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Abstract
Effective	nitrogen	fertilizer	management	is	crucial	for	reducing	nitrous	oxide	(N2O)	emis-
sions while ensuring food security within planetary boundaries. However, climate change 
might	also	interact	with	management	practices	to	alter	N2O emission and emission fac-
tors	(EFs),	adding	further	uncertainties	to	estimating	mitigation	potentials.	Here,	we	devel-
oped a new hybrid modeling framework that integrates a machine learning model with an 
ensemble	of	eight	process-	based	models	to	project	EFs	under	different	climate	and	nitro-
gen policy scenarios. Our findings reveal that EFs are dynamically modulated by environ-
mental changes, including climate, soil properties, and nitrogen management practices. 
Under	low-	ambition	nitrogen	regulation	policies,	EF	would	increase	from	1.18%–1.22%	
in	2010	to	1.27%–1.34%	by	2050,	representing	a	relative	increase	of	4.4%–11.4%	and	
exceeding	the	IPCC	tier-	1	EF	of	1%.	This	trend	is	particularly	pronounced	in	tropical	and	
subtropical	regions	with	high	nitrogen	inputs,	where	EFs	could	increase	by	0.14%–0.35%	
(relative	increase	of	11.9%–17%).	In	contrast,	high-	ambition	policies	have	the	potential	to	
mitigate the increases in EF caused by climate change, possibly leading to slight decreases 
in EFs. Furthermore, our results demonstrate that global EFs are expected to continue ris-
ing	due	to	warming	and	regional	drying–wetting	cycles,	even	in	the	absence	of	changes	
in nitrogen management practices. This asymmetrical influence of nitrogen fertilizers on 
EFs,	driven	by	climate	change,	underscores	the	urgent	need	for	 immediate	N2O emis-
sion reductions and further assessments of mitigation potentials. This hybrid modeling 
framework	offers	a	computationally	efficient	approach	to	projecting	future	N2O emis-
sions	across	various	climate,	soil,	and	nitrogen	management	scenarios,	facilitating	socio-	
economic	assessments	and	policy-	making	efforts.
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1  |  INTRODUC TION

Nitrous	 oxide	 (N2O)	 is	 one	 of	 the	 powerful	 and	 long-	lived	 green-
house	 gases	 (GHG).	 Its	 atmospheric	 concentration	 has	 increased	
by	 approximately	 24.8%	 from	 pre-	industrial	 levels	 to	 2023	 (Lan	
et al., 2024).	Among	all	 known	N2O surface emission sources, ag-
ricultural	 soil	 accounts	 for	 around	50%	of	 the	anthropogenic	N2O 
emissions	 (Shcherbak	 et	 al.,	2014; Tian et al., 2020).	 Emissions	 of	
N2O from soil have been rising, particularly in recent decades, largely 
due	to	increased	nitrogen	(N)	inputs	from	fertilizers	(Lu	et	al.,	2022; 
Thompson et al., 2019).	Although	sufficient	N	fertilizer	application	is	
essential	for	food	supply	(Ahvo	et	al.,	2023),	overfertilization	gives	
rise	to	N	pollution	leading	to	annual	global	economic	costs	of	around	
200–2000	 billion	 US$	 (Kanter,	 Winiwarter,	 et	 al.,	 2020;	 Sutton	
et al., 2013),	 especially	 for	 the	 financial	 expenses	 associated	with	
mitigating	 N2O	 emissions	 (Feng	 &	 Li,	2023).	 Furthermore,	 a	 wide	
variety of studies argue that the effectiveness of GHG mitigation 
is	 likely	 to	 decrease	 due	 to	 global	 warming	 (Köberle	 et	 al.,	2021; 
Shaaban,	2024; Xu et al., 2022; Yao et al., 2024),	suggesting	an	ur-
gency	of	early	mitigation	(Peng	&	Guan,	2021).	Many	studies	seek	to	
develop mitigation strategies that balance crop yields with reduced 
GHG emissions without compromising crop productivity in specific 
regions	(Burney	et	al.,	2010; Lamb et al., 2016; Lugato et al., 2018).	
Several	mitigation	pathways	have	been	developed	(Gu	et	al.,	2023; 
Kanter,	Chodos,	et	al.,	2020;	Sutton	et	al.,	2021),	which	provide	gen-
eral	insights	into	how	current	N	policies	impact	future	environmen-
tal	scenarios	and	targeted	 interventions	 for	N	pollution	reduction.	
However, the applicability of these regionally specific hypotheses 
has not been fully tested on global scales, which limits our under-
standing	of	hotspot	areas	for	N2O emission mitigation. More impor-
tantly,	how	effective	different	N	regulating	policies	will	be	under	the	
future climate has not been systematically investigated. This knowl-
edge gap may lead to missing key timing for actions to effectively 
reduce	N2O emissions, that is relevant for simultaneously achieving 
both	Goal	2	(Zero	Hunger)	and	Goal	13	(Climate	Action)	of	the	United	
Nations	Sustainable	Development	Goals	(United	Nation,	2015).

The	N2O	emission	factor	(EF)	is	a	widely	used	bottom-	up	approach	
for	 estimating	 anthropogenic	 soil	 N2O	 emissions	 from	 N	 fertilizer	
input.	The	 recent	 report	by	 the	 Intergovernmental	Panel	on	Climate	
Change	(IPCC)	suggests	a	default	EF	(tier-	1)	(Hergoualc'h	et	al.,	2019; 
Klein,	2006)	and	more	detailed	country-	specific	EFs	 (tier-	2)	 to	guide	
the	 N2O emission assessment. Despite being easy to use, this ap-
proach	 overlooks	 the	 large	 variance	 and	 long-	term	 dynamics	 of	 EF	
due to different environmental conditions such as climate, soil, and 
management	 (Lesschen	 et	 al.,	 2011;	 Shcherbak	 et	 al.,	 2014;	Wang,	
Zhou,	et	al.,	2020).	EF	change	is	mainly	attributed	to	factors	like	envi-
ronmental	conditions,	N	fertilizer	input	rate,	soil	properties,	or	carbon	
substrates	(Hu	et	al.,	2016;	Nelson	et	al.,	2016;	Shcherbak	et	al.,	2014; 
Venkiteswaran et al., 2014).	However,	 these	attribution	analyses	are	
often	based	on	short-	term	field	observations	that	may	not	fully	repre-
sent	the	long-	term	impacts	of	climate	change	(Harris	et	al.,	2022)	and	
evolving	 nitrogen	management	 practices	 on	 EF	 dynamics.	Although	
evaluating the spatial patterns of EF based on statistical models and 

field observations could provide insights into mitigation potentials 
and	N2O	emission	projections	 (Cui	 et	 al.,	2021; Harris et al., 2022),	
EF dynamics under climate change are not adequately addressed in 
the	existing	EF	maps.	This	oversight	may	result	in	biases	in	EF-	based	
estimates	of	N2O emissions and lead to a failure in identifying the op-
timal	 timing	 for	 implementing	 effective	 mitigation	 strategies	 (Harris	
et al., 2022).	Such	a	lapse	not	only	impedes	the	accuracy	of	global	N2O 
estimations but also hampers policymakers from developing more ef-
fective	mitigation	strategies	over	both	short-		and	long-	term	periods.

Process-	based	models	represent	another	bottom-	up	approach	to	
dynamically	project	N	input-	induced	N2O emissions by simulating bi-
ological and biogeochemical processes in croplands and pasture lands, 
where	 N	 fertilizer	 is	 a	 primary	 input	 source,	 under	 climate	 change	
and	 different	 management	 practices	 (Del	 Grosso	 et	 al.,	 2022; Tian 
et al., 2018, 2019).	These	models	provide	dynamic	predictions	of	N2O 
emissions driven by climate and environmental data. However, their 
application is limited by the requirement for input data preparation, 
extensive	 model	 calibration	 and	 validation	 (Ouatahar	 et	 al.,	 2021; 
Sandor	et	al.,	2018),	process	representation,	and	substantial	compu-
tational	resources,	particularly	when	various	N	management	scenarios	
and	future	climate	scenarios	are	assessed	for	N2O emission projection 
(Perlman	et	al.,	2014; Tian et al., 2018).	 In	 the	era	of	big	data,	 arti-
ficial intelligence has become increasingly influential in fields based 
on	large	datasets	(Delavaux	et	al.,	2023; Ham et al., 2019; Reichstein 
et al., 2019;	Wang	et	al.,	2023; Xu et al., 2024).	However,	these	ap-
proaches	(e.g.,	machine	learning	and	deep	learning)	can	mainly	provide	
references	for	responses	under	current	conditions	(Franke	et	al.,	2020),	
and	projects	integrating	different	potential	future	N	management	and	
climate scenarios are challenging. Furthermore, statistical models can 
be misleading due to the lack of detailed understanding of processes 
and	causal	relationships	(Feng	et	al.,	2019).	Thus,	 it	may	be	of	inter-
est to develop a hybrid approach that combines the advancement of 
process-	based	models	and	machine	learning	to	emulate	the	process-	
based	model	behaviors	(Xiao	et	al.,	2024).	Such	statistical	emulations	
could offer an efficient and timely approach to estimating the efficacy 
of mitigation strategies under different climate scenarios.

