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Abstract 
Despite being central to the implementation of conservation policies, the IUCN Red List of 

Threatened Species is hampered by the 14% of species classified as Data Deficient (DD), 

either because information to evaluate these species‟ extinction risk was lacking when they 

were last assessed or because assessors did not appropriately account for uncertainty. With 

limited funds and time for reassessment, robust methods are needed to identify which DD 

species are more likely to be reclassified in one of the data sufficient Red List categories. 

Here we present a reproducible workflow to help Red List assessors prioritise reassessment 
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of DD species, and tested it with 6,887 DD species of mammals, reptiles, amphibians, fishes, 

and Odonata (dragonflies and damselflies). Our workflow provides for each DD species: (i) 

the probability of being classified in a data sufficient category if reassessed today, (ii) the 

change in such probability since last assessment, and (iii) whether the species might qualify 

as threatened based on the recent rate of habitat loss. Combining these three elements, our 

workflow provides a priority list for reassessment of species more likely to be data sufficient, 

thus ultimately improving knowledge of poorly known species and the comprehensiveness 

and representativeness of the IUCN Red List.  

Introduction 
The IUCN Red List of Threatened Species (hereafter Red List) is a central tool in 

biodiversity conservation, guiding policy implementation and biodiversity monitoring from 

local to global scales (Betts et al., 2020; Rodrigues et al., 2006; Stuart et al., 2010; Williams 

et al., 2021). An accurate, updated, and comprehensive Red List is crucial for these goals, but 

decades of insufficient funding (Juffe-Bignoli et al., 2016; Rondinini et al., 2014) 

dramatically limit assessment and reassessment rates (Cazalis et al., 2022). For example, 14% 

of all assessed species (N=20,469) are currently classified as Data Deficient (hereafter DD), 

meaning that assessors were unable to evaluate their extinction risk (IUCN, 2022). These DD 

species potentially include many imperilled taxa (Bland et al., 2015; Borgelt et al., 2022; 

Caetano et al., 2022) that are left out of legislation and policies that only target formally 

threatened species, and introduce uncertainty in monitoring of extinction risk trends of 

comprehensively assessed taxa (Bland et al., 2017; Butchart and Bird, 2010). Assigning 

alternative Red List categories (hereafter “data sufficient” or DS) to species currently 

classified as DD is therefore a high priority for the conservation community (Bland et al., 

2017). 

Species are typically assessed as DD when “there is inadequate information to make a direct, 

or indirect, assessment of its risk of extinction based on its distribution and/or population” 

(IUCN, 2012). The proportion of DD species may be inadvertently inflated when assessors 

fail to effectively use indirect information (e.g., habitat loss within the range) or are more 

precautionary than required by Red List guidelines (IUCN Standards and Petitions 

Committee, 2022). In birds, systematic efforts to use all indirect information (in addition to 

all direct information owing to the popularity of birds) have reduced the proportion of DD 

species to 0.4% (N=47; IUCN (2022)), such that the RL status of remaining DD species may 

only be resolvable by the collection of new in-situ information (Butchart and Bird, 2010). 

Conversely, many groups likely include DD species that could be reassessed as DS if 

assessors had more systematic access to recent direct and indirect information on species‟ 

distributions, populations, and trends.  
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Recently, multiple studies have attempted to predict the Red List status of DD species using 

either category-predictive or criteria-explicit approaches (see review in Cazalis et al., 2022). 

Category-predictive studies establish correlative models that link extinction risk of DS 

species with relevant characteristics of the species (e.g., showing that narrow-ranged species 

exposed to high human pressure are more likely threatened). These models are then used to 

predict the Red List category of DD species (Bland et al., 2015; Bland and Böhm, 2016; 

Borgelt et al., 2022; Zizka et al., 2022, 2021). However, uptake of such studies and their use 

to inform Red List assessments has been limited because their ability to correctly predict Red 

List categories is often low for categories other than Least Concern (Di Marco, 2022). 

Additionally, as these correlative studies are not explicitly based on Red List criteria, their 

results lack the required justification of the criteria that are triggered, and are therefore of 

limited value to assessors (Cardillo and Meijaard, 2012; Cazalis et al., 2022). Criteria-explicit 

studies mirror the process of assessments by automatically calculating parameters that are 

used to apply Red List criteria. For example, recent studies have used geospatial data to 

measure trends in Area of Habitat from global land-cover (Santini et al., 2019) or global 

forest cover (Tracewski et al., 2016) to apply criteria on population reduction and suggested a 

list of DD species that could be reclassified as threatened under criterion A2 under certain 

assumptions. However, these approaches are not sufficient to prioritise reassessments because 

land-cover products provide a partial view of extinction risk drivers (i.e., habitat loss). 

An avenue better aligned with Red List assessors‟ needs may be to help them identify which 

species are more likely to become DS if they were reassessed, thus helping assessors to 

prioritise reassessments. This can be done by training models to predict species‟ probability 

of being DS from variables directly representing available knowledge (e.g., number of 

available occurrence data), proxies of available knowledge (e.g., road density within species 

range), or species‟ ecological characteristics that make them harder to monitor (e.g., 

nocturnality). The main difference to the category-predictive approach described above is that 

covariates are not expected to correlate with species‟ extinction risk, but rather with the 

knowledge available on them. If such models can accurately predict which species are DS, 

they could in turn be used to predict (i) which DD species have the highest probability of 

being classified in a DS category if reassessed, and (ii) for which DD species such 

probabilities have substantially increased since the last assessment. This enables ranking 

species based on the information currently available (e.g., a species could be prioritised 

because of the high number of occurrence records available) as well as the gain in 

information since the last assessment (e.g., a species could be prioritised because the number 

of occurrence records has grown recently), thus providing complementary valuable 

information for prioritizing reassessments. 
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Here, we present a reproducible workflow to prioritise reassessment of DD species based on 

three complementary analyses and we apply it to 6,887 DD species of mammals, reptiles, 

amphibians, freshwater and marine fishes, and dragonflies and damselflies. First, we model 

the probability that a species is classified as DS with a Random Forest algorithm and use this 

model to predict which DD species are the most likely to be classified in a DS category if 

reassessed. Second, we use the same model to predict by how much DD species increased 

their probability of being DS since last assessment. Third, we calculate change in Area of 

