NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

LONG WAVES IN WORLD INDUSTRIAL PRODUCTION, ENERGY CONSUMPTION, INNOVATIONS, INVENTIONS, AND PATENTS AND THEIR IDENTIFICATION BY SPECTRAL ANALYSIS

Heinz-Dieter Haustein and Erich Neuwirth

January 1982 WP-82-9

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria

PREFACE

Scientists like to make the irregular regular, to draw curves even in cases where nothing can be seen at all. Periodical wave curves are an excellent means of organizing the unorganized, of arranging the unarranged. Recent studies on long waves in economic development have found a periodicity in the time series of inventions and innovations that works exactly like a clock with an accelerating mechanism. What we have done here is simply to collect some interesting empirical figures and to exploit them by spectral analysis in order to find out whether regularities exist, and if so, whether they are statistically significant.

CONTENTS

1.	The Problem	1
2.	Method	7
3.	The Data	13
4.	Results and Conclusions	17
5.	Appendix A	27
6.	Appendix B	31
7.	References	35

CHAPTER 1

THE PROBLEM

There is no doubt that in the course of history, industrial growth has experienced a number of upswings and downswings. Looking at world industrial production from 1850 to 1979, we see that growth rates have been rather unstable during this period. Using an exponential function to describe long-term trends, one obtains a path of industrial growth measured in deviations from the long-term average (see Figure 1). Here we see the major downswings and upswings in industrial production, among them the unprecedented downswing at the end of the 1920s.

Long-term cycles have been much discussed in the literature since Kondratieff (1926). Some years ago Gerhard Mensch (1975) described these "long-waves" in terms of clusters of innovations, using the frequency distribution of major technological changes over time.

In the past 200 years, several major technical revolutions have significantly affected industrial activities. Despite differences in their technical character, they have had two main features in common:

- 1. Each of them was caused by a bottleneck in the production system. The railroad, for example, became necessary during the industrial revolutions because of the urgent need to transport coal and cotton.
- 2. Each of them appeared in one area of the production system and then passed through a chain or network, step by step affecting the whole production system, and later, lifestyles and consumer patterns. (See Figure 2.) For example, the spinning

Figure 1. World industrial production logarithm (1850-1979).

PRODUCTION OF PRODUCTION GOODS

PRODUCTION OF CONSUMER GOODS

Figure 2. The two production sectors and their inner feedbacks.

machine led to the mechanization of weaving, and later to the improvement of bleaching, textile printing, and dyeing (Marx 1963). The steam engine proved to be the appropriate power source for these processes. Machinery soon developed to the point where machines could be produced with machines. As the demand for iron to produce machinery increased, more coal was needed to produce the iron, and so forth.

Table 1 gives an overview of general periods of industrial development since 1740 and their characteristics. Each period can be described in terms of:

- changes in resources
- changes in demand
- changes in labor functions
- gaps in the production system and in growth industries

However, it is difficult to define an exact time-frame for each historical period. Table 1 presents more or less a qualitative judgment based upon several sets of information and data. This can help examine further historical progress by analyzing the inner logic in the development of resources, demand, labor functions, and other dimensions.

Looking at various data on innovations, inventions, industrial production, energy consumption, and patents, which will be presented in the next chapter, it is again possible to distinguish certain periods that more or less coincide with the periods characterized in the first table (see Table 2). Other authors have obtained results that differ more or less from ours (see Table 3).

"Cycles", of course, is a quite arbitrary term for these time periods. History does not actually repeat itself; nor can a strict stable periodicity be observed. But people like to think in terms of cycles. This seems to be an old pattern of human thought, influenced by the patterns observed in agricultural periods, weather changes, and tides, in which mechanisms work recurrently.

Our historical periods might be better called quasi-cycles, because we are not sure whether the same fundamental causes are present in all upswings and downswings. So when applying spectral analysis in the investigation of long time series in industrial production, innovations and inventions, we know that we will not necessarily find an underlying pattern in the true sense of the word. Spectral analysis can merely reveal certain quantitative and formal properties of the whole process. Table 1. Period of industrial development since 1740 and their characteristics.

	1	:	Chesnel is Reserved	i Change in Labo	ar Prenctions	Main Gape in the Production	Main Growth Tradecian
Maryin Boolal Characteristics Change		is La Besources		Bebstitetion for	Extension of	Bystem	
(9 tariy industrial cupitalian and copper	Eigh growth and copper	of wood products (Brass goods)	lacresting food demand	Manual (amaryatia)	Mannal (anargatic)	Bpinning, Powar source (driving machine), Fabrication of working machines necessary	Textile industry (spinning)
di Pres competition system Bigh gro	14	rth of pig iron	Increasing food damand	Manual (emargetic)	Nanual (anargetic and executive)	Cosi demand, iron demand, and meed for transportation system	Textile industry (veaving). mining, cosi, pig iron, shipbuilding
39 Trendition to memopoliae Peek gree	54 110 54	th of coal (1886)	Increating tood damand	Mannel Jewergetic)	Menuel lenergetic and executive)	Maed for mesa production of machines, Steampower szhaumted in its possibilities	Railroad, iron, and steel
23 Expension of memopolies Migh growth o	tigh growth o	f rither products	Decreasing expenditures for food (relatively)	Massai (esecutive)	Menual (esecutive)	Exhaustion of raw material besis (matural fibres)	Electricity, automobiles, and mechanical angineering
19 Growing of state Bigh growt	الجد يدمدا	a of similar	Increating expenditures for bounded	Manual (emocative)	Manual (executive assembling)	Heed for fiestble transportation system	Autorobiles, chemicale
16 Fast growth of postenur cepitalian	Pask growt	h of synthetic lbree	Past groving demand for derebis goods	Transport, Nauwal transportation, Nauwal work	Bupervision of machines, Operating machines, Malatenance, Quality control	Fast growth of control mechanisms, requiring space and meterials necessary	Ches icals, aircraft
16 Expansion of multinational beak g		rowth of oll ption (1975)	lacroasing travel expenditures	Machine operation, Assembling, Office work, Mediation	Neistenance, Installation, Mealth aervice, Education	Meed for better Information handling Energy gap	Blectronica
	NI tor	mative emergy ources	Increasing expenditures for aducation	Schodellay, Office work, Information function	Buldance, Consultation, Education	Meed for better Information handling	Telecomentics tions
-	-				-	•	

	Patents	ebielt prijenimod	Basic Inventions	Energy Consumption	Industrial Production	anoidevonni diana
		Textile michinery	5021 08 0821-0021		50/1 65 8081-05/1	++19/1 +69 8081-01/1
- I	89/1 011 6181-01/1	Textile machinery	08/1 0/ 6181-05/1	1800 (Mooq) 1800-5000 400	5501 95 5901-6001	8CB1 19 6981-6081
bratena			0281 09 0581-0621	1812(co#1) 1180-5020 510	8681 111 0161-9981	2001 6E 8061-0201
	500; 00 <u>20-</u> 020;		1861 1851-186 <u>1</u> 40	(110) 5/61 1880-5060 1/0	1855 1811-1835 51	1855 1808-1830 55
ſ	1880-1885 32 1868-1885 32	Meale industies Beale industies	0981 1842-1883 31		1961 07 E561-EE61	8661 61 : 6861-1661
l l	1809–1850 28 1893–1850 28		5601 25 1161-6401		1866 1824-1824 50	8561 91 5961-0561
· · · ·]	1831 1851-1862 52		1000 1804-1852 11		2061 El 0061-5261	1261 ⊊1 0861-9961
au	6561 08 9261-9461	с вівстві	8261 62 5861-9161		1888-3001 13	8861 41 4661-1861
ĺ		gjectrotechnique	0461 1020-1020 50			
		Blectronice	8561 51 5961-8461			

Table 2. Observed periods, their peak years, and their length in years.

**Peak year **Peak year

Table 3. Historical periods observed by various authors.

	I					·		.878	T. Kuczynski 1	bra ,0861 1334	nech 1975, March	atiev 1926, Me	Sources: Kondr
	5561-E#61				sz	2661	1975-2000						
	1922-1941	09	8961	0661-0261	01	2661	5861-0161	81	2661	0961-0681	65	2961	2661-6661
1961-5061	1261-6681	02	5061	0261-0581	05	0881	0061-0581	<u>11</u>	2001	5161-8281	55	E161	0EEL-EBOL
+06L-S08L	8681-8281	06	EEOL	0681-0081	08	1828	0981-0841	89	5281	2981-16/1	۲۹	8581	1852-1885
\$88L-SL8L	LL01-6781	152	5221	5981-0241				St	8941	5821-0421		0081	4281-9 <i>LL</i> I
		rength	Peak Year	Period	Period Peak Year Length		(jbuer]	Peak Year	Pertod	d3pne.l	Peak Year	Period (Edw. Yedre)	
nnoijnevnī	Innovations		Tinventions			anoisavonni	Innovations Innovations				Vational Rconomy		
s goczłuski	Mont		(#30p	a'doarah 30 a	isad edi no) iji	Harche			doared			Fondratie	-

Sourcest Kondratiev 1926, Nensch 1975, Marchatt 1980, and T. Kuczynski 1978.

CHAPTER 2

METHOD

A graphical inspection of all the variables for this period showed that the variables production, energy, and patents granted in England show roughly exponential growth. This exponential growth was not constant over the whole period; but for each of these variables sub-periods could be found in which the exponential growth was rather smooth (see Table 4). The homogeneous structure of these periods is best seen by drawing the curves of the logarithms of the variables.

Since the aim of our analysis was to find out possible cycles in the dependencies among our variables, we had to remove all long-term trends. To do this we created new variables from the one originally given by taking logarithms and removing linear trends in the logarithms.

Linear regressions were calculated for each of the intervals given above and for all the three variables considered. Using the variable y for the year 1800, we have displayed the equations defining our new variables in Table 4.

