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The management of Soil Organic Carbon (SOC) is a critical component of both nature-based 

solutions for climate change mitigation and global food security. Agriculture has contributed 

substantially to a reduction in global SOC through cultivation, thus there has been renewed 

focus on management practices which minimize SOC losses and increase SOC gain as pathways 

towards maintaining healthy soils and reducing net greenhouse gas emissions. Mechanistic 

models are frequently used to aid in identifying these pathways due to their scalability and 

cost-effectiveness. Yet, they are often computationally costly and rely on input data that are 

often only available at coarse spatial resolutions. Herein, we build statistical meta-models of 

a multifactorial crop model in order to both (a) obtain a simplified model response and (b) 

explore the biophysical determinants of SOC responses to management and the geospatial 

heterogeneity of SOC dynamics across Europe. Using 5,600 unique simulations of crop growth 

from the gridded Environmental Policy Integrated Climate-based Gridded Agricultural Model 

(EPIC-IIASA GAM) covering 86,000 simulation units across Europe, we build multiple 

polynomial regression ensemble meta-models for unique combinations of climate and soil 

across Europe in order to predict SOC responses to varying management intensities. We find 

that our biophysically-explicit meta models are highly accurate (R² = .97) representations of 

the full mechanistic model and can be used in lieu of the full EPIC-IIASA GAM model for the 

estimation of SOC responses to cropland management. Model stratification by means of 

climate and soil clustering improved the performance of the meta-models compared to the 

full EU-scale model. In regional and local validations of the meta-model predictions, we find 

that the meta-models largely capture broad SOC dynamics such as the linear nature of SOC 

responses to residue application, yet they often underestimate the magnitude of SOC 

responses to management. Furthermore, we find notable differences between the results 

from the biophysically-specific models throughout Europe, which point to spatially-distinct 

SOC responses to management choices such as nitrogen fertilizer application rates and residue 

retention that illustrate the potential for these models to be used for future management 

applications. While more accurate input data, calibration, and validation will be needed to 

accurately predict SOC change, we demonstrate the use of our meta-models for biophysical 

cluster and field study scale analyses of broad SOC dynamics with basically zero fine-tuning of 

the models needed. This work provides a framework for simplifying large-scale agricultural 

models and identifies the opportunities for using these meta-models for assessing SOC 

responses to management at a variety of scales. 

1. Introduction 
Soil Organic Carbon (SOC) contains a substantial portion of global carbon stocks with roughly 1,500-2,400 Gt C 

( 5500-8800 Gt CO2) globally (Sanderman et al., 2017). Agriculture has historically contributed to a loss in SOC, 

primarily through conversion of native soil to agricultural uses as soil carbon stocks decline substantially when 

cropland replaces native forest (-42%) and pasture (-59%) (Guo and Gifford, 2002). Once soils have been converted 

for cultivation, further soil carbon losses may occur as a result of management practices such as tillage, choice of 

crop, and nutrient inputs (Lal, 2004). Although agricultural soils are often a source of carbon emissions, they can also 

serve as sinks for atmospheric CO2, depending on the interaction of factors such as soil properties, climate, and 

management 
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choices (Eglin et al., 2010). There has been a renewed focus on global soil carbon sequestration as global policy 

makers attempt to mitigate climate change effects. A recent analysis suggests a soil C sequestration annual technical 

potential of .79-1.54 Gt CO2/year (Amelung et al., 2020). Smith et al. (2020) highlighted the importance of improving 

our understanding of how SOC changes are influenced by climate, land use, management and edaphic factors as 

these processes and properties control the mechanisms of SOC changes (Attard et al., 2016). As a result, there is a 

great deal of complexity and spatial variability in potential SOC changes especially as it relates to the effects of 

management practices. One way to better understand the complexity and spatial variability of SOC changes is 

through the use of process-based models. 

Process-based models, which simulate daily crop growth and SOC dynamics under a variety of conditions, are 

frequently used for a wide range of applications such as assessment of policy goals (Minasnyet al.,2017) and 

estimation of landscape-scale SOC dynamics (Pennock and Frick, 2001). There are a variety of models and SOC 

quantification methodologies which vary in the processes they represent and how they are structured 

mathematically (Manzoni and Porporato, 2009; Whittaker et al., 2013). Among others, gridded agricultural models 

(GAM), including the gridded model EPIC-IIASA (Balkovič et al., 2014), have been evaluated as tools for agriculture 

sector assessments at large scales, including globally (Jägermeyr et al., 2021; Müller et al., 2017). These models are 

increasingly used in the EU-scale assessments to support land use policies, such as carbon emissions and removals 

from land use and land use change (Frank et al., 2015; Petrescu et al., 2021). One major benefit of using GAMs like 

EPIC-IIASA for estimation of SOC changes is the ability to simulate both existing and potential agricultural practices 

across large areas. As the effects of climate change continue to affect farmers, management practices may change 

to reflect new growing conditions (Iglesias et al., 2012). For example, a northward shift in cultivable zones may allow 

farmers in some areas of Europe to grow a wider variety of crops while other areas of Europe may see a reduction 

in crop growing potential of certain varieties (Ewert et al., 2005). Models like GAMs allow for the investigation of 

such scenarios and the SOC dynamics of these novel management choices. 

While there are many benefits to using process-based models, the robustness and accuracy of these models are 

limited by the availability of reliable calibration and validation data and by the structural representation of the 

processes within the model (Keel et al., 2017; Toudert et al., 2018; Jones et al., 2017). Some process-based models, 

such as reduced-form models, are relatively simplistic and require less data than others depending on the structure 

or the application (Jones et al., 2017, 1999). A model’s structure, computational complexity, and data requirements 

are often dependent on factors such as the purpose of the model and the data available for calibration and validation 

(Jones et al., 2017). Differences in the structures of process-based models can result in different responses when 

used to simulate the same experiments (Jones et al., 2017). Additionally, GAM applications are often 

computationally costly (Khabarov et al., 2020) and are limited by accuracy of often granular spatial inputs including 

initial SOC stock and crop management (Balkovič et al., 2020). In order to navigate these limitations, users 

sometimes build meta-models which train statistical models on simulation data output from process-based models 

in order to emulate process-based models in a simplified format. 

Statistical meta-models take complex, spatially-explicit simulations and generate a simplified framework which 

distills complex interactions. These meta-models can be used to identify relationships of interest and the 

characteristics which drive these relationships. Meta-models also help reduce the substantial data requirements and 

computational cost of running, calibrating, and validating a complex process-based model, while preserving their 

robust scientific capabilities. These meta-models, which so far focus foremost on crop yield responses, have been 

utilized to evaluate differences between process-based models (Ringeval et al., 2021), explore yield responses to 

climate change (Blanc, 2017; Franke et al., 2020; Oyebamiji et al., 2015), and downscale process-based model yield 

estimates (Folberth et al., 2019). A meta-model framework that allows parameterization for different regions, while 

still accounting for the main biophysical and management determinants of SOC dynamics, would be a significant 

improvement for regional SOC modeling. This framework could be used to help identify the relationship between 



 

TA Ippolito et al.: Preprint submitted to Elsevier 

management interventions and SOC outcomes and the biophysical conditions under which SOC may be the most 

responsive to interventions. 

In this paper, we present (1) the development of statistical meta-models built on a multifactorial implementation 

of EPIC-IIASA GAM for predictions of SOC responses to management change, climate, and soil properties, (2) the 

evaluation of the meta-models’ SOC change estimation across regional biophysical clusters (climate x soil zones) in 

the EU and against field study scale results across Europe, and (3) a demonstration of the utility of this meta-

modeling approach in identifying management strategies which may have the best outcomes for increasing SOC and 

the soil and climate conditions where these strategies may be the most effective. 
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2. Methodology and Data 

2.1. Methodology Overview 

The framework we utilize to build the statistical meta-models consists of 4 major components: (i) multifactorial 

gridded EPIC-IIASA modeling (referred to as EPIC Hypercube), (ii) biophysical clustering of spatially-explicit, gridded 

simulation units (SimU; homogenous simulation units are unique combinations of soil properties, weather, 

topography and management at 1km resolution) across Europe, (iii) cluster-specific regression meta-models, and 

(iv) evaluations at the level of biophysical cluster and field studies. We then demonstrate the use of our meta-models 

in identifying relationships between management interventions and changes in SOC and highlight the soil and 

climate conditions where these interventions may be the most effective. 