Habitat using two global land-cover products for each terrestrial DD species and identify 

some species that potentially qualify as threatened or Near Threatened based on the data we 

provide with our workflow. Gathering the information from these three analyses in a single 

index, we provide assessors with a priority list of DD species likely to be reassessed as DS, as 

well as information that can directly inform these reassessments. 

Methods 
Our workflow includes the calculation of species‟ probability of being DS if reassessed 

(pDS), the change in this probability since last assessment (ΔpDS) and the change in Area of 

Habitat (ΔAOH). These three estimates are then combined in an index (PrioDS) used to create 

the priority list that is provided to assessors, along with some additional information to guide 

their work. 

Here we applied this workflow on animal groups assessed in the Red List with at least 10% 

of species classified as DD (e.g., excluding birds in which DD species are too few to build a 

model; ~ 0.4% of all species, IUCN (2022)) and with published range maps for at least half 

of the species. From these groups we then selected species with a range map available, which 

is needed to calculate many covariates used in our model (and we eventually removed all 

species for which at least one covariate could not be calculated). Our selection included 

mammals (5,663, 14% DD), reptiles (8,294 species, 13% DD), amphibians (7,051 species, 

15% DD), fishes (including classes Actinopterygii, Chondrichthyes, Myxini, 

Cephalaspidomorphi, and Sarcopterygii; 14,023 species, 19% DD), and Odonata (4,511 

species, 29% DD). We refer to these five groups as “broad taxonomic groups”. We used 

species‟ current Red List category (IUCN, 2022) to separate species into DD and DS, 

excluding those Extinct or Extinct in the Wild. 

Covariates 

We gathered covariates deemed relevant to predict species‟ probabilities of being DS. 

Definition, source and rationale for each covariate are given in Table 1; detailed methods are 

given in Appendix S3. First, we gathered direct measures of available knowledge: number of 

occurrence records available from the Global Biodiversity Information Facility (hereafter 

“GBIF records”; also including records from the Ocean Biodiversity Information System 
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OBIS for fishes); proportion of the species‟ range that is covered by GBIF records; as a proxy 

for sampling effort, the density of occurrence records for the broad taxonomic group within a 

focal species‟ range; number of articles in Web of Science mentioning the focal species‟ Red 

List name; number of traits known for the species; spatial overlap with DD species from the 

broad taxonomic group occurring in the range; whether the species is present in at least one 

zoo or aquarium; and time since description of the species. Second, we gathered a number of 

proxies of knowledge: average Gross Domestic Product and frequency of armed conflicts in 

species‟ countries of occurrence; remoteness of species range; road density in species range; 

human population size in species range; proportion of rural population in species range; and 

fishing intensity in species range (marine fishes only). Third, we included ecological 

characteristics of species: habitat preference; order of magnitude of their range size; altitude 

or depth of occurrence of the species; main realm where the species occurs; as well as other 

potentially relevant traits that we could readily retrieve from existing trait datasets that use 

the Red List taxonomy (body mass and nocturnality for mammals, body length for 

amphibians). Finally, we retrieved the Red List Authority of each species (i.e., the expert 

group appointed to assess or review assessments for each taxonomic group) to control for 

possible differences in assessment behaviours between expert groups working on different 

taxa (Caetano et al., 2022). Four variables were calculated for two time-steps, at the time of 

assessment (to fit the model) and at present time (to predict the current probability of being 

DS, pDS). These variables (hereafter called “temporal variables”) are: number of GBIF 

records, coverage of GBIF records, number of published scientific articles, and time since 

description. 

 

Statistical analyses 

Modelling data sufficiency 

We modelled the probability of a species being DS independently for each of the five broad 

taxonomic groups. Mammals that are strictly marine according to Red List systems 

classification (i.e., 73 cetaceans, 1 dugong, and 2 seals; including 3 DD) were removed from 

the analyses as they could not be modelled together with terrestrial species (covariates such 

as human density, remoteness or altitudes could not be calculated), and there were too few 

DD species to be modelled independently (N=3). Conversely, strictly marine reptiles (i.e., sea 

snakes; 48 species including 20 DD) were modelled together with terrestrial reptiles as these 

are mainly coastal species (see Appendix S3). For fishes, we fitted two models, one including 

all species occurring in freshwater domain (N=10,160), and another one including all species 

occurring in marine domain (N=4,987), with 942 species being present in both (e.g., 

anadromous or catadromous species; Appendix S7).  
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For each broad taxonomic group and domain, we fitted a Random Forest model with 1,000 

trees using the ranger function from the ranger R package v.0.13.1 (Wright and Ziegler, 

2017) with covariate values from the year of last assessment for temporal variables. As our 

samples were unbalanced, we attributed to DD species a weight corresponding to the 

proportion of DS species, and to DS species the proportion of DD species, using the 

„class.weights‟ argument. We measured the relative importance of covariates with the 

„impurity_corrected‟ argument, which provides a sampling-size corrected measure of the 

Gini impurity index.  