The idea behind transforming these variables was that there was a homogenous exponential trend for each of the periods and that superimposed over this trend was a certain cyclical behavior, i.e., our variables showed the same structure for all these periods. (No transformations are given for energy in periods 1 and 2 and for "patents England" in period 5 because data were not available for these periods). Table 4. Defining equations according to periods.

	Å	obucriow			NERGY		PATENTS	CNGLAND
Period	Years	Production new	Period	Years	Energy new	Period	Years	Patents England new
ł	1738-1760	log{P}-0.01032y-1.41632	E	1821-1919	log (E) -0.04260y-2.38231	-	1738-1780	log (PE) -0.05011y-4.63197
2	1781-1820	log(P)-0.0288y-1.88504	*	1914-1947	log (E) -0.01807y-5.06690	~	1781-1820	log (PE) -0.02686y-4.31706
3	1821-1919	log(P) -0.03606y-1.70817	ŝ	1947-1979	log (E) -0.04949y-0.92752	E	1821-1919	log (PE) -0.02500y-4.64945
-	1914-1947	log(P)-0.02980y-2.25681				-	1914-1947	log (PE) -0.02949y-3.5944
un -	1947-1979	log (P) -0.05057y-0.88030						

The data for US patents did not exhibit exponential growth but showed partly linear behavior. The intervals with homogenous linear trends were not the same as for the variables production, energy and patents England. So we tried to remove the long term trends in this variable by using ordinary linear regression and taking the residuals as new variables. Using this method we arrived at the results in Table 5.

PATENTS USA

Table 5. Defining equatons for US patents.

Years	Patents USA new
1790-1850	log(PU.S.)-12.1134y-51.0100
1851-1930	log(PU.S.)-586.83y-30823.42
1931-1947	log(PU.S.)+1779.53y-285364.97
1948-1976	log(PU.S.)-1629.91y+210146

The invention and innovation variables showed no long-term trends and thus were used untransformed in the rest of the analysis. The transformed variables for production, energy, patents England, and patents USA; and the untransformed variables for innovation number and invention index, invention power, and innovation number were used for time-series analysis via spectral analysis.

To determine the cyclical behavior of each of the variables, autocovariances, spectra, and spectral densities were calculated. In short the underlying theory is: Every stochastic process X_t can be written as a stochastic integral:

$$Y_t = \int_0^{\pi} \cos\lambda t \ d \ C(\lambda) + \int_0^{\pi} \sin\lambda t \ d \ S(\lambda)$$

where $C(\lambda)$ and $S(\lambda)$ are uncorrelated processes of uncorrelated increments (i.e., $C(\lambda_4) - C(\lambda_3)$ and $C(\lambda_2) - C(\lambda_1)$ are uncorrelated for $\lambda_4 > \lambda_3 \ge \lambda_2 > \lambda_1$ and the same is true for S and for correlations between C and S and $E(S(\lambda)) = E(C(\lambda)) = 0$ for all $0 \le \lambda \le \pi$. From this representation one can see that Y_t tends to have periodic coomponents which period λ for values of λ where the variance of $C(\lambda)$ and/or $S(\lambda)$ is increasing very rapidly. (These variances can be shown to be monotonically increasing functions of λ).

In general terms, the reason for this is:

$$Y_t(w) = \lim(\sum \cos\lambda_i t(C(\lambda_i)(w) - C(\lambda_{i-1})(w) + \sum \sin\lambda_i t(S(\lambda_i)(w) - S(\lambda_{i-1})(w))$$

We will not specify the mathematical theory of stochastic integrals, so we will not argue about the exact nature of the limits occuring in this formula. For a detailed discussion, see Anderson 1971.

In this formula, we see that if the difference $C(\lambda_i) - C(\lambda_{i-1})$ tends to result in large values, then the process Y_t will with great probability have periodic components with frequency $2\pi\lambda_i$. So one instrument for detecting periodicities in Y_t is to study the function

$$E(C^{2}(\lambda)) = E(S^{2}(\lambda))$$

(Theory shows that these variance functions are identical).

It can be shown that this function is identical to the spectral distribution function $G(\lambda)$ with the property

$$cov(Y_t Y_{t+k}) = \int_{\pi}^{-\pi} cos\lambda k dG(\lambda)$$

(The right-hand integral is an ordinary Riemann-Stieltjes integral and this function can be calculated from the original process Y_t .

An interesting case is when G possesses a density $g(\lambda)$. This means roughly that there is no dominating cycle in the behavior of Y_t .

If we have values of λ for which $g(\lambda)$ is high with respect to other λ 's, then the process tends to have common periodic components with frequency $2\pi\lambda$. Since we do not know the process Y_t but only a realization of it we cannot calculate $g(\lambda)$; we can only estimate it. $g(\lambda)$ is the Fourier transformation of $\sigma(k) = cov(Y_t, Y_{t+k})$. Therefore we used the usual estimate to calculate $\sigma(k)$ and then took its Fourier transformation to estimate $g(\lambda)$.

However, there is a problem is this. The autovariances in the sample do not produce a consistent estimate of the real covariances. So one has to use smoothing procedures to get consistent estimates of these parameters. We used the Parzen weighting function for smoothing the autocoraviances. This weighting function yields consistent estimates for $g(\lambda)$ when $\sum k^2 \sigma(k)$ converges and with increasing T given T observations we use only autocovariances of orders smaller than $C \cdot f(T)$ to calculate the estimator of the spectral density where

$$\lim_{T\to\infty}f^2(T)/T=0.$$

 $f(T) = T^{1/3}$ would be such a function.

This means roughly that the covariances of widely separated observations are moving rapidly enough toward zero that one can safely omit them from the smoothing procedure for estimating spectral density.

Using these smoothed autocovariances, we calculated the estimates for the spectral density. In order to determine the interactions between the periodic components of our time series we calculated coherences and phase shiftings for each pair of variables. Intuitively speaking this means that we decompose the processes into their periodic components and calculate "correlations" between these components and also calculate the typical lag between the peaks of the sine waves.

For a detailed and mathematically more appealing description of the method used see Hannan (1970). It would go far beyond the aim of this paper to give a detailed description of the mathematical theory used.

As in the case of the autocorrelations we also used the Parzen weighting function for smoothing the cross-covariances. Since we did not have data for all the variables we had to use "smoothing windows" of different lengths for calculating estimations of the spectral densities and coherences. Tables 6 and 7 give all these window lengths.

Variables	Window Length	
Production	80	
Energy	50	
Patents USA	80	
Patents England	80	
Innovation	80	
Invention	80	

Table 6. Autocovariances and spectral densities.

Table 7. Coherences and phases.

Pairs of Variables Win	dow Length
Production, Energy	50
Production, Patents England	80
Production, Patents USA	80
Production, Innovation	80
Production, Invention	80
Energy, Patents England	30
Energy, Patents USA	50
Energy, Innovation	50
Energy, Invention	50
Patents England, Innovation	80
Patents England, Invention	80
Patents USA, Innovation	80
Patents USA, Inventions	80
Innovation, Invention	80

CHAPTER 3

THE DATA

The data used are presented in Appendix 1. For world industrial production, we used the data collected by Juergen Kuczyuski (1967) and Thomas Kuczynski (1978) for the period 1850-1976 and completed them by using the Hoffmann Index (Hoffmann 1955) for the period 1740-1849 and UN Statistics (Monthly Bulletin 1975-1981) for the last years.

Data on world primary energy consumption are available from 1850 (Schilling, Hildebrandt 1977). Further, data on patents granted in England and in the US are presented in Mitchell (1975) and Technology Assessment and Forecast (1977). Data on English patents between 1700 and 1890 might best represent world technological progress, followed by US patents from 1890 to the present.

We collected data on 182 inventions and innovations, including the list of 90 inventions and innovations used by Gerhard Mensch (1975), and calculated the following indicators (see Apppendix II):

 t_L = the date of invention according to the date

of the first major patent application or other sources

- t_E = the date of innovation, normally the date of
 - first production or market introduction
- T_E = the time period between invention and innovation (= $t_E t_L$), also called "lead"
- v_E = the speed of innovation (=100/ T_E) The earlier an invention is realized as an innovation, the higher this indicator will be.

 V_{K} = the range of application of a given innovation

 i_K = the scientific-technological level of a given innovation. V_K and i_K are explained in Table 4.

 w_K = the coefficient of importance (= $i_K V_K$)

- p = the innovation potential
 - $(= w_K / T_E).$

 p^* = the innovation power (= $p \cdot v_E = w_K^2 / T_E$)

The dates of invention and innovations, taken from historical sources, determine t_c , t_E and T_E .

The coefficients i_k and V_k were calculated on the basis of Table 8. We used 7 levels for each indicator and evaluated them quantitatively. The main assumption here was the existence of an exponential frequency distribution of different classes of innovations (Haustein, Maier, and Uhlmann 1981).

If we assume that the importance of innovations w (a coefficient between 1 and 100) follows an exponential function and the parameters i_k and u_k are connected in a multiplicative form, we can write

$$w = i_k V_k$$
$$w = e^{ak} e^{bk}$$

and

$$w = e^{(a+b)k}$$

Taking a simple symmetrical scheme (a = b), we then have

$$w = e^{2ak}$$

where

$$k = 0, 1, \dots, 6$$
.

According to $1 < w \le 100$ (percent), we find for k = 6

$$100 = e^{12a}$$
$$a = \ln \frac{100}{12} = 0.38376$$

From this we find the coefficients of importance for each level within the $7 \times 7 = 49$ field (see Table 8).

When we try to adjoin one innovation to the $7 \ge 7 = 49$ field, we realize that we often have difficulty in making an exact estimation. So it is clear that the invention and innovation indicators are by no means exact figures.