2.2. Multifactorial Gridded EPIC-IIASA Modeling 

2.2.1 Model Description  

The Environmental Policy Integrated Climate (EPIC) Model is a process-based field scale model which simulates,
. 

with a daily time step, crop growth, hydrological, nutrient and carbon cycling, soil temperature and moisture, soil 

erosion and plant environment control under a wide range of crop management options such as tillage, fertilization, 

irrigation, pesticides, and liming (Izaurralde et al., 2006; Williams and Singh, 1995). In EPIC, the coupled organic C 

and nitrogen (N) module (Izaurralde et al., 2006) calculates transformations of five organic matter compartments as 

regulated by the soil environment, including soil moisture, temperature, oxygen, tillage, lignin content, and N supply. 

The EPIC model has been used in a variety of studies investigating soil organic matter cycling (Izaurralde et al., 2006), 

irrigation timing (Bryant et al., 1992), and the impact of climate change on the agricultural sector (White et al., 2011) 

among others (Gassman et al., 2004). 

The EPIC-IIASA GAM (the EU version) was built by coupling EPIC (v. 0810) with EU-wide datasets on land cover 

(cropland), soils, topography, territorial units (NUTS2), and crop management practices aggregated at a 1x1 km grid 

covering European countries (Balkovič et al., 2013, 2018). All homogeneous gridded areas, i.e. spatially-unique 

simulation units (SimU), are assigned with “dominant” farmland fields, cropping systems, and crop management 

(Skalsky et al.` , 2008). The EPIC-IIASA GAM is one of 14 models included in the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP) which provides ensemble projections of climate change impacts on agriculture 

(Jägermeyr et al., 2021; Warszawski et al., 2014). 

2.2.2 Multifactorial Modeling Framework  

We designed a multifactorial EPIC-IIASA simulation across 86,000 gridded SimUs covering Europe and a variety
. 

of 

crop management factors, we refer to the collection of multifactorial simulations as the EPIC Hypercube. For each 

SimU, we model annual crop yield (in tDM/ha), crop residue carbon (in kgC/ha) and annual change in topsoil SOC 

(tC/ha/year) for the time period 1980-2019. For each SimU x year, we simulate a factorial combination of the 

following management factors: 

1. Crop type of maize, rape, rice, barley, soya, sunflower, rye, wheat 

2. Maximum annual nitrogen fertilizer application of 0, 50, 100, and 250 kgN/ha, plus a crop-specific business-

asusual (BAU) N application rate (see Balkovič et al. (2013)) 

3. Retention of 0, 30, 60, and 90% of crop residues at harvest 

We discard the first 5 years (1980-1985) of simulation data to allow for model spin-up. Across the 86,000 SimU, 

35 years, 8 crop types, 5 nitrogen application rates, and 4 residue management scenarios, the multifactorial 

simulation results in over 481 million unique crop growth records across Europe. For detailed information on the 

EPIC Hypercube input data, including climate, soil, and crop management parameters, please refer to the appendix. 



Predicting Spatiotemporal Soil Organic Carbon Response 

TA Ippolito et al.: Preprint submitted to Elsevier Page 5 of 23 

 

Figure 1: a) Soil clusters of SimU across Europe - clusters consist of 5 discrete classes based on soil texture defined by EPIC-IIASA. 

b) Climate clusters of SimU across Europe - clusters consist of 10 discrete classes based on 40 years of monthly climate data. 

“Cont” is an abbreviation for “Continental” and “Med” is an abbreviation for “Mediterranean. c) Regional biophysical clusters 

generated as a product of soil clusters and climate clusters 

2.3. Biophysical Clustering of Simulation Units 

We generate regional biophysical clusters of all 86,000 SimU across Europe using a combination of a-priori and 

unsupervised clustering techniques (Ding and He, 2004). We consider soil properties and climate properties as the 

two main components of biophysical characterization. Soil clusters and climate clusters are produced separately, 

and then combined, so that each of the final biophysical clusters is a unique combination of distinct soil and climate 

conditions. From the 5 SimU soil clusters and 10 SimU climate clusters, there are a total of 50 potential regional 

biophysical clusters of which 43 are present in the SimU (Fig. 1). Biophysical clusters with less than 1000 simulations 
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were omitted from analysis due to concerns of model overfitting which are raised when there is a lack of sufficient 

data. 

 

2.3.1. Soil Clustering 

We select soil clusters (Fig. 1) a-priori using the EPIC-IIASA defined texture classification. There are 6 discrete soil 

texture classes within EPIC-IIASA - coarse, medium, medium-fine, fine, very fine, and peat. Peat was excluded from 

this analysis. Each simulation unit has one soil texture classification. 

2.3.2. Climate Clustering 

We discover climate clusters (Fig. 1) using an unsupervised machine learning approach - K-means clustering via 

Principal Component Analysis (PCA) - which has been used for a variety of applications such as clustering of DNA 

gene expressions and internet news articles (Ding and He, 2004). The climate data used for the climate clusters is 

the same data which is used as input to the EPIC Hypercube, but aggregated from daily measurements to monthly 

averages and sums depending on the variable. Climate parameters used in the clustering algorithm include monthly 

precipitation, temperature minimum and maximum, relative humidity, solar radiation, and potential 

evapotranspiration over all years (1980-2019). Due to the large number of climate parameters (6 variables x 12 

months/year x 40 years), we use PCA as a dimensionality reduction technique to minimize the size of the data while 

preserving a large amount of information. We calculate principal components and retain those which explain a 

combined minimum of 90% of the variance in the climate data. We then use the PCA-reduced climate data as input 

to a K-means clustering algorithm (Pedregosa et al., 2011). The K-means clustering algorithm aims to find cluster 

centroids by optimizing a squared error function, typically the sum of the squared Euclidean distances (Likas et al., 

2003). We tested k = 2 to k = 12 clusters and selected the optimal number of clusters based on a variety of statistical 

metrics (Inertia, Caliński-Harabasz Score, Davies-Bouldin Score, etc.) in combination with manual inspection and 

comparison to well known climate classifications such as Köppen-Geiger Climate Classification (Caliński and Harabasz, 

1974; Davies and Bouldin, 1979; Peel et al., 2007). We find the optimal number of climate clusters to be 10. We use 

descriptive labels for the climate clusters in order to refer to them throughout our work - these labels were decided 

ad-hoc using reference to common climate classifications. 

2.4. EPIC-IIASA STAT: Cluster-Specific Regression Meta-Models 

2.4.1 Machine-Learning Framework  

We build a separate regression meta-model of the EPIC Hypercube for each regional biophysical cluster x crop
. 

type 

in order to investigate SOC responses to management which are unique to given soil and climate conditions. The 

collection of these statistical meta-models, which together cover all of Europe, is referred to as EPIC-IIASA STAT. By 

building these meta-models we explore the nature of SOC dynamics under a wide-variety of management choices 

and highlight the soil and climate conditions where management interventions may be the most effective. We chose 

to separate out crop types to avoid tangling the signals of different crops as crops may respond to management in 

unique ways. In EPIC-IIASA STAT, we predict 35-year long term averages of mean annual change in SOC. Since SOC 

changes occur slowly, long-term averages are more appropriate for our investigation. 

For each biophysically-specific meta-model within EPIC-IIASA STAT, we utilize a bagging meta-estimator of 

multiple polynomial regression models together with inputs and outputs of the EPIC Hypercube simulations (Section 

2.2.2). This allows us to build a robust, yet highly interpretable machine learning model for prediction of mean 

annual change in SOC within a cluster. Ensemble methods such as this combine a large number of base-estimators 

built with a specific algorithm (here, a multiple polynomial regression model) in order to improve on the 

performance of a model built with a single estimator. In order to avoid overfitting and the challenges of 

multicollinearity we utilize n-fold cross validation, L2 regularization, out-of-bag error monitoring, and testing on the 

25% of observations held out from the training set (Chong and Jun, 2005; Kohavi et al., 1995). The EPIC Hypercube 

simulation data for each cluster was randomly split into training (75% of data) and testing (25% of data) sets. The 

number of simulations used for meta-model building varied by cluster and ranged between 1,222 and 139,003 

simulations. Using the same methodology, we also build a meta-model for each crop type without biophysical-
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specification (i.e. using all SimU) to test the value of model stratification by soil and climate parameters. In this 

Europe-wide meta-model, we split the entire EPIC Hypercube into training (75% of data) and testing (25% of data) 

sets. 

