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RFVELATION OF IMF'ORKATION 
IN A NASH EQUILIBRIUK 

Pradeep Dubey 

1. INTRODUCTION 

Consider an extensive game in which players have disparate informa- 

tion about moves of nature. The question is: To what extent is this 

revealed by them to one another in a Nash Equilibrium? Suppose (i) 

nature's moves are finite* (ii) players' moves and payoffs are "smooth," 

and each can observe some "non-degenerate signal" based on others' 

moves. Construct the fictitious game 7 from the original I? by modifying 

information conditions in the following way: a player observes nothng of 

others' moves in 'i: but, a t  the same time, finds out everything about 

nature's moves that could have been revealed to h m  in r via the slgnals. 

If the set of players is n.on-atomic, we show that generically (in the space 

*This is tantamount, in our context, to: players' information partitions on nature's moves 
are finite 



of payoffs) the Nash outcomes of T' coincide with those of 7 (proposition 

1). In this sense, information is "fully revealed" in a Nash Equilibrium 

(N.E.). This may be of use in proving the existence of N.E.'s in T', since 
N 

they exist in I' under standard concavity assumptions on payoffs. Indeed, 

with concavity, a diluted version of this result carries over also to the 

case of finite players. Here we subject the N.E.'s of T' to  a sensitivity 

analysis on information. The idea b e h n d  t h s  is to  limit the fineness of 

observation of others' moves, by introducing a bound of size E (for small 

E ) ,  and is taken from [3]. Then we find tha t  the N.E.'s w h c h  subsist in T' 

are also fully revealing (proposition 2). 



2. THE NON-ATOMIC C A Z  

Consider an extensive game with non-atomic players as described in 

[2]. To make our point succinctly, we shall work with a host of simplifying 

assumptions, some of whch can be obviously generalized (see the 

remarks). 

Let Y be the set of positions (nodes) in the game tree,  z, E Y  its root, 

and Y + c Y  the subset of terminal positions. Define the 

lthlayer q c Y ,  for l = 1 , 2  ,..., by: 

5 = lz E Y :  z is at  a distance 1 from z, { 

(By t h s  distance we mean the number of arcs on the unique path from z, 

to 2 . )  The player-set is the interval [ o , n )  equipped with the Lebesgue 

measure. The subinterval [i-1,i) corresponds to players of type i ,  

l l i l n .  N = 11 , . . . , n ]  is the set of all types. 0 denotes a move of 

nature. For any Z E Y \ Y * , ~ ( ~ ) E ~ ~ ,  1 , . . . , n ] indicates who is to move a t  

z and S ( z )  is the set of moves available. (Note that all players of any 

fixed type are placed symmetrically in the tree.) Assume that  the game 

is layered as defined in [3], i.e. 

(i) n and S are constant on 5 c Y \ Y +  

In view of (i) WE! can talk of n ( l ) , S ( l )  associated with layer 1. Let 

n 
Li=ll :n(l)=ij ,  Lt= U Li and further assume 

i = l  

(ii) the game has finite length, i.e., YL = Y* for some L ,  

(iii) S (1)  is finite if 1 EL,, 



(iv) S (1)  is the unit simplex in Rk,(') if [EL,, i .e. ,  it is the convex hull of 

the unit vectors and the origin in Rk('). 

Thus, if and iEN , the arcs out of any X E ~  correspond to the set of 

all measurable functions from [i-1,i) to the unit simplex S(1) .  

Put k = n I S(1) 1 ( is for product, 1 .  I for cardinality). Since 
I €Lo 

nature picks all of its moves (states) and players pick only one (a t  the  

nodes labeled by their type), any such choice produces* k paths from x, 

to Y*, called an outcome of the game. 

For simplicity we will assume that  players can observe the integral of 

the moves picked a t  any position. (Tbs can be relaxed - see remark 11.) 

Then any outcome in the tree has a list of integrals associated with it, 

which will be called a signal. These signals can be identified with 

X [ ~ ( l )  ] ' ' I ,  for CL = X S ( t ) .  and viewed as a subset of Euclidean 
1 E L ,  t €Lo  

t <l  

space Rq of dimension q = I CL I k ( 1 )  (where 1 CL ( is understood to  be 
1 EL. 

1 if the Cartesian product is over an empty set). For any outcome p in 

the tree,  let P ( ~ ) E  X [ S(1) ] ''I be the signal produced by it; and for a 
I E L ,  

player t ~ [ i - 1 . i )  of type i ,  let q I ( p ) c  X [ ~ ( 1 ) ] ~  be the vector of 
I E ~  

moves picked by t at positions on t h s  play that are labeled by his type. 