Each of the inventions and innovations is represented by three indicators:

- number
- coefficient of importance w

ole 8	. Classifi applicat	cat	ion of in.	novations }	oy scientif	fic/techno	logical le	vel and r	ange of
			Range of applicat	ion					
			II				81		
ŏ	Scientific/ technological level	* 2	Quantitative growth of existing demand	Simple modifica- tion of existing demand complex (improved param- eters of existing products or processes)	Essential modifi- cation of existing demand complex (new parameters of existing products and processes)	Development of new demand (new product or process) in existing demand complex	Essential modifi- cation of existing demand complex (new products or processes)	Development of new demand complex or subcomplex	Change in entire system of needs
1	14			1.5	2.2	3.2	4.6	6.8	10
1	Quantitative growth of existing technical basis	I	-	1.5	2.2	3.2	4.6	6.8	10
3	Improvement within well-known technical principle	1.5	1.5	2.3	3.5 (Bentwood furniture)	4.8 (Bicycle)	6.9	10	15
e.	Improvement within well-known technical principle with essential changes in one factor (materials, tools, or function design)	2.2	2.2	3.3 (Oxygen process)	4.8 (Thomas-gilchrist process)	7 (Dicsel engine)	10 (Paper production)	15	22
4	Improvement within well-known technical principle with essential clanges in several factors	3.2	3.2	8 .	7 (Stitching bond)	10 (Atomic ice-breakers)	l S (Flectric railway)	22	33 (Spinning jenny)
Ś	New solutions within well-known basic principle	4.6	4.6	6.9	10 (Gyrocompass)	15 (Polyethylene)	22 (Dctcrgents)	33 (Vacuum lamp)	46
9	New basic princl- ple within sume form or structural level of matter	6.8	6.8	10	15	22	33 (Synthetic fibers)	46 (Incandescent lamp)	68
٢	New basic princi- ple changing form or structural level of matter	10	10	15	22	33	46 (Radar)	68 (Transistor)	100 (Electricity)

Table 8.

NOTE: Examples are given for illustrative purposes in some cases.

Source: Haustein et al. 1981.

- 15 -

power coefficient p*

These indicators are calculated according to the data on 182 inventions and innovations contained in Appendix II. We think that the coefficient of importance better represents the real weight of an innovation or invention than does their simple number. The definition of the innovation potential $p = i\frac{V}{T}$ seems to be analogous to the physical definition of energy. The higher the innovation potential, the shorter the lead and the bigger the importance of the innovation. It can be assumed that the diffusion of such innovations will then also be quicker. The power coefficient is the potential coefficient weighted by the importance coefficient.

CHAPTER 4

RESULTS AND CONCLUSIONS

As it has been shown in many studies, the demands of the production system give an important push to innovations and inventions. But this does not necessarily imply that innovations and inventions directly follow patterns of industrial production growth. A spectral analysis using the time series

Industrial Production N = 240Energy Consumption N = 119Innovations N = 227Inventions N = 237Patents England N = 198Patents US N = 187

showed the following results.

The longest cycle we could identify was a fifty year cycle. The straight lines in Figure 3 show the results of an analysis carried out with the help of auto- and cross-correlation on the basis of the Parzen weighting function.

The 40-60 year cycle is often called the Kondratieff cycle. The Russian economist N.D. Kondratieff probably did more than anyone to make the idea known in the USSR and the world in general while he was head of the Konjunktur Institute in Moscow in the 1920s. Kondratieff, Parvus, van Gelderen, de Wolff and others regarded 1815, 1849, 1873, and 1896 as years of crucial turning points. Karl Marx was aware of the cyclical character of capitalist reproduction and linked it with the duration of long-

term fixed capital (Marx 1963).

Schumpeter considered the irregular clusters of innovations crucial for economic development (Schumpeter 1939). However, he was unclear about why innovations occur in clusters. Gerhard Mensch (1975) updated Schumpeter's theory and tried to give it an empirical base. He identified periods with a lack of basic innovations : 1814-1827, 1870-1885, 1925-1939, and 1975-?. Cesare Marchetti (1980) used Mensch's figures, plotted them as logistics and added his findings on energy sources and price development (see Figure 3). The logistic pattern seems to be very convincing. But using our data we could not find any logistics in the development of industrial production, patents, or energy consumption. In the case of inventions, logistics could be identified only for the periods 1738-1860, 1930-1950, and 1950-1966. In the case of innovations this was true only of 1859-1908, 1909-1930, and 1950-1966. So we have some doubts when looking at the regular patterns of inventions and innovations by Mensch and Marchetti.

According to Figure 4, industrial production is influenced by the innovation index within the 50 years cycle with a lag of 21 years and a coherence of 0.40 which is of course not very high. But this result seems to be plausible: in the past it took about two decades before a major innovation wave led to a major upswing in industrial production. The innovation wave between 1931 and 1949 was followed by the upswing in world industrial production after the Second World War.

Figure 3. Invention and innovation waves--the secular set. (Source: Marchetti 1980.)

Figures give the lengths of the time lags between the 50 year cycles in years, and in brackets, the coherence.

Figure 4. The 50-year cycle (50, 53.3 years).

A direct 50 year cycle of autocorrelation could not be identified for any of the variables. This means that a dominating internal long cycle exists in none of the variables. But non-dominant cycles do appear when analyzing interactions between any two of these variables.

A second interesting result is the influence of industrial production on US patents with a lag of 9 years and a coherence of 0.55. Here the interpretation is not so difficult. The innovation index represents basic innovations. But the number of patents is of course a measure of improvement innovations. Improvement innovations follow the path of industrial production much more clearly than the clusters of basic innovations that occur not simply as a result of production downswings. Our result is in line with Schmookler's (1966) finding that the number of patents awarded in an industry increases only after demand has increased. The relation between energy consumption and patents can be interpreted in the same way. The improvement cycle seems to be closely connected with the energy consumption cycle and a lag of 2.5 years is not long enough to judge about the causal direction.

The fifty year cycle is difficult to explain in economic terms. Are 50 years a kind of reproduction period of national wealth--including the innovative potential of human society? Does it reflect the exhaustion period of a reserve of given natural and social resources? Clusters of basic innovations were always ready for the next production upswing. But which mechanism guides the 50 year cycle, if it exists at all?

According to Figure 4 we are dealing here with lag cycles and not with life cycles. Lag cycles are a well-known economic phenomenon. They can be demonstrated using the following example from the shipping industry.

After a year of high freight rates, more ships are ordered. After about a year these vessels are launched. These tend to depress freights, and would continue to do so as long as they kept running--on an average about 17 years for the first shipowner and another 17 years for the second or third shipowners. Tinbergen (1981) has shown that the resulting waves have a length equal to about four times the time lag involved.

The same can be said of the relationship between innovations and industrial production and industrial production and patents. A major driving mechanism of economic development is the relationship between the growth of the investment goods sector and the consumer goods sector, a relationship that lies at the core of Marx' reproduction theory. This idea was used in Forrester's National Model.

The process involves an over-building of the capital sectors in which they grow beyond the capital output rate needed for long-term equilibrium. In the process, capital plant throughout the economy is overbuilt beyond the level justified by the marginal productivity of capital. Finally, the overexpansion is ended by the hiatus of a great depression during which excess capital plant is physically worn out and financially depreciated on the account books until the stage has been cleared for a new era of rebuilding. (See Forrester 1981.)

Assuming this theory, the model revealed what was expected: that clusters of innovations are not necessary a cause for this mechanism. On the other hand, the bunches of innovations are caused by the long economic cycles themselves. This is an idea that has also been expressed in recent Marxist literature (T. Kuczynski 1978).

But careful empirical studies are necessary to prove or to disprove this hypothesis. Forrester's model is insufficient for a substantial and convincing argument.

At least it is undisputed that innovations occur in clusters over time. The cluster phenomenon does not need an exogenous explanation: the inner feedbacks and the systems character of technology lead necessarily to chain reactions, causing a tendency toward very uneven technological progress (Haustein 1975). With regard to the long cycle, Marx' theory on the "tendencious falling of profit rates" seems to provide a better answer for the future analysis of long waves. A cornerstone of this theory is the organic composition of capital, that is, the value relation between constant and variable capital c:v, as far as it expresses its technological composition between technological means and labor.

In its maturation and saturation stage, technological progress leads to a higher organic composition of capital, which presses the profit rate down. But there is another tendency superimposed over the first one: the innovative industries, which are the leaders of the industrial growth, have very rapid productivity growth and this influences profit rates in a positive direction. The organic composition of new industries is normally lower than the industrial average.

A. Kleinknecht (1879, 1980) has shown this using the example of West German industry. This is a somewhat paradoxical development. The same process that leads to a lower profit rate gives rise to an opposing force that paralyzes the falling rate. Marx (1963) was fully aware of this trade-off in the movement of profit rates.

The next long cycle discovered by the spectral analysis was a 40 year cycle. The results were poor: two autocorrelations in the invention index and in patents Englands, and a cross-correlation between the invention index and world industrial production with a lead of 9.6 years (see Figure 5).

This lead is difficult to explain. On the average it takes 30.2 years from invention to innovation according to the set of data in Appendix II (standard deviation s = 26.1; N = 182). The thirty year lag could be the result of roughly $\frac{40}{2}$ + 9.6; this means that an upswing in inventions is followed thirty years later by a downswing in world industrial production. This would correlate with Mensch's argument that innovations take place in the deep crisis phase.

Figure 6 shows the next 32 year cycle, which exists mainly in the relation between invention indicators and US patents with a lead of 11 years. As a matter of fact, basic inventions cause a stream of improvement inventions represented by patents.

Figure 5. The 40-year cycle.

Figure 6. The 32-year cycle (26.7, 32, 33.3 years).

