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By modifying the way in which search directions are defined, we show 
how to relax the restrictive assumption that line searches must be exact 
in the theorems of Dixon and Powell. We show also that the BFGS algo- 
rithm modified in t h s  way is equivalent to the three-term-recurrence 
(TTR) method for quadratic fuctions. 
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1. Introduction 

We are concerned with the problem: minimize f ( z ) , z € R n  , using a 

variable metric algorithm in the Broydon 19 -class, see Broydon, 1970. The 

underlying family of updates is defined as follows: Given an approxima- 

tion Hk to the inverse hessian of f ( z ) ,  a step bzk  and gradient change 

6gk corresponding to it with 6 ~ z 6 ~ ~  # 0 a new approximation ~ t + ~ ,  which 

satisfies the quasi-~ewton relation H!+~ 6gk = 6zk is defined by 

HE+ = ~ f + F f ~  + pk wk W: ( l . l a )  

where 



Pk is a real number and pk = 1 / bgkTbzk. 

Dixon's 1972 theorem states that all methods in the Broydon @ - class 

develop identical iterates when line searches are exact, conflicts in 

choice of minimum along a line are unambiguously resolved and the same 

initialization is used. Powell's, 1972, theorem which also requires similar 

assumptions, is closely related. I t  states that a sequence of updates from 

the /3 -class which terminate with a BFGS update give the same hessian 

approximation matrix regardless of which particular updates were used 

prior to the last one. By suitably modifying the way in which seakch 

directions are defined we show how to relax the restrictive assumption 

that  line searches be exact in both these theorems. We also show that the 

BFGS algorithm modified in this way reduces to a conjugate direction 

method known as the three-term-recurrance (TTR). This then bears the 

same relation to the modified BFGS algorithm as the conjugate gradient 

method bears to the standard BFGS algorithm (see Nazareth, 1979). 

2. Main Results 

Henceforth we shall attach the symbol for the case when line 

searches are exact. We define search directions by 

*BFCS = *BFGS 
G + I  = -~k'+1gk'+1 dk+, 1 Sk+l 

and iterates by 

Lemma 2.1: (Shanno & Kettler, 1970). If line searches are exact, then 

d;frGS = - W k  1 (2.3a) 



Proof: See, for example, Powell, 1972. 

Lemma 2.1 says that 6 x l  I I d l  I I W ; - ~  provided that 

pk # 1 / ( g l ~ l ~ ~ g ; + l  ).  If we write M; = (I - , ~ ; 6 x l 6 g ; ) ~  then 

*BFGS = M;(&BFGS 
* k + l  t /3k-lw,'-lG?1)~;T + p;6z;6xiT ( 2 . 4 )  

bx; ( ( w ; - ~  and Lemma 2 . 1  together imply that  

~ ~ ( & - ~ w ~ - ~ w k . ? ~  ) M i T  = 0 

Hence, 

This provides the basis for an inductive proof of the results quoted above. 

We should mention that  the value Bk = l / g ; ~ l ~ ~ g ; + l  is outlawed since it 

would give w i  = 0. 

Motivated by these results, we turn to the case when line searches 

are no longer required to  be exact. We shall now define search directions 

by 

and iterates by 

(2.6) 



Ths is certainly not the conventional way in which variable metric 

methods develop a search direction. However, we can note the following: 

1. When line searches are exact d k + l  1 1 dL+l  . Ths follows directly 

from Lemma 2.1. 

2, d k + l  is a conjugate direction, since d f + l  bgk = 0 .  

3. As we shall see in Section 3, the resulting method is equivalent to 

a standard conjugate direction method when applied to a quadratic 

function. 

We now have the following theorem which is the natural extension of the 

results of Powell, 1972 and Dixon 1972 quoted above. 

Theorem 2.1: If the method based upon (l.la-c) and (2.5a-b) with z l  and 

H 1  > 0 given, is used to minimize a differentiable function f ( z )  and if the 

steps are defined unambiguously, for example, using normalized search 

directions and given values of Xk In (2.6), then the sequence of points zk 

and the sequence of matrices HEFGS, k = 1,2,3, ..., are independent of the 

parameter values Pk, k = 1,2,3, ..., provided the search directions defined 

by (2.5) do not vanish. 

Proof: Since H 1  is given, d l  is obviously independent of the parameters 

p k ,  k = 1,2,3, ..., . z2 is then independent of the parameters and so is 

HgFGS,  d 2 ~ [ ~ 1 6 g 1 . 6 z 1 ]  and d : d g l  = 0, and thus d 2  is independent of the 

parameters. 

BFGS We now use induction. Suppose that for k = 2,3, ..., , zk+l and Hk+l  

are independent of the parameters. We must show this to be true for 

2k+2 and ~ t [ g ~  . From (2.5) we have 



Provided dk+ l  does not vanish, we have 

dk ( H ~ " ~ 6 g ~  . 6 z k ]  , d A  6gk  = 0 

Thus d k + l  is independent of the parameters. Therefore, 6 z k + i  and 6 g k + i  

are also independent of the parameters, and so is zk+? 

We must now show that HEFfS is independent of the parameters. 