2.4.2 EPIC-IIASA STAT Structure  

The bagging estimator of multiple polynomial regression models is an ensemble method which estimates a number
 

of base estimators and combines these base estimators to form each meta-model within EPIC-IIASA STAT. The 

multiple polynomial regression base includes linear and quadratic terms for each parameter, as well as interaction 

terms between parameters (Eq. 1). 

f(𝑥𝑖) = α + ∑ 𝛽𝑗𝑥𝑗
𝐽
𝑗=0 + ∑ 𝛽𝑙𝑥𝑙

2𝐽
𝑙=0 + ∑ 𝛽𝑗𝑙𝑥𝑗𝑥𝑙

𝐽
𝑗≠𝑙       (1) 

  

 𝑦𝑖  =  f(𝑥𝑖) + 𝜀𝑖  (2) 

Where f(𝑥𝑖) is the predicted variable (with i = 1,...,n), 𝑥𝑗  (with j = 1,...,J) are the explanatory variables, α  is the 

intercept, 𝛽𝑗  are the slope coefficients associated with linear terms, 𝛽𝑙  are the slope coefficients associated with 

quadratic terms, 𝛽𝑗𝑙  are the slope coefficients with the interaction terms (when 𝑗 ≠ 𝑙). 𝜀𝑖 is an iid error term from 

Gaussian distribution with zero mean and 𝜎2 variance.This structure was selected for its interpretability and the 

ability to explore response relationships of interest from the learned model. Our bagging estimator, built with scikit 

learn, fits 20 base estimators on randomly selected subsets of the training data and then combines the predictions 

of all estimators into each final meta-model (Breiman, 1996). We tested up to 60 base estimators and found marginal 

improvements in meta-model performance past 20 base estimators. For discussion regarding the model structure, 

please see the appendix. 

2.4.3. EPIC-IIASA STAT Features 

Features which are used to train each EPIC-IIASA STAT meta-model are based on inputs and outputs of EPIC 

Hypercube simulations. We use a limited set of climate, soil, and management features which are of interest in 

exploring the biophysically-determined SOC response to management (Table 1). For climate data, we engineer a 

number of growing season (GS) specific climate variables following the framework of Folberth et al. (2019). For soil 

data, we engineer full-profile parameters as a weighted sum of topsoil- and subsoil-specific variables. Applied 

nitrogen fertilizer is calculated as the sum of all applied nitrogen throughout the season as dictated by the automatic 

application mechanism in EPIC. Applied nitrogen fertilizer does not exceed the specified maximum annual N rate 

which is specified in the multifactorial simulation. Aboveground residue C is calculated by subtracting the C in dead 

roots and the C in residues from yield harvest losses from the total amount of residue C - we consider added 

aboveground residues as the residue treatment. For our target variable we use EPIC-IIASA GAM predicted mean 

annual change in topsoil organic C (Δ SOC), calculated as the average month to month difference in organic carbon 

in the 0-15 cm plowing depth over a given year. If mean Δ SOC is positive, soils absorbed C throughout the year, if 

negative, soils lost C throughout the year. As a final step, we collapse data into 35-year long term averages. For each 

unique simulation design - SimU x crop type x N application rate x residue management - all features, including soil, 

climate, management, and target variables, are averaged. Since averaging across 35 years dampens the variability 

of parameters, we also calculate long-term standard deviations of temporally dynamic features (all features except 

soil variables) to retain information on variability which may be important to SOC dynamics. Thus each data point 

used to train the model is a long-term record of a given SimU and cropping scenario. 

Table 1 
EPIC-IIASA STAT Meta-model input variables 
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Variable Type Variable (Unit) 

Soil Profile Sand Content (%) 
Profile Silt Content (%) 
Organic C in topsoil (%) 
Profile Field Water Capacity at 33 kPa (𝑐𝑐3/𝑐𝑐3) 

Climate GS Precipitation Sum (mm) 
GS Precipitation Skew (mm) 
GS Temperature Mean (𝑐◦) 
GS Temperature Skew (𝑐◦) 
GS Radiation Mean (MJ/𝑐2) 
GS Radiation Skew (MJ/𝑐2) 
GS Potential Evapotranspiration Mean (mm) 

Management Applied nitrogen Fertilizer (FTN, kgN/ha/yr) 
Aboveground residue C content added to the soil (RSDCa, kgC/ha/yr) 

Target Mean Annual Change in SOC (Δ SOC, tC/ha) 

2.5. Evaluating EPIC-IIASA STAT 

2.5.1. Feature Importance 

Weimplement(a)leave-one-outand(b)featuresubsetselectionstrategiesinordertoidentifythefeatureimportance 

within each meta-model (James et al., 2013). In the leave-one-out feature selection strategy, we test the importance 

of each feature individually by training the model using all features except the feature of interest. The change in 

model performance, measured by change in 𝑅2  value, resulting from the exclusion of the feature is the measured 

importance of that feature. Larger performance losses (negative change in 𝑅2) indicate a feature is important to the 

accuracy of the model. The main challenge of using this methodology is the effect of multicollinearity on measured 

feature importance. If there are highly collinear variables in the model, removing one of the collinear variables may 

not result in a substantial decrease in model performance. Since many features in this model such as climate and 

soil parameters co-vary, we also implement a feature subset selection where we remove all soil parameters, all 

climate parameters, all nitrogen management parameters, all residue management parameters, and all nitrogen 

and residue management parameters from the model to test the importance of these groupings of variables. 

2.5.2. Performance of EPIC-IIASA STAT in replicating modeled SOC dynamics 

We evaluate each meta-model with the held out testing data (25% of observations) to assess the accuracy of 

EPICIIASA STAT in predicting EPIC-IIASA mean Δ SOC. We also benchmark each biophysically-specific meta-model 

against a regression meta-model built on the full set of simulation data to investigate the achieved benefit of soil 

and climate clustering. The coefficient of determination, 𝑐2, was calculated by (Eq. 3) as 

 𝑅2  = (1 −
𝑢

𝑣
) (3) 

Where 𝑢 =  ∑ (∆𝑆𝑂𝐶𝑡𝑟𝑢𝑒,𝑖 − 𝛥𝑆𝑂𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑖)
2𝑛

𝑖=1 =  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 

and 𝑣 =  ∑ (∆𝑆𝑂𝐶𝑡𝑟𝑢𝑒,𝑖 − 𝜇𝑆𝑂𝐶𝑡𝑟𝑢𝑒
)

2𝑛
𝑖=1 =  𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 

Mean Absolute Error (MAE) was used as a measurement of model bias and is calculated by (Eq. 4) as 

𝑀𝐴𝐸 =  ∑ |𝛥𝑆𝑂𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑖 − 𝛥𝑆𝑂𝐶𝑡𝑟𝑢𝑒,𝑖|
𝑛
𝑖=1 𝑛⁄  (4) 

 

2.5.3. Regional and Local Validation of EPIC-IIASA STAT 

To evaluate regional scale predictions of SOC change, we utilize a number of published agricultural experiments 
and meta-analyses from around the world which test and summarize the effects of management on SOC. For a full 
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list of referenced literature, please see (Table3) in the appendix. In this validation, we specifically searched for 
literature which investigated the effect of inorganic nitrogen fertilizer application and/or residue incorporation using 
conventional tillage on SOC. Studies of agricultural systems under both continuous cropping and crop rotations were 
included. Specifically, we look at the linear nature of SOC responses to residue C additions, SOC stock increases with 
residue incorporation, the effect of N fertilizer on SOC with and without crop residue incorporation, and the 
geospatial heterogeneity in the combined effect of residue C and nitrogen applications on changes in SOC (see 
appendix for information on the calculation of specific validation metrics). 
     To investigate how closely EPIC-IIASA STAT corresponds to local (field) scale SOC dynamics in response to 

management documented, we selected test sites in the Czech Republic, Italy, Ireland, and Finland (spanning a 

range of biophysical clusters). In our field study scale reference, we utilize data from four long term experiments 

across Europe representing a variety of different climates and soils. We investigate how EPIC-IIASA STAT 

predictions of SOC and the data underlying these predictions diverge from experimental SOC values and site 

conditions. The experiments utilized are from the Czech Republic (Balkovič et al., 2020), Italy (Triberti et al., 2008), 

Finland (Singh et al., 2015), and Ireland (van Groenigen et al., 2011). These long-term experiments were chosen to 

represent 4 contrasting climate and soil conditions (see appendix, Table 2). Data on soil, climate, and SOC 

dynamics were collected from the publications. We explore how well EPIC-IIASA STAT replicates the reported 

increase in SOC stock from residue incorporation compared to control as this data is reported in all studies. From 

the location of each field study, we identify all SimU within a 50km radius of that site and utilize the EPIC-IIASA 

STAT SOC predictions of these SimU for our comparison. 