Choose convex neighborhoods S(1) of S(1) and denote A! ( ~ ( 1 )  ] ' ' I  by C. - 1EL. - 

X [ S ( l ) ] l c i l  by Xi. Let LJi be the spacee* of all c2 functions from CixX 
1€L(  - 

We consider only those choices by players that are jointly measurable. 
* *  Other spaces of payoff functions can dso be considered. See remark I. 



to the reals, endowed with the C2-norm. Denote U' x ... x uN by U .  Any 

point u = (ul , . . . , %)EU yields a payoff function n: to each player t 

by the rule: if t ~ [ i - l . i ) ,  then  n:(p) = ui [ * ( i t ( P ) , ( D ( P )  ) for any outcome 

To complete the description of the game we must specify the infor- 

mation partition Ii on u = Y(i) for each type i. This is accomplished 
1 ELi 

in two steps. We will first describe an auxiliary partition EZ and then 

specify how it  is refined to  get IZ. For l€Li ,  a partition JL of CL is given 

w h c h  tells us i ' s  a priori information about chance moves. Every Z E ~  

has a n  aECL linked to it  on the unique path from z, to z .  Thus JL induces 

a partition EL of 5 in the obvious way: expand each v €Jl to tz €YL:z is 

linked to some aEv 1.  (If CL = $ we take EL = lYLj.) Putting together the 

EL, for all 1 in Li, we have Ei. Ei will need to be refined to express the 

fact t ha t  any t in [i-1.i)  can,  in addition, observe the integral of moves 

picked a t  some of the layers that precede h s  turn. This too has to be 

specified exogenously. For 1 EL,, let P(1) be some subset of It  EL,:^ <1 j .  

Interpret this to  mean: when he is a t  layer 1 in Li, any player of type i 

can find out the choices made previously a t  the layers in P(1) .  Take any 

two z and y in 5 .  Say "z - ymod ~ ( 1 ) "  if the unique paths from z, to  z ,  

z, to y have identical integrals associated with them a t  each layer in 

~ ( 1 ) .  Then " - mod ~ ( 1 ) "  is a n  equivalence relation which yields a parti- 

tion KL of 5 .  Collecting the  KL , for all 1 in Li, furnishes a partition K' of 

Y(i). 



A t  last we are ready to define l i .  For any two partitions PI and Pz of 

a set  D ,  PI T/P2 is the coarsest partition of D whch refines both P I  and 

P2. Then 

ri = Ei VKi, 
(For 1 € L i ,  the partition 4 1 7 ~ ~  induced by I' on & will be denoted I L )  

I t  will be useful to build another collection [ ? j i E N ,  related to 

i l i j iEN. Fix layers t and 1, t <l , and a partition Qt of Ct . Then Qt induces 

a partition Qtl on CL via the equivalence relation on CL: al - az if al  and 

az follow from the same set in Qt . Define F L ,  for all 1 in L ,, inductively as 

follows: 

(Here V ytL = tCl  j if P(1) is empty.) Expand each Yl to a partition 
t E P ( I )  

on 5 as before. Then 7 is obtained by putting together x ,  for all 1 in Li. 

Given a choice of payoffs u E  U ,  we will look a t  the two games: 

F(u) with information partitions tli j i  EN , and 

N 

r ( u )  with information partitions 17 j i E N  , 

Let G stand for  any of r, F. A strategy of a player t ~ [ i - 1 , i )  in the game 

G consists of the choice of a move in S(z) a t  every z €Y(i) ,  subject to the 

constraint that these be identical at  positions that he cannot distinguish 

in h~.s information partition in G. Let s ~ ( G )  denote the set  of all stra- 

tegies of (any player of) type i. (Thus, for example, 



A choice of strategies s = ts t : t  € [o ,n ) ,  s t € S i ( ~ )  if t € [ i - l , i ) ]  in the 

game G will be called measurable if it induces a measurable selection of 

moves a t  each position. If s is measurable, it gives rise to an outcome in 

the tree whch we will denote by p ( s ) .  Given s and r t  €Si (G), (s I r t )  is the 

same as i but with s t  replaced by r t .  Note that if s is measurable so is 

(s l r t ) ,  and thus our next definition makes sense. 

A Nash Eguilibrzum (Y.E.) of the game G(u) is a choice of strategies 

s in G which satisfies, for a11 t ~ [ o  ,n): 

(a) s is measurable 

(b) n:[p(s \ r t ) ]  s n : [ p ( s ) ]  for ~ ~ ~ T ' E s ' ( G )  

(Here i is the type of t .) If s is an N.E. then p ( s )  will be 'called a Nash 

outcome (or N.E. outcome). 