We measured the performance of our models using a taxonomic block validation. To that 

end, we iteratively fitted models putting aside one family from the training data and then 

predicting the probability of being DS for the species in that family. We calculated the 

performance metrics based on a binary categorisation of the probabilities of being DS: 

sensitivity (proportion of DS species correctly categorised), specificity (proportion of DD 

species correctly categorised), and True Skill Statistic (specificity + sensitivity – 1; Allouche 

et al. (2006)). Performance metrics were calculated across all species (rather than per family 

and averaging values across families) to limit the influence of families with very few DD 

species (as a family with a single DD species will have a specificity of 0 or 1 depending on 

whether that single species is correctly or incorrectly predicted; Appendix S6). We used two 

different threshold rules to binarize these probabilities into DD/DS categories: 1) choosing 

the threshold that maximises the True Skill Statistic (TSS), and 2) choosing the threshold that 

maximises the TSS while keeping sensitivity > 0.9. This second rule will minimise false 

negatives (i.e., DS species incorrectly predicted as being DD), which is a desirable property 

of our method because it will limit the number of species that we exclude from prioritisation 

(because predicted to remain DD) while they could be reassessed in a DS category. In 

addition, we measured variation in performance metrics among families (Appendix S6). 

Prior to model fitting we verified the correlation between all continuous covariates, 

considering that pairs of covariates with a Pearson‟s correlation coefficient > 0.7 could affect 

parameters estimates (Dormann et al., 2013). Only the number of GBIF records and the 

number of articles in the Web of Science in Odonata correlated by 0.79 (Appendix S4); 

however, this did not impact the predictive performance of our model (full model: TSS 

= 0.67; model excluding the number of GBIF records: TSS = 0.64; model excluding the 

number of articles in the Web of Science: TSS = 0.67) nor the shape of the relationship, so 

we decided to keep both covariates in our model, as they have strong independent rationale 

and are both important for the temporal analysis. 

Prioritising reassessments 

Predicting the probability of being DS (pDS) 
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For each DD species, we predicted the probability of being DS if reassessed today (pDS). To 

do so, we used the Random Forest model trained with all species and predicted the 

probability of DD species to be reassessed as DS, after changing the temporal variables to 

their present-day values (e.g., using the current number of GBIF records rather than the one at 

the time of last assessment). For the 160 DD fishes that occur in both freshwater and marine 

domains, we reported the highest probability from the two predictions. We considered this 

choice more cautious from a practical perspective, as the risk here is to prioritise a species for 

reassessment that will remain DD (i.e., waste some assessor time), while the opposite would 

risk not reassessing a species that could become DS (i.e., leave a species DD for years).  

To provide assessors with more information on why a species has high pDS, we identified 

variables contributing most to pDS for individual species using the „breakDown‟ R package 

v.0.2.1 (Staniak and Biecek, 2019). 

Predicting change in probability of being DS (ΔpDS) 

We calculated the change in probability of being DS since last assessment (ΔpDS) as the 

difference between predictions based on models using the past (last assessment) vs present-

day values of the temporal variables (see distribution of the increase of temporal variables 

between last assessment and now in Appendix S5). For fishes occurring in freshwater and 

marine domains, we reported the change in the domain for which current probability pDS was 

the highest (most conservative). In rare cases where ΔpDS was negative (481 species had 

negative ΔpDS with a median of -0.0019 and a minimum of -0.06; negative values were due 

to the non-monotony of some covariates effects; Fig.2), we considered it to be 0 as it does not 

really reflect a loss of knowledge since last assessment.  

Measuring change in Area of Habitat (ΔAOH) 

We expect that both pDS and ΔpDS will mostly prioritise DD species that are relatively 

common (e.g., with many GBIF records, large range, in well-sampled regions) and thus that 

are mostly not threatened. To increase the proportion of potentially threatened species in the 

prioritization, we included in the workflow an analysis specifically designed to identify DD 

species that could be reassessed as threatened or Near Threatened based on habitat loss. This 

index is not needed to calculate data sufficiency per se, but could be very helpful in 

supporting reassessments of some species (Tracewski et al. 2016; Santini et al. 2019) and 

should thus be considered in reassessment prioritisation. To that end, we calculated change in 

Area of Habitat (ΔAOH) for all broad taxonomic groups but fishes, to identify species that 

could likely be reassessed as threatened under Criterion A2 based on population size 

reduction (IUCN, 2012; IUCN Standards and Petitions Committee, 2022) after assessors 

carefully checked if the range map and habitat preferences used in our calculation (i.e., those 

submitted in last assessment) are thought representative. To map AOH, we extracted species‟ 

preferences in terms of elevation and habitat types from the Red List data. We used the ESA-
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CCI land cover data v.2.1.1 to extract pixels within the range that correspond to a species‟ 

suitable habitat, using the crosswalk between ESA-CCI and Red List habitat classification 

from Lumbierres et al. (2022). From those, we extracted cells within the species‟ altitudinal 

limits based on elevation data from the National Geophysical Data Center (1999). We 

calculated AOH using a Mollweide projection using the R ‘aoh’ package v.1.0.0 (Hanson, 

2022), at two timesteps: current (using the ESA-CCI data from 2020) and 10 years or 3 

generations ago, whichever the longest, following Red List guidelines (IUCN Standards and 

Petitions Committee, 2022). We used a timeframe of 10 years unless a generation length 

estimate was included in the Red List database (only included for mammals in our DD 

subset; ΔAOH is therefore possibly underestimated for a few reptile and amphibian species 

with long generation times).  

