in this scale, with focus on the functional reorganiza-
tion of the community and on functional richness.

3. Results

3.1. CAETÊ model performance evaluation

Within the studied region, the PFT approach simulates 127.9 Pg C
stored in aboveground C and the PLS approach simulates 86.0 Pg C,
while Baccini et al. (2012) estimates 80.2 Pg C of total aboveground C
stock and Saatchi et al. (2011) estimates 71.7 Pg C. In terms of spatial
patterns in vegetation C storage, both modeling approaches show over-
or underestimation in the values simulated. The overestimation is espe-
cially concentrated in naturally drier areas, for example in North-
Western Amazonia. We also observed an overestimation along the basin
edges, which are known as regions of transition to drier areas, fire-
prone vegetations and subject to the intensive land use (Haghtalab et
al., 2020; Morton et al., 2013; Nobre et al., 2016). However, the CAETÊ

in its PFT approach tends to show the overestimation in a much higher
degree and in more locations throughout the basin, with emphasis on
the central region and basin edges when compared to the PLS (Fig. 2).
On the other hand, the PLS approach tends to underestimate mean C
values in some regions, for example, in the east and southwest parts of
the basin. The PLS approach presented more areas with no differences
between simulated and reference values, (white cells in Figs. 2b and e)
and a higher number of points closer to the 1:1 line in the scatter plot
(Fig. 2c and f) thereby matching the values used as reference reason-
ably well.

The CAETÊ model simulated a total annual NPP of 122.3 Pg C yr⁻¹
(PFT approach) and 76.0 Pg C yr⁻¹ (PLS approach) for the Amazon
basin. MODIS-based estimation is 74.6 Pg C yr⁻¹ (Running and Zhao,
2021). By comparing the NPP simulated by CAETÊ with remote sensing
NPP estimations (MODIS; Running and Zhao, 2021), the PLS approach
revealed a reasonably good ability to capture broad spatial patterns of
remotely sensed NPP estimations (MODIS; Running and Zhao, 2021;
Fig. SM.3b and SM.3c), despite an underestimation in the Andean re-
gion and a small overestimation in the northwest/central basin region.
In contrast, using a small number of PFTs resulted in a widespread and
prominent overestimation for this variable (Fig. SM.3b and SM3c), ex-
cept for the underestimation in the Andean region.

3.2. Carbon stocks under reduced precipitation

The 50% reduction in precipitation caused a widespread decrease in
C stocks throughout the basin in both model approaches (Fig. 3a and b).
When considering the whole basin, total C loss was equal to 73.48 Pg C
and 49.43 Pg C for the PFT and PLS approach respectively, representing

Fig. 2. Evaluation of CAETÊ performance in representing aboveground carbon storage for both modeling approaches, PFT and trait-based approach, when com-
pared to two reference maps: Baccini et al. (2012) and Saatchi et al. (2011). The plots (a), (b), (d) and (e) show the spatial absolute difference between values
simulated by CAETÊ and those simulated by references. The plots (c) and (f) show the linear regression between CAETÊ and reference maps for all the simulated
grid cells. The 1:1 line is represented in red. AGB: aboveground carbon storage. The carbon projected by CAETÊ can be found in the Supplementary Material (Fig.
SM.8). PFT: PFT approach. PLS: trait-based approach.
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Fig. 3. Percentage change in total carbon stock (a and b) and in fine roots car-
bon stock (c and d) after reduced precipitation application (−50%) for the two
employed modeling approaches: PFT and trait-based approach. The change of
carbon storage in the compartment of leaves and wood can be found in the Sup-
plementary Material (Fig. SM.4). PFT: PFT approach. PLS: trait-based ap-
proach.

a similar percentage decrease compared to regular climatic conditions:
−57.75% for PFT and −57.48% for PLS approach. However, the spatial
pattern of change was significantly distinct. The PLS approach was able
to maintain C stocks in several grid cells where none of the PFTs sur-
vived in the PFT approach. This difference is more evident in central
Amazon and naturally drier areas, such as in the transition between the
Amazon forest and the Cerrado savannah in the southeast. Further-
more, the C losses simulated by the PLS approach presents a smoother
gradient between a grid cell value and its neighboring cells and across
different basin regions, unlike in the PFT approach, which shows more
abrupt differences between grid cells. Surprisingly, in grid cells where
both modeling approaches maintained at least a minimum C stock, the
PFT approach presented higher values when compared to those from
the PLS one (Fig. 3a and b).