- 22 -

Next is the 20 year cycle (see Figure 7), a rather strange one, presenting a cross-correlation between inventions and innovations with a lag of 3 or 4 years. Since all of these variables were constructed from the same data set, one should not overestimate the importance of these cross correlations.

Figure 7. The 20-year cycle (16, 16.7, 20, and 22.6).

Figures 8 and 9 show the next 13 years and the shorter cycles. At present there are a number of interesting and significant relationships, mainly between innovations and industrial production or energy consumption.

The seven year cycle is sometimes called the Juglar cycle. In 1889, the French economist Clement Juglar wrote one of the first major studies of business cycles. Before World War II, the cycles generally had a duration of 7 to 11 years, but they have since been shorter.

Juglar cycles are the ordinary medium-term business or trade cycles that are central to Keynesian theory and policy prescriptions. In early capitalism between 1815 to 1847, they had a length of about five years; after 1848 this became ten years (Marx 1963).

In his fundamental work, E. Varga (1937) identified the following depression years in world economy: 1857, 1866, 1873, 1882, 1890, 1900, 1907, 1920, and 1929. Again, after the Second World War, the business cycles became shorter.

Figure 8. The 13-year cycle (10.7, 11.4, 12.3, 12.5, 13, 13.3, 14.3, 14.5 years).

Figure 9. The 7-year cycle (5.9, 6.1, 6.3, 6.7, 6.9, 7, 7.3, 7.6, 8.0, 8.4, 8.9 years).

We resume our description of the results of our investigation with Figure 10, which shows the long-term relationships of world inventions, innovations, industrial production, energy consumption, and patents. A lag of 27 years exists, for example, between the invention and the innovation index. This is close to the average T_E period of 30.2 years. But these lags are taken from the whole sample and in reality, the cycles become shorter and shorter.

innovations, industrial production, energy consumption, and patents.

It is interesting to note the 21 year lag between innovation index and industrial production. The most recent historical example of this is the innovation index of 1936, which can be linked to the production peak 24 years later between 1960 and 1966.

Because of the interference of quasi-cycles and their historical deviations, it is rather difficult to make forecasts. What one can expect is that we are now experiencing a new innovation upswing due to microelectronics and telecommunications, which might peak in 1985. The invention peak of this quasi-cycle occurred in 1958, when the number of inventions in electronics reached its absolute historical maximum (Dummer 1977).

The current upswing in innovations is related to the downswing in world industrial production growth, which might continue until 1985 or even longer. Spectral analysis did not reveal any "Laplace demon" in history. Historical determinism exists, but not in a pure and mechanical form. For any kind of forecasts, we are referred back to concrete investigations of unique historical factors, such as those shown in Table 1. APPENDIX A: DATA ON WORLD INDUSTRIAL PRODUCTION (100 MIL. \$ IN PRICES OF 1913), PRIMARY ENERGY CONSUMPTION (MIL. T.C.E.), INNOVATION (INDEX, POWER, NUMBER), INVENTION (INDEX, POWER, NUMBER), PATENTS ENGLAND, PATENTS USA

YEAR	Indus. Prod.	Energy Consm.	Innov. Index	Innov. Power	Innov. Number	Inven. Index	Inven. Power	Inven. Number	Patents Patents England USA
1738						32.00	39.4	1	6
1739						0	0	0	3
1740	2.1					6.3C	12.3	2	4
1741	2.0					42.92	8.4	1	8
1742	2.2					0	0	0	6
1743	2.1					0	0	0	7
1744	2.4					2.25	0.1	1	1
1745	2.3					82.72	52.0	2	4
1746	2.4					0	0	0	4
1747	2.5					0	0	0	8
1748	2.7					0	0	0	11
1749	2.4					0	0	0	13
1750	2.7					10.24	1.0	1	7
1751	2.7					21.16	3.6	1	8
1752	2.7					0	0	0	7
1753	2.8					0	0	0	13
1754	2.7					0	0	0	9
1755	2.8					0	0	0	12
1756	2.5					0	0	0	3
1757	2.6					0	0	0	9
1758	2.6					3.3C	0.1	1	14
1759	2.5					0	0	0	10
1760	2.5					0	0	0	14
1761	2.6					0	0	0	9
1762	2.6					0	0	0	17
1763	2.5					0	0	0	20
1764	2.7		32.00	39.4	1	32.24	45.1	2	18
1765	2.7		a	С	0	0	0	0	14
1766	3.1		a	Ç	0	0	0	0	31
1767	3.1		0	C	0	0	0	0	23
1768	3.0		0	<u>ç</u>	0	0	0	0	23
1769	3.2		0	С	0	21.76	8.7	1	36
1770	3.1		0	C	0	0	0	0	30
1771	3.1		0	C	0	46.0C	18.7	2	22
1772	3.4		0	C	0	0	0	U	29
1773	3.2		a	C	0	26.60	10.5	2	29
1774	3.0		0	0	0	0	0	U	35
1775	3.1		22.00	44.0	1	0	0	U	20
1776	3.2		0	0	0	0	0	0	29

1777	3.3	0	C	0	14.72	4.0	1	33	
1778	3.4	0	C	0	O	0	0	30	
1779	3.2	0	C	0	0	0	0	37	
1730	3.2	14.72	6.2	1	68.OC	58.5	1	33	
1781	3.1	0	С	0	0	0	0	34	
1782	3.7	ā	٥	0	0	0	0	39	
1733	3.6	ñ	č	ň	10.12	2.5	1	64	
179/	7 7	ň	č	ŏ	0.000	n	Ó	46	
1704	3.1	ă	č	0	53 76	30.7	2	61	
1785	4.4	U O		ő	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ō	60	
1786	4.0	U	0	0	U			00	
1787	4.7	0	0	0	31.28	29.6	1	55	
1788	4.6	0	G	0	0	0	0	42	
1789	5.5	0	0	0	46.OC	21.6	1	43	
1790	5.4	0	0	0	14.72	7.2	1	68	3
1791	5.5	0	C	0	10.12	1.4	1	57	33
1792	5.9	0	С	0	0	0	0	85	11
1793	5.1	0	0	Ó	68.OC	107.5	1	43	20
1794	5.3	21.16	8.4	1	21.76	9.3	1	55	22
1795	5-6	0	n i	'n	0	n	ń	51	12
1796	6.0	14.72	2.6	1	õ	ň	ň	75	44
1707	5 5	0	0	'n	ő	ň	ň	54	51
1709	5.5 6 0	ő	č	ă	ě	č	ŏ	77	29
1700	7 1	ŏ	č	ě	74 70	200	1		20
1900		0	ů,	U	21.20	20.0	,	02	44
1800	(.)	U	U O	0	0	U	0	90	41
1801	<u>7.1</u>	U	U	0	0	0	0	104	44
1802	7.5	0	C	0	0	0	0	107	65
1803	7.6	Ō	Q	Ċ	0	0	Q	73	97
1804	7.8	0	С	0	31.28	24.5	1	60	84
1805	8.0	0	C	0	7.04	0.8	1	95	57
1806	8.1	0	0	0	0	0	0	99	63
1807	8.4	0	C	0	0	0	0	94	99
1808	8.0	0	0	0	0	0	0	95	158
1809	8.2	21.76	4.6	1	0	0	0	101	203
1810	8.9	21.76	18.9	1	6.80	1.4	1	108	223
1811	9.4	21.16	6.3	1	4.84	0.3	1	115	215
1812	8.8	0	0	Ó	0	0	Ó	118	238
1813	8.9	Õ	Ċ	õ	ō	ă	ã	131	181
1814	9.0	õ	ă	õ	õ	ă	õ	96	210
1815	10	ñ	ř	ñ	ñ	ň	ň	102	173
1816	10	ñ	č	ň	ň	õ	ň	118	206
1817	10	õ	ň	ň	ň	ñ	ň	103	174
1818	12	ň	č	õ	, ec	4 4	1	130	222
1810	11	21 76	ě n	1	31 29	17 5	1	101	156
1820	11	70 01	47 0	1	110 40	97 5	4	07	155
1920	14	70.01	47.0	-	119.00	03.5		100	140
1927	10	0	č	ő	1/ 72	77	1	117	200
1977	17	0	č	0	14+72	3.1	ż	170	177
1023	13	74 00	14 7	2	74 70	(0, 2)	1	120	211
1024	13	21.00	11.2	ć	31.28	48.8		100	220
1825	14	U	U	U	0	Ŭ	U	250	304
1320	13	U 74 30	0	U	0	<u> </u>	U	141	323
1827	15	31.28	15.8	1	21.10	1.2	1	150	551
1828	16	U	U	0	10.24	1.7	1	154	368
1829	15	0	0	0	0	0	0	130	447
1830	17	0	O	0	0	0	0	180	544
1831	17	14.72	4.0	1	50.60	26.7	3	151	573
1832	16	0	С	0	129.44	35.0	3	147	474
1833	18	99.28	136.3	2	53.16	47.9	2	180	586
1834	19	C	С	0	21.16	15.4	2	207	630
1835	20	4.84	0.4	1	0	0	0	231	752
1836	22	0	С	0	0	0	0	296	702
1837	20	0	C	0	Ó	0	0	256	436
1838	22	68.00	41.5	1	Ō	Ō	Ó	394	515
1839	24	4.84	1.1	1	10.12	3-0	1	411	404
1840	24	a	Ċ.	ò	21.76	10-4	1	440	458
1841	24	ā	č	ā	78-00	78.5	2	440	490
1842	23	ñ	ň	ñ	18,07	4.7	2	371	428
1843	24	ŭ	ň	ň	C		ñ	420	400
1844	27	A7 CA	747	7	U 41 90	57 /		440	
1845	20	J1 74	4 7	1	22 01	25 0	2	4JU 570	4/3
1346	20	21 • FU	4.J C 0.A	2	22.UL D	-J.7 D	ò) (C / C T	473
1847	29	04-14	00.2	6	4/ 72	44 -	4	473	200
1947	20 71	Ŭ	U C	0	14.72	11.5		475	473
19/0	71	7/ 50	U 76 7	0		20 2	1	200	204
1850	71	34.33	22.2	4	32.00	20 . 9		514	700
1020		U	L	U	U	U	U	212	004