In addition, because more detailed data are available for forest habitats, we calculated change 

in forest cover for each terrestrial DD forest specialist (i.e., species for which forests are the 

only suitable primary terrestrial habitat, disregarding habitat classes 5, 9-13, 15, 17-18) using 

the Global Forest Change maps (Hansen et al., 2013). We used the ‘gfcanalysis’ R package 

v.1.6.0 (Zvoleff, 2020) to download and process the data. We calculated the forest cover in 

2021 within a species range as the coverage of 30m-pixels that were covered by forest in 

2000 (i.e., with a coverage value > 0.25 which is the default of the threshold_gfc function) 

and did not suffer from any loss since. We calculated the forest coverage in the initial year 

(between 2000 and 2011, depending on generation length) using the same method but 

excluding cells that suffered from loss before the initial year. Forest gains are not considered 

in this analysis, assuming that regenerated forests do not provide habitat of sufficient quality 

over the short study period.  

For both AOH and forest cover, we then calculated change as the difference between current 

and initial divided by initial coverage (negative values in case of habitat loss). When 

generation length was so high that the initial year was before the first year of land-cover 

products (i.e., 1992 for the ESA-CCI and 2000 for the Global Forest Change), we linearly 

extrapolated habitat loss. We kept the lowest (i.e., most negative) AOH change among ESA-

CCI and Global Forest Changes estimates (ΔAOH) and considered that species with ΔAOH  ≤ -

0.3 could potentially qualify as threatened under criterion A2(c). Additionally, although there 

is no strict quantitative threshold for Near Threatened (NT), we considered species could 

potentially qualify as NT if ΔAOH ≤ -0.2, which correspond to the example given in the Red 

List guidelines (IUCN Standards and Petitions Committee, 2022). 

Prioritising reassessments (PrioDS) 

 

We created an index to identify reassessment priorities: 
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where pDS is the current probability of being DS, ΔpDS is the change in probability of being 

DS since last assessment, and ΔAOH is the AOH change in the last 10 years / 3 generations. 

PrioDS ranges from 0 to 1 with higher values indicating higher reassessment priority, with a 

value of 1 if ΔAOH ≤ -0.2 (i.e., maximum priority as the species could likely be reassessed as 

NT or threatened with that information) and a value based on pDS and ΔpDS otherwise. The 

index gives equal importance to pDS and ΔpDS and takes a value of 1 when both pDS and 

ΔpDS are 1, and 0 when both are null. We then used the index values to create a priority list 

(of 10, 25, and 50% species with highest priority score) and mapped the distribution of these 

priority species. 

Application and performance of the priority list 

While all analyses were run on Red List version 2021-3, we used Red List version 2022-2 to 

perform an ex-post validation of our models. In this new version, 180 DD species included in 

our analyses were reassessed, of which 73 remained DD and 107 were moved into a DS 

category. We checked the agreement between the new category (i.e., remained DD or became 

DS) and our reassessment priority score (PrioDS). This provided an independent validation 

of our approach and proposed priority list, although it was based on a small sample size and, 

importantly, reassessments were conducted without the information provided by our 

workflow. 

 

Results 
Our models showed good performance at predicting DS species of mammals, reptiles, 

amphibians and Odonata from taxonomically independent samples (Fig. 1; Appendix S8) 

with some important variation among families (Appendix S6). When we used the threshold 

that maximises TSS to binarize predictions, we obtained a TSS > 0.5 for these four groups, 

with a maximum of 0.67 for Odonata, and a specificity slightly higher than sensitivity. 

Models for fishes performed slightly worse with a TSS of 0.47 and 0.41 for freshwater and 

marine fish species, respectively. Using the binarization threshold that maximises TSS but 

keeping a sensitivity > 0.9 (i.e., to ensure that we correctly identify the species that could be 

reassessed in a DS category) led to a drop in specificity (falling to 0.39 for marine fishes and 
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0.71 for amphibians) but TSS remained relatively high (between 0.31 for marine fishes and 

0.61 for amphibians).  

The most important variables to predict species probability of being DS differed among taxa 

(Fig. 2; Appendix S9). Overall, direct measures of available knowledge were among the most 

important variables, especially the number of GBIF records, which was among the three most 

important variables for all taxonomic groups (and was the most important for three groups) 

and coverage of GBIF records, as well as trait data availability (among the four most 

important variables for the two groups it was measured). Some proxies of knowledge were 

also particularly important, especially the spatial overlap with DD species, which was among 

the four most important variables for all groups but mammals and marine fishes. The median 

GDP (for freshwater fishes) and the time since description of the species (for marine fishes 

and mammals) were also important. Finally, the most important ecological characteristic was 

order of magnitude of range size which was among the four most important variables for four 

groups (with a positive effect on the probability of being DS), while habitat preferences, 

nocturnality and body size did not strongly influence the probability of being DS.  

Using these group-specific models, we found that 27% of DD species (1,907 of 6,887) had a 

high probability to be DS now (pDS > 0.5; Fig. 3; e.g., Zamenis lineatus in Fig. 4a). 

Moreover, 624 species had considerably increased in their probability of being DS since last 

assessment, ΔpDS > 0.25 due to for example many new GBIF records (Fig. 3; e.g., 

Elattoneura campioni in Fig. 4b). Although pDS and ΔpDS correlate (Pearson‟s correlation 

coefficient of 0.68), there is great variation in ΔpDS for a same pDS, often ranging from 0 

(i.e., no new information since last assessment) to a value close to pDS (i.e., all information 

was gained since last assessment).  