Call a choice of strategies type- symmetric if it is constant on each 

[ - I )  and let S*(G) be the set of all such choices.* (Then 

S*(G) = S'(G)X . xSn(G) in a natural way.) Denote by r ) [  G(u) ] the set  

of type-symmetric N.E.'s of G(u) and by y G(u) = t p ( s ) : s ~ q  G(u) j I I I I 
the set of Nash outcomes arising from r )  [ G(u) 1. 

Let P(G) be the set  of all outcomes that  arise from a type-symmetric 

choice of strategies in G.  Suppose z € P ( G )  consists of the k paths 

9 1 , .  . . , q k .  For  EL,, denote by gj( l)  the move picked in q j  at  layer L .  

Then it is clear from our definition of that 

Qjl qr P ierce v E? +3 qj  (l)=qr ( 1 ) .  

So, for  v €8, we can talk of the move z ( u )  picked out by z = ( q  . . . , qk) 

- - 

*Note that any type-symmetric choice is automatically measurable. 



a t  v .  Say that z is fully- revealing if, for all 1 EL,: 

V 1 ,  ~ ~ € 8 ;  7, v2*z (v ])#z ( ~ 2 ) .  

We will show that all z in y --equivalently* in 7 r ( u )  -are generi- I- I 
cally fully revealing. Ths  will be established, to begin ~ l t h ,  for 

?[?(u) ] = l z E ? ) [ ~ ( u ) ] :  no player picks a vertex as a move in z j  and we - 
shall worry about vertices towards the end. Abbreviate s i ( ? )  for a whle 

by si. si is a product of I ?li 1 simplices. Partition si into 

s i ( l )  , . . . , s i [ [ r i ) ]  by choosing relative interiors of faces of each of 

these simplices. (Thus each ,Si (.) is also a product of (7 1 simplices.) For 

(1') There is an open dense set Vt of U with the property: 

I z 1 )  ] ( J + z is m l y  revealing 

ZESI  a(1)  x . . x Sn a ( n )  ] 
The justification of (1') is most simply written in the case when each 

s i [ a ( i ) ]  picks the full face of each of the 17 ( simplices of i ' s  moves. 

(The general case involves some more notation but the identical argu- 

ment.) List players' strategic variables: 

.-.4 

Recall that the - S(1) were neighborhoods of S(1). . Put Z = X [ ~ ( l )  ] 'I1 ' 
LEL. - 

and note that  Z is a neighborhood of s'($x . . . xsn(?). Consider 
w 

*In the case G = F ~ r e  can define s ES*(r) to be fully revealing in exactly the same way. 
Then s is fully revealing p (s) is fully revealing. 



given by: 

where z abbreviates yl j p  (y ) 1. Note that, by assumption. no player can 

arpk affect the integral, i.e., -= 0 for any component k of yl and 
az, 

i 
lljlrn(n); also - is 1 if k = j and is D otherwise 

az, 

For fixed U E U ,  Du will denote the restriction of D to Z ,  i.e., 

Du(y) = D(u~Y). 

The set f y €Z:y is not fully revealing 1 is a finite union of submani- 

folds M 1  ,... . .., MT of Z ,  where each Mt has positive cohmension in Z .  It is 

also clear that [z€q[~(u) - ]n[S1(a(l))x . . xSn(a(n)) ] : z is not fully 

T 
revealing( c y D;'[~O{XM~ . where 0 is the origin of ~ ~ ( " 1 .  

t = 1  I 
D is clearly transverse to every submanifold of its image. By the 

transversal density and openness theorems (see, e.g., 18.2 and 19.1 of 

[I]). there is an open dense set Vt in ( u ) ~  such that: 



u E Vt Du is transverse to [O]xMt for t =I , . . . , T a t  every y E B .  

(Here B is any compact set  chosen to ensure that  BcZ  and 

s l [ a ( l )  ] x . . . XS" [ a ( n )  ] c  Interior of B .) But then if u E Vt(think of Du 

as restricted to the interior of B from now ~ n ) :  

codim D,-'[Io]xM~ ] = codirn ~~Ojx1d t )>m(n ) . f o r t= l .  T, 

Therefore D,-' 10jxMt is empty for u ~ l ' ( .  This verifies ( 1 ' )  With 
[. I 

V=n Vt , we get: 
t 

(1) There is an  open dense set V of U such that 

[mu €1 1 + z is fully revealing 
€71 r(u) - 

We still have to take care of vertices. Drop the requirement that  S is con- 

stant on layer 1 .  In fact require it to vary on CL. If a player is a t  a node 

where he cannot distinguish between al  , . . . , at in CL, then say that  the 

set of moves available to his type is* S ( a l ) n  . . . n S ( a  ) ,  and assume that  

these intersections are full-dimensional polytopes. If the S ( a i )  are in 

"general position", vertices of these polytopes will be distinct a t  distinct 

elements of x. Thus vertices will automatically be "fully revealing." 

