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Linear Programming and Entropy Maximizing Models

A. G. Wilson

For any assignment/interaction problem, let °ij be

transportation cost between i and j, Tij the flow, 0i and Dj

row and column sums of {Tij}'

Then, the transportation problem of linear programming

is
Min C = .Z T335%48; (1)
ij
s.t Z Tij = 04 (2)
J
T.,. =D, .
E ij = Dy (3)

In a situation where C takes .a sub-optimal value, it can
be shown that the probability of {Tij} occurring is proportional

‘to

W= (4)

Tf
n Ti.!
ij
and for many purposes a useful assignment (e.g. for an urban

transport problem) is obtained by maximizing log W subject

to (2) and (3) and

i} Ti5¢45 = C (5)




— '
Max S ] 1log Tij' (6)
ij
(which is an entropy function) subject to (2), (3), (5).
This gives (Wilson [5, 6]).
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where Ail), kgz), and B are the Lagrangian multipliers
associated with (2), (3), and (5) respectively. This is

written more conveniently as

] “Bey;
Tij = AiBjoiDje (8)
where
_ -1
A;0; = e 1 (9)
-2 (2]
B,D; = e o, (10)

Ai and Bj are calculated to ensure that (2) and (3) are

satisfied:

Bc

Ay = 1/2 B;Dje 1J (11)
J
~Bc. .
By = 1/§ a0e M, (12)
i

These equations are solved iteratively and converge

(Evans [2], Bacharach [1]). B8 can be found by



solving (5) numerically.
The linear programming model--(1)-(3)--and the entropy

maximizing model--(8), (11), (12)--can be linked as follows:

as B + = in (8), (11), (12)

Tij + the linear programming Tij

(Evans [3])

(1) (2)
=A; =4

B i 8 J
(Wilson and Senior [8])
where ai,Bj are the dual variables associated with (2) and (3)
in the linear program. PFor a residential location model

application, see Senior and Wilson [4], and a general

review of related models, see Wilson [7].
Note
Equations (11) and (12) can be seen as part of a general
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‘matrix adjustment procedure: given T.
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form

Tig T AiPiTi

s.t, (2) and (3) are satisfied. Then
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Computationally, proceed as follows:
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with T(O) =T, ..
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