Specific plant compartments also showed distinct patterns of
changes when comparing the employed modeling approaches (Fig. 3c
and d for fine roots, Fig. SM.4 for leaves and wood). None of the com-
partments showed an increase in C stock with precipitation reduction,
except for the fine roots compartment in the simulation with the PLS
approach (blue areas in Fig. 3d), such an increase is more apparent in
the transition between the Amazon and Cerrado and in the northeast
part of the basin. The increased investment in fine roots resulted in a
rise in the root:shoot ratio for the PLS approach, with an average in-
crease of 74.7%, in contrast to an average decrease of 7.7% for the PFT
approach.

3.3. Effects of reduced precipitation on functional composition

After applying the precipitation reduction, we found high dissimi-
larity index values (close to 1; Table 1) owing to changes in the trait
probability density distributions for the six plant functional traits (Fig.
4). These dissimilarities degrees indicate that the communities signifi-
cantly changed in terms of their structure and composition under mois-
ture stress. For example, trait composition shifted away from hyper-
dominance (decrease in the peaks of the curves) of a previously re-
stricted range of values toward a density increase in other trait values
that were previously rare (very low density) or absent (Fig. 4). Addi-
tionally, the traits in the hypervolumes presented a pronounced modifi-
cation in the way they occupy the functional space (Fig. 5): the overlap
degree between the hypervolumes of the two climatic scenarios yielded
a value of 0.038 when considering the whole Amazon. Finally, the cen-
troid showed a displacement after imposing the climatic alteration, in-
dicating a change in the communities’ mean values and compositions
(Fig. 5).

Beyond that, with lower water availability, the distribution of the
single-traits along the functional space showed a higher diversity of val-
ues that presented an increase in density, that is, a higher probability of
occurrence, which resulted in a much more diffuse distribution within
the functional space (Fig. 4). The same pattern of distribution along
functional space observed for single traits arose when considering all
traits combined through the hypervolumes: an increase in the func-
tional space occupation by the traits (Fig. 5). The increase in density
was observed in traits with higher carbon allocation values to fine
roots, lower carbon allocation to leaves and to wood (Fig. 4a, b and c).
Also, higher values for carbon residence time in leaves and fine roots
but a decrease in wood (Fig. 4d, e and f).

Regarding the analyses in the finer scale, our results show the same
pattern that was found when considering the large scale (the whole
Amazon basin): an increase in the occupation of the functional space for
all the six functional traits in their probability distributions (Fig. SM.5
and SM.6) and an increase in the volume occupied when considering
the six traits together (Fig. SM.7). The high dissimilarity indices be-
tween trait probability density distributions with regular climate and
decreased precipitation (Table SM.4), together with the small overlap
between hypervolume, indicate that as well as found in the Amazon
basin scale, the communities in the three 10×10 grid region underwent
a functional restructuration.

3.4. Reduced precipitation impacts on functional diversity facets

The alterations in the density distribution of functional traits drove
changes in the three facets of functional diversity (Fig. 6). Functional
richness and functional evenness increased in a level higher than 100%
for all the six considered traits. Divergence had an increase of more
than 200% for the leaf allocation trait, while the other traits displayed a
reduction in this facet (Fig. 6c). From a multi-trait perspective, there
was an increase in richness due to the enlargement in the volume occu-
pied by the communities within the functional space (Fig. 5): under cur-
rent climatic conditions, the size of the volume that the data occupied

Table 1
Dissimilarities of trait probability density distributions (Fig. 4) with the ap-
plied reduction in precipitation (−50%) for the PLS approach. The closer the
value is to 1, the more dissimilar the curves are to each other.
Functional trait Distribution dissimilarity