Here, we develop a modeling framework that employs machine 
learning	to	emulate	the	behavior	of	eight	state-	of-	the-	art	process-	
based terrestrial biosphere model ensembles from the global 
Nitrogen/N2O	 Model	 Inter-	comparison	 Project	 phase	 2	 (NMIP2)	
(Tian	 et	 al.,	2024).	 This	 approach	 can	 dynamically	 evaluate	 global	
EF	for	N	fertilizer	input-	induced	N2O emission projections with im-
proved	 accuracy,	 effectively	 combining	 the	 two	 bottom-	up	meth-
ods.	We	then	perform	an	attribution	analysis	of	EF	change	based	on	
our	dynamic	EF	(Dym-	EF)	model.	Finally,	we	estimate	the	potential	
change	of	EF	based	on	seven	N	management	scenarios	from	2010	
to	2050,	each	N	management	scenario	with	a	corresponding	climate	
scenario	based	on	37	global	climate	models	(GCMs)	(Figure 1).	The	
objectives	of	this	study	are	to	(1)	explore	the	key	factors	influencing	
EFs	and	their	potential	changes	over	time;	(2)	reveal	the	nonlinear	re-
lationships	between	EFs	and	environmental	factors;	(3)	dynamically	
project EF under various nitrogen mitigation strategies and climate 
scenarios;	 (4)	 identify	the	opportunities	and	hotspots	with	high	EF	
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reduction potentials from seven nitrogen regulation policies at three 
ambition levels that have been developed under the International 
Nitrogen	Management	System	(INMS)	project	 (Kanter,	Winiwarter,	
et al., 2020).	 The	 INMS	 scenarios	 combine	 specific	 policies	 to	 re-
duce nitrogen pollution with the shared socioeconomic pathways 
(SSP:	Riahi	et	al.	(2017))	and	the	representative	concentration	path-
ways	(RCP:	Van	Vuuren	et	al.	(2011))	developed	under	the	IPCC.	This	
study	 can	 improve	 our	 understanding	 of	 balancing	 policies,	 N2O 
emission, and food production under future climate scenarios, which 
is crucial for developing effective mitigation strategies. Moreover, 
this	Dym-	EF	modeling	framework	offers	flexibility	and	can	easily	ex-
tend to other different nitrogen management scenarios, providing a 
broader and timely evaluation of global GHG mitigation potentials.

2  |  DATA AND METHODS

2.1  |  Estimating the N2O EF by 
learning the non- linear EF dynamics from the NMIP2 
model ensemble

In	 this	 study,	we	estimate	 the	N2O	EFs	based	on	eight	process-	
based	Terrestrial	Biosphere	models	that	participate	in	N2O Model 
Intercomparison	 Project	 phase	 2	 (NMIP2)	 (Tian	 et	 al.,	 2018, 

2024),	 including	 CLASSIC,	 DLEM,	 ELM,	 ISAM,	 LPX-	Bern,	 OCN,	
ORCHIDEE,	and	VISIT.	These	models	integrate	the	impacts	of	at-
mospheric	N	deposition,	biological	N	fixation,	manure	N	applica-
tion,	and	N	fertilizer	use	on	the	nitrogen	cycle	processes	related	
to	 N2O	 emissions	 (Tian	 et	 al.,	 2019, 2020).	 Each	 of	 the	models	
uses	a	“Demand	and	Supply-	driven”	approach	for	plant	N	uptake.	
Differences in how models represent nitrification and denitrifi-
cation	 processes	 and	 their	 contributions	 to	N2O emissions with 
the modification of climate and agricultural management prac-
tices are a main source of uncertainty in our estimates. More in-
formation	on	 the	N2O	emission	approaches	 in	NMIP2	models	 is	
described	in	Tian	et	al.	 (2024).	A	set	of	factorial	simulations	was	
performed to disentangle the respective contribution of drivers 
to	the	N2O	emissions.	Among	these	simulations,	the	SH1	aims	to	
estimate	 the	 dynamics	 of	N2O emission in response to changes 
in	 Climate + CO2 + Land	 cover + Irrigation + N	 deposition + N	
Fertilizer + Manure	N;	while	the	SH3	yields	the	estimates	of	N2O 
emissions	without	considering	N	fertilizer	input,	that	is	estimations	
driven	 by	 changes	 in	 Climate + CO2 + Land	 cover + Irrigation + N	
deposition + Manure	 N.	 To	 estimate	 the	 EF,	 we	 first	 obtain	 the	
N2O	emissions	directly	resulting	from	N	fertilizer	inputs	that	were	 
calculated	 using	 SH1–SH3	 (i.e.,	 simulations	 with	 vs.	 without	 N	
fertilizer	 input).	We	 estimate	 the	 annual	 EF	 from	 1961	 to	 2020	
allowing us to assess how changes in warming trends and nitrogen 

F I G U R E  1 Modeling	framework	integrating	machine	learning	and	process-	based	model	ensembles	(NMIP2)	for	assessing	global	nitrogen	
fertilizer	input-	induced	nitrous	oxide	(N2O)	emission	factors	(EFs)	and	projecting	EF	change	under	various	climate	and	N	management	
scenarios.	The	NMIP2	was	performed	under	0.5° × 0.5°	resolution.	This	modeling	framework	was	used	to	emulate	the	NMIP2	ensemble	
behaviors	rather	than	individual	NMIP2	models.	RF,	Random	Forest	model;	seven	scenarios	including	INMS1,	business-	as-	usual;	INMS2,	
low	N	regulation	(Low	ambition);	INMS3,	medium	N	regulation	(moderate	ambition);	INMS4,	high	N	regulation	(High	ambition);	INMS5,	best	
case	(High	ambition);	INMS6,	best-	case	plus	(High	ambition);	INMS7,	Bioenergy	(High	ambition);	NMIP,	global	N2O model intercomparison 
project.	Dym-	EF,	Dynamic	EF.
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application	rates	have	influenced	the	variation	in	EFs.	The	NMIP2	
models were driven by consistent input datasets, including nitro-
gen inputs, atmospheric CO2 concentrations, daily climate vari-
ables, irrigation, and land cover changes, ensuring a standardized 
basis	for	comparison	and	analysis	of	global	N2O estimation. Most 
models	 output	 monthly	 N2O	 estimates	 (Tian	 et	 al.,	 2024).	 The	
complete list of abbreviations is shown in Table S1.

2.2  |  N regulation scenarios

Optimizing	 management	 practices	 can	 improve	 N	 use	 efficiency	
(NUE)	 and	 reduce	N2O	emissions	 (Winiwarter	 et	 al.,	2018).	 These	
N	policy	data	have	been	used	to	estimate	the	N	pollution	globally	
(Cui	 et	 al.,	2024;	 Kanter,	 Chodos,	 et	 al.,	2020).	 Thus,	 understand-
ing	 the	potential	 changes	 in	N2O emissions from food production 
under	future	land	management	scenarios	(based	on	current	and	po-
tential	technological	advancements)	is	essential	for	developing	more	
comprehensive and cohesive nitrogen strategies, while additionally 
reducing the conflicts in food production and its environmental im-
pacts	(Gu	et	al.,	2023;	Kanter,	Chodos,	et	al.,	2020).	They	have	been	
formalized	by	Kanter,	Winiwarter,	et	al.	(2020),	who	developed	seven	
scenarios	within	the	SSP/RCP	framework	that	include	three	differ-
ent levels of policy ambition to tackle nitrogen pollution in general 
(low,	moderate,	 and	 high	 ambitions	 to	 remove	 nitrogen	 pollution,	
See	Table 1),	as	part	of	the	project	Towards	an	International	Nitrogen	
Management	System	(INMS:	see	https:// www. inms. inter national).	In	
this	paper,	we	use	projections	of	synthetic	N	fertilizer	consumption	
as	implemented	in	the	GAINS	model	(Amann	et	al.,	2011;	Winiwarter	
et al., 2018)	and	in	accordance	with	these	seven	scenarios.

