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ABSTRACT

Results about the continuity of the value of a linear
program are reviewed. Particular attention is paid to the inter-
connection between various sufficient conditions.
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ON THE CONTINUITY OF THE VALUE
OF A LINEAR PROGRAHM

Roger J.-B. Wets

We are interested in the following function:

Q(t) = ianeRn [cx|ax > b , x > 0]
where
_ . T
t = (CIA']I IAmID ) ’
= (C,],...,Cnra11,.--ra1n,a21,...,amn,b,],...,bm)
Thus Q:R® » R = [-®,+®] with N = (n + 1)(m + 1) - 1. The two

following closed-convex-polyhedron-valued multifunctions

K(t)
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and

D(t)

i
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Q
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{ylya < > 0}

play an important role in what follows; they correspond respec-

tively to the set of primal and dual feasible solutions associated



with the linear program defining Q. The function Q is finite

when both K and D are nonempty, if K(t) = g but D(t) # g then
Q(t) = », and if D(t) = @ but K(t) # @ then Q(t) = -«; if both
K(t) = D(t) = # then let us accept the convention that Q(t) = =.
Let

T =1{t€rVKk(t) #8 , D(t) # 0}

denote the set on which Q is finite.

1. DPROPOSITION. The multifunctions K and D are upper semi-
continuous, Z.e., tf

t = 1lim t , x = lim x” and x° € K(tv

Vo Voo

)

then x € K(t), and <f

t = lim t” ;Y = lim yv and yv € D(ty)

Y+ \) 00

then y € D(t).

PROOF. It clearly suffices to prove the assertion for either
K or D. Suppose that for v = 1,..., K(tv) # @ and t = limvtv.
Then x’ € K(tv) implies that aVx" > bY and x” > 0. since by
hypothesis (A" - &) = 0, (b” - b) > 0 and x’ - x >, | O,
it follows that Ax > b and x > 0, which yields x € K(t) # #. O

Note that the above shows also that T is closed. 1In general,
K and D are not continuous, i.e., they are not lower semicontinuous,
by which one means that if t = limvtv and if x € K(t), there

exist xV

€ K(t”) such that x = lim x”, and if y € D(t), there
exist yv € D(tv) such that y lim yv. For example, consider

v
v

) with t = (¢, A = 0, b = 0). Then
1

tY = (¢, ¥ = v, pY = 7!
K(t) = R, but for all v, K(t”) = [1,=(; the point 1/2 & K(t) can
not be reached by any segquence {xv, v =1,...} with x’ e [1,o(.

Later we shall give sufficient conditions for the lower semi-
continuity of K and D, that in view of the next theorem also

yield sufficient conditions for the continuity of Q.



2. THEOREM. Suppose the multifunctions K and D are continuous

on T CT. Then Q 1s continuous on T.

PROOF. If (c,A,b) =t &€ T C T, then both K(t) and D(t) are non-
empty, and there exist x € K(t) and y € D(t) such that

as follows from the duality theorem for linear programs. Since

K and D are lower semicontinuous at t, for any sequence

in T with t = limvtv, there exist {xv c K(tv) , v=1,...} and
{y¥ ed(t’) , v=1,...} such that x = limvxv and y = limvyv.
Moreover, we have that for all v,

y'pY < o(t”) < kY .

From this it follows that

Q(t) = cx = lim c¢’x” < lim sup Q(tY) ,
AVE =) - AVE o]
and
Q(t) = yb = lim y'b” > lim inf Q(t")

Y >co >0

which together yield the continuity of Q at t. O

In the remainder of this short note we give some sufficient
conditions for the lower semicontinuity of the convex-polyhedron-

valued multifunctions K and D.

3. PROPOSITION. The multifunction t V= D(t) <s continuous on

T CT Zf and only <f the convex—cone-valued multifunction
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18 upper semicontinuous on T.
Similarly t K(t) 18 continuous on T C T if and only <f the

convex—cone-valued multifunction

il

t —>pos AT I O =jv vT vyA + rI , I

br 0 -1 [p
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18 upper continuous on T.