From the final step of the workflow, assuming that distribution and species preferences data 

were accurate, we identified 5 mammals, 14 reptiles, 5 amphibians, and 5 Odonata species 

with an estimated loss of > 30% of their AOH in the last 10 years or 3 generations (i.e., ΔAOH 

≤ - 0.3), thus being considered threatened under criterion A2 with 24 being VU, 3 EN, and 2 

CR (Fig. 3; e.g., Hypsugo vordermanni in Fig. 4c; Appendix S1). An additional 11, 28, 9, and 

35 species, respectively, could be considered as Near Threatened based on an estimated AOH 

loss of 20-30% (Figs. 3, 4c; Appendix S1).  

Calculated PrioDS values suggested that priority DD species for reassessment mainly 

concentrate in Latin America and South-East Asia (Appendix S10). 

The independent validation of predictions (for 180 species based on the recently released 

version 2022-2) showed higher priority scores for the species that were reassessed in a DS 

category (0.39 ± 0.17 (mean ± SD) vs 0.24 ± 0.12 for species that remained DD after their 

reassessment; unilateral T-test: t = -6.97, P < 10
-10

; Fig. 5). Our workflow performed 
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particularly well for amphibians (N=107) with PrioDS being on average double for species 

reassessed as DS than species reassessed as DD (0.39 ± 0.16 vs 0.19 ± 0.10; unilateral T-test: 

t = -7.53, P < 10
-11

). Results for reptiles (N=45) also showed a significant difference in 

PrioDS (0.36 ± 0.11 vs 0.28 ± 0.12; unilateral T-test: t = -2.35, P = 0.01). Results for fishes 

(N=24) confirmed that this group is not as accurately predicted and that caution is required in 

interpreting our results there (0.31 ± 0.12 vs 0.29 ± 0.11; unilateral T-test: t = -0.38, 

P = 0.36). Results for mammals (N=1) and Odonata (N=3) only included species reassessed 

as DS with relatively high priority scores. Results were similar when looking at pDS and 

ΔpDS independently, showing that ΔpDS was a great predictor of species reassessed as DS 

for amphibians (Appendix S11).  

 

Discussion 
Our workflow is the first to predict the probability of a species to be DS, aiming at being of 

practical value for Red List assessors. The covariates we chose for the model show strong 

predictive power of species classification as DD or DS during taxonomic block validation, 

performing well (TSS > 0.5) for all groups but fishes, and thus suggesting that this workflow 

is a powerful tool to prioritise reassessment at least of terrestrial DD species. The 

independent validation enabled by the recent update of the Red List showed that our 

workflow performed well for the 107 amphibian species and 45 reptiles in our test group, 

with newly DS species showing higher priority scores than species retaining DD status. It is 

worth noting, however, that the sample size of this validation is relatively low and this cannot 

be seen as a direct test for our workflow, since the assessors did not have access to the 

workflow outputs (which could potentially have contributed to additional species being 

reassessed as DS). The genuine performance and utility of our workflow will only be 

measurable after assessors use it and see if they end up with fewer species remaining DD than 

without our information. This is particularly true for ΔAOH which has proven to be useful in 

the past (Tracewski et al. 2016, Santini et al. 2019) but could not be tested for our workflow 

outside of a real assessment process. 

The most important variable to predict the probability of species to be DS was the number of 

GBIF records available at the time of the last assessment, which provides information directly 

applicable in assessments (Bachman et al., 2020). Across all broad taxonomic groups, we 

found that the probability of being DS is low for species with no GBIF records, strongly 

increases as the first records are gathered, before plateauing when a few tens of records are 

available (Appendix S12), highlighting the utmost importance of increasing the collection 

and availability of primary occurrence records for poorly known species (Shirey et al., 2019). 

Other direct indicators of available knowledge were also important, such as the number of 
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articles published on a species (that can be directly used in Red List assessments; Bird et al. 

(2020)) or trait data availability (for the two groups for which it was measured; González-

Suárez et al. (2012)). Several proxies of knowledge were also important predictors. The 

spatial overlap with DD species reduced the probability of being DS, highlighting the 

geographical clustering of DD species (Appendix S10). This means that a DD species co-

occurring with many other DD species is less likely to be reassessed as DS, e.g., because the 

region has been poorly sampled, or because little contextual information is available on 

threats. In fewer cases, we also found that species described very recently were more likely to 

be DD, indicating that it takes time to gain knowledge on a new taxon (Morais et al., 2013). 

Finally, some ecological characteristics were important predictors, with e.g., species with 

small range sizes more likely to be DD (Bland and Böhm, 2016; Butchart and Bird, 2010). 

This effect might be partly driven by underestimation of range size for DD species (see 

example in Fig. 4b), and thus means that species that are known from a smaller area are more 

likely to be DD (even if their true range size may be larger). Interestingly, variables 

describing human distribution (e.g., population density, road density, or travel time to cities), 

or variables related to species altitude or marine depth preferences, were not among the most 

important predictors (Appendix S9). This could due to the exclusion, in our method, of some 

poorly known species for which the distribution has not be mapped, which may occure in 

more remote areas than other DD species. It could also be that our models do not find 

remoteness important because they have a more direct way of measuring availability of 

knowledge for the species, which is the number of GBIF records. 

The first element of our prioritization index is the predicted probability of being DS if the DD 

species is reassessed today (pDS). This element should help identify species that currently 

share many characteristics with DS species (e.g., in terms of distribution, available 

knowledge, traits) and invite assessors to reconsider the status of these species. The snake 

Zamenis lineatus, for instance, is predicted to have one of the highest probabilities of being 

DS, mainly because of the high number and coverage of GBIF records, its large range, and 

the fact that it overlaps with few DD species (Fig. 4; Corti et al. (2008)). It could thus be a 

good reassessment priority, as its last assessment was 14 years ago. Notably, several of the 

GBIF records of Z. lineatus were well outside the known range of the species, an issue with 

geo-referenced occurrences from public data repositories (Maldonado et al., 2015), which can 

be reduced with the use of automated tools to filter data (Zizka et al., 2019; Arlé et al., 2021), 

although this would significantly increase calculation time.  