 

2.6. Computational Framework 

All data engineering, computations, modeling, and plotting were completed with Python 3 software. Data processing 

and computations were completed using the Numpy and pandas data analysis libraries (Harris et al., 2020; McKinney 

et al., 2010; Reback et al., 2020). Machine learning models were built and evaluated using the scikit learn package 

(Pedregosa et al., 2011). Figures were produced using matplotlib (Hunter, 2007). All code available upon request.  



Predicting Spatiotemporal Soil Organic Carbon Response 

TA Ippolito et al.: Preprint submitted to Elsevier Page 10 of 23 

3. Results 
3.1. Using EPIC-IIASA STAT to Replicate Modeled SOC Dynamics 

3.1.1 Accuracy and Model Bias  

The accuracy of EPIC-IIASA STAT in predicting EPIC-IIASA GAM simulated mean annual change in SOC is
 
very. high 

across all regional biophysical clusters and all crop types with low mean bias (mean MAE = 0.005 tC/ha). Meta-

models without clustering of biophysical properties achieved an average 𝑅2of 0.97 across all crops. Meta-models 

trained on regional biophysical clusters of SimU achieve an average 𝑅2  = 0.99 with all meta-models achieving an𝑅2> 

0.97 across all crops and clusters. The size of training data has a slight negative impact on the accuracy (𝑅2) and a 

positive impact on the bias (MAE) of the meta-models (not shown). 

3.1.2. Feature Importance  

In our leave-one-out feature importance analysis, we find that on average, mean C content of above-ground residues
 

applied each year (RSDCa) is by a wide-margin the most important variable in predicting Δ SOC when regional 

biophysical clusters are considered. Across the clusters and crop types, the exclusion of RSDCa results in an average 

change in 𝑅2 of -0.11, while the average change in 𝑅2 resulting from removal is close to 0 for all other variables. The 

feature importance resulting from the feature subset selection strategy was more informative in this study, likely 

due to the covarying nature of features used to train our meta-models. On average across all biophysically-specific 

meta-models, we find that the combined subset of residue and nitrogen features is the most important in predicting 

Δ SOC over the 35-year time period followed by residue, climate, soil, and N fertilizer feature subsets (Fig. 2). 

Exclusion of residue and nitrogen features results in an average change in𝑅2 of -0.83. In the meta-model built 

without biophysical stratification, exclusion of residue and nitrogen features resulted in an average change in 𝑅2  of 

-0.76 across crop types. Exclusion of just residue features results in an average change in 𝑅2  of -0.45 across 

biophysical clusters and crop types. We find that the subset of residue features also has the highest variation in 

feature performance across all crops and regional biophysical clusters. Low sensitivity to the exclusion of N 

fertilization alone is due to its high collinearity with the residue feature. In addition, it should be noted that with 

biophysical clustering we implicitly lower the importance of soil and climate features aiming to single out the role 

of crop residue and N fertilization features in the biophysically specific meta-models. As expected, there are distinct 

differences in feature subset importance among the biophysically specific meta models which are dependent on 

biophysical cluster properties. For more information on these differences, please refer to the appendix. 

3.2. Verification of EPIC-IIASA STAT at Regional and Local Scale 
While EPIC-IIASA STAT is highly accurate in replicating EPIC-IIASA GAM’s simulated SOC dynamics across all 

climate and soil clusters, future practical use of a meta model like EPIC-IIASA STAT would be contingent on the ability 

to reproduce SOC dynamics on the ground. Here we present the results of an EPIC-IIASA STAT comparison to the 

literature at two scales: (a) an inspection of emulated SOC trends and responses across Europe at the scale of the 

regional biophysical clusters, and (b) at a field scale by comparing our meta-model against four long term 

experiments, using predictions within a 50km radius of experimental locations. 

 

3.2.1 Biophysical Cluster Scale Verification  

We find that across crop types, management choices, and regional biophysical clusters, EPIC-IIASA STAT captures
. 

a 

linear relationship between SOC change and the amount of applied C from residues (see appendix Fig. 9, all 

regressions are statistically significant at P<0.01). From these linear relationships, we identify the C Conversion 

Efficiency (CE) of residues applied as the ratio between the mean annual change in SOC and the total C applied from 

residues (including above and below ground residues). Over 35 years across all crop types, management, soils, and 
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climates, EPIC-IIASA STAT shows most 35-year CE ranging from 0 to .05 with an average conversion efficiency of .015 

(see appendix Fig. 10). Only 6.9% of the emulated CE, across all crops and N fertilizer rates, are above .05 while the 

ranges in cited literature are between 0% and 25%. 

Many studies report the increase in SOC stock with residue incorporation compared to control treatments. Averaged 

over crop type and nitrogen fertilizer rates, EPIC-IIASA STAT finds that the majority of increases in SOC stock fall 

within the range of those from published literature (Fig. 3). The mean increase in SOC stock in EPIC-IIASA STAT is 

4.6% across all crops and N-fertilization rates, while 95% of the emulated SOC increases range between 0.7% and 

11.7%. The increase in SOC stock with residue incorporation compared to control ranges between 0% and 33.6% in 

cited literature. 

 

 

Figure 2: Box plots of feature subset importance for all crops and biophysical-specific meta-models within EPIC-IIASA STAT. 

Whiskers correspond to 1.5 times the upper and lower quartiles. Box corresponds to the interquartile range, red line corresponds 
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to median value. Blue lines represent the feature subset importance of the meta-model built without biophysical stratification, 

averaged across crop types. 

EPIC-IIASA STAT also shows a linear effect of nitrogen fertilizer application on SOC change. EPIC-IIASA STAT 

predictions show that for each crop, N application has a slight positive effect on SOC when residues are not included 

and the N effect increases as we increase the percentage of residues incorporated (see appendix Fig. 11, all 

regressions are statistically significant at P<0.01). 

 

Figure 3: Increases in SOC stock with residue incorporation compared to control averaged over crop type and N inputs for each 

SimU. Blue lines represent the range of values from EPIC-IIASA STAT, center blue line represents mean of EPIC-IIASA STAT values. 

Red lines show comparison to values in published literature. 

3. 2.2 Field Study Scale Verification
  

In our field study scale comparison using long-term experiments from across Europe, we find that, on average,
 
 

EPIC-IIASA STAT predictions underestimate experimental SOC changes for all experiments except for those in Finland 

(see appendix Fig. 14). In the Czech Republic, EPIC-IIASA STAT captures the range of SOC increases from residue 

incorporation while the mean of EPIC-IIASA STAT SOC increases (5.5%) is lower than the 7-12% change reported by 

Balkovič et al. (2020). In Italy, the emulated range of SOC increases also captures the reported value, but the mean 

EPIC-IIASA STAT increase in SOC of 8.2% is lower than the rate of 19% reported by Triberti et al. (2008). In Ireland, 

the EPIC-IIASA STAT ranges of 1.3-3.2% are lower than the reported value of 7.3% (van Groenigen et al., 2011). In 

Finland, our meta-model overestimates the SOC increase from residues as it predicts a mean soil SOC content 

increase of 1.1% while the experiment reports no measured increase in SOC from residues. Although the model 
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diverges from the measured values of SOC increases from residues, it does capture the spatial variation of 

experiments with Italy experiencing the largest SOC increases, followed by the Czech Republic, Ireland, and Finland. 