1851	34		n	r	Ω	n	Π	0	455	757
4057	77		7/ 04	44 0	ž	53 //	່ວຄັດ	2	(6 0	900
1026	21		24.90	11.0	2	26.44	23.0	۲	407	070
1853	40		0	0	0	10.24	2.3	1	499	846
1854	47		15 00	24.8	1	46-24	82.3	1	430	1759
1034			13.00	27.0		40.24	02.15		420	4007
1855	44		0	0	0	4.34	1.0	Т	467	1892
1856	48		28.26	23.6	4	21.16	11.5	1	478	2315
4057	/ 7				ċ	74 79	20.7	i i	147	2494
1857	47		U	U	U	31.20	27 + (1	403	2000
1858	47		0	a	a	0	0	0	446	3467
4050	50		(0 00			40.74				1445
1859	50		00.00	26+26	1	10.24	4.0	I	452	4102
1860	53	134.2	0	C	۵	78.24	114.8	2	472	4363
40/4		4 / 7 4	40.47	4 /	-	7 (()	77 0	-		70/0
1861	22	142.1	10.12	7.4	1	30.48	21.9	Т	407	5040
1862	47	141.6	۵	C	0	14.72	7.2	1	501	3221
4047	E 4	457 /	74 44	4		4/ 77	44 /	4	79	7701
1003	21	126+4	21.10	12+4		14•(4	1 4 4	1	4/0	2121
1864	54	165.5	0	G	0	7.04	5.5	1	463	4638
10/6		475 7	40 40	, o	4	0	0	'n	.00	¥000
1002	22	1(2+3	10.10	4 . 7	1	0	U	U	477	0077
1866	63	185.2	21.76	12.1	2	٥	0	0	486	8874
1947	4 7	109 /	52 74	57 1	2	ō	0	Ω	5 2 2	12301
1001	02	170.44	12.20	2641	4	U		Ū.	522	12301
1868	67	196.6	0	C	0	31.28	36.2	7	569	12544
1040	70	207 0	32 00	78 /	4	1/ 77	<u> </u>	1	/ 5 9	12057
1007	70	203.7	52.00	63.4		144676	0.0		914	12731
1870	68	208.5	0	С	0	0	0	0	549	12157
1871	74	232 8	n	0	n	0	n	n	498	11687
1071									4/0	40000
1872	82	252.9	32.00	11.8	1	31.28	97.9	1	543	12200
1873	81	270.9	17.12	8.5	2	14.72	24.1	1	633	11616
407/					ž	7.0((20	12270
1874	37	204.2	U	U	0	7.04	1.9		080	12230
1875	79	272-4	32.00	17.5	1	21.76	18.9	1	722	13291
1074		175 7			à			á	710	1/172
1870	82	213.3	U	U	U	U	0	U	710	14172
1877	83	281.8	Ď	G	0	57-04	78.8	4	785	12920
1070		202 (17 74	77 5	7	5,00,		à	767	177/5
1878	85	282.0	4/./0	22.2	د	U	U	0	(3)	12343
1879	87	298.6	46.00	55.7	1	21.76	29.6	1	757	12133
1000	2/	774 0	41 77	0 4 N	,	74 44	20 7	4	901	12074
1000	94	260.0	01+72	00.0	2	21.10	20.0		801	12720
1881	99	351.4	0	0	0	0	0	0	818	15548
1997	104	377 /	221 80	377 /	7	Ō	õ	ō	85/	19175
1001	100	311.44	221.00	J { 2 + 4	1	0	0	0	624	10133
1883	110	402.Z	Z4.96	6.1	2	4.84	1.9	1	902	21160
1824	107	405 1	14 72	4.0	1	0	ń	0	991	19122
1004	107	403+1	14012	4.0		0	U	Ū,	,,,,	17122
1885	106	399.6	53.00	161.1	- 4	0	0	0	895	23282
1996	117	403 7	00 / 0	117 7	7	0	ñ	Δ	01/	21768
1000	112	403.7	77.40	111.1	5	0	U U		714	21700
1887	121	432.3	67.16	66.4	2	O	σ	0	864	20399
1999	126	168 3	17 24	75	2	7 04	1 1	2	000	10552
1000	120	400.5	11.6.2.4	2.2	2	1.04		2	700	17332
1889	137	478.5	0	0	0	14.72	6.6	1	974	23322
1890	144	510.1	52.16	36.9	2	31.28	40-8	1	973	25308
1070	1 7 7	510.1	52.10	50.7	-	51.20	40.0		/13	2000
1891	146	529.7	46.7Z	33.0	1	10.24	3.3	1	973	22310
1832	142	575 5	35 28	13.4	2	24 94	0.5	2	1021	22645
10/2	140		55.00	13.4	-	24.70		-	1021	22045
1893	143	524.2	U	C	a	28.20	46.9	2	1055	22747
1894	148	545.4	21.16	26.3	1	0	0	n	1070	19833
1000	4 4 5	570 0	400 04	20.0		< <u> </u>	4 7 4 7			20000
1895	152	579.0	109.96	79.2	4	68.00	171.5	ר	1114	20855
1896	166	595.0	0	C	0	0	0	0	1140	21825
10.77	47/	171 7	7 00	47 /	4	(4/0 7	-	1 3 0 0	22045
1071	174	024.3	7.09	12.4	r	0U • 70	104.3	2	1299	22005
1898	1 90	658.0	42.24	23.2	2	0	0	0	1286	20375
1900	20%	770 1	•	Ċ	0	•	õ	0	1705	27200
1077	204	120-1	U	_ L	U	U	U _	0	1275	23200
1900	205	767.1	28.76	20.8	2	4.84	2.7	2	1204	24656
1001	217	707 7	1 / 72	4 9	4	0	ñ	0	110/	2555/
1701	215	17301	14+12	0.0		U	U U		1174	23334
1902	Z 30	811.8	32.12	24.3	Z	0	0	0	1258	27121
1903	235	292.2	n	0	0	74 90	209.1	7	1380	31032
4.001			ž		ě			7	1300	31030
1904	236	704.8	U	C	0	81.44	27.4	4	1352	30259
1905	2.60	955-0	O	0	0	0	0	0	1345	29777
1004	171	1020 5	24 00	7, 5	4	446 74	477 7	Ē	4 7 7 9	71140
1900	212	1029.5	21.00	34.3	1	112.30	023.2	2	12/0	21104
1007	200	11/7 0	0	0	•	0/ 30	4.00 0	-		764/4
1707	200	1143.0	U	U	U	90.2L	180.9	2	1487	32890
1908	257	1093.3	0	0	0	0	0	0	1489	32736
1000	282	11/5 0	10 12	20 /	1	õ	õ	õ	4770	7/5/7
1,0,1	202	1143.0	10.12	20.4	1	U	U	U	12(0	20205
1910	50Z	1200.4	46.00	268.7	2	14.72	54.2	1	1487	35130
1911	307	1227.7	46 24	152.4	1	0	0	0	1640	77954
		4905		17540	-		ų	ų	1207	26220
1912	5 54	1295.7	0	С	0	10.12	4.5	1	1446	36196
1913	350	1391-1	46-00	302-3	1	77 49	41 1	,	1 < 1 2	22015
101	740	49/141			2	55.40	71.1	<u> </u>	0 1	22412
1714	519	1200.5	40.23	75.U	Z	10.34	5.7	2	1375	39899
1915	329	1251-8	7.00	4.0	1	21 14	77 /	1	10/7	42117
1014	761	1754 0	2 20	~ • ·	4	L + C	6 C + 4		1047	43110
1710	224	1321-9	0.00	4.0	1	U	U	0	771	48892
1917	357	1430-9	0	0	Ω	7.04	1 7	1	854	40027
1010	774	4/44 /	ā	ž	ž				0.74	40761
1710	2.20	1411.0	U	U U	U	10.24	26.Z	1	988	38450
1919	308	1260.5	0	0	Ó	۵	n	Ω	1125	36795
1920	274	1/55 7	31 00	<u>40</u> 0	4		ž	ž	4 3 6 6	770-7
1 7 2 0	140	2+22+2		07.5	1	U U	U	U	1298	37057
1921	280	1262.3	0	C	0	0	٥	0	1618	37792
1922	343	1355 A	93 00	204.1	7	21 44	77 7	1	1 6 9 9	707/4
1027		0.00	· · · · · ·	2041	2	61.10	51.2	L.	1233	רסנטנ
1925	361	1548.7	24.96	10.3	2	34.58	29.1	2	1562	38614
1924	382	1537-9	0	a	0	7 70	ה ז	1	15/1	17577
1035				<u> </u>	U C	J. J.	C. J	1	1241	42372
1762	415	1247.2	14.72	2.6	1	0	0	0	1572	46432