Furthermore, i f  we fix some moves (in the polytopes corresponding to ele- 

ments of U x) to be vertices, and let Z'  be the manifold of the remaining 
L EL. 

moves, the set  tz E Z '  : z is not fully revealing ] will be a finite union of 

submanifolds of Z' of positive codimension. Then the argument used to 

establish (1) can be repeated, with Z replaced by Z ' ,  to  show that N.E.'s 

of the type given by Z' are generically fully revealing. But Z '  varies over 

* More' generally, it could be any full-dimensional polytype contained in 
S ( a l )  n . . . n S ( a t ) .  



a finite set .  (It is defined by a choice of vertices and of faces of the 
ry 

remaining simplices of moves in r . )  So we have: 

(2): same as (1) but with q replaced by q .  - 
For any play z  in p j r )  and 1 EL* let us define the partition IL ( z )  on CL 

which measures--so to speak--the information about q(~?ut.e'~ moves 

revealed by z .  z  induces I CL I paths from x, to 5 .  Denote them by 

[ p , : a E C L  1 ,  where pa  is the path linked to a. ~ a ~ " n , - , a ~ " i n  CL if the 

moves picked a t  layer t in pal a n d p a e  coincide for all t EP(Z) .  Then "-," 

is an equivalence relation which produces a partition KL ( z )  of C L .  Set 

( z ) = J I  11 KL ( 2 ) .  ~1 ( z )  generates a partition IL ( z )  on 5 by expanding, 

as before, each v E% ( z )  to tz E YL :z is linked to some aEv j .  Note 

z  fully revealing + IL ( z  )= ?; for 1 E L ,  

Let B be the collection of partitions { IL ( z )  I l  E L , :  z is in ~ ( r )  . For I I 
b  = t b L  j L  E L ,  EB denote by rb the game with the information partition bL of 

of 5 .  We claim, for any b  E B  \ !IL I L E L .  , - I 
( 3 )  There is an open dense set  Vb of U such that,  for every 

'1~Evb~7(u,b)=tz~7(rb(u)):t~l(z)IlE~.=b1=$. 

To prove ( 3 ) ,  fix b  = t b L  I L  EL..  Let - 
L +=mint 1 : bL #& j 

L*=[1 EL*:1<1 + J  

Clearly L+#$  (e.g. it always contains the first layer in L,) .  Consider the 

map: 



defined in the same way as D but now for the game Tb instead of P. (Thus 

A =  X [ S ( l ) ] I b l '  and dim A = m  n o r )  The set  ! Z E A : I  is not fully reveal- 
LEL. - 

ing a t  s o m e  layer I in L *  is a finite union of submanifolds A l ,  . . . 8 AJ 

each of w h c h  has positive codimension in A .  On the other hand, 

D' is transverse to every submanifold of its image, hence the sets in the 

union are generically empty, proving (3). (This argument again ignores 

vertices, whch  can be incorporated as explained earlier.) 

Take z = ( q l  . . ,qk) in l [ r ( u ) ] ,  with [I1(z)ILEL.= iblIIEL.=b BY 

the definition of IL ( z )  we get: 

By (4) we may define s"i E ,Si (rb ) by 

5' (V )= the common value of all qj ( L  ) that pierce v 

hm (Here v €bL,  L €Li .) Then s"', . . . , s produce the outcome z ,  and (recal- 

ling the non-atomicity of the player-set) constitute an  N.E. of rb.  In other 

words: 

Next take FEy[ r (u )  ] and suppose it is fully revealing. For z E Y ( ~ )  denote 

by li ( z )  the information set in li that contains z .  Define* si €,Si (7) by: 

qj(L) if some q j ~ { q l .  . . . . q k j  = Fpie rcesv  = l a ( = )  a t z  
s i ( v )  = [ arbitrary, otherwise. 

*Since z is fully revealing, the definition makes sense. 



Then sl, . . . , sn give rise to the play I and, again using the non-atomicity 

of the player set ,  constitute an N.E.  of I'. Summing up: 

I (6) z"~y[?(u)  1 .  I fully revealing + Z E ~ ( I ' ( U )  1 ,  
Then (2), (3),  ( 5 ) ,  (6) (and the fact that B is finite) imply: 

Propositbn 1 Assume vertices to be in general position. Then there is an 

open dense set 17 in U such that: 

[every z in y [I'(u) 1 is fully revealing. 