leaf allocation 0.680
root allocation 0.656
wood allocation 0.638
leaf residence time 0.678
root residence time 0.664
wood residence time 0.755
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Fig. 4. Density distributions of functional traits using the trait probability density method (Carmona et al., 2016) for the trait-based approach. The curves corre-
spond to the probability density distribution of trait values across the Amazon basin. Each boxplot represents the median value and variance for each trait in each
climatic condition. The boxes extend from the first to the third quartiles, and the whiskers extend from the minimum and maximum data. The outliers are shown in
gray dots. The orange curves/boxplots represent the results with the applied low precipitation scenario, and the blue curves/boxplots represent the results concern-
ing the regular climate conditions. The plots from (a) to (c) show the results concerning the allocation traits, and the plots from (d) to (f) display the results for the
residence time traits. NPP: net primary productivity. The dissimilarities between the distributions before and after the reduced precipitation are presented in Table
1. Note that the scales of the y and x axes are different for allocation and residence time traits. The graphs are presented in this way to improve readability. The
gray dotted lines represent the initial possible range of values for each trait (showed in Table SM.1). The plot (c) only shows one dotted line since the grass strate-
gies present no allocation to wood tissues, hence the line in the point 0 overlap the y axes.

was equal to 1.71 while under reduced precipitation we found a volume
size of 47.84.

On the finer scales, like in the whole basin, an increase in the range
of trait values (Table SM.4) and in the volume occupied when consider-
ing the six traits together (Fig. SM.7) indicate a rise in functional rich-
ness. Beyond that, the curves from the trait probability density distribu-
tions (Fig. SM.5 and SM.6 and Table SM.4) showed a high distribution
dissimilarity (∼1) and the hypervolumes (regular climate and reduced
precipitation) presented a small overlap for the three analyzed regions:
0.006, 0.001 and 0.007 for the northwest, the center and the southeast
respectively.

4. Discussion

4.1. Model performance

Our results indicate that the inclusion of trait variability in vegeta-
tion models may lead to considerable improvement when simulating
the vegetation C cycle with current climatic conditions. Compared to
reference data (Fig. 2 and SM.3), our simulations with the PLS approach

were able to represent NPP and vegetation C storage reasonably well
and showed better agreement (spatial distribution and total values)
than the PFT approach). Improved accuracy in biogeochemical vari-
ables has already been observed in other PFT-based models when trait
variability was added (Fyllas et al., 2014; Sakschewski et al., 2015;
Verheijen et al., 2013). Trait variability confers a higher diversity of
community responses to environmental filtering through climatic het-
erogeneity, thereby allowing a more realistic simulation of plant com-
munity assembly (Keddy, 1992) avoiding a complete switch in vegeta-
tion state, such as a catastrophic Amazon dieback (Lapola et al., 2018),
due to abrupt changes in plant performance and establishment success
(Fyllas et al., 2014; Sakschewski et al., 2015; Scheiter et al., 2013).

Both modeling approaches show some mismatch with regard to the
reference maps, such that there appears to be an overestimation of
aboveground vegetation C storage and NPP, and especially so for the
PFT approach (Fig. 2 and SM.3). This is because the PFTs (chosen from
previous PFTs implemented in other vegetation models) are already pa-
rameterized to present a high performance (or optimal trait combina-
tion) in the climatic envelope found in regions dominated by tropical
forests, which allowed a more frequent occurrence of PFTs with higher

8



CO
RR

EC
TE

D
PR

OO
F

B.F. Rius et al. Ecological Modelling xxx (xxxx) 110323

Fig. 5. Hypervolumes created with the six functional traits together through the method of Blonder et al. (2018). The volumes here represented refer to the trait-
based modeling approach simulations. The hypervolumes were created after the data were submitted to a PCA (see Fig. SM.10). The blue points indicate the data in
a regular climate scenario, and the red points indicate the scenario of −50% of precipitation in the study area. The darker the color of the point, the higher the den-
sity of the value within the functional space. The bigger circles represent the centroid (i.e., the mean values) of data distribution.

vegetation C storage (Scheiter et al., 2013; Verheijen et al., 2013). Fur-
thermore, both approaches show a tendency to overestimate vegetation
C storage and NPP at the edges and in the central/northwestern Ama-
zon basin (Fig. 2 and SM.3). These inconsistencies could be attenuated
through the improvement of some caveats of the CAETÊ model. First,
such an overestimation can be linked to the lack of representation of
human land use and fire for determining vegetation distribution in the
model (Houghton et al., 2001; Saatchi et al., 2007). Another important
caveat is that the model does not yet represent impacts on vulnerability
to cavitation and embolism (Anderegg et al., 2016; Oliveira et al.,
2021). The lack of representation of human land use, fire and plant hy-
draulics may be particularly important to achieve a more realistic rep-
resentation of C storage in the edges of the basin (Eller et al., 2018;
Joshi et al., 2020; Papastefanou et al., 2020; Rowland et al., 2015). Fur-
thermore, nutrient cycling (nitrogen and phosphorus) is not repre-
sented in our model and low soil nutrient availability in the Amazon
may limit vegetation C storage across the Amazon basin (Fleischer et
al., 2019; Yang et al., 2019).