2.2.1  |  High	ambition	N	regulation	scenarios

The	high-	ambition	scenarios	align	with	the	sustainable	development	
goals, which extend to 2030. These ambition levels include four 
distinct	 approaches:	high	N	 regulation	 (INMS4,	under	RCP4.5	and	
SSP2),	the	“best	case”	(INMS5,	under	RCP4.5	and	SSP1),	the	“best-	
case	plus”	(INMS6,	under	RCP4.5	and	SSP1),	and	bioenergy	(INMS7,	

under	RCP2.6	and	SSP1).	The	high	ambition	N	regulation	level	rep-
resents technological advancements within the period of the sus-
tainable	 development	 goals	 until	 2030.	 The	 “best	 case”	 scenario	
envisages ambitious climate action combined with a strong commit-
ment	to	sustainable	agriculture	and	low-	meat	diets	in	line	with	the	
expectations	under	SSP1.	The	best-	case	“plus”	scenario	extends	this	
ambition further, incorporating significant dietary changes and re-
ducing	food	loss.	As	for	the	bioenergy	scenario,	improving	bioenergy	
production	is	likely	crucial	for	achieving	the	targets	of	a	1.5°C	and	
2°C	world.	 From	 an	N	perspective,	 the	RCP	4.5	 scenario	 appears	
to	be	more	 favorable	 than	RCP	2.6,	 unless	 substantial	 efforts	 are	
undertaken	 to	 improve	NUE	 in	 bioenergy	 production	 in	 RCP	 2.6.	
Generally, the high nitrogen policy ambition is expected to achieve 
the	 target	NUE	by	2030	and	maintain	 it	 through	 to	2100	 (Kanter,	
Winiwarter,	et	al.,	2020).

2.2.2  | Moderate	ambition	N	regulation	scenario

The	 moderate	 ambition	 (Medium	 N	 regulation,	 INMS3,	 under	
RCP4.5	and	SSP2)	scenario	aims	to	achieve	the	same	goals	but	over	
a	longer	period,	either	by	2050	or	2070.	It	expects	countries	to	con-
tinue	their	current	high-	input,	low-	efficiency	N	fertilizer	for	30 years	
before making improvements.

2.2.3  |  Low	ambition	N	regulation	scenarios

The low ambition scenarios indicate no significant improvement 
and	a	stagnant	NUE.	The	INMS1	scenario	assumes	a	continuation	of	
past	trends	(RCP8.5	and	SSP5)	while	INMS2	considers	climate	policy	
(RCP4.5	and	SSP2)	but	little	policy	attention	to	N	pollution.

To integrate the seven scenarios, we employed the relative 
change	metrics,	 comparing	 the	 future	 period	 (2011–2050)	 against	
a	 baseline	 period	 (1990–2010).	 This	 approach	 was	 used	 to	 align	
with	 the	 NMIP2	 nitrogen	 (N)	 input	 data,	 which	 include	 synthetic	
N	fertilizer.	Since	the	NMIP-	derived	EFs	used	to	train	our	Dym-	EF	
model	were	based	on	specific	NMIP	N	fertilizer	data,	the	nitrogen	
regulation	pathways	 from	 INMS1–S7	could	not	be	directly	applied	

TA B L E  1 The	seven	future	climate,	land	use,	diet,	and	N	management	scenarios.

Name Scenario Climate
Land use 
regulation Productivity Diet

Ambition 
level

INMS1 Business-	as-	usual RCP8.5 Medium High Meat	&	dairy-	rich Low

INMS2 Low nitrogen regulation RCP4.5 Medium Medium Medium	meat	&	dairy Low

INMS3 Medium nitrogen regulation RCP4.5 Medium Medium Medium	meat	&	dairy Moderate

INMS4 High nitrogen regulation RCP4.5 Medium Medium Medium	meat	&	dairy High

INMS5 Best-	case RCP4.5 Strong High Low	meat	&	dairy High

INMS6 Best-	case	“Plus” RCP4.5 Strong High Ambitious	diet	shift	and	food	loss/waste	
reductions

High

INMS7 Bioenergy RCP2.6 Strong High Low	meat	&	dairy	diet High

Note:	Modified	from	Kanter,	Winiwarter,	et	al.	(2020).	The	colors	represent	different	scenarios.
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as inputs to project future EFs. Consequently, we adapted the seven 
scenarios	to	align	with	the	NMIP	inputs	as	follows:

where	 the	NFerS_NMIP	 represents	 the	synthetic	 fertilizer	N	 input	 for	
the	 seven	 NMIP-	compatible	 scenarios	 (2011–2050),	 NFerH_NMIP is 
the	historical	NMIP	synthetic	fertilizer	N	input	data	(1990–2010),	RN	
is	the	relative	change,	S_INMS	represents	the	seven	future	scenarios	
(Table 1),	and	His_INMS	is	the	historical	N	input	data	for	these	N	reg-
ulation	 scenarios	 during	 1990–2010.	We	developed	 the	N	manage-
ment	data	at	gridded	scales	with	0.5°	by	0.5°	grids.	Through	the	above	
approach,	we	have	developed	a	set	of	N	input	data	tailored	to	these	
seven	future	scenarios	for	NMIP2.	This	ensures	that	the	scenarios	are	
appropriately	linked	to	the	current	NMIP's	N	input	data,	thereby	facil-
itate	the	creation	of	a	series	of	detailed	N	input	scenarios.	Figure S1 
shows	the	total	N	inputs	under	seven	scenarios	during	1961–2050.

2.3  |  Climate data

We	 collect	 monthly	 temperature	 and	 precipitation	 data	 from	 37	
GCMs	under	SSP126	 (SSP1,	RCP2.6),	 SSP245	 (SSP2,	RCP4.5),	 and	
SSP585	 (SSP5,	RCP8.5)	of	CMIP6	 (Table S2).	The	use	of	37	global	
climate	models	 (GCMs)	 allows	 for	 comprehensive	 coverage	 of	 the	
range	of	equilibrium	climate	sensitivity	 (ECS)	and	transient	climate	
response	(TCR)	values	(Meehl	et	al.,	2020).	This	breadth	is	crucial	for	
adequately representing the spectrum of potential climate change 
scenarios.	 To	match	 the	 resolution	 of	 NMIP2	 input,	 we	 resample	
these	GCMs	to	0.5°	by	0.5°	grids.	Since	the	historical	data	from	the	
GCMs	exhibit	discrepancies	when	compared	with	NMIP2	inputs,	we	
employ the delta approach for bias correction at grid scales:

where	 the	 GCMb	 is	 the	 bias-	corrected	 GCMs	 during	 2011–2050,	
GCMraw	is	the	raw	GCMs	climate	variable	(seasonal	temperature	and	
precipitation,	and	annual	aridity	index)	during	2011–2050,	and	Delta	
is	Observed	Historical	Data−Model	Historical	 during	1980–2010.	 In	
a few small arid regions where bias correction resulted in negative 
precipitation	 values,	we	 adjusted	 these	 to	 zero.	NMS1	 corresponds	
to	 SSP5	 (“Fossil-	fueled	 Development”),	 INMS2–S4	 corresponds	 to	
SSP2	 (“Middle	 of	 the	 Road”),	 and	 INMS5–S7	 corresponds	 to	 SSP1	
(“Sustainability”).	 However,	 since	 SSP1-	4.5	 is	 not	 available	 for	 all	
GCMs	(O'Neill	et	al.,	2016),	we	use	climate	projections	from	SSP2-	4.5	
to	approximate	it	and	assemble	the	scenarios	of	best-	case	and	best-	
case+	(INMS5–S6)	as	the	combination	of	moderate-	mitigation	climate,	
sustainable	development	(SSP1),	and	high	ambition	N	regulation	pol-
icies.	More	details	can	be	found	 in	Kanter,	Winiwarter,	et	al.	 (2020).	
Figures S2 and S3 show the time series for precipitation and tempera-
ture, and their changes over areas of nitrogen application. Generally, 
there is a significant increase in temperature across various scenarios, 

especially	under	SSP585.	Precipitation	demonstrates	a	slight	increase,	
with	 SSP126	 marginally	 exceeding	 SSP245	 and	 SSP585	 during	
2011–2050.

2.4  |  Developing an explainable model to project 
EF change

The	process-	based	models	are	capable	of	estimating	nonlinear	 re-
sponses	 of	 N2O emissions through various biophysical processes, 
such as nitrification and denitrification. These models consider 
factors	that	potentially	impact	N2O emissions and EFs, such as soil 
properties	(including	soil	pH,	initial	soil	organic	carbon	content,	bulk	
density,	and	clay	content),	as	well	as	environmental	conditions	 like	
precipitation and temperature, along with management practices. 
Several	 studies	 have	 compared	 N2O models in agriculture under 
historical	 conditions	 (Ehrhardt	 et	 al.,	 2018; Fuchs et al., 2020).	
However, for future projections, these models require substantial 
computational	 resources	 (Franke	 et	 al.,	 2020)	 and	 are	 challeng-
ing to apply directly to a large number of GCMs for assessing the 
N2O	 dynamics	 under	 climate	 change	 scenarios.	 Statistical	 models	
can	capture	the	nonlinear	relationship	between	N2O emissions and 
environmental variables. However, these statistically based models 
do not incorporate biophysical processes, and their performance 
largely	depends	on	the	quality	and	quantity	of	the	available	data	(Li	
et al., 2023).	Thus,	there	is	growing	interest	in	developing	a	hybrid	
model	 (or	 statistical	 emulation)	 that	 combines	 the	 advantages	 of	
both approaches, providing a more efficient and flexible method for 
estimating	N2O emissions.