REMARKS 

(I) It might be more natural to vary payoffs on the terminal nodes Y' 

and to take the induced payoff of an outcome to be the expectation 

w.r.t. some fixed probability distribution j3 : CL 4 R , CL = n S (1) 
lELD 

Proposition 1 remains true in t h s  setting. For a in CL and i in N put 

H i  = X S(1) ,  Ha = X S(1) . An outcome z produces, for any player 
1 €Li - 1 EL,- 

tc [ i -1 . i )  . a point b ~ ( z ) . ~ ~ ( z ) ]  in each H ~ X H ,  . Let UP be the 

space of all ~ ~ f u n c t i o n s o n ~ ~ x H , ,  u:= X UiQ,U*= U f x  . . .  XU;. 
REC, 

For u = ( u l ,  . . . ,u,) E u ' , ~  = , and an outcome z put 

A 

n:(z) = j3(a)u:k:(z).$,(z)] . If we define the maps D . D q e t c .  
a€CL 

A 

using n; in place of n: , they are also easily checked to remain 

transverse to every submanifo1.d of their images. Thus the same 

proof shows that proposition 1 is true when we replace U by u . 

Various other spaces of payoff functions can be described which are 

"rich enough to satisfy the transversality condition needed to give 

proposition 1. 

(11) Signals were taken to be integrals for simplicity. More generally, let 

them depend on the measurable choice of moves a t  zc  U 5 modulo 
1 EL* 

null sets ,  i.e., two such choices that differ only on a null set  yie1.d the 

same signal. If we restrict to strategies in S*(r) (i.e., type- 

symmetric choices) then the signals produced by these a t  layer 1 EL, 



may be represented by a map: 

Require that p l  be smooth, and have full rank. Clearly the proof of 

Proposition 1 goes through. Even if p l  fai!ed to have full rank on sub- 

manifolds ML (1) , . . , ML [ f? ( l )  ] of positive codirnension in A I L ,  this 

would not matter  since the finite N.E.  set would generically miss 

M ( 1  , . . . , Mi [ f ? ( r )  ] anyway. Finally. suppose that pi generically 

reveals ------- i.e., a t  each point in its domain, except possibly a t  a fin- 

ite number of lower-dimensional submanifolds------- not all but some 

f ized subset of information (regarding chance moves) that existed in 

the layers in P(1). Then 5 has to be defined accordingly for the 

results to go through. 

(111) I t  is more natural to consider, instead of ui, the space Ui of all c2 - 
maps on D'=  [ 1 E L l  x [ s ( ~ ) ] ~ ] x [  I EL. x [ s ( z ) ] ~ .   map is c 2 0 n  D' I 
if it can be extended to a c2 map on some neighborhood of Di.) But 

if V is open dense in U= U1x . . . x Un then 

V=[ (u l  , . . , , h ) : ( u l  , . . . , ~ ) E v { ~ s  also open dense in - - - 
U1x. . . xun (where ui is the restriction of 1 ~ ,  to Di), T h s  follows - - - 
from the well-known fact that: 

(*) There is a K>O such that  : if I I u 1 I D ,  < E for any U E  4,  then 

there is an extension u*  of u from Di to CixC with 

I Ib*I I C l x C ~  

Thus defining payoffs on D' would not affect the result. 



(IV) We could take the sets s (1),1 EL. to be a finite union of submanifolds 

in ~ ~ ( ' 1 .  Proposition 1 obviously remains true.  I f ,  in addition, each 

S (1 )  is "nice enough so that (*) of Remark 111 holds, then again we 

can take V* to be open, dense in CT1 x . . . x Un.  

(V) Instead of defining Wi on Ci x C ,  let it be defined on an open set G~ in 

Euclidean space of dimension at least that of C Z ,  and suppose that a 

Fr 
smooth map CixC-+Gi now yields payoffs by: 

n:(P) = ~ ~ [ ~ ~ [ $ ~ ( p ) , p ( p ) ] ,  for t~[i-l,i) ] Assume that,  for every 

c 
z EX, the map C i 4  Gi given by F;(Z) = P ( z  , z )  has full raak every- 

where. Then proposition 1, and its proof, remain valid. We could also 

replace C by the appropriate space of signals taken from Remark 11. 

If the full rank condition fails the N.E. set  will no longer be generi- 

cally finite but a finite union of submanifolds of positive codimension. 

If the intersection of these with non-revealing strategies is transver- 

sal, then non-revealing N.E.'s will form lower dimensional submani- 

folds of N.E.'s ... and thus "most N.E.'sU would still remain fully 

revealing. We have not checked the details of this picture 

(VI) The assumption that  r is layered can be relaxed somewhat as follows: 

(a) Z E ~  a n d r r ( z ) = O 3 r r ( y ) = O a n d S ( y ) = S ( z ) f o r  a l l y E 6  

(b) z , y ~ q ;  z and y are linked to aECl rr(z) =rr (y) ,  s ( z ) = S ( ~ ) .  

