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ABSTRACT 

A decomposition algorithm based on the simultaneous approx- 
imation of the primal and dual forms of an optimization problem is 
proposed. This approach makes maximum use of the primal-dual 
information available during solution of the decomposed problem, 
speeds up the convergence, and provides upper and lower bounds 
for the optimum. 

1. Introduction 

This paper presents an extension of the approach considered in [I]. The 

new proposed decomposition algorithm is based on the simultaneous approxima- 

tion of the primal and dual forms of structured optimization problems. 

Consider the following two-block mathematical programming problem with 

linking variables: 

where z~ and zg can be viewed as internal variables of subproblems 



and the corresponding optimal values f A ( z ) ,  f B ( z )  are functions of linking vari- 

able z .  We denote the euclidian space of linking variables by E and the space of 

real numbers by R .  

Problem (1) can then be redefined as the problem of finding 

We shall refer to  this as the primal form of problem (1). 

If c*,cg are convex with respect to zA,zg and g~ ,gg are jointly convex with 

respect to the pairs (zA,z)  and (zB,z) ,  then f A(z ) ,  f B(z)  are convex functions. 

This allows the use of convex analysis in studying the convergence properties of 

the proposed algorithms; some particular notions used are summarized below. 

We denote the subgradient set  of convex function f ( z )  a t  x by af (z) :  

where g (y - z )  represents the inner'product of vectors g and y - z . Generally 

we will denote the inner product of two vectors z and y by z y . 

The conjugate of a convex function f (z )  is denoted by f *(p) : 

The application of standard convex duality theory to problem (2) leads to the 

following equality: 

min I f A ( z )  + f ~ ( z )  J = - m i n I f k ( p )  + f i b )  J 
z P 

and we shall refer to the right-hand side of this equality as the dual form of 

problem (1). 



The algorithm proposed in [I.] for solving problem (2) is based on the idea of 

replacing (2) by the sequence of problems 

where f ( x ) ~  is the approximation of the function f (x) obtained on the k -th 

iteration. 

It was suggested that this approximation should be derived by constructing 

a piece-wise linear support function for f B(z) based on the values of this func- 

tion and its subgradient af already computed. This approximation is gradually 

refined, directing the sequence of solutions of the auxiliary problems (4) toward 

the solution of the problem (2). 

The resulting algorithm performs quite satisfactorily but does not make full 

use of the information available during the optimization process. Another draw- 

back is that it does not produce both upper and lower estimates of the optimum, 

which makes it difficult to  determine the rate of convergence. 

Also, in many practical cases, information on the solution of the dual form 

of problem (2), which can be interpreted as a set of shadow prices for linking 

variables, may provide additional insight into the qualitative properties of prob- 

lem (1). This information is not readily available even if the solution of the pri- 

mal form is known; substantial further analysis of the problem is required to 

reveal it. Similarly, if the algorithm described in [I] is applied to the dual form 

of problem (1) then the primal solution cannot be found immediately. 

The proposed extension is based on the simultaneous use of approximation 

in the primal and dual formulations of problem (2) and leads to the algorithm 

discussed in Section 2. This algorithm provides both primal and dual solutions 

of problem (3), supplies upper and lower estimates of the optimum during solu- 

tion, and, as the numerical experiments will show, converges sufficiently rapidly. 



To investigate the convergence of this algorithm, we need to examine the 

interrelations between the convergence of sequences of convex functions and 

the convergence of their conjugates. From the point of view of this study, the 

most interesting and useful case is when the convergence of one of these 

sequences implies the convergence of the other. This type of convergence is 

defined in terms of the convergence of epigrafs of convex functions. 

Definition. The epigraf e p i ( f  ) of a convex function f  ( z )  is a subset of an 

extended space R x E such that the pair ( p , z )  belongs to e p i ( f )  if and only if 

~ 2 f  (2). 

Definition. A sequence 8 f n ( z )  f of convex functions is called e -convergent 

toward f  ( z )  i f  

lim e @ ( f  n )  = e p i ( f )  
n- 

Convergence of sets is defined as follows: 

n u e p i ( f m )  = f i e p i ( f n )  =l& e p i ( f , )  u n e p i ( f , )  
n m a  n- n- n m a  

We will denote e  -convergence by 

e-Lim f n ( x )  = f  ( z )  
n- 

Note that e  -convergence implies point-wise convergence, but the converse 

is not true. 