PROOF. For reason of symmetry, it really suffices to prove the

assertions involving D. We first note that

_ A-I0
tH—»C(t): = pos (c 0 1)

is upper semicontinuous if and only if the polar multifunction

t —»pol C(t) = {(y,B)|yA < Bc , y >0, B > 0}
is lower semicontinuous [1, Proposition 1]. In turn this multi-
function pol C is lower semicontinuous if and only if D is lower

semicontinuous as follows from the identity
(4) pol C(t) = cl{i(y,1) |y € D(t) , X € R}

where cl denotes closure. The inclusion 2 follows directly from
the fact that pol C(t) is a closed cone that contains (D(t) x{1}).
For the converse, let (y,B) € pol C(t). If 8 > 0, then B_1y € D(t)
and (y,8) = A(8 'y,1) with A = 8, If g = O then

YA < 0 and y >0
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Take any y € D(t); recall that D(t) # @ since t € T. For any

v =1,2,..., we have
(y + vw)A < c , (y +vy) >0 ,
and thus (y + vy) € D(t) for all v = 1,..., and hence the seguence

of points
_1 — _
{v "(y + vy,1) , v=1,...1}

is in the set {A(y',1)]|y'€ D(t) , X € R,} which implies that
(y,0) belongs to its closure. This completes the proof of (4).

Now suppose that D is lower semicontinuous at t € T C T,

o show that pol C(t) is also lower semicontinuous at t, for any

(y,B) € pol C(t) and (e, v =1,...} any sequence in T we have to
exhibit a seguence {(yV,Bv) € pol ct’), v=1,...} converging
to (y,B). PFirst assume that B > 0. Then B_1y € D(t) and by

\))I v o= 1,...}
converging to B—1y. The desired sequence is obtained by setting

yY = 8y and 8Y = B for all v. Next if 8 = 0, the previous

lower semicontinuity of D at t there exist {y° € D(t

argument has shown that then there exist yk € D(t) such that

(y,0) = lim k'1(yk,1)

k>0

Again by lower semicontinuity of D at t, we know that

yk = lim y

>

kv with y°' e D(t

The desired sequence is now obtained by a standard diagonaliza-

tion selection procedure.

If pol C is lower semicontinuous at t € T € T, let y € D(t)

and {t" , Vv=1,...} be any sequence of points in T. From (4)

we know that (y,1) € pol C(t) and thus there exist a sequence
{(yV,BV) € pol ctY)y , v = 1,...} converging to (y,1). For v
sufficiently large Bv > 0, in which case ((1/Bv)yv,1) € pol C(tv),
i.e., (Bv)_1yv e D(t") and y = lim (Bv)-1yv. O

>



5. PROPOSITION. Suppose T C T and for all t € T, int K(t) # #,
i.e. K(t) has nonempty interior, and no row of (A,b) Zs identical-
ly 0. Then K is continuous on T. Similarly, <f for all t € T,
int D(t) # @ and no column of (A) is identically 0O, then D is
continuous on T. ©

PROOF. Let C{(t): = pos (é _g ?

If int D(t) # # then as follows from (4), int pol C(t) # @. But

) as in the proof of Proposition 3.

this in turn implies that C(t) is pointed, i.e., that
C(t) N (-c(t)) = {0}. Because suppose otherwise, then there
exists 0 # v € C(t) such that for all z € pol C(t)

vz < @ and -vz < 0

This means that pol C(t) is contained in the subspace

{z|vz = 0} and int pol C(t) would be empty. The assumptions thus
imply that for all t, C(t) is pointed cone and that no column of
(?) is identically 0. Corollary 1 of [1] now yields the upper
semicontinuity of C on T which in view of Propositions 3 and 1

yields the continuity of D on T.
Naturally the same argument also applies to K. [

Theorem 2 of [1] gives a weaker condition for the upper
semicontinuity of the pos map than that used in the proof of
Proposition 5. In our context, these conditions can be used to

obtain the following stronger version of Proposition 5.

6. PROPOSITION. Suppose T C T and for all t € T

(ia) the dimension of K(t) Zis constant on T,

(ib) there exists a neighborhood V of t such that whenever

K(t) C {x|A;x =b; , 1 €1} 0 {x[x; =0, 3 €I

for indsx subsets I and J of {i = 1,...,m} and {j = 1,...,n}

respectively, then for all £t € T NV
RK(t') C© {x|a;x =b; , i €I} N {xlxj =0, j€J}

Then K 18 continuous on T.