Then Proposition 1 goes through, with 7 defined in the  appropriate 

way, by the same arguments. 



(VI1)The kind of games we have considered here may be of use in the 

analysis of strategic market games with uncertainty. See [4] for an 

example, where a special case of Proposition 1 is examined. 

(VII1)The information partitions I' need not satisfy the condition of "per- 

fect recall". But if they are refined in order to do so, the Nash oicbamer 

of F would not change. More generally, take any game in extensive 

form (not necessarily layered) and suppose that each information set  

is contained in YL for some 1 . Then it is easily checked that refining 

information by perfect recall leaves the Nash a a t c o & e ~  o 

invariant . 



3. THE FINITE CASE 

The game tree is defined exactly as in the non-atomic case except 

that N = 1 . . . . .  n ]  is the set of players. Thus every branch out of 

z E Y ( ~ )  is a move of player i (i.e.,  an element of S ( x ) ) ;  if n(1) =i  EN, then 

i observes the indivi2ual moves made in ~ ( 1 )  etc.  We can--and will-- 

simplify the space of payoffs somewliat. Observe that  the set  of outcomes 

[ ] ' " I  in the tree is now i.dentifiable with X S(1)  . Let U be just the space 
I E L .  - 

[ ] ' " I  of all c2 functions on X S(1) 
LEL. - As before, for 

U E ( U ) ~ ,  'rl(G(u)) (or y (G(u) )  ) is the set of all N.E.'s (or N.E.  outcomes ) - 
of the game G(u) where again G = I', F. First we note that there is an open 

dense set Vin (qN such that: - 
(7) u E v + every z in y[F(u ) ]  is fully revealing - 

This can be checked by repeating without change the argument for (2),  

and using in place of D the map from ( u ) ~  x  Z t o ~ ~ ( " ) x  Z given by: - 



Similarly the following analogue of (3) holds: 

(8) For any b € B \  , there is an  open dense set V of ( n N  -b - 

such that:  

For the rest of this section we will need a standard concavity assumption 

on payoffs. Put  Uc = t (u . . . . , un)€( qN: each ui is strictly concave on - 
X [ ~ ( 1 ) ] ' ~ ' .  for every fixed choice of the other variables j and note 

L E L ~  - 
N 

that it is open in (qN  By a well-known theorem. q(r(u))  # Q for U E  U, - 

Let us recapitulate the notion of an  E-N.E. introduced in [3]. Con- 

sider the sequence of moves on the path from z, to z ,  replace chance 

moves by the number 0 and call the resulting vector ~ ( z ) .  For z and y  

in YL, 1 EL*,  define: 

m if z and y  are in distinct elements ofEL 

I I M ( 2 ) - M  ( y  ) 1 ( otherwise 

where I 1 I I is the Euclidean norm. 

An s = (sl , . . . , s n ) ~ s l ( r )  x . . . x S n ( r )  gives rise to an outcome 

P ( S ) = [ P ~ ( S ) .  . . . . P ~ ( s ) ]  consisting of k paths in the tree.  These 

pierce each layer in 1 CL ( points which we will denote by z a ( s ) ,  a€C1. 

Here the point z , ( s )  has uECL linked to it ,  i.e., a 

occurs on the unique path from z, to z , ( s ) .  Put 

N , ( s  , E )  = t z E 5  : d r ( z , x a ( s ) )  < s  1, and 



E < E ( s )  , then the sets N a ( s  , c ) )  and N P ( s , & ) )  are disjoint whenever 

M ( X ~ ( S ) )  # M ( z P ( s ) )  . Thus for c <E(s) we can define sf on Y ( i )  as fol- 

lows: 

Note that s: € s i ( r )  for d < C ( S )  

We will say that s is an C-N.E. of r ( u )  if,  for each player i ,  

for all t €si(r) . This is intuitively the same as an N.E.  except that unila- 

teral deviations by a player are taken to be unobserved by others if they 

are of very small size. Let 

q + ( r ( ~ ) )  = I S  €sl(r) x . . x sn(r) : s is an E-N.E .  of r ( ~ )  for some C>O j 

and denote by y * ( r ( u ) )  the set of outcomes induced by r] * ( r ( u ) ) .  Our aim 

is to establish: 

Proposition 2 There is an open dense set  Vc of Uc such that  

u € V c = >  I 7*(r(u))  c 7 ( % ) ) ;  
if z " ~ y * ( r ( u )  ) ,  ZN is fully revealing. 

First we show: 

( 13) => Z € 7 t r b  (U 1). 