In	this	study,	we	use	the	Random	Forest	(RF)	model	to	reproduce	
the	multimodel	median	of	NMIP2	EF	based	on	the	NMIP2	input	data	
(Tian	 et	 al.,	2024).	 The	 climate	data	 include	 seasonal	 temperature	
and	precipitation	and	yearly	aridity	index	(AI).	The	soil	data	consisted	
of	pH,	initial	soil	organic	carbon	content	(DOM_SOC),	soil	bulk	den-
sity	 (BULK_DEN),	 percentage	 of	 sandy	 content	 (PCT_SAND),	 and	
clay	content	 (PCT_CLAY).	Management	data	 included	synthetic	ni-
trogen	fertilizer	(NFer)	and	irrigation	(Irr).	We	excluded	grids	where	
both	cropland	and	pasture	cover	are	less	than	10%.	In	addition,	we	
find	the	EF	from	the	NMIP2	ensemble	is	highly	sensitive	to	nitrogen	
inputs	when	the	N	input	was	less	than	0.1 kg N/ha/year.	To	ensure	
the	accuracy	of	the	Dym-	EF	model,	we	exclude	data	grids	with	ex-
tremely	high	EF	caused	by	a	 lower	N	 input,	 as	well	 as	 those	grids	
where	the	N	input	was	less	than	0.1 kg N/ha/year,	noting	that	atmo-
spheric deposition alone often exceeds this level in many regions. 
Such	extremely	high	EFs	for	low	fertilizer	inputs	are	likely	artifacts	
from	the	NMIP2	models.	Notably,	to	encompass	a	wider	range	of	en-
vironmental	conditions,	our	Random	Forest	(RF)	model	was	trained	
on	 yearly	 data	 spanning	 60 years	 (1961–2020)	 from	 NMIP2.	 This	
training allows us to dynamically generate annual EFs at a high spa-
tial	resolution	of	0.5° × 0.5°.

We	 performed	 the	 RF	model	 using	 the	 “ranger”	 package	 in	 R	
4.1.1,	optimizing	the	two	hyperparameters	(ntree and mtry)	with	the	
“caret”	package.	The	ntree parameter is the number of decision trees 

(1)NFerS_NMIP = NFerH_NMIP + RN × NFerH_NMIP,

(2)RN =
(S_ INMS − His_ INMS)

His_ INMS
,

(3)GCMb = GCMraw + Delta,
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in the RF model, and the mtry parameter determines the number of 
features to consider at each split. The extensive size of our data-
set, which was comprised of over one million datasets made tuning 
hyperparameters with the entire dataset challenging. Therefore, we 
used	data	from	the	most	recent	10 years	(2011–2020)	as	a	represen-
tative	subset	to	calibrate	the	hyperparameters.	We	set	the	range	for	
“mtry”	from	1	to	9	in	steps	of	2,	and	for	“ntree”	from	100	to	900	in	steps	
of	200	(refer	to	Figure S4).	We	find	that	when	mtry was set as 7 and 
ntree at 700 or “mtry”	at	5	and	“ntree”	at	900,	the	model	can	achieve	
optimal	performance	with	RMSE	is	0.32	and	the	R2	is	.775.	However,	
there	is	a	trade-	off	between	model	performance	and	computational	
demand.	Although	such	hyperparameters	can	provide	better	perfor-
mance,	they	require	significant	computational	resources.	A	setting	
of “ntree”	at	500	and	“mtry”	at	7	offered	a	similar	performance	(RMSE	
of	 0.32%	and	R2	 of	 .774)	 but	with	 a	 significantly	 reduced	 compu-
tational	 load.	Consequently,	we	selected	these	values	(mtry = 7	and	
ntree = 500)	 as	 the	 final	 hyperparameters	 for	 our	model.	 To	 evalu-
ate	 our	 model's	 performance	 at	 each	 grid.	 Then,	 we	 aggregated	
the results from these periods to assess the overall performance 
through R2	 and	 RMSE	 across	 the	 60 years	 (1961–2020).	 Our	 ap-
proach showed reliable model performance with an R2	higher	than	 .9	
and	 an	RMSE	 lower	 than	0.1	 in	most	 regions	 (Figures S5 and S6).	
Although	N	fertilizer	is	known	to	significantly	influence	EF	(Akiyama	
et al., 2006;	Wang	et	al.,	2011),	it	casts	doubt	on	the	models'	efficacy	
when	solely	using	N	fertilizer	for	EF	estimation.	Therefore,	we	com-
pared	 the	model	performance	of	estimating	EF	using	only	N	rates	
with using multiple environmental variables. The results showed 
that	the	predictions	based	solely	on	N	fertilizer	were	not	as	reliable	
as	those	using	multi-	source	environmental	data	(Figures S5 and S6).	
This	indicates	that	EF	is	affected	not	only	by	N	management	but	also	
significantly by different environmental conditions. Generally, our 
modeling framework demonstrates reliable performance both at the 
grid level and in the combined overall assessment.

2.5  |  Attribution analysis

To	identify	the	dominant	factors	influencing	the	EF,	the	Shapley	addi-
tive	explanations	(SHAP)	value	was	used	to	quantify	the	contribution	
of	each	predictor.	We	explain	the	overall	impact	of	different	predic-
tors	of	estimating	the	EF	using	the	mean	absolute	SHAP	value.	For	
a	more	granular	and	detailed	explanation	at	the	grid	level,	the	SHAP	
values are more efficient to explain the dominant factors influencing 
the	EF	across	different	time	intervals.	The	SHAP	can	isolate	the	im-
pact of different variables on the EF. This approach, based on work 
in	game	theory	 (Lundberg	&	Lee,	2017),	 is	used	to	determine	how	
each	 individual	 factor	 affects	 a	 team's	overall	 performance.	 It	 has	
been extensively applied in quantifying the marginal contributions 
of	 each	 predictor	 to	 the	 target	 variable	 (Chen	 et	 al.,	2022; Chen, 
Cheng, et al., 2023; Li et al., 2022;	Wang	et	al.,	2023).	The	manage-
ment and climate change significantly between different periods, 
especially	for	N	input.	Thus,	in	our	study,	to	effectively	capture	how	
different environmental conditions influence the EF, we divide the 

study	period	into	three	time	intervals:	1961–1990,	1991–2020,	and	
2021–2050.	 The	 period	 of	 2021–2050	 was	 analyzed	 using	 multi-	
GCM	model	ensembles	under	various	future	scenarios	(INMS1–S7).	
Since	INMS5	(best-	case	scenario)	and	INMS6	(best-	case	“plus”)	ex-
hibit	 similar	 characteristics,	we	chose	 INMS6	 to	 represent	both	 in	
our	analysis.	We	use	the	absolute	value	of	SHAP	values	and	select	
the highest values as the dominant factor.

2.6  |  Partial dependence

We	use	the	partial	dependence	plots	(PDPs)	to	analyze	the	marginal	
effects of predictors, including soil, climate, and management vari-
ables,	on	the	EF.	The	PDP	plots	can	effectively	capture	the	nonlinear	
relationship between different environmental variables and EF. In 
this	study,	we	use	the	“pdp”	package	of	R	4.1.1	to	analyze	their	non-
linear	impact	on	EF	(Greenwell,	2017).