For each site, we compare EPIC-IIASA STAT input climate and soil variables to those of published literature which 

may have impacted the discrepancies in the models ability to replicate SOC responses to management (see appendix, 

Fig. 15). Again, our ranges capture most of the values in the Czech Republic for most variables with the exception of 

soil clay content and mean annual precipitation. In Italy, the measured values of soil clay content, soil bulk density, 

and mean annual temperature are outside the range of EPIC-IIASA STAT values for these variables. In Ireland, the 

soil sand and clay content are outside the EPIC-IIASA STAT ranges. 

 

Figure 4: Heatmap of Mean Annual Change in SOC (tC/ha) achieved with varying applications of above-ground residue C (tC/ha) 

and nitrogen fertilizer (kgN/ha) for each biophysical cluster, averaged over all crops except soybean. For crop-specific heatmaps, 

please see the Appendix. Each biophysical cluster is a unique combination of climate and soil. White X marks the maximum Mean 

Annual Change in SOC for each biophysical cluster. 

3.3. Demonstrating the Use of EPIC-IIASA STAT to Identify Management Interventions 
While in general, the addition of N fertilization and residue C lead to larger changes in mean annual SOC (see 

appendix, 16), the effects of management are highly variable across climatic and soil conditions. The treatment 

which has the highest variability in SOC accumulation (.031 tC/ha) across clusters is maximum residue addition 

(>4tC/ha) with minimal N addition (<50kgN/ha) (see appendix, 16). There are distinct responses to treatments 

depending on the unique combination of soil and climate. For example, with maximal residue addition and minimal 

N addition, medium fine textured soils in cooler climates (e.g. Subarctic North) are predicted to have the highest 

SOC accumulation among all soil x climate clusters. Yet with maximal N addition and minimal residue addition, fine 

textured soils in cooler climates (Subarctic North) are predicted to have the lowest SOC accumulation while coarse 

soils in temperate climates (Cool Mediterranean) are predicted to have the highest SOC accumulation. 

The combination of climate and edaphic parameters results in substantial variability of SOC dynamics across 

Europe. For each biophysical cluster, we find that EPIC-IIASA STAT predicts varying rates of SOC change as a result 

of varied application of residue C and nitrogen fertilizer. For most climates x soil combinations, EPIC-IIASA STAT 

predicts the highest rate of mean annual change in SOC when more than 4tC/ha are applied as residues. Interestingly, 

for some biophysical clusters EPIC-IIASA STAT shows that high amounts of applied nitrogen are predicted to reduce 

the mean annual change in SOC (e.g. Subarctic Mountain x fine textured soil in 4). Across all clusters, there is a strong 

link between a cluster’s climatic characteristics and SOC accumulation (see appendix, 17). The average cumulative 

growing season precipitation of a cluster has a positive linear relationship with average SOC accumulation of a cluster. 

The relationship between temperature and SOC accumulation is more nuanced - there is a negative quadratic 

relationship between mean growing season temperature of a cluster and average SOC accumulation of a cluster (see 
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appendix, 17). Across treatments, climate and crop types, soils with medium-fine texture have the highest average 

SOC accumulation (.054 tC/ha) and the highest variability in SOC accumulation (.031 tC/ha). 

4. Discussion 

4.1. Utility of EPIC-IIASA STAT in replicating modeled SOC dynamics 

The high degree of accuracy achieved by EPIC-IIASA STAT in predicting multifactorial EPIC-IIASA GAM simulations 

shows the ability to utilize highly interpretable meta-models to simplify and explore the EPIC-IIASA GAM. The 

multiple polynomial regression model used in this study maintains a high degree of mechanistic information from 

the original process models compared to the black-box nature of machine learning models (Rudin, 2019) and more 

importantly, it maintains mechanistic predictions that could be used to support decision making at the local to 

regional scale. Furthermore, the results of our analysis show that biophysical stratification does modestly improve 

the accuracy and reduce the bias compared to the meta-models built without biophysical stratification. By stratifying 

our training data across climatic and soil classes and building separate meta-models on these subsets, EPIC-IIASA 

STAT may learn more nuanced response relationships which are unique to the biophysical conditions, thus resulting 

in higher accuracy. This capacity could be further leveraged in future applications of this type of approach. Yet, our 

regression model has some limitations. Since we set the structure and degree of the multiple polynomial regression 

base estimator, we must make an assumption about the nature of the SOC response relationships which may lead 

to inaccuracies. We chose to use quadratic terms for our multiple polynomial regression as quadratic effects of 

management parameters such as applied nitrogen are well studied and accepted in the literature (Bullock and 

Bullock, 1994; Puntel et al., 2016). Furthermore, while we attempt to mitigate the effects of multicollinearity in our 

model, the polynomial regression model is more sensitive to these effects than other machine learning models such 

as random forests. The feature analysis points to the parameters which are critical to accurately predict mean 

change in SOC and the regional climate and soil characteristics which vary the importance of these parameters. For 

further discussion of the feature analysis of EPIC-IIASA STAT, please refer to the appendix. 

4.2. Prediction of SOC dynamics 

4.2.1 Regional Biophysical Cluster Scale  

We find that across crop types and regional biophysical clusters, EPIC-IIASA STAT SOC dynamics agree with
. 

the 

literature on SOC responses to management change (see appendix Table 3 for full list of literature). A number of 

experiments and meta-analyses have identified a linear relationship between SOC change and the amount of applied 

C, which is represented well in EPIC-IIASA STAT Campbell et al. (2002); Duiker and Lal (1999); Kong et al. (2005); 

Rasmussen and Collins (1991); Thomsen and Christensen (2004). Furthermore, there is wide agreement that without 

residue application, N application has only a little positive effect on SOC, mainly through stimulating higher root 

biomass (Bertora et al., 2009; Biau et al., 2013; Lugato et al., 2006; Salinas-Garcia et al., 1997; Sandén et al., 2018; 

Triberti et al., 2008; Searle and Bitnere, 2017). Nitrogen applications have much larger effect when accompanied by 

crop residue incorporation as evidenced in many studies (Cvetkov and Tajnšek, 2009; Gregorich et al., 1996; Lu et 

al., 2011; Lugato et al., 2006; Malhi et al., 2011; Mazzoncini et al., 2011; Russell et al., 2009; Šimon et al., 2013; 

Tajnšek et al., 2013; van Groenigen et al., 2011; Wang and Dalal, 2006; Xu et al., 2007). 

At the regional biophysical cluster scale, EPIC-IIASA STAT ranges of C conversion efficiencies and increases in SOC 

resulting from residue incorporation satisfactorily capture the ranges cited in literature with most of the values 
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falling inside the cited literature ranges. For both of these measurements, EPIC-IIASA STAT predictions trend lower 

than experimental results. This propensity of EPIC-IIASA to underestimate positive SOC changes has been shown in 

a handful of published studies (e.g., Balkovič et al. (2020); Izaurralde et al. (2006)). Since our meta-models are trained 

on the EPIC-modeled gridded dataset, EPIC-IIASA STAT captures the broad patterns of SOC dynamics as well as the 

ways biophysical parameters affect these dynamics in the EPIC model, including its limitations. The limitations of the 

biophysical model EPIC and its regional gridded applications in representing SOC dynamics following certain 

management have widely been discussed in Balkovič et al. (2020). For further discussion of the underlying causes of 

discrepancies between EPIC-IIASA STAT predictions and published data, please refer to the appendix. 

It is widely known that calibration and validation of EPIC-IIASA and other agronomic models is needed to 

replicate specific rates and SOC measurements at the site scale (Antle et al., 2017; Balkovič et al., 2020; Müller et al., 

2017; Silva and Giller, 2020), thus accurate predictions of specific SOC metrics across Europe requires large amounts 

of ground data and often requires time-consuming work with the model to replicate site conditions. While EPIC-

IIASA STAT may have lower than observed mean estimates for the rates of C conversion efficiency and increase in 

SOC stock over control, it does capture the biophysical variation in SOC responses to management and is consistent 

with patterns across soils and climate. Although specific rates from EPIC-IIASA STAT may not perfectly match those 

in cited literature, using EPIC-IIASA STAT to replicate broad patterns of SOC response may still be useful in regional 

planning efforts as the direction and magnitude of potential changes can be a key issue in decision making (Minasny 

et al., 2017; Smith et al., 2020; Slessarev et al., 2022). The general SOC response curve and associated variation 

across biophysical clusters, while less useful in identifying exact rates of SOC change or content, may provide a robust 

and reliable outlook on the efficacy of management choices across diverse biophysical (climate x soil) settings and 

could provide a new approach for regional evaluation of the potential efficacy of management interventions to 

address soil carbon storage. 