Fix c>O such that z is an E-N.E. outcome of r ( u ) .  Let ( q l ,  . . . , q k )  be the 

k paths in z .  (Recall that qt (1) is the move picked a t  layer 1 along qt .) 

From the definitions of Il ( z )  = bl and the strategy-sets in r ,  we get 



Also, it is clear that  each v in bl is pierced by at least one q,. Thus we 

, 
v Ebl 

( 1 4 )  qt pierces v 

q j  pierces v A 

may define F~ E S ~  (rb ) by 

=> qt ( L )  = q j  ( L )  

z E Y(2)  
( 1 5 )  i ? " ( x ) = q j ( l ) i f  

q j  pierces v 

Put -'- s - ( Z 1 , ,  , . ,P) and observe that  

( ~ ~ ( 5 ) ~  . . . , p k ( r ) )  = ( q l ,  . . . , q k ) = z .  It remains to show that Y c q ( r b  (u)) 

to verify ( 1 3 ) .  

A Let $ = ( G 1 ,  . . . ,sn)  be an  c-N.E, of r which produces the play z ,  i.e., 

A p  ( s ) = z ,  and let IV,, for  a €  u C1 be the neighborhoods associated with it. 
L€L. 

(Recall: N ,  has center x u @ )  and radius c < c ( c )  using the distance d r  .) 

Fix player i , w . l . o . g .  i = l .  put r 1 ( 6 ) = I t ~ s 1 ( r b ) : (  It-Z1 I I<&] . (sl(rb) is 

a product of simplices* and ( 1 . 1 / the Euclidean norm on it). Also, for 

t€sl(rb),  let (r(t) stand for ( t  ,z2, . . . ,;"I.) Note that,  by the definition 

Pick dl>O to ensure 

\ 

1 EL* 

a , @ E u  E J1 

( 1 6 )  z , ( ~ ) E v  1€bl 
z P ( Z ) ~ v 2 ~ b l  

V l # V 2  

=> ~ ( z ~ ( Z ) ) # M ( z ~ ( z ) )  



where g l ( v l )  is the move picked by E1 a t  (any point in) v l ,  e t c  Since 

z ~ ( B ) E v  Ebl  implies x a ( a  1 t ) ~ v  €bl  (for ~ E C ~ ) .  and Z i (z )  is constant on 

each relevant v € b l ,  (16) and (1 7) yield: 

(The second implication of (18) follows from the definition of I1.) Finally, 

by the continuity of M on X [ ~ ( l )  ] I C 1 '  (and recalling the definitions of 
1 EL. 

d r , s l ( r b ) ,  . . . , sn (rt ) )  , there is a d2>0 such that: 

za(Flt)and 

zg(7( t )are 

in distinct 

elements of I' 

' => ' 

(19) t E ~ ~ ( ~ ~ ) = > X , ( F I ~ ) E N ~  for all a 

Put d = min)d1,d2j. Since $5 (2)  is constant on each relevant N ,  we get,  by 

(191, 

f > 

M 1 t ) )  
and 

M(zp( r  I t ) )  
are unequal 

4 # 

a€ C~ I t ) )  =: i (za(s) )  

i = ( ) 2  . . . n 
(zu(Z))  = ;i(zu(51 t ) )  

t €SN1(6) 

- 
I->' 

( (19) is only used for the first equality; the last two are obvious from the 

A 
definitions). By (18), we can find a t E S ' ( ~ ) ,  for every t €Z1(d) , to satisfy: 



for all a € u I ~ ~ : n ( l ) = l  j .  (20)  and (21 )  give: 

A A 2  An - (22) t  ~ ? ' ( 6 ) = 3 ~  ( t  ,s t  , . . . , s ,  ) -p ( t  ,F2, , . . ,Yn)  

But 2 is an E-N.E. of r ,  so we deduce 

(23) u l [ P  (P(s"l t ) )  ] -l!P(P (W1 for f ~ ? ' ( d )  

Since u l [ p  ( p ( 8 l t ) ) I  is concave in t .  a local maximum must in fact be 

global, so (23)  holds for all t  €s1(rb),  which verifies S E ? [ ~ ~  ( u ) )  and 

thereby (13) .  

Noting that B is finite and U, is open in ( m N  , Proposition 2 follows - 

immediately from (?), (B), and (13 ) .  



FURTHER REXARKS 

(K) The variations mentioned in Remarks I - VlII go through in the finite 

case. 

(X) Let s be an E-N.E. of r(for E < ~ ( s ) )  , and suppose that the outcome 

p ( s )  produced by s is fully revealing. Then the sets N,(s ,E) ,  Np(s ,E) 

are disjoint whenever a and /3 are in distinct elements of TL , I EL, . 