3  |  RESULTS AND DISCUSSION

3.1  |  Dominant drivers in influencing EF

We	developed	a	Dym-	EF	model	by	learning	the	relationship	between	
the	median	ensemble	estimates	of	eight	process-	based	models	from	
NMIP2	 and	 a	 time-	series	 gridded	 database	 of	 key	 environmental	
factors such as climate, soil properties, and agricultural management 
at	a	spatial	resolution	of	0.5°	during	1961–2020.	The	grid-	based	RF	
model	is	proven	to	have	a	great	performance	in	reproducing	NMIP2	
EF	estimates	over	space	and	time	(see	Section	2 and Figures S4 and 
S5).	For	temporal	variation,	we	assessed	the	R2	and	RMSE	for	each	
grid	with	a	great	performance	for	most	regions	(Figure S6).	We	found	
that	temperature	in	June,	July,	and	August	(T_JJA);	nitrogen	fertilizer	
(NFer);	precipitation	in	June,	July,	and	August	(Pr_JJA);	and	precipita-
tion	in	September,	October,	and	November	(Pr_SON),	are	the	most	
important	factors	 influencing	EF	 (Figure S7).	Summer	temperature	
and summer/fall precipitations have a higher importance in deter-
mining EF dynamics than climate variables in other seasons, possi-
bly	because	the	NMIP2	model	ensembles	do	not	have	information	
on fertilizer application timing in the input data and models assume 
one	application	without	side-	dressing	or	equal	daily	distribution	of	
fertilizer	input	during	crop-	growing	season.	NFer	directly	influences	
soil nitrogen content, significantly impacting EF. However, the com-
bined effects of various seasonal climate variables are higher than 
the	 influence	 of	 N	 fertilizer	 alone	 in	 determining	 EF.	 The	 climate	
conditions	in	the	northern	summer	months	(JJA)	are	crucial	for	the	
growth of summer crops like corn and soybean, which frequently 
undergo	nitrogen	management	(Lu	et	al.,	2022; Maier et al., 2022).	
In addition, the warmer temperature and high soil moisture in sum-
mer can also create a suitable environment condition for nitrification 
and denitrification processes in the soil and thus increase the EF. In 
autumn	(SON),	cumulative	precipitation	often	leads	to	soil	saturation	
throughout the year, creating anaerobic conditions, especially when 
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combined with residual nitrogen from fertilizers applied during the 
growing	season,	thus,	 increasing	the	denitrification	and	N2O emis-
sions	(Glenn	et	al.,	2021;	Perego	et	al.,	2016; Vinzent et al., 2018).	
Our	results	showed	that	climate	factors	and	N	fertilizer	are	more	im-
portant in altering EF than the initial soil properties. This is probably 
because soil conditions and processes are cumulatively impacted 
by	long-	term	climate	variables	(e.g.,	temperature	and	precipitation)	
and management, which might overshadow the effects of initial soil 
properties. More importantly, changes in climate and management 
practices could further enhance their dominance in influencing the 
long-	term	trends	of	EFs	(Baral	et	al.,	2022).

In this study, we found the dominant factors influencing EF 
are not constant but change with different environmental con-
ditions	(e.g.,	climate	and	management)	(Figure 2a),	particularly	in	
high	EF	and	N	input	regions.	For	instance,	in	Southeast	Asia,	the	
dominant	drivers	have	shifted	from	spring	temperature	(T_MAM)	
and	N	fertilizer	to	summer	temperature	possibly	due	to	increased	
heatwaves. The increasing temperature combined with wet con-
ditions enhances nitrification and denitrification rates, leads to 
an increase in both the abundance and activity of ammonia oxi-
dizers	and	denitrifiers,	and	thereby	amplifies	N2O	emissions	(Dai	
et al., 2020; Griffis et al., 2017).	Similarly,	Central	Europe,	the	US	
Corn-	Belt	 and	 Rice-	Belt	 areas,	 Southeast	 Asia,	 and	 Southwest	
China	exhibited	a	shift	in	dominant	EF	drivers	from	NFer	to	sum-
mer	precipitation	(T_JJA)	and	temperature.	This	change	suggests	
that in areas with high nitrogen input levels, EF is likely more 
sensitive to environmental change due to the increased inter-
action	of	 increased	nitrogen	 input	and	climate	change	 (Xu,	Tian,	
et al., 2020).	By	contrast,	 in	South	America	and	Africa,	where	N	
input has been historically low, we found a significant shift from 
temperature	being	the	dominant	driver	during	1961–1990	to	the	N	
fertilizer	use	rate	during	1991–2020	This	indicated	that	enhanced	
N	 input	may	 be	more	 important	 in	 explaining	 the	 EF	 dynamics.	
Moreover, increased nitrogen leads to faster soil organic matter 
decomposition	(Li	et	al.,	2017)	and	changes	in	agriculture	manage-
ment	practices	with	different	nitrogen	uptake	efficiencies	(Sainju	
et al., 2020; Thapa et al., 2016).	In	several	regions	(e.g.,	BRA	and	
SAS),	climate	variables	 tend	 to	become	the	predominant	 factors	
influencing	EF	when	nitrogen	inputs	are	increased.	We	found	that	
T_SON	is	the	dominant	factor	influencing	EFs	across	most	regions	
during	1961–1990,	while	summer	temperatures	 (T_JJA)	emerged	
as	the	primary	influence	in	most	regions	during	the	period	1991–
2020	(Figure 2b).	This	transition	is	likely	due	to	global	warming's	
intensified effects during the summer months in recent decades 
(Butterbach-	Bahl	et	al.,	2013; Xu, Chen, et al., 2020),	making	sum-
mer conditions, along with heightened nitrogen inputs, more im-
pactful	on	EFs	compared	to	the	relatively	cooler	autumn.	Similarly,	
the summer precipitation also increased the dominance of EF in 
many	 regions	 (Figure 2b),	 likely	 because	 the	 recent	 increase	 in	
precipitation has raised soil moisture levels, thereby enhancing 
microbial activities such as nitrification and denitrification, which 
in	 turn,	 elevate	N2O	emissions	 (Yue	et	 al.,	2024).	 This	 finding	 is	
crucial in understanding the combined effects of climate change 

and nitrogen management on EF, which is key to developing effec-
tive	strategies	for	reducing	N2O emissions.

3.2  |  Relationships between EF and multiple 
environmental factors

The nonlinear relationships reveal the effects of various environ-
mental	variables	on	EF	(Figure 3),	which	may	increase	and	decrease	
by	up	to	10%	or	even	more	due	to	a	single	variable.	Although	the	
EF has a positive relationship with temperature, they have different 
response	curves	in	different	seasons.	In	JJA	and	SON,	EF	largely	in-
creases	when	temperatures	exceed	2–6°C,	whereas	in	spring	month	
(MAM),	 EF	 increases	 consistently	 with	 temperature	 (Figure 3).	 In	
early	 spring,	 soil	 freeze–thaw	 cycles,	 particularly	 in	 the	 Northern	
Hemisphere,	 significantly	 drive	 N2O emissions through different 
mechanisms such as enhanced biological denitrification, changes 
in microbial composition and enzyme activity, and the release of 
trapped	N2O	(Del	Grosso	et	al.,	2022;	Wagner-	Riddle	et	al.,	2017).	
Therefore, EF can still increase with temperature even in a cold con-
dition. However, it is important to note that these dynamics may not 
be	fully	captured	by	NMIP2	models,	unlike	those	that	have	improved	
processes	such	as	Del	Grosso	et	al.	(2022).	EF's	response	to	seasonal	
precipitation shows an increase up to a specific threshold, beyond 
which additional precipitation has little impact on EF. This threshold 
varies	by	season,	likely	influenced	by	the	soil's	water-	holding	capac-
ity, different plant growth stages and their water uptake, and the 
seasonally varying rates of evaporation due to temperature changes 
(Bell	et	al.,	2016; Cayuela et al., 2017).	The	EF	also	 increases	with	
NFer	use	 level,	albeit	at	a	slower	 rate	when	annual	 fertilizer	 input	
is higher. Compared with different soil properties, soil pH is the 
most	critical	factor	influencing	EF	(Figure S7).	It	is	possibly	because	
the	soil	PH	mainly	 impacts	EF	the	denitrifier	community	composi-
tion	 (Qiu	 et	 al.,	2024).	 EF	 shows	 a	 negative	 relationship	with	 pH,	
particularly	when	pH	 is	above	5–5.3	 (Figure 3),	 similar	 to	previous	
studies	(Russenes	et	al.,	2016;	Shang	et	al.,	2024;	Wang	et	al.,	2018).	
In moderately acidic soils, alterations in soil microbial communities 
and	 chemical	 reactions	 favor	N2O-	producing	microorganisms,	 po-
tentially	 increasing	 N2O	 emissions	 (Qiu	 et	 al.,	 2024).	 Additionally,	
these conditions enhance processes such as denitrification, lead-
ing	to	higher	N2O	emissions	even	at	lower	nitrate	levels	(Tierling	&	
Kuhlmann,	2018;	 Zhang	 et	 al.,	2021).	 The	higher	 presence	of	 am-
monium	(NH4

+)	coupled	with	conditions	conducive	to	denitrification	
can	lead	to	elevated	emissions	of	nitrous	oxide	(N2O).	Consequently,	
soil acidification in the future may significantly increase the risk of 
N2O	emissions	(Chen,	Xiao,	&	Chen,	2023).