The importance of e-convergence in t h s  study is based on the fact that if 

e-lim f n ( z )  = f  ( z )  
n- 

then 



so that the conjugate functions are also point-wise convergent. The historical 

background and a general statement of this result can be found, for instance, in 

PI. 
We are interested in a special case of this result for monotone sequences of 

functions t f , ( z )  for which the theory is simpler than in the general case. 

Under conditions of monotonicity there is generally no difference between 

point-wise and e-convergence, and so we can now use theory relating to e -  

convergence in the following sections without further comment. 

2. Theory 

Consider an algorithm with the following structural form: 

BEGIN PRIMAL-DUAL DECOMPOSITION ALGORITHM 

Let k = 0 . A t  the initial point the value of the function f  i(p) is f  i(po) . 

Define the initial approximations f  ( x ) - l  and f  ;(p)'l as 

f B ( = ) - l  ~ m ;  f i ( p ) - l  G m 

While (NOT SOLUTION) 

BEGIN INNER LOOP 

Using f  i(pk).pk update the approximation of the function f  B ( x ) :  

f B ( x l k  = max f f B ( z I k - l  z p k  - f C ; ( p k )  I 

Solve the auxiliary problem 

min t f ~ ( z )  + f ~ ( z ) ~  I = f ~ ( z ~ )  + f ~ ( z ~ ) ~  = v k  
x 

Update the approximation of the function f  i(-p) 

Solve the auxiliary problem 



Se tk  = k + l  

END INNER LOOP 

END PRIMAL-D U& DECOMPOSITION ALGORITHM 

For the algorithm to be well-defined it is necessary that auxiliary optimiza- 

tion problems (P) and ( D )  have finite solutions. We can guarantee this by requir- 

ing that the functions f A ( z )  , f  ~ ( z )  and their conjugates f i b )  , f i b )  are 

finite. This is rather a strong assumption, but we shall adopt it for the time 

being to simplify the theoretical considerations. 

I t  is clear from the way we have constructed the functions f B ( z ) k  , 

f  L(-JI)~ that they have the following properties: 

f B ( % I k  ~ f B ( 5 )  

and are therefore k i t e  convex functions if the right-hand sides of the above ine- 

qualities w e  finite. We therefore have the finite point-wise limit functions: 

and the monotone character of these sequences means that they are also e -  

convergent. 

The monotonicity of the sequences also means that the following limits 

exist: 



The theoretical validity of the algorithm is based on the following theorem. 

Theorem. If sequences zk  j , p k  j are bounded then any limit points z ' , p l  of 

these sequen-ces are solutions of the primal and dual forms, respectively, of 

problem (2). 

Proof. Passing to the limit in (6) leads to 

for anyp  , or 

However, in general 

f ~ b )  I f k ( 7 ) " "  j ' ( 2 )  

so for z = z ' , the equality 

f,4(zf) = I f k ( p ) ° °  j ' (2 ' )  

holds. 

By similar arguments, passing to the limit in (5) leads to 

fib') = t f ~ ( " ) ~ ]  * ( P I )  

The e -convergence of the sequence f ( z ) ~  j implies that 

f ; ( ~ ' )  = f ;b')- 

and, similarly, from the e-convergence of the sequence ] 

f ~ ( z ' )  = f A ( z 1 > =  

The rest is easy. Let 

u = limmin I f A ( x )  + f B ( x ) k  j = m i n t  f A ( z )  + f B ( z ) - j  = 
k+- x  z 



Also 

-UJ = lirn rnin t f ; ( - ~ ) ~  + f  i C p )  j = min f f  ;(?)- + f  i ( p )  j = 
k +m P  P  

By cons true tion 

However, for any p 

Hence for p = p ' 

v r - f b ( ~ ' )  - I f ~ ( z 1 - j  * b l )  = - f k ( p 1 ) - f i ( p ' )  = 

- f i ( - p l ) m  - f i ( p ' )  = -min I f  a(?)" + f ;(PI = w  
P 

This demonstrates that 

and the theorem is proved. 