A second output of our model is the change in the probability of being DS since the last 

assessment (ΔpDS). The dragonfly Elattoneura campioni was last assessed in 2010, when no 

articles in the Web of Science and no GBIF records were available (the species was not 

reported since 1967 according to the last Red List assessment; Sharma and Dow (2010)), 
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resulting in a probability of 0.06 of the species to be DS by that time (Fig. 4). Even though 

the probability of being DS is only intermediate based on current data (pDS=0.54), our 

workflow suggests that it strongly increased since last assessment (ΔpDS =0.48), indicating 

that the species is of higher reassessment priority than one with similar pDS but lower ΔpDS. 

Indeed, the number of GBIF records for this species now reaches 29 and suggest the species 

is more widespread than previously thought. Additionally, two articles mentioning the 

species were published since the last assessment, providing additional records and 

information on species habitat (Mujumdar et al., 2021). This index of change in probability of 

being DS is important since we found that the gain in information greatly varies among 

species independently of the time since last assessment (Appendix S5). It could still gain 

relevance if more temporal variables, measuring the availability of data directly usable by 

Red List assessors, were included in the model (e.g., number of specimens in museums, 

records in citizen science platforms that do not contribute to GBIF, articles published in non-

English journals (Nic Lughadha et al., 2019; Bachman et al., 2019; Amano et al., 2021)). 

The species prioritised based on the two above-mentioned parameters are more likely to be 

species with relatively large ranges, that are not rare (e.g., with more GBIF records), and that 

will thus most likely be reassessed as Least Concern. While this is important in order to 

reduce the uncertainty around the proportion and distribution of threatened species, it is also 

very important that our prioritisation helps assessors identify those DD species that are 

threatened with extinction (Bland et al., 2015; Howard and Bickford, 2014). To do so, we 

included in our workflow a calculation of species‟ change in AOH (ΔAOH; Brooks et al., 2019; 

IUCN Standards and Petitions Committee, 2022) using land-cover time series, which can 

provide direct input into Red List assessments (IUCN Standards and Petitions Committee, 

2022; Santini et al., 2019; Tracewski et al., 2016). This identified 112 species that lost > 20% 

of their AOH in the last 10 years/3 generations and may thus potentially qualify for 

threatened or NT. For instance, the last assessment of the bat species Hypsugo vordermanni, 

made in 2015, mentions that the species lives in forest and may be restricted to mangroves, 

but that information on population dynamics are lacking to assess its status (Görföl et al., 

2015). The loss of 31% of forest habitat within its range (ΔAOH = -0.31), as we calculated 

here, could be sufficient to classify the species as Vulnerable under criterion A2c based on 

population size decline inferred from habitat reduction. To use this result though, assessors 

should evaluate the completeness of the published range map (i.e., that it includes sites of 

occurrence, but also inferred or projected presences) and habitat preferences of the species, 

consider the likely relationship between habitat loss and population decline, and acknowledge 

that the ESA-CCI land-cover and habitat crosswalk used here can have important 

misclassification errors locally. While change in AOH may be important in prioritising 

reassessment of potentially threatened species, we acknowledge it only relates to a subset of 
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the reasons to classify a species as threatened, and could in the future be supplemented by 

other indices of threat that can be directly used by assessors. 

Based on these three outputs (pDS, ΔpDS, ΔAOH) we created a priority index (PrioDS) that 

can be used to create a priority list for reassessment. Assessors can choose a threshold in 

PrioDS depending on their resources and the rate of false positives and negative they are 

willing to accept (e.g., a group with very limited resources will select only the top priority 

species, which will likely include mostly species that can be reassessed as DS, but will be 

incomplete; Appendix S8). In addition, our workflow provides outputs directly usable by 

assessors, to prioritise and inform reassessments (Fig. 4). It contrasts with previous studies 

that aimed at reducing the number of DD species by estimating their extinction risk (Bland 

and Böhm, 2016; Borgelt et al., 2022; Howard and Bickford, 2014) but that were not widely 

used by Red List assessors (Cardillo and Meijaard, 2012; Cazalis et al., 2022). While being 

so far restricted to groups with polygon range maps, it could in principle be extended to 

groups with point data but no polygon range maps (most of vascular plants and some 

invertebrates) by adding an automated approximation of polygon range maps from points 

(e.g., using alpha-hulls), which would enable spatial covariates to be calculated. This would 

only be feasible if point coverage within the species distribution is adequate. 

To maximise its utility though, our workflow will have to be effectively shared with 

assessors. For example, integrating our workflow in an interactive platform (e.g., as a Shiny 

App; Bachman et al. (2020)) would enable assessors to create their priority list from their 

own criteria (e.g., choosing if they want to use the priority index PrioDS or if they give more 

weight to pDS or ΔpDS individually, or a single variable of interest such as the new number 

of GBIF records) and filtering conditions (e.g., species last assessed before a given year, from 

a given family or region). Such platform could also provide easy-access to the additional 

information provided by our workflow (e.g., list of published articles, map of GBIF records, 

or map of change in AOH; Fig. 4), which may be used by assessors as supplementary 

decision support in their assessments.  