Furthermore, each N,(s ,E)  is a union of information sets in r (aad 

thus the game r: below is a coarsening of T ) For z E ~ ( i )  . let I: (z) 

s 
be the information set  in r: that contains z . Now define T, by: 

a 

u Na(s .&)if z E N ~ ( . S  .E) for some /3 in J1 
(I€% 

Clearly the pair F: , r satisfies the conditions of the proposition in 

the Appendix Then any N.E. of i$ is also an N.E. of r by that propo- 

sition. On the other hand, it is immediate than an E-N.E. of r is an  

N.E. of r: . We conclude: s is an E-N.E of r , p ( s )  is fully revealing 

=> s is an  N.E. of r . Therefore, (recalling proposition 2) for 

' 1 ~  E vc ' Y *( r (u  )) c Y ( ~ ( u  1) . 

(XI) Suppose s is a fully revealing E-N.E. of T . Consider E '  < E . Then r:. 
5 5 s is a refinement of r, ; and the pair r,*,r, meets the requirements of 

the proposition in the Appendix. Thus 



So if we let  

y *  = ( )  x  x s n ( r )  s is an  E - N . ~  of for all suf- 

ficiently small e , we have: 1 
u E V ~  => Y * ( ~ ( U ) )  = Y * * ( r ( ~ ) )  . 

(XII) The notion of E-N.E.'s enables us  to give a concavity-free asymptotic 

version of the non-atomic result in proposition 1, along the lines 

spelled out in [3]. 



APPENDIX 

Let T be any game tree.  Denote by P the set of all outcomes in T . 

An outcome is now any collection of paths in T that could accrue from the 

choice of a move in every S (2)  , ~ ( z )  EAT . Fix payoff functions ITi : P+R 

for each player i . Consider two information patterns 

N 4 '  

I = \Ii j i E N ,  I = \IZjiEN on T whch satisfy the normal conditions (where 

~i = li or T i )  : 

(i) Ji partitions Y(i) = lz €Y:T(z)=i{ 

(ii) z,y E V E J ~ = > S ( ~ ) = S ( ~ )  

(iii) No path in T pierces any v in J~ more than once. 

Assume 

(iv) every ? is a refinement of I ~ .  

Denote by G,I? the games with information partitions 1,7on T 

Rnally, we will require that  information regarding chance moves is 

identical in li and ?. To make t h s  precise let F ( z ) ,  for ZEY, be the 
N. 

sequence of nature's moves on the path from the root to z .  For any v €Iz, 

let v be the unique element in li such that v cv.  Given a position z and an - - 
outcome z , say " z €2 I '  if z occurs on one of the paths induced by z ; 

N 

and say "z  is sn outcome in G " if i t  accrues from a choice of strategies in 

hr 

G . Assume: 

z is an  outcome in G "1 



Since S i ( ~ ) c S i ( E )  the claim makes sense. To verify it ,  take 
N 

s = fsi : i € ~ ] € r ) ( G )  and suppose s E ~ ] ( G )  , i .e. ,  there is some iEN and 

r€Si (c) such that the outcome p (s 1 iY) yields a higher payoff to i than 

p ( s )  . Let p(s (0  consist of the paths !pa la,* i11 T where A is some 

indexing set.  

Note that ,  since a play "splits" only at  chance nodes 

(vi) 2 lies o n p a ,  y lies onpa[ for  ~ . B E A  ] ; p a f p g = > F ( z )  f F ( Y )  , 

. rJ. 

(Recall: l i ( x ) , ? ( z )  is the information set in /",Iz that contains x . ) 

From (v) and (vi) we get: 

( ~ i i )  z 'pa~y 'p8~pa  # p a , l i ( ~ ) f r i ( y ) + l i ( ~ ) f ~ i ( y )  . 

Also, by (iii), 

(v i i i ) z~p , ,  y ~ p , , x  f y 3 1 i ( z )  f l i ( y )  . 

Let X be the set of positions that occur on one of the paths in . 

In view of (vii) and (viii) we may define t E S ~  (G) by: 

r ( z )  if z EX and u =li (x)  
arbitrary otherwise 

(Here r ( x )  is the move picked by r at  z ) . Then a moment's reflection 

reveals that p (s 1 t )  is precisely tpa],€A . Ths  contradicts the fact that 

s q ( G )  , proving the proposition. 



(1) This proposition was mentioned in [2], [5] but  only by way of a verbal 

remark .  So it seemed worthw-hile t c  give a precise formulation here.  

(2) If there  a r e  no moves of nature in T , t hen  (v) is vacuouslp satisfied, 

and we ge t  the proposition of [5]. 