To complete the theoretical discussion of the algorithm we should mention 

the related work of K. Aneros. The algorithm proposed in [3] combines primal 

and dual approximations and, rather than solving them separately as problems 

(P), (D),  incorporates them into one optimization problem. This differs from the 

algorithm considered in this paper but the general idea of using a primal-dual 

approximation is somewhat similar. 



3. Examples 

The algorithm was implemented using the code MINOS [4] to solve the auxi- 

liary linear problems. Unfortunately, MINOS does not have special subroutines 

capable of modifying the internal representation of the data when the parame- 

ters of the problem are changed or when additional rows/columns are added, 

and for this reason the auxiliary subproblems must be formulated and updated 

through modification of the input files. 

This is clearly not the most efficient way to implement the algorithm, but a t  

this stage we are more concerned with the number of major iterations required 

than with computational efficiency as a whole. 

One advantage of this approach was the small amount of additional pro- 

gramming needed to  supply codes for generating updated input files. Some of 

the UNIX functions [5] proved very useful in this respect. 

The chosen mode of implementation also resulted in some loss of accuracy, 

as will be seen later. 

Our first example concerns the Polish agricultural model developed for the 

Food and Agriculture program at IIASA [6]. The detailed structure of the model 

is described elsewhere; here we consider t h s  model only as a subject on which 

to test the proposed decomposition algorithm. 

For test purposes this model was decomposed into two submodels ( MIT and 

MID ), some characteristics of which are given below. 

MID: 

t o t a l  normal f r e e  fixed bounded 
rows 174 46 9 115 4 
col~mms 2 49 23 1 0 1 17  

no .  of m a t r i x  elements 2331 dens i t y  5 . 3 8 0  



t o t a l  normal f r e e  fixed bounded 
rows 171 57 7 105 2 
colurms 240 219 0 1 20 

n o ,  of m a t r i x  e lements  2096 d e n s i t y  5 . 107  

These two subproblems are linked by a group of 11 constraints which 

represent either the distribution of common resources between subrnodels or 

the  balancing of certain flows between submodels. The linking constraints were 

transformed into linking variables by introducing a n  additional set of linking 

variables, each one corresponding to the value of a linking row. 

This problem was solved using the algorithm described above and the 

results were compared with those obtained using the earlier algorithm [I], 

which is based on approximation only in the primal form of the problem. In this 

experiment subproblem MID was used in its primal form ( as f A ( z )  ) and MIT in 

its dual form ( as f i (p)  ). The results are  given in Tables 1 and 2. 

Table  1 .  Convergence of t he  p r imal  a l g o r i t h .  

cyc 1 e i t e r  upper e s t  i t e r  M I D  opt imun 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 277 0.137265d+09 437 - -0.326988d+05 
2 77 -0.158735d+06 60 OV238563d+08 
3 3 -0.158735d+06 37 - 0 . 3  10690d+05 
4 3 - 0.158735d+06 4 2 -0.260705d+05 
5 4 - 0.158?40d+06 10 -0.249800d+05 
6 3 -0.158823d+06 1 -0.248799d+05 

Tab le  2 .  Convergence of t he  p r ima l -dua l  a l g o r i t h n .  

c y c l e  i t e r  
- - - - - - - - - - - - - - - - - - -  

1 277 
2 77 
3 3 
4 3 
5 4 
6 3 

upper e s t  i t e r  
- - - - - - - - - - - - - - - - - - - - - - -  

0.137265d+09 444 
-0.158735d+06 89 
-0.158735d+06 4 9 
-0.158735d+06 32 
- 0.158740d+06 76 
-0.158823d+06 2 6 



The primal algorithm was applied to the dual of (1) and consequently pro- 

duced only an upper estimate of the optimal value, which is shown in Table 1 

together with the number of simplex iterations required to solve the auxiliary 

optimization problem. The optimal value obtained in subproblem MID is also 

shown in Table 1, together with the number of simplex iterations required to 

obtain this value. It was possible to use the optimal solution obtained on a previ- 

ous major iteration as a starting basis for the next cycle. As a result, the 

number of auxiliary simplex iterations decreases rapidly as the algorithm 

progresses. Table 1 also illustrates the nonmonotone behavior of the optimal 

value obtained for the MID subproblem. 