It is important to highlight that despite using the maps produced by
Saatchi et al. (2011) and Baccini et al. (2012) as reference, these maps
include other sources of uncertainties (Mitchard et al., 2013) and there-
fore present different estimates of aboveground biomass across the
Amazon basin.

4.2. Reduced precipitation impacts on vegetation carbon storage: comparing
a PFT with a trait-based modeling approach

We found that, in accordance with previous literature (Enquist and
Enquist, 2011; Fauset et al., 2012, 2015; Wieczynski et al., 2019), the
inclusion of trait variability in vegetation models in fact matters for pro-
jecting the impacts of environmental change in ecosystems. Although
the two approaches applied in this study (i.e., PFT vs. PLS) show similar
changes with regard to total basin vegetation C budget, spatial patterns
showed that only considering this biogeochemical variable can hide im-
portant details about the mechanism in which trait diversity determines
ecosystem functioning. For example, the inclusion of trait variability in
the model avoided sharp boundaries (especially in naturally) in drier

regions, showing a more subtle, less sensitive, and probably more real-
istic change in C stock across the basin (Fig. 3) when compared to mod-
els PFT based that commonly simulate the Amazon dieback (Cox et al.,
2000, 2004; Lapola et al., 2009; Oyama and Nobre, 2003).

Disturbances are expected to trigger shifts in the occurrence and
abundance of species/functional traits to adapt to the new environmen-
tal conditions (Aguirre-Gutiérrez et al., 2020; Barros et al., 2016;
Esquivel-Muelbert et al., 2018). Such changes were well captured in our
modeling experiment for the PLS approach: similarity/dissimilarity in-
dices (for the single and multi-trait perspectives), together with cen-
troid displacements, showed that the functional structure and composi-
tion of the plant communities were significantly modified by the cli-
matic forcing scenario. This ability to functionally reorganize and cope
with new climatic conditions in the PLS approach (allowed by trait vari-
ability) was decisive to the effects of reduced precipitation on both the
total and the spatial distribution of C vegetation storage. Trait variabil-
ity allows for functional density compensation process that counterbal-
ances losses or decreases in the dominance of plant life strategies, thus
decreasing the impact of perturbation on ecosystem functioning
(Gonzalez and Loreau, 2009; Mori et al., 2013; Sakschewski et al.,
2016). On the other hand, in the PFT approach, alternative PFTs are too
few to compensate for losses in establishments, hence, this model ap-
proach prevents better suited trait combinations to establish, leading to
higher occurrence of grid cells in which none of the PFT's survived (Fig.
3). This severe effect of environmental change using a PFT approach
corroborates other modeling studies (Huntingford et al., 2013;
Sakschewski et al., 2016). Our results reinforce the importance of func-
tional diversity for maintaining ecosystem functioning and give support
for the “insurance hypothesis” (Mori et al., 2013; Yachi and Loreau,
1999), thus strengthening the assumption that diversity can promote
ecosystem stability (Tilman et al., 2006).

4.3. Functional composition and the selection of plant life strategies

The changes in functional composition and structure due to reduced
precipitation in the PLS simulation is supported by the dissimilarity/
similarity indices found between the trait probability density distribu-
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Fig. 6. Percentage change in the functional diversity components (diver-
gence, evenness and richness) with the applied precipitation reduction sce-
nario (−50%) for the trait-based modeling approach. This results concern to
the Amazon basin spatial scale. Allocation to fine roots (afroot), leaves (aleaf)
and wood (awood). Carbon residence time for fine roots (tfroot), leaves
(tleaf) and wood (twood).