3.3  |  Projecting EF under different scenarios

Our	 projections	 up	 to	 2050,	 including	 for	 the	 SSP585,	 generally	
fall within the historical data range, indicating the reliability of our 
near-	future	projections	based	on	our	Dym-	EF	model.	For	historical	
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periods, we found that the multimodel ensemble estimates of EFs 
in	 2010	 had	 exceeded	 the	 IPCC's	 default	 average	 value	 of	 1%	 in	
most	 regions.	Compared	 to	 the	generalized	 IPCC	Tier-	1	EF	of	1%,	
spatially detailed EFs enable the identification of regional hotspots 
with	 significant	 N2O	 mitigation	 potential.	 Areas	 with	 higher	 EFs	
often correspond to higher nitrogen inputs, potentially leading to 
an	underestimation	of	N2O	emissions	when	using	the	uniform	IPCC	
Tier-	1	EF.	Furthermore,	 in	humid	areas,	EFs	are	consistent	with	or	
exceed	the	IPCC	suggested	average	of	1.6%	(IPCC	default	at	humid	
regions)	(Hergoualc'h	et	al.,	2019),	and	in	tropical	regions	like	south-
ern	Asia,	eastern	Asia,	and	Central	America,	EFs	often	surpass	2%–
2.5%	(Figure 4).	The	relatively	higher	EF	in	humid	and	warm	areas	is	
attributable to the climate acceleration of microbial processes like 
nitrification	and	denitrification	(Griffis	et	al.,	2017).	Higher	soil	mois-
ture and temperature create conditions conducive to denitrifying 
microbes. Moreover, in humid regions where anaerobic conditions 
are more prevalent, denitrification becomes a dominant process and 
subsequently	elevates	EFs	(Griffis	et	al.,	2017; Rowlings et al., 2015; 
Veldkamp et al., 1998).

The EFs under various scenarios over the future periods are pro-
jected to change significantly, compared with 2010. This is mainly 

attributed	to	the	changes	 in	alternative	N	regulation	practices	and	
future	climatic	scenarios	(Figure 4; Figure S8).	Detailed	information	
about these different scenarios is provided in Table 1.	 Under	 the	
INMS	scenarios	1–3	(i.e.,	business-	as-	usual,	low,	and	mediate	ambi-
tion	N	regulation),	the	global	average	EFs	by	2030	are	projected	to	
increase	to	1.22%–1.29%	among	different	GCMs	(relative	increase	
of	0.5%–8.0%	from	2010	levels	of	1.18%–1.22%),	1.22%–1.28%	(rel-
ative	increase	of	0.03%–6.3%),	and	1.18%–1.24%	(relative	increase	
of	 0.01%–2.5%),	 respectively,	 compared	with	 2010.	 By	 2050,	 the	
EF	 is	expected	 to	 increase	 to	1.27%–1.34%	 (4.4%–11.4%),	1.24%–
1.31%	(2.8%–9.9%),	and	around	1.18%–1.25%	(0.01%–3.2%).	Under	
the	INMS4	(high	ambition	N	regulation)	scenario,	EF	is	projected	to	
decrease	to	1.15–1.21	(0%–5%)	by	2030,	aligning	with	INMS3's	pro-
jection	by	2050	(Figure S9).	The	EF	changes	under	INMS5–S7	(Best-	
case,	Best-	case	 “plus,”	and	Bioenergy)	would	be	similar	 to	 INMS4,	
yet	slightly	lower	than	INMS4	due	to	further	reduction	in	N	input.	
This	raises	the	question	here:	why	do	high-	ambition	strategies	with	
reduced	N	input	only	slightly	decrease	or	sometimes	even	increase	
EFs?	It	is	likely	caused	by	the	high	sensitivity	of	EFs	to	climate	(Griffis	
et al., 2017);	as	climate	change	intensifies	(Figures S2 and S3),	the	in-
creases	in	EFs	might	offset	the	benefits	of	high-	ambition	strategies.	

F I G U R E  2 The	dominant	driver	of	N2O	emission	factor	(EF)	at	each	pixel	and	the	partial	dependence	of	EF	on	different	variables.	(a)	
Spatial	map	showing	the	primary	factors	influencing	EF,	with	pie	charts	depicting	the	percentage	area	of	dominant	factors	across	different	
time	intervals	and	scenarios.	(b),	Chord	diagram	to	demonstrate	the	shift	of	the	dominant	factor	in	influencing	EF	from	T1	(1961–1990,	
upper	half	of	circle)	to	T2	(1991–2020,	lower	half	of	circle).	Numbers	represent	the	percentage	of	the	area	influenced	by	each	variable,	with	
different	colors	indicating	different	variables.	Linked	variables	(such	as	T_SON_T1	to	NFer_T2)	illustrate	the	shift	in	dominant	factors	from	
T1	to	T2.	Variables	consist	of	Irr	(irrigation	rate),	NFer	(nitrogen	fertilizer),	Pr_MAM	(total	precipitation	in	March,	April,	and	May),	Pr_JJA	
(total	precipitation	in	June,	July,	and	August),	Pr_SON	(total	precipitation	in	September,	October,	and	November),	Pr_DJF	(total	precipitation	
in	December,	January,	and	February),	T_MAM	(mean	temperature	in	March,	April,	and	May),	T_JJA	(mean	temperature	in	June,	July,	and	
August),	T_SON	(mean	temperature	in	September,	October,	and	November),	T_DJF	(mean	temperature	in	December,	January,	and	February),	
and	AI	(aridity	index);	DOM_SOC,	soil	organic	carbon;	BULD_DEN,	soil	bulk	density.	Map	lines	delineate	study	areas	and	do	not	necessarily	
depict accepted national boundaries.
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    |  9 of 18LI et al.

The	INMS1	and	INMS2	scenarios	are	characterized	by	a	lack	of	ded-
icated nitrogen management, which will not change nitrogen use 
efficiency	 (NUE)	 and,	with	 increased	 production,	 greater	 nitrogen	
loss,	 thus	 increasing	EFs	 (Baral	 et	 al.,	2017).	The	EF	under	 INMS1	
is	 slightly	 higher	 than	 INMS2	 perhaps	 because	more	N	 input	 and	
higher	 temperature	under	SSP585	will	 further	amplify	 the	EF	due	
to	 increased	soil	N	mineralization	and	denitrification	 rates	 (Kanter	
et al., 2016; Revell et al., 2015).	 The	moderate	 and	 high-	ambition	
scenarios,	aimed	at	minimizing	N	loss	and	increasing	NUE,	are	pro-
jected	 to	keep	crop	N	surpluses	within	planetary	boundaries	until	
2050	 (Kanter,	Winiwarter,	 et	 al.,	2020;	 Zhang	 et	 al.,	 2015),	which	
potentially decreases EF. In addition, the high ambition scenarios 
(INMS4–S7)	 also	 consider	 dietary	 shifts,	 like	 reduced	 meat	 con-
sumption	and	waste	 (Geyik	et	al.,	2023; Revell et al., 2015).	These	
changes	could	lower	the	demand	for	N-	intensive	animal	feed	crops,	

reducing	N	use	and	consequently	reducing	N2O emissions and EFs 
(Figure 4; Figure S8).

Compared	with	the	IPCC's	default	value	(Hergoualc'h	et	al.,	2019),	
our	Dym-	EF	modeling	 characterizes	 EF	 variability	 over	 space	 and	
time by taking into account the effects of environmental factors, and 
various	climate	scenarios	and	ambition	levels	of	N	intervention	over	
the coming decades. This improved methodology is crucial for mak-
ing informed management decisions in mitigation strategies. Relying 
on a stationary EF fails to capture the various impacts of climate 
change, soil properties, and management practices. For example, if 
the	EF	increased	from	1%	to	1.1%	due	to	climate	warming,	keeping	
EF	unchanged	 could	 lead	 to	 a	10%	underestimation	of	N2O emis-
sions. The underestimation would be more pronounced when nitro-
gen inputs are increased. Our results showed that densely populated 
areas in developing countries typically exhibit large differences 

F I G U R E  3 Partial	dependence	plots	for	annual	emission	factor	change	across	different	predictors	(ranked	by	feature	importance	see	
Figure S7).	The	smooth	black	lines	depict	the	average	model's	response,	alongside	fitted	values	for	the	calibration	data.	Histograms	display	
the	probability	distributions	for	the	indices	of	SSP126,	SSP245,	and	SSP585	scenarios	in	2050.	The	blue	shaded	area	denotes	calibration	
data	ranging	between	the	5th	and	95th	percentiles.
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10 of 18  |     LI et al.

across the three ambition level scenarios, likely due to their high 
food	 demand	 leading	 to	 increased	 N	 inputs	 (Ramírez-	Melgarejo	
et al., 2019;	Springmann	et	al.,	2018).	For	instance,	 in	2030,	under	
the	INMS1	and	INMS4	scenarios,	we	find	the	EFs	could	be	approx-
imately	1.75%–1.86%	and	1.45%–1.5%	in	Northern	South	America	
(NSA),	 1.5%–1.56%	 and	 1.42%–1.47%	 in	 Equatorial	 Africa	 (EQAF),	
1.22%–1.36%	and	0.93%–1.07%	in	China	(CHN),	and	2.11%–2.24%	
and	1.93%–2.07%	in	Southeast	Asia	(SEAS).	The	large	EF	difference	
between	BAU	and	high	ambition	N	regulation	scenarios	indicates	a	
large	potential	in	reducing	N2O emission. These areas, especially in 
tropical	regions	(e.g.,	NSA,	EQAF,	and	SEAS),	are	expected	to	see	EF	
increases	 of	 around	 0.17%–0.28%	under	 low	 ambition	 policies	 by	
2050,	which	is	equivalent	to	12%–17%	of	EF	in	2010.	Therefore,	to	
meet	the	Goal	13	(climate	action)	of	United	Nations'	sustainable	de-
velopment	goal	(United	Nation,	2015),	intensified	efforts	are	needed	
in	such	regions	to	reduce	N2O	emissions	by	improving	NUE	and	re-
ducing	N	loss	(van	Vuuren	et	al.,	2015;	Zhang	et	al.,	2015).