Table 2 shows the results obtained with the primal-dual algorithm, which 

provides both upper and lower estimates of the optimum; again, the numbers of 

simplex iterations required to solve the auxiliary optimization problems are also 

given. 

When solving the auxiliary optimization problem (D) it was again possible to 

use the preceding optimal solution as a starting point for each new cycle; Table 

2 shows the rapid decrease in the number of additional simplex iterations 

required to reach the optimum. 

For the problem (P), however, the previous optimal solution is not feasible 

so it was just used as an advanced starting basis for the next iteration . Table 2 

shows that this also leads to a substantial decrease in the numbers of additional 

simplex iterations. 

It is also worth noting that the Dantzlg-Wolfe algorithm took 49 iterations to 

achieve 3-digit accuracy when applied to this problem. 

The following table demonstrates the actual solution of this problem. 



Table  3 .  S o l u t i o n  of the  a g r i c u l t u r a l  m d e l  

p r  imal-dual  a l g o r i t h m  p r  irnal a l g o r i t h m  
v a r  - - - - - - - - - - - - - - - - - - - - - - - - - -  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

a c t i v i t y  shadow p r i c e  a c t i v i t y  shadow p r i c e  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 0.238889d+04 0 .  d+OO 0.238889d+04 0 .  d+OO 
2 0.238889d+04 0.324081d+00 0.238889d+04 0.324081d+00 
3 0.574402d+04 0.132165d-01 0.574402d+04 0.132165d-01 
4 0.193036d+03 0 .  d+OO 0.193036d+03 0 .  d+OO 
5 0.142345d+04 0 .  d+OO 0.142345d+04 0 .  d+OO 
6 0.335377d+03 0 .  d+OO 0.335377d+03 0 .  d+OO 
7 0.145165d+03 0 .  d+OO 0.145165d+03 0 .  d+OO 
8 0.463994d+03 0 .  d+OO 0.463994d+03 0 .  d+OO 
B 0.295227d+05 0.146246d+00 0.295227d+05 0.146246d+00 

10 0 .  d+OO 0 .  d+OO 0 .  d+OO 0 .  d+OO 
11  0.989897d+01 -0.666134d-15 0 .  d+OO -0.222045d-15 

In this case the primal algorithm was applied to  the dual of the original 

problem and consequently produced a dual solution whch  agrees well with the 

solution provided by the primal-dual algorithm. 

The column headed "activity" for the primal algorithm gives the values of 

linking variables generated by the subproblem MID in response to  the optimal 

prices. I t  is interesting to  note that  the value calculated for primal variable 

number I1 differs from the optimal value obtained by the primal-dual algorithm. 

This demonstrates that  price information alone is insufficient to calculate the 

overall optimum. However, this is the only variable which should be controlled 

directly; the optimal values for the rest of the variables may be obtained using 

the optimal price information. 
~. . - 

One of the shortcomings of the primal algorithm is that  its performance 

depends strongly on which one of the subproblems is approximated ( as f B ( z )  ), 

and which is taken in full ( as f A ( z )  ). In the worst case this can cause a marked 

deterioration in the performance of the algorithm. The primal-dual algorithm 

allows both subproblems to  be considered in their unapproximated form ( either 

primal or dual ) and so it may be less sensitive to the roles assigned to the 



subproblems. To investigate t h s  hypothesis the experiment described above 

was repeated using the  primal form of subproblem MIT ( as f A ( z )  ) and the dual 

form of subproblem MID ( as f i ( p )  ). The primal algorithm was stopped after 

executing 37 major iterations and the  primal-dual algorithm after performing 20 

major iterations. The results are given in Table 4 

Table  4 .  Convergence of p r imal -dua l  and p r imal  a l g o r i t h m s .  