Allowing flexibility in the use of the outputs, as well as updating them regularly (e.g., as the 

number of GBIF records can increase rapidly for some species), will be key to enable uptake 

of this workflow by the Red List community (Cazalis et al., 2022). It should help assessors to 

make better use of their limited time and resources by targeting the reassessment of DD 

species that will most likely be reassessed in a DS category. It should also help them finding 

and making use of “whatever information is available and relevant to make assessments” as 

required by the guidelines (IUCN Standards and Petitions Committee, 2022). Eventually, we 

expect our approach to enable the proportion of DD species in the Red List to be reduced, 

which would reduce the uncertainty of products that are based on the Red List and help 
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focusing research efforts on the remaining DD species, thus helping future conservation 

efforts to be based on more robust foundations.  
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Table 1: Variables used to predict the probability of species being data sufficient (pDS). 

Variables marked as Temporal were also used to estimate change in probability of being data 

sufficient since last assessment. Types of variables are Binary (Bin), Numeric (Num), 

Categorical (Cat). More details in Appendix S3. 

Variable Group Type Short 

definition 

Temporal Rationale Source 

Number of 

GBIF 

records  

All Num Number of 

records found 

for the species 

name. For 

fishes, we kept 

the maximum 

number of 

records between 

GBIF and 

OBIS. 

Yes Species with many 

GBIF records are 

regularly observed 

and thus more likely 

to be well-known. 

GBIF records can 

directly help 

assessing a species 

(e.g., measuring the 

Extent of 

Occurrence).  

Chamberlain 

et al., (2022); 

Provoost and 

Bosch (2021) 

Coverage of 

GBIF 

records 

All Num Proportion of 

~80km grid 

cells with ≥1 

record. 

Yes GBIF records are less 

informative if 

concentrated in a very 

small part of the 

species‟ range.  

Chamberlain 

et al., (2022) 

Intensity of 

GBIF 

sampling 

effort  

All Num Median density 

of records for 

the broad 

taxonomic 

group in the 

range. 

No Species in heavily 

sampled regions are 

likely to be better 

known, even if they 

are not often reported 

(e.g., limited records 

in intensively 

sampled areas might 

indicate rarity).  

Chamberlain 

et al., (2022) 

Number of 

Web of 

Science 

articles 

All Num Number of 

search hits 

when looking 

for the species 

name in the 

Web of Science. 

Yes Published data can 

provide information 

usable for 

assessments (e.g., 

population 

monitoring, point 
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locality data, 

population size 

estimates). 
Trait 

availability 
Mammals + 

Amphibians 
Num Number of traits 

available in two 

combined trait 

databases. 

No A high number of 

traits available for a 

species is a direct 

indicator that the 

species is well-known 

(e.g., 

morphologically, 

demographically, 

etc). 

Soria et al. 

(2021) ; 

Lucas et al. 

(2023) 

Spatial 

overlap with 

DD species 

All Num Overlap of 

species‟ range 

with DD species 

from the broad 

taxonomic 

group, 

measured as the 

proportion of 

Red List 

gridded 

distributions 

that are from 

DD species. 

No Cluster of DD species 

can indicate poor 

knowledge of the 

region.  

IUCN (2022) 

Presence in 

zoos and 

aquaria 

All Bin Whether at least 

one specimen is 

known in zoos 

or aquaria. 

No Presence of species in 

zoos and aquaria may 

lead to better 

knowledge on the 

species from 

individuals kept in 

captivity. 

Species 360 

(2021, p. 360) 

Time since 

description 
All Num Difference 

between 2022 

and the year 

reported in the 

species 

taxonomy 

authority. 

Yes Species recently 

described had less 

time to accumulate 

data; however, they 

might have been 

described with more 

in-depth information.  

IUCN (2022) 

GDP All Num Median GDP of 

the species Red 

List Countries 

of Occurrence.  

No Countries with high 

GDP might be more 

likely to fund 

biodiversity 

monitoring. 

World Bank 

(2021) 

Frequency 

of armed 

conflicts 

All Num Median number 

of years of 

armed conflicts 

in species‟ Red 

List Countries 

of Occurrence 

in the last 20 

years. 

No Regions where armed 

conflicts are frequent 

are less likely to be 

monitored. 

Gleditsch et 

al. (2002); 

Pettersson et 

al. (2021) 

Remoteness All Num Median travel 

time to cities 

across the 

species range 

(terrestrial) or 

median distance 

to nearest port 

No Species close to 

human populations 

are more likely to be 

observed regularly. 

Weiss et al. 

(2018); 

Zeenatul 

Basher et al. 

(2019) 
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(marine). 
Road density Terrestrial + 

freshwater 

species 

Num Highest quartile 

of road density 

within species‟ 

range. 

No Species whose 

distribution includes 

some areas with high 

road density are more 

likely to be well 

sampled. 

Meijer et al. 

(2018) 

Human 

population 

density 

Terrestrial + 

freshwater 

species 

Num Human 

population 

density across 

the species 

range. 

No Species occurring in 

areas with high 

human population 

density are more 

likely to be observed 

and thus should be 

better known. 

Florczyk et al. 

(2019) 

Proportion 

of rural 

population 

Terrestrial + 

freshwater 

species 

Num Proportion of 

rural inhabitants 

within the 

species range. 

No Humans living in 

rural areas might be 

more likely to 

encounter species and 

gather knowledge 

than humans living in 

urban areas. 

Florczyk et al. 

(2019) 

Marine 

fishing 
Marine 

fishes 
Num Median of the 

log-transformed 

number of 

fishing hours 

across the 

species range. 

No  Species occurring in 

areas heavily fished 

are more likely to be 

caught, which can 

contribute data 

directly used in 

assessments (e.g., 

occurrence data, or 

population dynamics 

data).  

Kroodsma et 

al. (2018) 

Habitat 

preference 
Terrestrial + 

freshwater 

species 

Cat Cluster of Red 

List habitat 

preferences: 

“Forest 

specialist”, 

“Forest 

generalist”, 

“Non-Forest 

specialist”, 

“Non-Forest 

generalist”, 

“Rocky”. 