1926	427	1558.4	7.04	1.9	1	0	0	0	1585	44733
1927	455	1657.7	2.00	C.4	1	33.48	107.8	2	1612	41718
1928	476	1783.6	21.00	21.8	1	56.24	149.8	3	1618	42326
1929	511	1828.1	0	C	0	68.OC	257.3	2	1732	45267
1930	448	1693.1	5.00	C.8	1	14.72	12.1	1	1899	45226
1931	389	1522.1	0	0	Ó	0	0	Ó	2006	51756
1932	333	1383.8	7-04	1.9	1	ñ	õ	ŏ	1934	53458
1033	375	1455.7	0	Ċ,	ó	29.44	35.0	2	1515	48774
1034	417	1582.3	73.24	51.6	ž	92.00	219.1	2	1545	44419
1035	411	1458 3	50 12	266 6	7	100	21/01	ō	1616	40618
1930	400	1273 5	78 00	162 6	5	ň	ň	ŏ	1010	30783
1077	523	1050 1	70.00	40 7	1	75 99	77 /	2		37683
1079	510	1947 4	71 79	40.1	4	33.00	70 7	2		39042
1930	210	1002.0	21.20	107.0	-	J.26	J7.62	2		/ 7077
1939	000	1997.5	01.08	04.0	2	42.32	238.1	2		43073
1940	651	2138.8	31.28	81.5	1	105.24	310.0	2		42231
1941	777	2236.5	3.30	0.3	1	0	0	0		41108
1942	907	2248.0	35.16	149.2	1	0	0	U		38449
1943	1033	2336.0	21.16	32.0	1	46.24	194.2	2		31054
1944	980	2342.3	43.16	153.4	2	0	a	0		28053
1945	679	1984.3	3.20	0.6	1	0	0	0		25694
1946	578	2096.1	31.28	163.0	2	0	0	0		21805
1947	651	2334.2	0	C	0	0	0	0		20139
1948	700	2483.4	17.72	12.1	1	28.20	49.7	2		23961
1949	714	2412.2	10.00	10.4	1	0	0	0		35131
1950	812	2647.8	160.24	566.4	3	0	0	0		43039
1951	832	2857.8	4.00	0.3	1	10.24	17.5	1		44326
1952	903	2928.1	0	Ō	Ó	0	0	0		43616
1953	970	2997.8	28.72	24.4	2	32.00	10.24	1		40467
1954	970	3065-0	46.24	194.2	1	21.76	118.4	1		33809
1955	1085	3334.9	0	G	'n	0	0	Ó		30432
1956	1132	3558.9	7.04	1_ र	1	7.04	134.8	1		46816
1057	1176	3709 9	40 00	44.3	2	0	0	'n		42745
1059	11/5	307/ 7	57 00	302.0	2	99 16	784.0	4		48330
1050	127/	4154 8	46.00	34 6	1	10.24	52-4	1		52408
1939	1214	4130.0	40.00	15/ 9	2	3 70	7 4	4		67169
1960	1/07	441201	77 7/	710 7	5	14 8/	56.0	7		49769
1701	1407	4323.4	16 00	530 0	4	E 0 - 0 4	220 1	7		55401
1902	1500	4034.0	40.00	74 (-	20+24	220-1	2		15470
1905	1576	5186.7	13.54	(1.4	2	U	0	ů		420/9
1964	1705	5494.5	18.72	140.7	2			U A		4/3/1
1965	1831	5577.7	0	С	U	21.10	(2.2	1		02 5 5 4
1900	1975	6025.8	3.30	0.5	T	Q	0	U		68397
1967	2004	6264.6	0	C	0	0	0	٥		65647
1968	2130	6287.0	52.66	118.6	3	0	0	0		59101
1969	2283	6707.3	0	C	0	25.06	240.3	2		67556
1970	2335	7150.2	21.76	59.2	1	0	0	0		64427
1971	2382	7410.1	43.52	289.3	2	0	0	0		78314
1972	2568	7747.7	3.00	3.6	1	21.76	118.4	1		74808
1973	2802	8089.0	0	C	Ó	29-44	180.5	2		74139
1974	2825	8181.5	ō	č	Ō	0	0	ō		76274
1975	2638	8118.6	14.72	108.3	1	õ	-	-		71994
1976	2895	8574.9	36.48	191.1	2	õ				70236
1977	3039	8920-2	0	1 / 1 0 1	4	ñ				10250
1978	3157	8996.0	ň			ñ				
1370	7710	3770.0	ŏ			0				
17(7	2212		U			U				

APPENDIX B: INDICATORS OF HISTORICAL INNOVATIONS

No	Name	tL	tΞ	TE	VΞ	IK	٧K	WK	Ρ	P.*
001	Generator of curr.	1320	1849	29	3.44	4.6	6.8	31.28	1.08	33.7
002	Ceep-sea cable	1347	1366	19	5.26	3.2	10.0	32.00	1.68	53.9
003	Elactricity	1332	1382	50	2.00	10.0	10.0	100.00	2.00	200.0
304	Optoelectronic diodes	1923	1966	43	2.33	2.2	1.5	3.30	0.08	0.3
005	Light-emitt.f.display	1961	1968	7	14.29	2.2	1.5	3.30	0.47	1.6
006	Light-tunnel technol.	1969	1972	3	33.33	2.2	1.5	3.30	1.10	3.6
307	Implementat.cf ions	1960	1963	3	33.33	2.2	1.5	3.30	1.10	3.6
003	Synthetic rubber	1906	1916	10	10.00	8.8	1.0	6.80	0.68	4.6
009	Diesel locomotive	1892	1934	42	2.38	3.2	3.2	10.24	0.24	2.5
010	Thanet furniture	1342	1949	7	14.29	1.5	2.2	3.30	0.47	1.6
J11	Steal pen	1758	1356	93	1.02	2.2	1.5	3.30	0.03	0.1
012	Thomas steel	1855	1878	23	4.33	2.2	2.2	4.94	0.21	1.0
013	Aluminium	1345	1354	Ģ	11.11	2.2	6.3	14.96	1.66	24.8
014	Synthetic leather	1938	1964	Ζó	3.85	3.2	1.0	3.20	0.12	38.4
015	Polyester	1939	1949	10	10.00	3.2	3.2	10.24	1.02	10.4
01 ó	Telephone	1861	1879	17	5.83	3.2	ó.8	21.76	1.28	27.9
017	Sulzer lcom	1928	1945	17	5.33	3.2	1.0	3.20	0.19	0.6
013	Zip fastener	1891	1923	32	3.13	3.2	3.2	10.24	0.32	3.3
019	Electric heating	1359	1882	23	4.28	3.2	3.2	10.24	0.45	4.6
020	Locomotive	1709	1824	55	1.82	3.2	6.8	21.76	0.40	8.7
J21	Spinning machine	1738	1764	26	3.85	3.2	10.0	32.00	1.23	39.4
J 2 2	Rolled rails	1773	1835	62	1.51	2.2	2.2	4.84	0.08	0.4
023	Stitching bond	1948	1958	10	10.00	3.2	2.2	7.04	9.70	4.9
024	Synthetic fibres	1927	1939	11	9.Q9	6 ∎8	4.6	31.23	3.44	107.6
025	Airplane	1377	1711	14	7.14	6.8	5.8	46.24	3.30	152.6
J20	Computer	1920	1950	21	4.70	10.C	5.3	68.00	3.24	220.3
027	Isolated conduction	1744	1820	75	1.32	1.5	1.5	2.25	0.03	0.1
023	Arc lamp	1810	1344	34	2.94	6.8	1.0	6.30	0.20	1.4
029	Bicycle (pedal)	1318	133₹	21	4.76	1.5	3.2	4.80	0.23	1.1
333	Nickel	1751	1378	127	C.29	4.6	4.6	21.16	0.17	3.6
331	Magnesium	1852	1386	34	2.94	4.6	4.6	21.16	0.62	13.1
032	Radar	1904	1939	35	2.30	10.0	4.6	46.00	1.31	60.3
033	Plexiglass (1377	1735	53	1.72	4.c	3.2	14.72	0.25	3.7
034	Ball-point pen	1838	1935	47	2.13	2.2	3.2	7.04	0.15	1.1
035	Radio	1895	1922	27	5.83	10.0	5.8	<u> </u>	2.52	171.3
030	Rockets	1903	1935	32	3.13	10.0	6.3	68.00	2.13	144.8
037	Transistor	1940	1950	10	10.00	ó.8	6.3	46.24	4.62	213.6
333	Vitamins	1913	1937	24	C.43	4.ć	6.3	31.28	1.30	40.7
039	Automobile	1863	1895	27	3.70	7.ć	6.3	31.23	1.16	36.2