Writing 

we have 

H E + F ~ ~  = = k + l ~ k + l ~ k T + l  + ~ k + l ~ ~ k + l d Z k T + l  

BFGS T = ( M k + l H k + l  M k + l )  + ~ k + l ( ~ k ~ k w k T ) ~ l t ? + l  + ~ k + l ~ ~ k + l ~ ~ ~ + l  

But wk / / d q + l ,  and hence M ~ + ~ ~ ~ ~ T M ~ T + ~  = 0. It follows that H~~~~ is 

independent of the parameters. This completes the proof of the theorem. 

3. Specialization to Quadratic Functions 

We now show that for a quadratic function, the algorithm defined by 

(1.1) and (2.5) using the BFGS option is the three-term-recurrence ('ITR) 

algorithm given in Nazareth, 1977. In this method, which employs the 

metric defined by H > 0, search directions are given by 



Theorem 3.1: Consider the algorithm defined by (1.1) with Pk = 0, i.e., 

using the BFGS option. Let z l  and H 1  = H  > 0 be given and suppose the 

algorithm is applied to quadratic function $(z  ). Then search directions 

are conjugate, H k + l  satisfies Hk+,6gj  = 6 z j ,  j = 1,2, ..., k ,  and the search 

directions d k  + l  are the same as those given by (3. I), in length and direc- 

tion. 

Proof: (2.5a) and (3.la) define the same search directions. H 2 6 g 1  = 6 2 ,  

and d 2  is conjugate to d l  = - H l g l .  Also H3Sgj  = 6 2 ,  , j = 1,2. 

We now use induction to complete the proof. Suppose the claims of the 

lemma hold for iterates upto i.e., d l  ,,.., dk are conjugate, 

H k + 1 6 g j  = 6 5  . j = 1.2. ..., k and search directions defined by (2.5) and 

(3.1) are the same for d l  ,..., dk , 

For j 5 (k - 1) 

T Using dg fHk = d l j  and bg;Szk = 0 we have 

6 g , T d * + l = ~ ,  j r k  - 1  

T Since 6gk  d k + l  = 0 ,  by the definition of dk we have d k + l  conjugate to all 

previous search directions. ( H k  + 1 6 g k + l  - 6 z k + l )  and 6 z k  are conjugate 



to 6 z j ,  j = 1,2 ,..., k .  Thus Hk+16gk+l is conjugate to 6 z j ,  j = 1,2 ,..., k. 

Hk+Z6gk+l = 6zk+1 by definition. Because Hk+2 is obtained by updating 

Hk+l "sing rank-1 matrices composed from Hk+16gk+l and 6zk+] it has 

the hereditary property, i .e. ,  Hk+,6gj = 6zj , j = 1,2 , . . . ,  k+l. 

Finally we can readily show that 

Substituting into (2.5) and using 6 z P g k  = 0 . j = 1.2. .... k -1 

Since the induction hypothesis and (3.1) imply that 

[ 6 g 1 , .  * .  , 6 g k 2 ]  c[6zlo.. * ,6xk-l] 

it follows that 

k-1 c P j ( d g ~ ~ d g k ) 6 ~ j  = Pk-1(~9*T_I~~gk)~"k-l 
j = 1  

Therefore 

This completes the proof. 

One should note that  the search vectors for the algorithm defined by 

the BFGS update and (2.5) are the s a m e  in length and direction 

as those of the TTR method. If other updates were used in place of the 



BFGS, then we would obtain search vectors that coincide in direction but 

not in length. We see that the modified BFGS algorithm stands in relation 

to the TTR method, in the same way as the standard BFGS method is 

related to  the conjugate gradient method, see Nazareth, 1979. I t  is also 

interesting to note tha t  Theorem 3.1 suggests a new way to implement the 

TTR method based upon a limited memory BFGS update and definition of 

search directions by (2.5b). 



REFERENCES 

Broyden, C.G. (19?0), "The convergence of a class of double-rank minimi- 

zation algorithms", Journal of the Institute of Mathematics and its 

Applications, 6, 76-90. 

Dennis, J.E. and J.J. More (1977). "Quasi-Newton methods, motivation and 

theory", SIAM Review, 1.9, 46-89. 

Dixon, L.C.W. (19?2), "Quasi-Newton algorithms generate identical points", 

Mathematical Programming, 2, 383-387. 

Goldfarb, D. (19?0), "A family of variable metric methods derived by varia- 

tional means", Mathematics of Computation, 24, 23-26. 

Greenstadt, J. (19?0), "Variations on variable metric methods", 

Mathematics of Computation, 24, 1-18. 

Murray, W. (Ed.) (19?2), Numerical Methods for Unconstrained Optimiza- 

tion, Academic Press, London and New York. 



Nazareth, L. (1977), "A conjugate direction algorithm without line series", 

Journal of Optimization Theory and Applications, 23, 373-387. 

Nazareth, L. (1979), "A relationshp between the BFGS and conjugate gra- 

dient algorithms and its implication for new algorithms", SlAM Jour- 

nal of Numerical Analysis, 16, 794-800. 

Powell, M.J.D. (1972), "Unconstrained minimization and extensions for 

constraints", Report T.P. 495, Atomic Energy Research Establish- 

ment, Harwell, England. 

Shanno, D.F. and P.C. Kettler (1970), "Optimal conditioning of quasi- 

Newton methods", Mathematics of Computation, 24, 657-664. 