Similarly if for all £t € T C T

(iia) the dimension of D(t) <s constant on T
(iib) there exist a neighborhood W of t such that whenever
D(t) C {y|yad = cy s 3 €I} N {yly; =0, 1ier1}
for 3 and I index subsets of {1,...,n} and {1,...,m}, respective-

ly, then for all t' € TN W

D(t') C {y\y(A')j =c!, jedrn {ylyi =0, 1€ 1}

]
Then D 18 continuous on T.
PROOF. Again let C(t): = pos (é _g ?). If dim D is constant on

T, then the dimension of pol C is also constant on T which in

turn implies that the dimension of the lineality space of C is
constant on T. This is condition (a) of Theorem 2 of [1].
Condition (b) of this Theorem 2 requires that there exist a neigh-
borhooda W of t, such that whenever the linear systems

-aJ < Ax , —cj >cx , x>0
for some indices j € {1,...,n}, and for fixed k € {1,...,m}

S Apx 0 < Aix for i #k, 0 >cx, x>0 ’

are consistent, then they remain consistent for all t' € w 0 T,
From these relations we obtain condition (iib) through a straight-
forward application of Farkas Lemma {(Theorem of the Alternatives
for Linear Inequalities) using the fact that D is nonempty on

T C T. The assertions involving K are proved similarly. O

Further sufficient conditions for the lower semicontinuity

of D and K are provided by the next result.
7. PROPOSITION. Suppose that for all £t €T CT,

R(t): = {xle >0, cx <0, x> 0t = {0} ’



then D 78 continuous on T. Similarly <if for all t € T C T,
S(t): = {y|lyA <0, yb >0, y > 0} = {0} ,

then K 18 continuous on T.

PROOF. Again for reasons of symmetry it really suffices to prove

the first part of the proposition. Again let

C(t): = pos (i‘ -é ?) = {(u,n)fu>Ax , n<cx, x>0}
We show that if R(t) = {0} on T, then C(t) is pointed and no

column of (é) can be identically 0 on T. Suppose C(t) is not

pointed, i.e., there exists (u,n) # 0 such that
1 1
u < Ax ;, N > cXx for some x > 0 ’
and
2 2
-u < Ax~ , -n > cx for some x~ > 0

This implies that for (x1 + x2) > 0,

0 < A(x' + x?) and 0 > c(x' + x°)
1 2 1 2, B .
But then x + x~ =0 =x = x" if ¢t = (c,A,b) € T since
R(t) = {0}. This in turn yields (u,n) = 0, which contradicts

the working assumption that C(t) is not pointed. Also, if some

i
column (A.) is identically 0, then R(t) # {0} since then any
nonnegati%e multiple of the j-th unit vector u (with u; = 0 if
1 # j and uy = 1) satisfies the inequalities

Ax >0 , cx <0, x >'O

This implies the upper semicontinuity of C on T [1, Corollary 1]

which gives us the continuity of D via Propositions 3 and 1. 0O

Tnere are a number of equivalent ways to express the condi-

tions of Proposition 7. For example: R(t) = {0} if and only if



(8) if 0 # % € {x > 0|Aax > 0} then ck > 0 ,
or still

. T
(8') c € int pos (A7,I)

where int denotes interior.

Similarly S(t) = {0} if and only if

(9) if 0 # 9 € {y > 0lyar < 0} then ¥b < 0 ,
or still

(9") b € int pos (&,-I)

10. COROLLARY. Suppose that for all t € T C T, K(t) Zs bounded,
then D is continuous on T. Similarly Zf all £t € T C T, K(t) zs

bounded then D is continuous on T.

PROOF. The convex polyhedron K(t) is bounded if and only if
{x|ax > b, x > 0} = {0}. This implies that R(t) = {0} with R(t)
as defined in Proposition 7. The lower semicontinuity of R now
follows from Proposition 7. One argues similarly for K using

this time the boundedness of K to conclude that S(t) = {0}. O

11. COROLLARY. Suppose that for all £t € T C T, either all
columns A3 of A are nonpositive and Aj # 0 or ¢ < 0. Then D zs
continuous on T. Similarly if for all t € T, either all rows Ai
of A are nonnegative and A, # 0 or b < 0, then K is continuous on
T. Hence, 1f for all t € T, A < 0 and b < 0 or A > 0 and b > 0,

then Q is continuous on T.

PROOF. If AJ < 0 and aJ # 0 then {x > 0|Ax > 0} = {0} and thus
K(t) is bounded for all t € T. The lower semicontinuity of D
then follows from Corollary 10. If ¢ > 0 then for every 0 # x,
cx > 0 and from (8) it follows that R(t) = {0} and in turn the
lower semicontinuity of D follows from Proposition 7. Again, the
lower semicontinuity of K is obtained by arguing similarly using
A, > 0 and b < 0. The assertions about Q now follow from the

i
above using naturally Theorem 2. O
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There is another way to prove Corollary 11, which also shows
how to generalize it. The proof of Proposition 5 shows that
many of the sufficient conditions for the lower semicontinuity of
D boil down to checking if

C(t): = pos (? _g ?)