0-0	Antibiotics	1928	1940	12	8.33	4.6	6.8	31.28	2.61	81.5
541	Saen frozen food	1842	1 2 2 5	23	1.20	3.2	4.5	14-72	0.18	2.6
1.7	Step nozine	1754	1775	11	c no	2.2	10.0	22.00	2.00	44.0
342	A class seven station	10/7	105/	44	c 00	4 9	4 8	46 74	1 20	104 2
043	Ruciear power station	1743	1934			10.0	0.0	46.24	9.40	174.2
044	Kerographie	1934	1420	12	0.20	10.0	4 . 0	40.00	2.00	132.5
045	TV	1997	1736	Z 9	3.45	10.Ç	8.8	68.00	2.34	159.1
340	Silicons	1940	1946	- 6	16.67	4.6	6.3	31.28	5.21	163.0
047	Fydraulic gear	1904	1939	35	2.80	3.2	3.2	10.24	0.29	3.0
048	Helicooter	1904	1939	32	3.13	3.2	3.2	10.24	0.32	3.3
049	Titancaduction	1937	1944	7	14.29	4.4	4.6	21.16	3-02	63-9
351	lie chin	1276	1000	24	7 25	2.2	3 2	7.04	0 27	1.9
320	Alf antip	1011	1700			7 7	/ 4	1/ 77	7 4 2	£ / 7
1001	Ammonia synthesis	4974	4.0.7		23.00	2.6	4.0	74 44	3.00	34.2
725	Production of Anilin	1334	1303	29	3.42	4.0	4.0	21.10	0.13	12+4
323	Ciesel engine	13°3	1877	- 4	25.30	Ζ.Ζ	3.Z	7.34	1.76	12.4
054	Fischer-Tropsch-Proc.	1922	1934	12	8.33	4.ć	4.6	21.15	1.76	37.2
755		1277	4054	77	/ 75	1 4	1 4	11 14	0.00	10 5
055	Tare colours industry	1000	1000	20	4.30	4 • C	4.0	21.10	J.74	19.3
020	Polyethylene	1733	1723	20	5.00	4 • C	3.2	14.72	0.74	10.9
121	Cetergents/synthetic	1937	1928	21	4.76	4.t	4.6	21.16	1.03	21.8
J 5 8	Power steering	1 200	1930	30	3.33	2.2	2.2	4.84	0.16	0.8
J59.	Gyro compass	1904	1909	5	20.00	4.É	2.2	10.12	2.02	20.4
J60	Tank	1903	1915	12	8.33	1.5	4.6	6.90	0.58	4 . C
Jo1	Steam turbine	1383	1895	12	8.33	2.2	2.2	4.34	0.40	1.9
0.62	long dist. conduction	1973	1322		11.11	3.2	4.6	14.72	1.64	24.1
2.3	Ebotooloctoic coll	10.12	1074	7	2 0/	10 0	7.0	44 00	1 75	47 7
203	FROIDElectric Cell	4054	1930	34	.2.94		4.0	46-00	1.33	02.2
104	incandescent lamp	1554	1360	2 Q	3.85	0.0	5.6	40.24	1.78	82.3
702	Atomic ice-breaker	1-251	1957	6	16.67	3.2	3.2	10+24	1.71	17.5
Joó	Heavy water	1933	1942	9	11.11	4.ć	3.2	14.72	1.64	24.1
367	Synthesis of methanol	1818	1922	4	25.00	3.2	3.2	10.24	2.56	26.2
068	Coal hydrogenation	1913	1927	14	7.14	2.2	1.0	2.20	0.16	0.4
069	Catalytic cracking	1915	1935	20	5.00	4.ć	4.6	21.16	1.06	22.4
370	Cremical fibres	1357	1890	33	3.03	4.6	6.8	31.28	0.95	29.7
0.71	Phone electics	1004	1010		25 00	4.6	4 6	21 14	5 20	111 0
371	And les	1207	4000	47	23.00		4.0		3.27	7/ 5
072	Acetylen	1593	1900	13	(.04	4.0	4.0	21.10	1.00	24.2
073	Cxygen-process	1914	1940	52	5.75	2.2	1.5	5.30	0.10	د د
J74	Photography	1727	1838	111	C.90	10.C	6.8	68.00	J.61	41.5
075	Puddling furnace	1783	1824	41	2.43	2.2	4.5	10.12	0.25	2.5
J76	Electronic tubes	1906	1920	14	7.14	4.E	6.8	31.28	2.23	69.8
077	Integrated circuits	1958	1961	3	33.33	3.2	6.8	21.76	7.25	157.8
078	Microprocessor	1969	1971	2	50.00	3.2	6.8	21.76	10.88	236.7
079	Kanatophone	1298	1975	37	2.70	3.2	6.8	21.76	0.59	12.8
190	Rupata elecko	107/	1050	25	4 00	10 0	1 4	44 00	1 9/	9/ 4
0.00		407/	1737	20	4.00 5.00		4.0	71 20	4 8 4	
231	Lement	1524	1044	20		4.5	0.0	31-23	1.30	40.0
102	Colour film	1914	1935	21	4.70	2.2	5.2	7.04	0.34	2.4
292	Space travel	1923	1957	- 34	2.94	4.6	6.8	31.28	0.92	28.8
J 84	Typewriter	1864	1873	9	11.11	2.2	3.2	7.04	0.78	5.5
085	Air compress.building	1917	1956	39	2.56	2.2	3.2	7.04	0.18	1.3
386	Tyres with air compr.	1345	1322	43	2.33	2.2	3.2	7.04	0.16	1.1
087	Electric steel-making	1830	1902	22	4.55	4.4	4.6	21.16	0.96	20-3
182	Paper from wood	1844	1845	21	4 76	2 2	4.6	10.12	0.48	4.9
000	Contineus stoolmaking	1077	10/ 2	21	4.74	· · · ·	1 0	2 20	0.10	0 2
2027	Continous steermaking	1761	1740	70	4.10	2		7 70	0.10	0.2
090	Cotton picker	1724	1041	25	2.30	2.2	1.5	3.30	0.09	0.5
091	Fluorescent lamp	1852	1934	82	1.22	6.5	4.6	31.28	0.38	11.9
09Z	Insuline	1839	1922	33	3.03	4.ć	3.2	14.72	0.45	6.6
093	Automatic gears	1904	1939	35	2.30	2.2	2.2	4.34	0.14	0.7
094	Combustion engine	1360	1886	26	3.85	6.8	6.8	46.24	1.77	81.8
395	Electric railway	1379	1895	15	ć.25	3.2	4.6	21.76	1.36	29.6
196	Transformers	1831	1885	54	1.85	4 4	4 - 6	21,14	0.30	8 7
397	Sulphumic acid prod	1810	1275	54	1 7 9	4 4	U	31 29	0.56	17 5
702	Joannite Joannite	19/7	1047	22	1 1 7	→• ⊊ /. 4	v•0 ∠ a	74 30	4 74	11.17
070	Disamit re	1344	1007	23	4.37	4.0	0.0	31.20	1.30	46.3
999	clectrolyse	1/39	1337	95	7.92	10.0	4.6	40.00	0.47	21.0
100	Couble-floor railway	1938	1951	13	7.69	2.2	1.5	3.30	Ū.25	0.8
101	NC-machines	1930	1748	18	5.56	4.6	3.2	14.72	0.82	12.1
102	Steamer	1707	1809	102	C.98	3.2	6.8	21.76	0.21	4.6
103	Water turbine	1327	1890	63	1.59	4.6	4.6	21.16	0.34	7.2
104	Steel concrete	1377	1902	25	4.00	2.7	4 - 6	10.12	0_40	4.0
105	Urban gas	1700	1877	34	2_04	4.4	6.8	31,28	0.92	28.8
104	Synthesis of Indico	1875	1000	25	4.00	6.8	3.7	21.74	0.87	18 0
	Alurusata di Tuntin	1.1.1	1766	ر _	- .00	0.0	202	21010	0.01	1067