4. 2.2 Field Study Scale 
 

Field study scale SOC dynamics are of possible utility to farmers who may want to optimize residue harvesting
 

improve soil health, or utilize carbon credits (Antle et al., 2017; Müller et al., 2017; Silva and Giller, 2020). EPICIIASA 

STAT predicted ranges of SOC stock increases resulting from residue incorporation either fully capture the range of 

experimental values (Czech Republic and Italy) or come very close to the measured values (Finland and Ireland) (see 

appendix, Fig 14. The model also captures the broad geographical pattern in SOC changes across the four long term 

experiments with Italy experiencing the highest SOC increases from residues, followed by the Czech Republic, 

Ireland, and Finland. EPIC-IIASA STAT shows the closest agreement in SOC changes with the experiment in the Czech 

Republic. 

Similarly to the regional patterns discussed above, differences between EPIC-IIASA GAM and experiments in the 

plowing depth of residues (20 cm vs 20-40 cm), regional crop rotations and detailed agricultural practices, and C 

concentration of residues (40% vs 35-45%) may contribute to these differences. Secondly, differences in the soil and 

climate data which underlie the hypercube training data may also contribute to deviations from experimental values 

(see appendix, Fig 15). It has been shown that inaccurate localization of soil and climate data may introduce 

significant bias to regional models (Balkovič et al., 2020; Zhao et al., 2015). Sometimes the input values are missing 

in the literature data. For example, in Finland, most of the ranges of EPIC-IIASA STAT climate and soil parameters 

capture the reported values from the long term experiment but the experiment lacked measurements for initial SOC 

values. Notably, EPIC-IIASA STAT ranges for soil and climate parameters mostly capture the ranges of these 

parameters in the Czech Republic where EPIC-IIASA STAT SOC dynamics agree most closely with the published study 

(see appendix, Fig 15). Finally, using predictions from a 50km radius around the site location to compare against 

experimental data is quite arbitrary. This may lead to a very wide range of impacts, especially in heterogeneous 

regions, or it also may miss the conditions in long-term experiments entirely. While we show a number of promising 

successes of EPIC-IIASA STAT, comparison to a larger degree of long-term experiments would help solidify an 

understanding of the successes and limitations of this approach at the field study scale and the performance of our 

meta-models under given climate and soil conditions. 

4.3. Utilizing EPIC-IIASA STAT to Identify Management Interventions 
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EPIC-IIASA STAT shows that soil and climate properties may help determine SOC accumulation across Europe and 

the efficacy of management interventions in improving SOC outcomes. While climates with more precipitation have 

higher levels of SOC accumulation on average over soil textures and treatments, EPIC-IIASA STAT finds that the 

importance of management parameters in predicting mean annual change in SOC is the highest in areas where 

precipitation is between 400 and 600 mm during the growing season (see appendix, 17). These results suggest that 

these areas may have optimal climate characteristics for effective management of SOC. The relationship between 

precipitation, temperature, and mean annual change in SOC may be a result of the effects of climate on both SOC 

processes and yield. Globally, soil carbon is positively correlated with precipitation and negatively correlated with 

temperature (Jobbágy and Jackson, 2000). Yet yield, which is also correlated with SOC, has more nuanced 

precipitation and temperature relationships (Agnolucci and De Lipsis, 2020). Additionally, clusters with soils that 

have high water holding capacity tend to have higher management feature importances and lower climate feature 

importances (see appendix, 6). Soils with better water storage may more readily accumulate SOC since microbial 

and enzymatic activity decreases as soils dry (Moyano et al., 2013). EPIC-IIASA STAT results suggest that the interplay 

of SOC processes and yield may determine the climatic and soil characteristics which are most favorable for 

improving SOC accumulation. 

In some cases and specifically in Continental Central Europe and Subarctic Northern Europe, higher levels of N 

fertilizer may in fact reduce SOC accumulation. Since nitrogen fertilization can cause substantial adverse effects on 

the environment, finding areas where SOC accumulation benefits from fertilizer reduction could help direct 

reduction in usage (Martínez-Dalmau et al., 2021). In Europe, the use of nitrogen fertilizers has been a target of 

policy intervention in an effort to reduce harmful effects of excessive nitrogen application (Fezzi et al., 2010). While 

it is often observed that nitrogen fertilization may increase soil C sequestration through an increase in organic carbon 

inputs via higher productivity, nitrogen fertilization may also affect the soil organic matter decay rates which could 

outweigh C inputs (Khan et al., 2007; Neff et al., 2002; Russell et al., 2009; Jesmin et al., 2021). The balance between 

organic inputs and decay rates resulting from N fertilization is unique to the agroecosystem and management 

choices (Russell et al., 2009), thus for some parts of Europe - e.g. fine-textured soils in Norway - increasing the 

amount of applied nitrogen may not further increase mean annual change in SOC. EPIC-IIASA STAT shows that cooler 

climates require the lowest amounts of applied Nitrogen in order to achieve maximum SOC accumulation while 

warm mediterranean climates require the most applied Nitrogen. Among soil types, EPIC-IIASA STAT finds that 

coarse textured soils require the most N fertilizer across climates. Coarse textured soils may require the most N 

fertilizer to achieve maximum SOC accumulation rates due to the inability to form aggregates and mineral protected 

C, both of which accelerate SOC accumulation rates (Schimel et al., 1994; Xu et al., 2020). The results from EPIC-

IIASA STAT could help identify opportunities to balance the reduction of N fertilizers and the improvement of SOC 

outcomes. 

4.4. 
Conclusions

 

Understanding the geospatial variation and potentials in SOC responses to management is important to 

policymakers in evaluating the tradeoffs of SOC management and identifying promising interventions across Europe 

at a variety of scales. Our approach shows the efficacy of utilizing statistical meta-models, with a particular attention 

paid to biophysical mechanisms, in understanding and measuring SOC dynamics under different crop and 

management choices. First, this study identifies a framework to increase the capacity of GAMs for regional SOC 

modeling by combining multifactorial simulations with statistical response modeling while helping to reduce the 

challenges of detailed calibration and validation of EPIC-IIASA by providing a simplified version of the model for 

practical applications. Our novel approach of biophysical-stratification highlights the importance of the soil and 

climate systems in driving SOC dynamics. Identifying the efficacy of management choices in increasing SOC, which 

may be influenced by the climate and soil of a given site could help farmers or advisors examine the potential 

implications of management shifts prior to implementation. The accuracy and divergences in meta-model structure 

as a result of this stratification signal a benefit of explicitly investigating the ways that biophysical characteristics 

specify SOC responses. Second, while we highlight the continued necessity of calibration and validation in order to 
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replicate accurate SOC measurements, we demonstrate a robust use of EPIC-IIASA STAT for biophysical cluster and 

field study scale analyses of broad SOC dynamics. Further utility of our presented approach could also be achieved 

with improved input climate and soil data. Since the large amount of data and high degree of calibration and 

validation needed for accurate predictions of farm-level SOC often prohibits the use of bulky process-based models, 

the successes of a meta-model in capturing experimental SOC values opens the door for targeted usage of these 

technologies in novel ways. The ability of EPIC-IIASA STAT to capture SOC dynamics across Europe presents an 

opportunity to provide actionable insights to decision makers and land managers without the need for extensive 

model calibration and validation, which stays with the GAM development requiring highly specific research tools to 

deliver reliable results. 
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A. Appendix 
A.1. Methodology and Data 

A.1.1. Crop Model Input Data  

Climate Data 

Gridded climate data from the CRU ERA v.2.0 source at a spatial resolution of 0.1° from the time period 1980-

2019 (provided by the VERIFY project, https://verify.lsce.ipsl.fr) were utilized for the multifactorial EPIC-IIASA GAM 

simulations. Variables used include daily precipitation (in mm), minimum and maximum temperature (in 𝑐◦), relative 

humidity (fraction), solar radiation (in MJ m-2), and annual atmospheric CO2 concentration (ppm). 