primal -dual  a l g o r  i thn p r  irnal a l g o r i  thn 
c y c l e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i t e r  lower e s t  i t e r  upper e s t  i t e r  upper e s t  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 420 -0.13093d+06 386 0.27334d+09 386 0.27334d+09 
5 422 -0.10270d+OB 47 0.34157d+07 32 -0.11457d+06 

10 9 -0.16912d+06 86 -0.15348d+06 76 -0.15290d+06 
15 20 -0.15987d+06 17 -0.15816d+06 16 -0.15691d+06 
20 5 -0.15885d+06 66 -0.1588Od+06 32 -0.15854d+06 
25 - - 23 -0.1588Od+06 
3 0 - - 17 -0.15881d+06 
35 - - 19 -0.15882d+06 
36 - - 27 -0.15882d+06 
37 - - 18 -0.15882d+06 

The computational process is illustrated in Figure 1. This graph shows the 

convergence of the upper and lower bounds for the primal-dual algorithm 

(curves 0 and 1 ), and of the  upper bound for  the primal algorithm ( curve 2 ). 

The figure illustrates the relative accuracy ( on a logarithmic scale ) of each 

bound, which is calculated as  

where f i  denotes the  value obtained for the objective function on the i - th  cycle 

and f  denotes the optimal value (here taken to be -O.l58824d+06 ). It is clear 

that  the primal-dual algorithm converges slightly faster in the range of relative 

accuracy from lo-' to 

The second example concerns a simplified version of the revised energy 

model MESSAGE ( Model for Energy Supply Systems Alternatives and their 



agricultural model 

-7 .  s! 1 
0 .  7 -2  14. 22. 29. 36. 

major iterations 

Figure 1. Convergence of the primal-dual and the primal algorithms. 

General Environmental impact ) [ ? I  which is described in more detail in [B] .  

This is a dynamic linear programming model intended to  describe the depen- 

dence of the transition from one pattern of energy production to another on the 

availability of certain resources and on environmental effects. 

The simplfied version describes the production of energy from various raw 

materials and its transportation, distribution and conversion to meet a final 



demand specified outside the model. 

For test  purposes this model was decomposed into 2 submodels and solved 

using the algorithm described above. 

The first submodel ( CENTR ) describes the production of different kinds of 

final energy from fossil and nuclear fuels, hydropower plants, solar installations, 

geothermal plants and other sources. The final energy is produced in the form 

of electricity, district heat, hydrogen, coal, and liquid and gaseous fuels. 

The second submodel ( END ) deals with the transformation of final energy 

into useful energy, and describes the flow of final energy through the different 

stages of transportation, distribution, and on-site conversion to meet the 

demand of end-users. 

The characteristics of these submodels are as follows: 

m: 
total nomal free fhr ed bounded 

rows 246 182 22 42 0 
colums 202 192 0 4 0 

no. of m t r i x  e l m n t s  963 density 1 ,938 

END: 
total nonml free fjat ed bounded 

rows 157 102 13 42 0 
colums 139 126 0 3 10 

KID. of m t r i x  e l m n t s  520 density 2.383 

The linking variables in this model are the flows of final energy between sub- 

problems; different variants of the model can be specified which differ in the 

number of time periods considered, number of technologies represented, and so 

on. For this test, the number of links between subsystems was chosen to be 42, 

which corresponds to 7 time periods. A number of simplifications have also been 

made in the structure of the subproblems to cut down the size of the blocks. 

In this experiment subproblem END was used in its primal form ( as f A  (z) ) 

and CENTR in its dual form ( as f i(p) ).  



The results obtained with the proposed algorithm are shown in Table 5. 

Table 5. Convergence of the primal-dual algorithm. 

cyc l e  i t e r  upper e s t  i t e r  lower e s t  

The results given in Table 5 correspond to those listed in Table 2, but in this case 

the algorithm stopped a t  the 7-th major iteration ( cycle ) due to rounding 

errors. It is clear that to obtain more precise results it would be necessary to  

improve the accuracy of the information passed between subproblems. 

Table 6 gives the results obtained for the same problem with the primal 

decomposition algorithm. 