				_				.		
107	DDT	1939	1942	- 5	33.30	4.ć	4.6	21.10	7.05	149.2
108	Strentomycine	1939	1944	5	20.00	4.6	4.6	21.16	4.23	89.5
100		1020	10/7	47	7 4/		1 4	21 14	4 5 4	77 0
109	Jer engine	1929	1943	14	f 🖬 1 4	4 . C	4.0	61.10	1.01	22.0
110	Cellophane	1900	1926	- 26	3.85	2.2	3.2	7.04	0.27	1.9
111	Greating	1912	1975	23	4.35	2 2	4 6	10.12	0.44	4.5
		4000			4		4.0	74 50		4 7 0 0
112	linematoçraphy	1565	1875		14.24	4.C	0.8	21+28	4 . 47	139.8
113	Safety matches	1305	1366	- 61	1.69	2.2	3.2	7.04	0.12	0.8
11.	Conting fot	1 2 1 1	1227	71	1 / 1	2 7	~ ~	6 86	0 07	ר ח
114	COUNTING THE	1311	1995	· •			2		0.01	
115	Soda works	1791	1861	70	1.43	2.2	4.5	10.12	0.14	1.4
11.	Wolding by Acotylene	18.2	1892	31	3.33	4.6	3.2	14.72	0.49	7.2
110	Weiding by Acetylene	40/0	4.000					74 74	0 / 9	107
117	Synthetic fertilizers	1340	1385	4 5	2.22	ء د	0.0	21.70	0.45	10.4
113	Preservatives	1839	1873	- 34	2.94	2.2	4.6	10.12	0.30	3.0
110	latitovinos	1377	1894	17	5.28	4.6	4.6	21.16	1.24	26.3
117	ANTITUXINGS	1 37 7	1014		1.00		7.0	4/ 77	0 20	
120	Chloroforme	1331	1364	22	1.09	2.2	4.0	14.72	0.20	4.0
121	Jodoforme	1922	1880	53	1.72	3.2	4.6	14.92	0.25	3.7
122	Veronal	1863	1382	19	5.26	3.2	4.5	14.72	0.77	11.4
4 7 7		4267	42.39	, e	2 2 2 2	7 7 3	7 7	10 2/	3 77	2 7
123	Aspirin	1000	1070	42	C • C C	2.2	5.2	10+24	0.20	2.5
124	Antipyrín	1323	1883		1.02	ے وک	ے د د	16.24	0.19	1
125	aaking-powder	1764	1856	92	1.09	3.2	3.2	10.24	0.11	1.1
12.	Discton of Danie	1750	1852	102	0.98	3.2	3.2	10.24	0.10	1.0
4 2 7	Flaster of Faris	4077	4 157	4 4	4 75	7 7	1 4	1/ 77	0 22	17 5
12(Çinerama	1421	1433	10	0.25	3.2	4.0	14.76	0.72	
123	Synthetic Alcaloids	1344	1385	41	Z.44	3.Z	3.2	16.24	0.25	2.0
129	Refined steel	1771	1856	75	1.33	3.2	4.6	14.72	0.20	2.9
475		1007	1027	7.1	7 27	7 3	1 4	1/ 72	0 47	7 0
120	Continous Foling	1974	1763	1	3.23			14416		4 0
131	Crease=resist.fabrics	1996 -	1932	26	3.85	2.2	3.2	7.04	0.27	1.9
132	Inductor	1831	1346	15	6.67	4.6	3.Z	14.72	0.98	14.4
177	Jolland wind	1773	1870	47	2 13	<u> </u>	3.2	21.76	0.46	10.1
133	KOIIGU WING	4747	4704		4 70		J•2	4/ 70	0 4 9	7 4
134	Blast furnace	1(1)	1796	83	1.20	2.2	4.0	14.72	0.10	2.0
135	Cruncible cast steel	1740	1311	- 71	1.41	4.6	4.6	21.16	0.30	6.3
136	Telegraphy	1793	1833	43	2.33	10.0	6.3	68.00	1.58	107.5
477		17/0	1210	70	1 27	4 9	7 7	21 74	1 78	6 C
13(Lead-chamber-process	1740	1017			0.0	5.2	21.70	0.20	45.0
133	Pharma-fabrication	1771	1327	62	1.61	4.C	5.5	31.25	0.50	15.8
137	Chinin-fabrication	1790	1820	30	3.33	3.2	4.6	14.72	0.49	7.2
140	Hand nubber	1232	1852	20	5.00	3.2	4.6	14.72	0.74	10.8
4/4	Celévesbloset-	1777	4074		1 95	7 7	1 4	1/ 72	0.27	
141	Callumentorate	1777	1031		1.03	2.6	4.0	14 - 7 -	0.27	
142	Electrodyn. measuring	1745	1846	101	C.99	10.C	0.8	68.00	0.07	42.8
143	Lead accumulator	1780	1859	79	1.27	10.0	6.8	68.00	0.86	58.5
1.4.4	Supano	1820	1267	47	2.13	4.4	4-6	21.16	0.45	9.5
4 / 2	C the trans	4077	40.0	7	2 7 2	40.0	7 7	72 30	0 00	
142	commutator	1000	1009	20	2.13		3.2	32.00	0.07	20.4
14ó	Grum rotor	1785	1872	87	1.15	10.Ç	3.2	32.00	0.37	11.8
147	Electric locomotive	1841	1879	33	2.63	10.0	4.6	46.00	1.21	55.7
1.2	Cable	1 2 2 1	1 8 2 2	Á 2	1 61	10 0	4 6	44 00	0 74	34 1
4 4 3		42(0	4000			40.0	7 7	70.00	0 45	20.0
149	Arc welding	1849	1373	49	2.04	10.0	3.2	32.00	0.03	20.9
150	Electric welding	1841	1386	45	2.22	10.C	3.2	32.00	0.71	22.8
151	Meltin: by induction	1360	1391	31	3.23	10.0	3.2	32.00	1.03	33.0
1 2 3		12//	1000	.,	2 27	7 7	7 7	10 24	0.27	2 /
122	Electric counter	1 3 4 4	1366	44	2.21	2.0	3.2	14.24	0.23	2 • •
153	High volt. isolation	1897	191C	13	7.59	5.2	4.6	14.72	1.15	10.7
154	Holography	1343	1958	10	16.00	4.6	4.6	21.16	2.12	44.8
155	Maser	1953	1960	7	14,23	10.0	3-2	32.00	3,20	102-4
457		1 1 5 3	1040	1 0	10 00		/ 4	71 14	2 1 2	11 9
120	video-tape recorder	1 4 2 2	140.0	10	10.00	4 • C	4.0	21.10	2.12	44.0
157	Laser	1953	1962	- 4	25.00	10.0	4.6	46.00	11.50	529.0
153	16334 bit R4M	1973	197c	3	33.33	3.2	4.5	14.72	4.91	72.2
150	láthit micronnocass	1973	1273	2	50 00	3 7	4 6	1/ 72	7 36	109 3
7 . 7	TC DIC MICHOPHOCESS.	10.7	4074				7.0	74 72	1 1 2	57.4
100	Electronic calcul.	1992	1971		1 1 • 1 1	2.2	0.0	21.79	2.42	52.0
101	Quartz watches	1962	1970	3	12.50	3.2	5.8	21.76	2.72	59.2
102	Microcumputar	1972	197 c	4	25.00	3.2	6.3	21.76	5.44	118.4
1	Tenerictes andie	105	1200	í.	25 0.0		A 2	21 74	5 1.1	112 /
100	Transfacor Lagio	1 - 3 -	1730	4	23.30	3.4	5.5	<u> </u>	10 10	113.4
164	Ulttusion process	1956,	1958	2	20.00	5 . č	2.2	(.04	17.15	124•8
105	Micro moduls	1953	196C	2	50.00	3.2	3.2	10.24	5.12	52.4
100	Planar process	1959	1961	Ī	50.00	3.2	3.2	10.24	5.12	52.4
147	Taidauu	12.4	1 1 4 7	5	50.00	7 7	7 7	10 2/	5 4 7	57 /
10(THTTEXY	1-01	1702	2		2.4	2.2		2014	100 -
103	Transistor=laser	1962	7964	2	50.00	4.ć	3.2	14.72	1.36	108.5
109	Minicomputers	1965	1968	3	33.33	4.4	4.5	21.16	3.41	72.2
177	Slidini carriane	1741	1794	5 3	1.30	4 - 4	4.5	21.16	0,40	3-4
174	terig terifig⊽ Albanistis h= t=1-ser	1.7.7	1727		3 54		7.0	1/ 77	2.70	4 2
171	Automatic Dand-loom	1743	1/24	22	4.00	4.0	2.4	14 • 7 2	9.44	0.2
172	Carturight's loom	1737	1320	33	3.33	4.ć	5.8	57.28	0.95	29.6
173	whithey's method	1735	1310	25	4.00	3.2	0.3	21.76	0.87	18.9
17.	lacquard loom	1 3.14	1342	60	2 50	0.8	4.4	71, 78	0.78	24-5
1.1.14	enedense Toom	1 1 1 1 4	1 7 4 4	<u>→</u> .7	1 1 1 1 1					

175	Lathe	1794	1345	51	1.96	3.2	5.8	21.75	0.43	9.3
17ó	Crilling mach.f.ming.	1856	1895	39	2.56	4.6	4.6	21.16	0.54	11.5
17?	Phonograph	1377	1387	10	10.00	4.ć	4.6	21.16	2.12	44.8
178	Coals whisks	1332	1383	51	1.96	4.ć	3.2	14.72	0.29	4.2
179	Tractor	1890	1914	24	4.17	4.ć	5.8	31.28	1.30	40.8
130	Accounting machine	1320	1392	72	1.39	4.ć	4.6	21.16	0.29	6.2
121	Holing machine	1869	1901	32	3.13	4.ć	3.2	14.72	0.43	6.8
132	Conveyor belt prod.	1906	1913	7	14.29	4 . ć	10.0	46.00	6.57	302.3

REFERENCES

- Anderson, T.W. 1971. The Statistical Analysis of Time Series. New York: Wiley and Sons.
- Dummer, G.W.A. 1977. Electronic Inventions 1747-1976. Oxford, New York, Toronto, Sydney, Paris, Frankfurt: Pergamon Press.
- Forrester, J.W. August 1981. Innovation and Economic Change. Found in *Futures.* Vol. 13, No. 4. United Kingdom: Oakfield House.

Hannan, E.J. 1970. Multiple Time Series. New York: Wiley and Sons.

- Haustein, H.-D. 1975. Die Proportionalitaet der technischen Basis in Sozialismus. Berlin (East): Akademie Verlag.
- Haustein, H.-D., H. Maier, and Uhlmann. 1981. Innovation and Efficiency. RR-81-7. Laxenburg, Austria: International Institute for Applied Systems Analysis.
- Hoffman, W.G. 1955. British Industry 1700-1950. Oxford: Basil Blackwell.
- Kleinknecht, A. 1979. Innovation, Accumulation, and Crisis (in German). Berlin (West): Prokla 35.
- Kleinknecht, A. 1980. Ueberlegungen zur Renaissance der "langen Wellen" der Konjunktur (Some thought on the renaissance of long waves). In Historische Konjunkturforschung. Stuttgart: Klett-Cotta.
- Kondratieff, N.D. 1926. Die langen Wellen der Konjunktur. Vol. 56. Tuebingen: Archiv fuer Sozialwissenschaft und Sozialpolitik.
- Kuczyuski, J. 1967. A World Survey of the Situation of Workers (in German). Berlin (East): Akademie Verlag.
- Kuczynski, Thomas. 1978. Spectral Analysis and Cluster Analysis as

Mathematical Methods for the Periodization of Historical Processes. Paper for the 7th International Congress on Economic History. Edinburgh.

- Marchetti, C. 1980. Society as a learning system: Discovery, invention, and innovation cycles revisited. *Technological Forecasting and Social Change*. Vol. 18. Pp. 267-282.
- Marx, K. 1963. Das Kapital. Marx-Engels-Werke Bd. 25. P. 506. Berlin: Dietz Verlag.
- Mensch, G. 1975. Das technologische Patt (Statemate in Technology). Frankfurt am Main: Umschau Verlag.
- Mitchell, B.R. 1975. *European Historical Statistics 1750-1970*. London: The Macmillan Press Ltd.
- Monthly Bulletin of Statistics 1975-1981. United Nations. Vol. 30-35. New York: UN Statistical Office.
- Schilling, H.-D. and R. Hildebrandt. 1977. Primary energy--electrical energy (in German). *Raw Materials Economy International*. Vol 6. Verlag Glueckanf Gmbh Essen.
- Schmookler, J. 1966. Invention and Economic Growth. Cambridge: Harvard University Press.
- Schumpeter, J.A. 1939. Business Cycles. Vol. 2. New York: McGraw Hill.
- Technology Assessment & Forecast. 1977. Seventh Report March 1977. US Department of Commerce. Washington, D.C.: Patent and Trademark Office.
- Tinbergen, J. 1981. Kondratiev cycles and so-called long waves: The early research. *Futures*, Vol. 13. No. 4. August.
- Varga, E. 1937. World Economic Crises 1848-1935 (in Russian). Moscow: Ogis.