Soil Data 

Topsoil (0-30cm) and subsoil (30-100cm) properties were calculated from underlying datasets for each SimU. 

The soil datasets utilized include the European Soil Bureau Database v. 2.0 (ESBD, https://esdac.jrc.ec.europa.eu), 
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the Database of Hydraulic Properties of European Soils (Wösten et al., 1999), and the map of organic carbon content 

in the topsoil (Lugato et al., 2014). A total of 13 soil properties were used, following the framework of Balkovič et al. 

(2013, 2018). 

Crop Management 

In N fertilization scenarios, mineral N fertilizer is automatically applied based on plant requirements until the 

maximum annual N application rates (i.e., 50, 100, 250 and BAU kg N/ha) were consumed. In crop retention 

scenarios, we simulate crop residue harvest with a baler operation to match the retention intensities in Section 2.2.2. 

Under no N application rate (0 kg/ha), we only simulate 0% residue retained. All simulations were carried out under 

rainfed conditions only. Crop calendars and model parameterization was adopted from Balkovič et al. (2013, 2018, 

2020). We assume a conventional tillage consisting of two soil cultivation operations and a 30-cm deep mouldboard 

plowing, and an offset disking shortly after harvesting of cereals. In addition, two row cultivations were simulated 

for maize. Soil erosion was not accounted for in our simulations. 

A.1.2. Regional and Local Validation 

Table 2 
Field study site information. 

 

 Study Site Country Duration Soil Texture Bulk DensityIncrease in SOC 
 (g/𝑐𝑐3) with residues (%) 

Balkovič et al. (2020) Hněvčeves Czech Rep.1980-2016Loam 1.3 7-12% 

Balkovič et al. (2020) Trutnov Czech Rep.1966-2009Sandy Loam1.4  

Balkovič et al. (2020) Ruzyně Czech Rep.1954-2017Clay Loam 1.3  

Balkovič et al. (2020) Uherský OstrohCzech Rep.1972-2017Loam 1.3  

Triberti et al. (2008) Cadriano Italy 1966-2000Silt Loam 1.2 19% 

Singh et al. (2015) Jokioinen Finland 1983-2012Clay 1.3 0% 

van Groenigen et al. (2011)Knockbeg Ireland 2000-2009Sandy Loam1.4 7% 

Table 3 
Referenced Literature for Regional and Local Validation of EPIC-IIASA STAT 

 

Reference Study Location or Meta-Analysis  

Abbas et al. (2020) Meta-Analysis  

Bertora et al. (2009) Italy  

Bhogal et al. (2009) United Kingdom  

Biau et al. (2013) Spain  

Campbell et al. (2002) Meta-Analysis  

Cvetkov and Tajnšek (2009) Slovenia  

Duiker and Lal (1999) United States  
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Feiziene et al. (2011) Lithuania  

Gregorich et al. (1996) Canada  

Kong et al. (2005) United States  

Lehtinen et al. (2014) Meta-Analysis  

Lu et al. (2011) Meta-Analsis  

Lugato et al. (2006) Italy  

Malhi et al. (2011) Canada  

Mazzoncini et al. (2011) Italy  

Rasmussen and Collins (1991) Meta-Analysis  

Russell et al. (2009) United States  

Salinas-Garcia et al. (1997) United States  

Sandén et al. (2018) Meta-Analysis  

Searle and Bitnere (2017) Meta-Analysis  

Šimon et al. (2013) Czech Republic  

Singh et al. (2015) Finland  

Smith et al. (1997) Meta-Analysis  

Tajnšek et al. (2013) Slovenia  

Thomsen and Christensen (2004) Denmark  

Triberti et al. (2008) Italy  

van Groenigen et al. (2011) Ireland  

Wang and Dalal (2006) Australia  

Xu et al. (2007) China  

The C conversion efficiency (CE)is a rate which reflects the slope of the linear relationship between residue C 

inputs and changes in SOC. There are a limited number of studies which report these rates as it necessitates the 

application of residues at varying rates in order to identify the effect of increasing amounts of residue C. Furthermore, 

many studies calculate the CE differently - e.g. some calculate C applied as above and below ground residues while 

others utilize just above ground residues. To compare our results against these studies, the EPIC-IIASA STAT average 

CE of residues over 35 years is calculated as 
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Figure 5: a) Relationship between residue N feature subset importance and average cumulative growing season precipitation of 

cluster. b) Relationship between climate feature subset importance and average cumulative growing season precipitation of 

cluster  

𝐶𝐸 =  𝛥𝑆𝑂𝐶 ∕ 𝑅𝑆𝐷𝐶 (5)  

where 𝛥𝑆𝑂𝐶 is the mean annual change in SOC (tC/ha) and RSDC is the total amount of residue C added from 

above and below ground residues. Where studies investigating the effect of residues on SOC do not vary the amount 

of residues added, they utilize a binary residue incorporation (residues included or removed). Studies with binary 

residue inclusion often report the increase in SOC stock as a result of residue incorporation compared to a control. 

We calculate the increase in SOC stock after 35 years of residue incorporation compared to the control is calculated 

for each SimU

x crop x N rate as 

 𝑓𝑖𝑛𝑎𝑙 𝑆𝑂𝐶90% 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 −  𝑓𝑖𝑛𝑎𝑙 𝑆𝑂𝐶0% 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 (6) 

𝑓𝑖𝑛𝑎𝑙 𝑆𝑂𝐶0% 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 

A.2. Results 

A.2.1. Feature Importance 
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As expected, there are distinct differences in feature subset importance among the biophysically-specific meta 

models which are dependent on biophysical cluster properties. The importance of residue features is larger among 

clusters with lower cumulative precipitation during the growing season (Fig 5). Also, the importance of climate 

features is smaller among clusters with low soil field water-holding capacity (Fig 6). The feature subset importance 

also varies by crop. The average change in R² across biophysically-specific meta-models with removal of the residue 

feature subset is the largest when modeling soybean growth (change in R² = 0.75) and smallest when modeling 

winter wheat (change in R² = 0.29). 

A.2.2. Model Structure 

The modeled response relationships between features and mean annual 
Δ

𝑆𝑂𝐶
 
are critical to management 

decisions and optimization of input resources. Due to the interpretable nature of the multiple polynomial regression 

model, we can unpack the structure of EPIC-IIASA STAT meta-models through model coefficients. While we cannot 

directly interpret meta-model coefficients as effects on the target variable, we can utilize coefficients to understand 

the structure 

 

Figure 6: a) Relationship between residue N feature subset importance and average soil field water-holding capacity of cluster. 

b) Relationship between climate feature subset importance and average soil field water-holding capacity of cluster 

of the meta-model and the nature of the feature effects. We find that among all biophysically-specific meta-models 

and crop types, there is agreement that the nature of the response relationship between mean annual RSDCa and 

mean annual Δ𝑆𝑂𝐶 is linear (Fig 7). We find less overall agreement on the response relationships between mean 

annual 
Δ

𝑆𝑂𝐶
 
and climatic and soil properties. Response relationships within given climate clusters are often similar, 

with minor distinctions resulting from the different underlying soil texture clusters (black lines in FIG 8 panels) of 

the EPIC-IIASA STAT meta-models. For example, the response relationship between mean cumulative growing 

season precipitation and mean annual Δ𝑆𝑂𝐶 is very similar across soils in the continental climate region (denoted 

in orange, Fig 8) while in other climates such as the coastal Mediterranean climate (denoted in purple, Fig 8) there 

are wider discrepancies between response relationships depending on the soil texture cluster. 
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A.2.3. Biophysical Cluster Scale Validation 

The trends in C conversion efficiencies highlight the nuances of SOC dynamics represented by EPIC-IIASA STAT 

(Fig. 12). EPIC-IIASA STAT shows a slight positive correlation between growing season precipitation and CE in 

agreement with published studies (Rasmussen and Collins, 1991). It is well understood that precipitation helps 

maintain adequate soil moisture which is related to SOC through a variety of mechanistic controls (Abbas et al., 

2020), including the fact that intense rain events can cause SOC losses and oxygen deficit can limit mineralization 

(Lal and Kimble, 1997). Temperature also plays a role in SOC dynamics as too low or high soil temperature leads to 

a reduction in mineralization (Lal and Kimble, 1997). Indeed, EPIC-IIASA STAT shows a parabolic relationship between 

mean growing season temperature and C conversion efficiencies. Another crucial component of the efficacy of SOC 

management is the initial C content of soils (Slessarev et al., 2022). Residue incorporation may see little effect in 

soils which already have high levels of SOC as the soils may already be close to saturation (Singh et al., 2015) or the 

carbon-rich soils may be prone to high mineralization rates on cropland. EPIC-IIASA STAT predictions highlight this 

dynamic as the CE values are markedly low where initial SOC is high (Fig. 12). 