0
1)
generate C(t) determine an orthant and this cone will certainly

is pointed. The last m + 1 columns (—g of the matrix that

be pointed if the remaining columns {(é?), j =1,...,n} belong
I0
01
the cone pointed. Sufficient conditions of this type are pro-

to this orthant or are such that when added to (_ ) they keep
vided by Corollary 11, but they clearly do not exhaust the realm
of possibilities. For example, if there exist a vector 71 € R™
with Ty 0 for all i = 1,...,m such that 7A < ¢ then C(t) is

I 9y pave strictly

0 1) m+ 1
positive inner product with the vector (-m,1) € R . Here we

pointed since then all the columns of (?

are naturally very close to the conditions of Proposition 5 and 8.

This short note was essentially an attempt at organizing
the available results about the continuity of Q; we conclude by
giving the pertinent references. Theorem 2 and Proposition 3

*
come from [2, Theorem 2] . The continuity of Q with the special
conditions given by Proposition 7, more exactly with relations (8)

and (9), is proved by Bereanu [3, Theorem 2.2]. He also exhibits
the sufficient conditions of Corollary 11. Conditions (8') and
(9') are those of Robinson [4] when applied to linear programs in
the form considered here. He also shows that these conditions are
equivalent to having the set of optimal solutions of the primal
and the dual bounded. Propositions 5 and 6 can be traced back to
[1] and to Dantzig, Folkman and Shapiro [5] and have been used by
Salinetti [6] in the study of the distribution of the optimal

*

This paper was submitted in 1974 for publication in the
Proceedings of the 1974 Oxford Conference on Stochastic Program-
ming. Publication was delayed for a number of technical reasons.



-11-

value of random linear programs. The general continuity results
for the optimal value function (of an optimization problem depend-

ing on parameters) provide us with the following results [7]:

12. THEOREM. Let T C T. Suppose that K i1s lower semicontinuous
on T; then Q is upper semicontinuous. If K is uniformly compact

on T, then Q is lower semicontinuous on T.

The first hypothesis is one of the two used to prove Theorem 2.
The uniform compactness is stronger than needed since simply K
bounded on T yields the lower semicontinuity of D, cf. Corollary
10, and that is what we used to prove the lower semicontinuity of

Q in Theorem 2.

If the coefficient of A are not variable, then Q is always

continuous. In particular we get

13. THEOREM. Suppose that for all t € T C T the matrix A <s

constant. Then Q 18 continuous on T.

PROOF. In this case, the multifunctions K and D are not only
continuous on T but in fact Lipschitz continuous on T as follows
from [8, Theorem 1]. The continuity of Q resulting again from
Theorem 2. 0O

In fact in this case Q is actually Lipschitz continuous.
This can be demonstrated using the Lipschitz continuity of K
and D, or as is more usual by using the fact that on T (for fixed
A), the value of a linear program is a piecewise linear function
of (¢,b), convex in b and concave in ¢ [9, Basis Decomposition
Theorem]. If only b varies, then clearly Q is continuous but in
this case there also exist a continuous function tk—%»x*(t):T - R"
such that for all t, x*(t) € K(t) and cx*(t) = Q(t) [10, Theorem],
[11]. If only c varies a similar statement can be made, viz.,
there exists y*( )T — Rm, continuous such that y*(t) € D(t) and

*
y (8)b = Q(t).

Note: Robinson [4] formulates his pair of dual linear programs
to take into account problems involving both equalities and con-
straints. For such cases there are also appropriate versions of

Theorem 2 and Propositions 1 and 3. For example, if
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Q(t) = inf cpn [cx|Ax = b, x > 0]

then we should study the continuity of the maps

T T
t+—> pos (ﬁ (1)) and tH— pos AT _AT T 0
b® -b™ 0 -1

Continuity results of a similar nature are then readily available.



SUMMARY

K= {x > 0|ax > b} continuous\\\_-
Q continuous.
{y > 0|ya < ¢} continuous///’-

D =
D cont. ® C = pos (2 _g ?) cont. (=u.s.c.)
A
. o
dim.D = constant + dim C N(-C) = constant
active constraint?;> = cond. on columns (é) //
cond. (Prop.6)
TT
| 3 | INEE
int D # ¢ (? #0 = C pointed (?) # ¢
c >0 = {x > 0|Aax >0, cx <0} = {0}
equiv. ¢ € int pos (AT,I)
A <0 aJ # 0 = K bounded
T
K cont. g pos AT O cont. (=u.s.c.)
bl 0 -1
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