It	is	important	to	note	that	there	is	a	trade-	off	between	accessi-
bility	and	accuracy	in	the	EF	estimation	approaches	such	as	the	IPCC	
Tire-	1	and	our	Dym-	EF.	The	 IPCC	Tire-	1	 is	designed	to	be	generic	
and easily adopted without a need to provide any detailed local in-
formation,	which	 is	accessible	 for	a	wide	range	of	applications.	As	

for	Dym-	EF,	although	it	provides	more	accurate	EF	projections	and	
is	 easier	 to	 apply	 than	process-	based	models,	 it	 still	 requires	 spe-
cific input data, limiting its scalability and accessibility. To enhance 
the accessibility of our model, we have used publicly available and 
commonly used datasets in global modeling, ensuring that input data 
are easily accessible to potential users. However, uncertainties re-
main	due	to	potential	variations	in	datasets.	We	suggest	downscal-
ing	and	bias-	correcting	the	data	to	better	match	local	 information.	
Generally, balancing accuracy with ease of use is crucial to enhance 
broader applicability.

3.4  |  Potential for N2O mitigation

The spatial maps of EF changes provide quantitative insights for 
pinpointing	hotspots	requiring	mitigation	efforts	 (Figure 5).	 In	 low	
ambition	scenarios	(INMS1	to	INMS2),	we	predict	significant	EF	in-
creases	in	regions	such	as	Northeast	and	North	China,	the	Midwest	
US,	northern	South	America,	northern	Brazil,	and	parts	of	northern	
Africa,	driven	by	the	substantial	increase	in	nitrogen	(N)	inputs	from	
population growth and escalating food demands. Targeting reduc-
tion	efforts	in	these	high-	emission	hotspots	is	more	effective	than	

F I G U R E  4 Projected	N2O	emission	factor	(EF)	across	various	subregions	in	2030	(white	area)	and	2050	(blue-	shaded	area).	The	spatial	
map	indicates	the	median	EF	estimated	by	NMIP	ensembles	in	2010.	The	black	dashed	line	in	each	panel	represents	the	Tier-	1	EF	(1%),	and	
the	blue	dashed	line	indicates	the	2010	EFs	based	on	a	multi-	model	median	(extracted	from	the	central	map).	INMS1–S4	represents	four	
nitrogen	management	scenarios	(Table 1).	Box	boundaries	show	the	25th	and	75th	percentiles	of	EF	estimates,	and	whiskers	below	and	
above the box indicate the estimate range driven by climate data from 37 GCMs. The median is indicated by the black line within each box. 
BRA,	Brazil;	CAM,	Central	America;	CAN,	Canada;	CAS,	Central	Asia;	CHN,	China;	EQAF,	Equatorial	Africa;	EU,	Europe;	KAJ,	Korea	and	
Japan;	MIDE,	Mideast;	NAF,	Northern	Africa;	NSA,	Northern	South	America;	OCE,	Oceania;	RUS,	Russia;	SAF,	Southern	Africa;	SAS,	South	
Asia;	SEAS,	Southeast	Asia;	SSA,	Southwest	South	America;	USA,	The	United	States	of	America.
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    |  11 of 18LI et al.

solely	focusing	on	the	largest	country	emitters	(West	et	al.,	2014).	
The	moderate	ambition	scenario	(INMS3)	demonstrates	a	slight	de-
crease	in	EF	in	southeastern	China,	RUS,	part	of	SEAS,	and	the	EU	
by	2030,	with	notable	reductions	in	these	areas	by	2050.	These	are	
hotspots	characterized	by	high	N	input	and	high	EF	at	the	current	
stage	 (Figure 4),	 but	 they	 are	projected	 to	have	huge	potential	 in	
EF	reduction	under	moderate	and	high	ambition	N	regulation	sce-
narios	 (INMS4	 to	 INMS7).	However,	 slight	 increases	 are	 noted	 in	 
regions	 like	Vietnam,	 EQAF,	 and	 SEAS,	 even	 under	 high-	ambition	
scenarios,	 attributed	 to	 increased	 food	 demands.	 The	 “best-	case”	
and	“bioenergy”	scenarios	(INMS5	to	INMS7)	illustrate	that	further	
reductions	in	EF	can	be	achieved	through	reduced	N	input	by	High	

N	use	 efficiency,	 adoption	of	 low	meat	 diets,	 and	 food	waste	 re-
duction	efforts	(Kanter,	Winiwarter,	et	al.,	2020).	To	meet	the	food	
gap	 and	 address	 N2O mitigation needs, various studies have ex-
plored	potential	optimal	management	practices	(Gerber	et	al.,	2016; 
Shang	et	al.,	2024),	while	climate	change	potentially	impacts	the	ef-
fectiveness	of	mitigations	(Carlson	et	al.,	2016).	Our	study	quanti-
fies the potential of reducing global agricultural soil EF as one of 
nature-	based	climate	solutions,	underscoring	the	need	to	consider	
EF	 changes	 under	 future	 climate	 and	N	 regulation	 scenarios.	 It	 is	
important to clarify that higher EF reduction does not necessarily 
yield	higher	N2O reduction and that lower EFs do not necessarily 
lead	 to	 lower	N2O emissions, given that EF change direction may 

F I G U R E  5 The	projected	emission	factor	(EF)	changes	at	global	and	regional	scales.	The	maps	illustrate	the	changes	in	EF	in	2030	and	
2050,	respectively,	compared	to	2010	under	INMS1	to	INMS4.	Map	lines	delineate	study	areas	and	do	not	necessarily	depict	accepted	
national boundaries.
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12 of 18  |     LI et al.

not consistently align with nitrogen input changes in some cases. 
The	actual	N2O emissions are the product of EF and the amount of 
anthropogenic nitrogen inputs. For instance, regions identified as 
hotspots	 for	high	EF	 (e.g.,	RUS	and	EQAF)	 in	our	 study	 (Figure 4)	
may	often	differ	from	the	areas	with	the	highest	soil	N2O emissions 
in	the	global	N2O	budget	study	(Tian	et	al.,	2019, 2024).

The temporal and spatially varying EFs are important in deter-
mining	 the	 effectiveness	 of	mitigation	 efforts.	We	 found	 the	 EFs	
were expected to increase under future climate change even with-
out	 increasing	 N	 fertilizer	 input	 (Figure 6a).	 This	 is	 because	 the	
EFs are positively correlated with temperature and precipitation 
(Figure S8),	which	are	projected	to	increase	(Figures S2 and S3),	re-
sulting	 in	 increased	EFs.	Although	 the	 temperature	under	SSP126	
does not show a substantial rise, the increased precipitation under 
this scenario significantly amplifies the EFs. Consequently, the rela-
tionship	between	N	input	and	EFs	is	asymmetric	due	to	the	impacts	
of climate change. This asymmetry leads to substantial EF increases 
when	higher	N	 input	 (INMS1–S2)	 is	combined	with	climate	change	
effects	(Figure 6b).	Conversely,	reductions	in	N	input	alone	may	not	
fully buffer the EF increase caused by warmer climates and changed 
precipitation	patterns,	especially	in	some	climate-	sensitive	regions.	
Among	 the	 four	 high-	ambition	 policy	 scenarios,	 our	 findings	 indi-
cate	 that,	 despite	 INMS7	 containing	 a	 best-	case	 climate	 scenario	
(SSP126),	EFs	are	not	always	projected	to	be	the	lowest	among	the	
“best-	case”	climate	scenarios	by	2030	even	with	similar	N	input	to	
current	management?	(Figure S1).	This	discrepancy	may	arise	from	
varying	 temperature	 and	 precipitation	 patterns	 (Figure 3),	 which	
could	elevate	EFs	by	2030	(Figures S2 and S3).	However,	by	2050,	
rising	temperatures	 in	 INMS5–S6	could	 lead	to	higher	EFs	even	 in	
the	“best-	case”	climate	scenarios	(Figure 6b).