Table 6 .  Convergence of the  primal a l g o r i t h n .  

cyc 1 e i t e r  
- - - - - - - - - - - - - - -  

1 188 
2 1 e 
3 1 
4 1 
5 4 
6 1 
7 3 
8 1 
9 1 

i t e r  ENDoptimun 
. . . . . . . . . . . . . . . . . . . . . .  
85 0.168162d+04 
17 0.723144d+04 
7 0.821608d+04 
3 0.831283d+04 
5 0.82223 1 d+04 
3 0.836067d+04 
1 0.833766d+04 
3 0.837510d+04 
1 0.837609d+04 

To test the robustness of the algorithm the experiment was again repeated, 

this time using the primal form of subproblem CENTR ( as f A ( x )  ) and the dual 

form of subproblem END ( as fib) ). Both algorithms were stopped after exe- 

cuting 55 major iterations. 

The computational process is illustrated in Figure 2. This graph shows 
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Figure 2. Convergence of the primal-dual and the primal algorithms. 

the convergence of the upper and lower bounds for the primal-dual algorithm 

(curves 0 and 1 ), and of the upper bound for the primal algorithm ( curve 2 ). 

The figure illustrates the relative accuracy ( on a logarithmic scale ) of each 

bound, which is calculated as before as 



where f i  denotes the value obtained for the objective function on the i - th  cycle 

and f * denotes the optimal value (here taken to be 0.925606d +04 ). It is clear 

that the primal-dual algorithm converges slightly faster then the primal algo- 

rithm although it was unable to attain a relative accuracy of more then in 

the given number of major iterations. 

4. Concluding remarks 

This limited trial of the primal-dual algorithm shows that it has some advan- 

tages over the earlier decomposition algorithm in dealing with structured prob- 

lems. Nevertheless, it is clear that further work is required on both theoretical 

and practical aspects of this approach. 

One interesting theoretical development would be to investigate the use of 

this algorithm for the piece-wise linear case. Another important development 

would be the extension of the algorithm to pathological ( unbounded or infeasi- 

ble ) problems. 

From the practical point of view, the efficiency of the implementation could 

be improved, frst ly by ensuring that more accurate information passes between 

subproblems and, secondly, by providing more advanced means for modifying 

the subproblems. 

Acknowledgments 

The author wishes to thank P.O. Lindberg for useful discussions and for 

drawing his attention to the work of K. Aneros. 

References 

1. E.  Nurminski, "Convergence and Numerical Experiments with a Decomposi- 

tion Algorithm," RR-81-31, International Institute for Applied Systems 

Analysis, Laxenburg, Austria (1982). 



2. R.  J.-B. Wets, "Convergence of Convex Functions, Variational Inequalities and 

Convex Optimization Problems," pp. 376-403 in Variat ional  Inequa l i t i e s  and  

C o m p l e m e n t a r i t y  Prob lems ,  ed. R.W. Cottle, F. Giannessi, and J-L. 

Lions,Wiley, Chchester (1980). 

3. K. Aneros, "A General Framework for Solving Structured Linear Programs 

by Column and Row Generation Techniques," TRITA-MAT-1978-9, Depart- 

ment of Mathematics, Royal Institute of Technology, Stockholm (1978). 

4. B.A. Murtagh and M.A. Saunders, "MINOS. A Large-Scale Nonlinear Program- 

ming System (for Problems with Linear Constraints)," Technical report SOL 

77-9, Stanford University (1 977). 

5. D.M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," The Bell 

S y s t e m  Technical  Journal  57(6) pp. 1905-1931 (1978). 

6. A. Jozwiak, T. Wollodko, L. Wisniewski, J. Rajtar, and J. Gomulka, "Production 

Model of Polish Agriculture," Technical report, International Institute for 

Applied Systems Analysis, Laxenburg, Austria (forthcoming). 

7. L. Schrattenholzer, "The Energy Supply Model MESSAGE," RR-81-31, Inter- 

national Institute for Applied Sys tems Analysis, Laxenburg, Austria (1981). 

8. S. Messner, "Users Guide for Message 11," Technical report, International 

Institute for Applied Systems Analysis, Laxenburg, Austria (forthcoming). 