A number of studies have highlighted the increased impact of residues in soils with higher clay content (Liu et 

al., 2014; Feiziene et al., 2011; Lehtinen et al., 2014). EPIC-IIASA STAT resulted in higher CE values for the medium-

fine soils compared to the coarse and medium soils, however, the CE values for clay-rich soils are relatively low (Fig. 

13). Lehtinen et al. (2014) report that soils with a clay content >35% show an 8% higher increase in SOC stock with 

residue incorporation than soils with clay content between 8% and 35%. Feiziene et al. (2011) show that SOC content 

was 23% higher in loams than in sandy loams after 11 years of varying tillage and fertilization treatments. Liu et al. 

(2014) find 
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Figure 7: Linear response relationships between mean applied residue C and mean annual change in SOC, variables are scaled to 

have unit variance and mean centered at zero. 

that soil clay content significantly impacts the SOC response to residue inputs. The clay fraction in finer-textured 

soils generally protects organic matter from mineralization, therefore leading to a higher SOC response to residues 

in soils with higher clay content (Lal, 1997; Lehtinen et al., 2014). Our results indicate that EPIC-IIASA STAT has 

certain limitations in capturing the effect of clay soils on SOC response to management. 

A.2.4. Field Study Scale Validation 

The wider range of predicted SOC response rates (relative to published data) from EPIC-IIASA STAT predictions 

is likely due in part to the range of climates, soils, crop types, initial C concentrations, and management options 

modeled in our hypercube. It is also important to note that mapped products, especially for soils, may fail to capture 

local scale variation in soils that can have large impacts on field-scale carbon change (Maynard et al., 2022). While 

there are a number of published studies exploring the effects of management on SOC, they do not represent the full 

range of possible agricultural conditions across Europe - hence the smaller range of reported rates. Discrepancies in 

SOC response rates may also be the result of a number of differences between modeling and field studies / meta 

analyses. First, while the EPIC Hypercube simulations underlying EPIC-IIASA STAT assume conventional tillage and 
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continuous cropping only, many studies utilize a range of region-specific crop rotations, management practices, 

fallow years, or may average SOC responses across multiple tillage practices. Second, studies vary in the depth of 

soil measurements used for SOC calculations which may skew SOC response rates as different soil horizons 

experience varying SOC changes. In this study, we calculate SOC from 0-15cm while some experiments sample from 

0-10cm or 0-30cm. Third, the GAM-based approaches face accuracy limitations when modelling SOC dynamics 

(Balkovič et al., 2020). In addition, our fitting algorithm tends to shrink the modelled SOC responses, hence leveling 

out the response rates further. 

A.2.5. Utilizing EPIC-IIASA STAT to Identify Management Interventions  
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Figure 8: Response relationships between cumulative growing season precipitation and mean annual change in SOC. Each subplot 

shows five soil specific response curves for the given climate cluster, denoted by color. Variables are scaled to have unit variance 

and mean centered at zero relative to the cluster rather than global mean. A value of 1 denotes one standard deviation away 

from the cluster mean. 
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Figure 9: EPIC-IIASA STAT linear relationships between C applied and SOC change for each crop type over all management choices 

and all regional biophysical clusters 

 

Figure 10: C Conversion Efficiency range from EPIC-IIASA STAT vs cited literature values - 0.03% of EPIC-IIASA STAT predicted C 

Conversion Efficiencies was above the 30% cutoff. 
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Figure 11: EPIC-IIASA STAT effects of Applied N on SOC change at varying residue levels (R00 = 0% residues retained, R30 = 30% 

residues retained, R60 = 60% residues retained, R90 = 90% residues retained) 

 

Figure 12: EPIC-IIASA STAT C Conversion Efficiency for each SimU averaged over all crop types and management versus 
Sum of Growing Season Precipitation, Mean Temperature in Growing Season, and Initial SOC of each SimU 
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Figure 13: EPIC-IIASA STAT C Conversion Efficiencies of each SimU by soil texture, averaged over crop type and management 

 

Figure 14: Comparison of increase in SOC stock with residue incorporation compared to control between EPIC-IIASA simulations 

within 50km of long term experiment and experimental results 
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Figure 15: Comparison of sand content, clay content, bulk density, initial SOC, mean annual precipitation, and mean annual 

temperature between EPIC-IIASA STAT predictions within 50km of long term experiment and experimental values. In Finland, 

initial SOC values were not measured in the experiment thus reference values are not included in this plot. 
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Figure 16: Relationship between applied N (kg/ha) and applied residue C (t/ha) and their combined effect on mean annual change 

in SOC (tC/ha). Each bubble represents one rate of mean annual change in SOC for each soil x climate cluster, averaged over crop 

types. 

 

Figure 17: a) Relationship between average cumulative growing season precipitation in cluster and mean annual change in OCPD 

of cluster b) Relationship between average growing season temperature in cluster and mean annual change in OCPD of cluster 
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Figure 18: Maize Heatmap of Mean Annual Change in SOC (tC/ha) achieved with varying applications of above-ground residue C 

(tC/ha) and nitrogen fertilizer (kgN/ha) for each biophysical cluster. Each biophysical cluster is a unique combination of climate 

and soil. White X marks the maximum Mean Annual Change in SOC for each biophysical cluster. 

Figure 19: Rice Heatmap of Mean Annual Change in SOC (tC/ha) achieved with varying applications of above-ground residue C 

(tC/ha) and nitrogen fertilizer (kgN/ha) for each biophysical cluster. Each biophysical cluster is a unique combination of climate 

and soil. White X marks the maximum Mean Annual Change in SOC for each biophysical cluster. 
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Figure 20: Rape Heatmap of Mean Annual Change in SOC (tC/ha) achieved with varying applications of above-ground residue C 

(tC/ha) and nitrogen fertilizer (kgN/ha) for each biophysical cluster. Each biophysical cluster is a unique combination of climate 

and soil. White X marks the maximum Mean Annual Change in SOC for each biophysical cluster. 
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Figure 21: Spring Barley Heatmap of Mean Annual Change in SOC (tC/ha) achieved with varying applications of above-ground 

residue C (tC/ha) and nitrogen fertilizer (kgN/ha) for each biophysical cluster. Each biophysical cluster is a unique combination of 

climate and soil. White X marks the maximum Mean Annual Change in SOC for each biophysical cluster. 
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Figure 22: Sunflower Heatmap of Mean Annual Change in SOC (tC/ha) achieved with varying applications of above-ground residue 

C (tC/ha) and nitrogen fertilizer (kgN/ha) for each biophysical cluster. Each biophysical cluster is a unique combination of climate 

and soil. White X marks the maximum Mean Annual Change in SOC for each biophysical cluster. 
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Figure 23: Wrye Heatmap of Mean Annual Change in SOC (tC/ha) achieved with varying applications of above-ground residue C 

(tC/ha) and nitrogen fertilizer (kgN/ha) for each biophysical cluster. Each biophysical cluster is a unique combination of climate 

and soil. White X marks the maximum Mean Annual Change in SOC for each biophysical cluster. 
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Figure 24: Winter Wheat Heatmap of Mean Annual Change in SOC (tC/ha) achieved with varying applications of aboveground 

residue C (tC/ha) and nitrogen fertilizer (kgN/ha) for each biophysical cluster. Each biophysical cluster is a unique combination of 

climate and soil. White X marks the maximum Mean Annual Change in SOC for each biophysical cluster. 

 

 

 