No Some habitats are 

harder to sample 

(e.g., caves, forests), 

specialists from those 

are thus likely less 

known. 

IUCN (2022) 

Range size 

(order of 

magnitude) 

All Num Order of 

magnitude of 

the area of the 

range polygons. 

No Species with large 

range are more likely 

to be observed and 

thus well-known. We 

used order of 

magnitude to 

minimise the 

influence of range 

size underestimation 

that is common for 

DD species. 

IUCN (2022) 

Median 

altitude 
Terrestrial + 

freshwater 

species 

Num Median altitude 

across the 

range. 

No High altitudes are 

more difficult to 

sample. 

National 

Geophysical 

Data Center 

(1999) 
Water depth  Marine Num Discrete depth No Deeper waters are IUCN (2022) 
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fishes class based on 

habitat 

preferences 1 

(0-200m), 2 

(200-1000m), 3 

(1000-4000m), 

4 (>4000m). 

more difficult to 

sample. 

Main realm All Cat Identity of the 

realm covering 

the biggest part 

of species 

range: 8 classes 

for terrestrial; 

18 for marine. 

No Some realms have 

been less studied than 

others over the last 

centuries. 

World 

Wildlife Fund 

US (2004); 

The Nature 

Conservancy 

(2012) 

Body Mass Mammals Num Body mass from 

the published 

database 

(includes some 

imputed data). 

No Large species are 

usually easier to 

observe and monitor. 

Soria et al. 

(2021) 

Nocturnality Mammals Bin True for species 

strictly 

nocturnal. 

No Nocturnal species are 

harder to observe and 

monitor. 

Soria et al. 

(2021) 

Body length Amphibians Num Snout to Vent 

Length from the 

cited database 

(including some 

imputed data). 

No Large species are 

usually easier to 

observe and monitor. 

Lucas et al. 

(2023) 

Red List 

Authority 
Mammals + 

Reptiles + 

Fishes 

Cat Name of the 

Red List 

Authority of the 

species: 36 

classes for 

mammals, 13 

classes for 

reptiles, 11 

classes for 

fishes.  

No Groups of assessors 

and reviewers might 

treat uncertainty in 

assessments slightly 

differently and thus 

differ when assessing 

species as DD. 

IUCN (2022) 

Taxonomic 

Order 
All Cat Order of the 

species. 
No Some Orders may be 

more likely than 

others to be DD (e.g., 

because they share 

specific traits or 

because species-level 

identification is 

harder in that group). 

IUCN (2022) 
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Fig. 1: Performance of the Random Forest models to predict data sufficient (DS) species per group 

(mammals, reptiles, amphibians, freshwater fishes, marine fishes, Odonata) with four metrics 

resulting from a taxonomic block cross-validation with two different binarization rules. The 

performance metrics are: sensitivity (proportion of DS species correctly categorised by our model), 

specificity (proportion of Data Deficient species correctly categorised by our model), and TSS 

(specificity + sensitivity – 1). Variation in performance among families is shown in Appendix S6. 

 

 

 

Fig. 2: Main covariate effects on the probability of being data sufficient (DS), measured as partial 

dependence, per group (mammals, reptiles, amphibians, freshwater fishes, marine fishes, Odonata). 

Lines represent the respective group‟s four most important covariates, sorted by decreasing 

importance (relative importance of covariates indicated by size of the grey bubbles). Plots are limited 

to the 95th quantile of the covariate on the right for visualisation purposes (and are transformed by 

square-root function where it helps visualising); the covariate distribution is represented at the bottom 

of each facet. 
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Fig. 3: Scatter plot of predicted probability to be data sufficient currently (pDS) and change in 

probability to be DS since the last assessment (ΔpDS) for current DD species per group (mammals, 

reptiles, amphibians, fishes, Odonata). Colours and isoclines show the species to prioritise for 

reassessment depending on the proportion of species that can be reassessed (10% species with highest 

PrioDS in purple and black, 25% in dark pink, or 50% in light pink); black dots show species that 

could be reassessed based on change in AOH (terrestrial realm only; PrioDS=1; closed dots: species 

with ΔAOH ≤ - 0.3 potentially qualify as threatened; open dots: species with ΔAOH ≤ - 0.2 potentially 

qualify as Near Threatened). 
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Fig. 4: Four example species currently classified as DD with different types of available information. 

Our analyses suggest that species in panels (a-c) are higher priority for reassessment because of a high 

probability of being DS (pDS; a), a large increase in probability of being DS (ΔpDS; b), or a relatively 

large decrease in AOH (ΔAOH; c), while (d) has a lower reassessment priority. The „additional 

information‟ column shows examples of information made available to assessors, which can include 

main contributions explaining models‟ results, maps of GBIF records or AOH loss, and list of articles 

available in WoS. Main contributions were extracted with the ‘breakDown’ R package v.0.2.1 

(Staniak and Biecek, 2019). Maps of GBIF records show the species‟ range in yellow, records 

gathered before last assessment in blue and after in red, the forest loss map shows current forest in 

green and forest lost in the last 16 years (3 generations for this species) in red. Credit photo: (a) Benny 

Trapp, (b) Shantanu Joshi, (c) Chien C. Lee, (d) Jos Kielgast. 
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Fig.5: Priority score comparison of the 180 DD species that were reassessed in a data sufficient 

category (DS, N=107) or as Data Deficient (DD, N=73) in an update of the Red List subsequent to our 

analyses per group (reptiles, amphibians, fishes). Black dots show raw data and purple violins show 

their distribution.  
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