tions and the hypervolumes, respectively. The centroids’ displacements
also showed that the dominant values (composition) were modified
with the new climatic condition. This high capacity of communities in
the PLS approach simulations to functionally reorganize enabled shifts
in functional community composition, thus corroborating with the hy-
pothesis of a selection toward plant strategies with higher investment in
roots in drier climate conditions (Fig. 4b and e). The higher investment
in roots simulated by the PLS approach was to the detriment of invest-
ment in leaves (Fig. 4a and d) and woody tissue (Fig. 4c and f), thus
leading to higher root:shoot ratios. Higher root biomass enabled water
uptake and allowed the community of the PLS simulation to better deal
with the imposed moisture stress and maintain C stocks or reduce the
degree of biomass loss when compared to the simulation using PFTs.
The prioritization of root investment at the expense of other tissues in

response to drought has been observed in manipulative ecosystem ex-
periments and from monitoring forest inventory plots (Doughty et al.,
2014; Kannenberg et al., 2019; Rowland et al., 2014). Given the limited
trait variability, the PFT approach did not show these changes in C in-
vestment, increasing mortality rates and preventing the PFTs from es-
tablishing in some grid cells, thereby rendering the ecosystem more
vulnerable in general (Fig. 3a), as predicted.

Notwithstanding, an unexpected result was that in some grid cells
the amount of C stock in the PFT was higher than that in the PLS ap-
proach with the applied reduced precipitation (Fig. 3a and b). This oc-
curred due to an increase in the root:shoot ratio in the simulations with
high trait variability, that is, C was allocated toward pools with shorter
turnover times (fine roots), which result in less total vegetation C stor-
age (Chave et al., 2009; De Kauwe et al., 2014). Although the increase
in fine roots in the PLS approach provides resistance to moisture stress,
thereby preventing the total loss of carbon in several grid cells, it also
led to lower vegetation C storage (in some locations) compared to the
PFT approach. This result is contrary to the widely accepted paradigm
that higher functional diversity maximizes ecosystem function
(Cadotte, 2017; Tilman et al., 1997; Tilman et al., 2014). Our findings
of the community-wide reorganization and associated increase in trait
variability in response to novel climatic conditions indicate that func-
tional diversity per se does not necessarily maximize ecosystem func-
tions and properties such as C storage (Chiang et al., 2016; Holzwarth et
al., 2015) but that functional diversity can influence ecosystem func-
tions in more than one direction (Hooper et al., 2005; Shen et al.,
2016). In our study, the functional composition, and especially the
dominant plant functional trait, was more critical in determining the C
stock than functional richness, with other studies finding similar results
(Chiang et al., 2016; Finegan et al., 2015; Ruiz-Jaen and Potvin, 2011;
Roscher et al., 2012). Overall, this suggests that trait-based modeling
approaches can improve our mechanistic understanding of the linkage
between functional diversity and ecosystem functioning.

4.4. Environmental changes modify functional diversity components

Our results from analyses of the PLS approach showed that a reduc-
tion of precipitation modified the way that traits occupy the functional
space (Fig. 4 and 5) and, as consequence, the functional diversity facets
(Fig. 6). For example, reduced precipitation led to a wider range of ex-
pressed trait values in functional space (Fig. 4 and 5) and thus increased
the community's richness (Fig. 6a). This increase in functional richness
contradicts the expected outcomes from the environmental filtering hy-
pothesis (Keddy 1992; Grime 1998; Boersma et al., 2016; Funk et al.,
2017; Perronne and Gaba, 2017). Our findings may be explained by a
decrease in hyperdominance in response to simulated climate change,
which allowed a higher range of ecological strategies to become viable,
in accordance with the compensatory dynamics theory (Gonzales and
Loreau, 2009; Walker et al., 1999). Importantly, these results provide
further evidence that environmental filtering not always reduce trait di-
versity (Le Bagousse-Pinget et al. 2017; Laughlin and Laughlin 2013)
and that functional richness can increase after disturbance, especially
so if environmental change mainly affects the dominant plant func-
tional strategies (Boersma et al., 2016; Funk et al., 2017; Mouillot et al.,
2013a). Beyond that, it is necessary to consider that the role of the envi-
ronmental filtering as a driver of functional structure will strongly de-
pend on the traits being considered (de La Riva et al., 2017).