Our	study	highlights	the	urgency	to	take	relatively	stringent	N	
regulation practices as early as possible, as delays could exacerbate 
the	challenges	of	mitigating	N2O	emissions	due	to	climate-	induced	
increases in EFs. In addition, it is important to account for the impact 
of future climate changes on effective evaluations and to harness 
the	 potential	 for	 identifying	 easily	 achievable	 targets	 (e.g.,	 priori-
tized	mitigation	goals,	specific	regions,	and	feasible	practices)	across	
the globe. More comprehensive strategies need to be considered, 
including	 cost-	effective	 mitigation	 measures,	 which	 are	 essential	
to	reduce	greenhouse	gas	(GHG)	emissions	while	ensuring	the	sta-
bility	of	food	production	(Gu	et	al.,	2023;	Peng	&	Guan,	2021; Ren 
et al., 2023).	Furthermore,	crop	switching	 is	proposed	to	be	an	ef-
fective	strategy	for	sustainable	agriculture	(Rising	&	Devineni,	2020; 
Xie et al., 2023).	 This	 approach	 holds	 the	 potential	 for	 reducing	
N2O emissions and enhancing crop productivity in the context of 
future	climate	change	(Jägermeyr	et	al.,	2021;	Peng	&	Guan,	2021).	
However, the impact of crop switching on dietary diversity and nu-
tritional	intake	remains	a	critical	question	(Carlson	et	al.,	2016;	West	
et al., 2014).	Consequently,	international	food	trade	becomes	crucial	
in striking a balance between maintaining food diversity and adapt-
ing	to	climate	change	(Janssens	et	al.,	2020, 2022).	Generally,	collec-
tive action by different organizations is critical for us to achieve the 
climate mitigation goal in a race against time.

3.5  |  Limitations and future framework

Our	 study	 comprehensively	 explores	 N2O emission under dif-
ferent policy interventions and climate scenarios, identifying 
the direction toward achieving sustainable development goals. 

F I G U R E  6 Global	cropland	and	pasture	emission	factor	(EF)	changes	under	different	scenarios.	This	figure	displays	smoothed	lines	
reflecting	changes	in	EF.	(a)	The	change	in	EF	compared	to	the	average	EF	during	1990–2010,	excluding	nitrogen	fertilizer	impacts	under	
scenarios	SSP126,	SSP245,	and	SSP585.	(b)	The	change	in	EF	compared	to	the	average	EF	during	1990–2010	including	nitrogen	fertilizer	
effects	under	scenarios	INMS1	to	INMS7.

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17472 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [20/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  13 of 18LI et al.

However, we understand that there are several uncertainties in 
this	 study.	Different	process-	based	models	have	different	 struc-
tures	and	algorithms	to	represent	nonlinear	N2O responses to key 
environmental	drivers.	Although	the	cross-	model	divergence	can	
be minimized by using the model ensemble median estimates of 
EF as the learned variable, the uncertainties in projections derived 
from	model	 inputs	 and	 structure	 still	 persist	 (Tian	 et	 al.,	2024).	
Extensive	measurements	of	soil	N2O emissions could help improve 
the	parameterization	of	individual	NMIP2	models	and	better	con-
strain their estimates of EF in various climate and soil conditions. 
The method of emergent constraint can be effective in reducing 
uncertainties	in	process-	based	models	(Wang,	Zhao,	et	al.,	2020),	
as	 applied	 in	 studies	 on	 crop	 yield	 changes	 (Li	 et	 al.,	2023),	 soil	
carbon	 (Varney	 et	 al.,	2020),	 and	 land	 evapotranspiration	 based	
on	field	observed	data	(Lian	et	al.,	2018).	However,	no	such	work	
is available for EF.

The	machine	 learning-	based	 approaches	 have	 a	 common	 chal-
lenge in extrapolating, especially beyond the training dataset. In this 
study, to cover the range of potential future conditions, we trained 
our model on a large dataset spanning a wide range of time periods 
(1961–2020),	covering	the	period	with	rapid	changes	in	climate	and	
human	activities,	such	as	enhanced	anthropogenic	N	input	in	partic-
ular. However, the learning effort is still limited by the availability of 
input	data	and	how	process-	based	modeling	has	handled	them.	For	
example, some detailed information on nitrogen management prac-
tices, such as the seasonal application of nitrogen, the use of organic 
amendments,	or	slow-	release	forms	of	nitrogen,	are	either	missing	at	
the	global	level	or	over-	simplified	in	the	N2O modeling assessment. 
Incorporating a broader range of data and management practices 
will enhance the robustness of this hybrid model and make it more 
practical for future users who have more detailed information.

For	N	 fertilizer	 input,	 the	EFs	 associated	with	manure	depo-
sition and application were not considered despite their sig-
nificant	 role	 in	 N2O	 emissions	 (Charles	 et	 al.,	 2017;	 Walling	 &	
Vaneeckhaute, 2020).	 The	 changes	 in	 synthetic	 fertilizer	 and	
manure application rates vary substantially across different pol-
icy	 scenarios,	 influenced	 by	 dietary	 shifts,	 and	 changed	 NUE.	
Synthetic	 fertilizers	are	widely	used	 in	crop	production,	enhanc-
ing	 crop	 yield	 efficiently	 but	 increasing	 the	 risk	 of	 N	 pollution.	
Although	changes	in	synthetic	fertilizer	composition	(e.g.,	ammo-
nium	vs.	nitrate)	might	 affect	outcomes,	 this	 aspect	was	not	ex-
plored in our study. Manure, while beneficial for soil health and 
providing	 a	more	 sustainable	N	 source,	 adds	 challenges	 in	man-
aging	 N2O	 emissions	 and	 N	 leaching.	 Selection	 between	 them	
should balance efficiency, environmental impact, and soil health 
considerations.	Since	data	on	N2O emissions induced by manure 
were	not	available	for	all	 the	eight	participant	models	 in	NMIP2,	
we	 did	 not	 include	manure-	induced	N2O emissions and the po-
tential change in EFs for manure. Incorporating manure EFs into 
future studies could further optimize nitrogen inputs by balancing 
the	trade-	offs	between	synthetic	fertilizers	and	manure.	In	addi-
tion,	we	mainly	focus	on	annual	EFs,	derived	from	NMIP2	model	
ensembles that handle annual fertilizer input in various ways and 

assumptions without knowing how fertilizer application timings 
vary across the globe and over time. This may not fully capture 
the interactive effects of seasonal climate variations and nitrogen 
application on EFs.

Considering	 crop-	specific	 variations	 in	 using	N	 and	 releasing	
N2O	from	soils	 (e.g.,	wheat,	maize,	 and	 rice)	 could	provide	more	
nuanced	guidance	(Cui	et	al.,	2021;	Shang	et	al.,	2024),	an	aspect	
not covered in our current study. Future work ought to explore 
how	different	policy	ambition	levels	influence	N2O emissions for 
different crops under future climate scenarios. This will offer tar-
geted recommendations, helping to bridge these knowledge gaps 
and	enhance	our	comprehension	and	management	of	N2O mitiga-
tion strategies.

4  |  CONCLUSIONS

In this study, we have developed a novel hybrid modeling frame-
work	 that	 incorporates	 machine	 learning	 with	 process-	based	
modeling to predict the nonlinear dynamics of EF under various 
climate, soil, and management conditions across global agricultural 
lands. This approach provides new insights into global EF changes 
that	 can	 improve	our	understanding	of	N2O mitigation potential 
under different climate and policy scenarios. Our results provide 
a	strong	indication	of	a	future	increase	in	N2O EF due to climate 
change,	independent	of	N	management.	The	increase	of	EFs	when	
coupled	 with	 increased	 N	 input	 and	 climate	 change	 impacts	 is	
largely	higher	than	the	EF	reductions	through	decreased	N	input.	
This asymmetry between nitrogen input and EFs poses additional 
challenges	 for	N2O mitigation in the future, highlighting the ur-
gency of nitrogen reductions as delayed actions could increase 
mitigation	costs.	Such	information	might	not	be	fully	captured	by	
studies	using	country-	specific	EFs,	which	are	considered	appropri-
ate	 for	 “tier	2”	 approaches	 in	national	 inventories.	 Furthermore,	
although the EFs are impacted by different environmental fac-
tors,	optimizing	N	inputs	to	crop	needs	remains	the	most	effective	
mitigation option. Our finding is a critical step toward achieving 
sustainable development goals, by improving the current static EF 
(IPCC	tiers	1–2)	approach	with	a	more	precise	N2O emissions es-
timation under global change scenarios. Future efforts in enhanc-
ing measurement and data analysis with a uniform protocol would 
be	helpful	to	reduce	the	EF	estimation	uncertainty	from	process-	
based modeling, and to improve the database used for dynamic EF 
learning and mitigation potential assessment under various man-
agement options.
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