The observed increase in functional richness is also certainly linked
to the CAETÊ functioning mechanism. Model experiment of reduced
precipitation resulted in higher functional richness mainly to the in-
crease in the range of traits values of traits related to roots C allocation
and residence time, which in turn, thanks to the considered trade-offs,
was metabolically balanced by increases in functional richness related
to other traits. In addition, one could hypothesize that the overestima-
tion of C storage in drier regions at the edges of the Amazon basin
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would be the cause of higher simulated functional richness under re-
duced precipitation. However, it is more reasonable to first consider
that, at the community scale, higher C stock may not be directly linked
to functional richness. For instance, we found that despite the model
simulates higher value for total C in the northwest of the Amazon basin,
this region also showed lower functional richness than the southeast for
all the functional traits, beyond a smaller increase of functional richness
with reduced precipitation (Table SM.4 and Fig. SM.5 and SM.6), and
the concentration of trait values in certain restricted areas of the func-
tional space/volume could be one of the causes of such pattern.

There was an increase in evenness in all traits considered in the PLS
approach (Fig. 6b). The evenness increase is tightly related to the ob-
served decrease in dominance and increase in the abundance of trait
values that were very rare in regular climate condition. Evenness can
also be interpreted as evidence of the effectiveness of using the func-
tional niche space; the higher the evenness is, the higher the utilization
of the total functional space is (De La Riva et al., 2017; Hillebrand et al.,
2008; Mouillot et al., 2011). Therefore, our results indicate that a
change in the environment can force the community to better occupy
the functional niche space, thus providing a lower sensitivity to the ap-
plied reduced precipitation, if the community presents sufficient vari-
ability in its trait values.

We observed a general decrease in divergence (Fig. 6c), which was
caused by the strong decrease in abundance of previous dominant trait
values which tended to concentrate at the extremes of functional spaces
with the regular climate condition. Consequently, other trait values,
concentrated along the functional axis, that were not as abundant be-
came significant for the community after the reduction in precipitation.
Based on empirical evidence obtained by analyzing a disturbance gradi-
ent, Mouillot et al. (2013a) also found a decreasing divergence with
greater disturbance, which was attributed to a declining in the abun-
dance of specialist species that were the most impacted by the distur-
bance. In addition, this decrease in divergence can be additional evi-
dence that the frequency distribution of trait values in the functional
niche space maximizes the total community variation in functional
characters (Mason et al., 2005).

It could be argued that the observed changes in functional diversity,
especially the increase in functional richness, can be attributed to the
fact that we considered the whole Amazon basin as a single ecological
unit while it is known that a high environmental heterogeneity exists
throughout the basin. However, a similar pattern was found across a
gradient of precipitation sampled from the northwest, center and south-
east of the Amazon basin (Fig. SM.5, SM.6 and SM.7). This finding high-
light that our results are not dependent on the spatial scale of analysis
or the degree of environmental heterogeneity. Nevertheless, to avoid a
simplification of diversity when considering large spatial scales, we rec-
ommend that future studies should try to integrate functional diversity
across spatial scales, in this case from grid cells to the whole Amazon
basin, as described in Carmona et al. (2016).

5. Concluding remarks

In this study, we show that incorporating trait variability in a vege-
tation model improves accuracy in representing ecosystem functioning
and also plays an import role on ecosystem response to climate change.
The trait-based modeling approach allows for a more in depth analysis
on the mechanisms that connect ecosystem functioning and the differ-
ent components of functional diversity. With the PLS approach, we
show that the traits diversity allows the community to functionally re-
organize under environmental changes, occupying a greater amount of
functional space and increasing the occurrence of strategies that deal
better with the applied lower water availability (higher investment in
fine roots). Investment in roots at the expense of investment in leaves
and wood led to a relatively lower total carbon storage. Functional re-
organization also triggered changes in the primary components of func-

tional diversity: increase in richness and evenness, and decrease in di-
vergence. On the other hand, the use of a small number of PFTs restrict
changes in the functional structure of the community, leading to a more
expressive impact of environmental change on ecosystem functioning.
In addition, PFT approach hinders the assess to functional diversity
analyses.

This study brings further evidence that the inclusion of trait vari-
ability may have implications for modeling the so-called Amazon tip-
ping point (Lovejoy and Nobre, 2018) since a trait-based-like approach
would potentially yield more subtle, but not necessarily less relevant,
responses of the forest vegetation to extreme climate change
(Sakschewski et al., 2015).
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