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Abstract: Hydrofluorocarbons (HFCs) are widely used in refrigeration, air conditioning,
heat pumps (RACHP), and various other applications such as aerosols, fire extinguishers,
foams, and solvents. Initially, HFCs were adopted as the primary substitutes for ozone-
depleting substances (ODSs) regulated under the Montreal Protocol. However, many HFCs
are potent greenhouse gases, and as such subject to a global phasedown under the provi-
sions of the Kigali Amendment to the Montreal Protocol. Managing the refrigerant bank of
ODSs and HFCs throughout the equipment’s lifecycle—referred to as Lifecycle Refrigerant
Management (LRM)—presents a significant challenge but also a significant climate action
opportunity. LRM includes the leak prevention, recovery, recycling, reclamation, and
destruction (RRRD) of refrigerants. This study employed the GAINS modeling framework
to assess the ozone and climate benefits of LRM. The findings indicated that implementing
robust LRM practices during the use and end-of-life stages of RACHP equipment could
reduce ODS emissions by approximately 5 kt ODP (Ozone Depletion Potential) between
2025 and 2040, and HFC and hydrochlorofluorocarbon (HCFC) emissions by about 39 Gt
CO2e between 2025 and 2050. The implementation of robust LRM measures in conjunction
with the ongoing phasedown of HFCs under the Kigali Amendment can yield substantial
additional climate benefits beyond those anticipated from the HFC phasedown alone.

Keywords: hydrofluorocarbons; Kigali Amendment; Montreal Protocol; ozone-depleting
substances; end-of-life; lifecycle refrigerant management; GAINS model

1. Introduction
Hydrofluorocarbons (HFCs) are currently the most commonly used refrigerant gases

in refrigeration, air conditioning, and heat pump (RACHP) systems. Additionally, HFCs
are used as solvents in industrial processes, fire-suppression agents, foam-blowing agents,
aerosol propellants, and in Metered Dose Inhalers (MDIs) [1,2]. HFC emissions have in-
creased significantly in recent years [3–5] primarily in response to the increased demand for
cooling services in a warming world [6,7] and the phaseout of ozone-depleting substances
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(ODSs), such as chlorofluorocarbons (CFCs) and hydrochlorofluorocarbon (HCFCs), under
the Montreal Protocol [8,9]. Many HFCs are potent greenhouse gases (GHG) with a global
warming potential (GWP) up to 14,600 times that of carbon dioxide (CO2) per mass unit [10]
over a 100-year time horizon.

The Montreal Protocol on Substances that Deplete the Ozone Layer has already gener-
ated significant climate benefits by phasing out ODS production and consumption [11,12],
leading to a partial recovery of the ozone layer [13]. By limiting ODSs, the Protocol and
its amendments are projected to reduce the global temperature increase by as much as
2–3 ◦C [14,15]. The Kigali Amendment (KA) to the Montreal Protocol is an international
agreement to gradually reduce the production and consumption of HFCs [16]. If imple-
mented fully, the KA is projected to achieve substantial avoided warming (0.2 to 0.4 ◦C) by
the end of this century [13,16]. However, achieving the goals of the Paris Agreement of lim-
iting warming to 1.5 ◦C requires even more ambitious measures [17,18], as the current KA
commitments are not enough to fully align the fluorocarbon sector with this trajectory [8].

While phasing down/out the production and consumption of fluorocarbons is a crucial
step, this alone cannot effectively reduce atmospheric refrigerant emissions. High-GWP
refrigerants continue to leak during equipment operation and are released at the end of
their lifespan, thereby limiting the overall impact of such measures [19]. ODS banks are
decreasing in volume because these chemicals are being emitted at a faster rate than they
are being replenished through the acquisition of new equipment. However, the overall
size of the global refrigerant bank is increasing significantly due to the rapid proliferation
of RACHP equipment that predominantly relies on high-GWP HFCs. While the KA may
help slow the growth of high-GWP HFCs in the refrigerant bank, the industry’s gradual
transition to lower-GWP refrigerants is unlikely to significantly reduce operational leakage
rates and end-of-life (EOL) loss rates. As a result, managing ODS and HFC banks will
continue to pose challenges beyond 2050 [20]. Even though the KA makes significant strides
in controlling the amount of new high-GWP HFCs entering the global market, much of the
forward-looking climate and ozone protection opportunities arise from reducing emissions
from the current and future installed bank of HFCs and ozone-depleting substances [21,22].

1.1. Lifecycle Refrigerant Management

Lifecycle Refrigerant Management (LRM) encompasses a set of strategies to reduce
refrigerant emissions from equipment, and includes leak reduction, recovery, recycling,
reclamation, and destruction, as illustrated in Figure 1 [23–25]. Effective LRM strategies
minimize the environmental impact of refrigerants by reducing emissions of high-GWP
and ODS refrigerants [19]. Additionally, LRM provides a comprehensive approach that
benefits the performance and efficiency of RACHP systems [24]. LRM has also emerged as a
compelling means of maximizing the climate benefits expected from the KA by preventing
lifetime and EOL emissions [21,26,27], and for further accelerating the HFC phasedown
under the Montreal Protocol [8,28] by reducing the necessity for new virgin production
through fluorocarbon reuse [29].

With the adoption of the KA, the Montreal Protocol has enhanced its climate impact by
initiating the gradual reduction of HFC production and consumption to mitigate the climate
effect of these potent GHGs. Several parties have already implemented LRM policies and
strategies to comply with the Montreal Protocol and Paris Agreement [25,30–33]. For
instance, in Australia, technicians must recover and safely dispose of refrigerants, while
importers of bulk refrigerants and pre-charged equipment must participate in a product
stewardship program [30]. The U.S.’s Clean Air Act [31] and similar EU regulations [32–34]
mandate refrigerant recovery, recycling, and reclamation. Japan’s Fluorocarbon Recovery
and Destruction Act also covers the entire lifecycle of fluorocarbons [35]. In 2017, Canada
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issued its Regulations Amending the Ozone-Depleting Substances and Halocarbon Alternatives
Regulations (SOR/2020-177), which requires the proper destruction or recovery for recycling
and reclamation of HFCs [36]. Similarly, in Norway, regulations concerning the handling
of waste refrigerants post-recovery from products and equipment are outlined in the
national waste regulation directive, which addresses collection, recycling, destruction,
export, and other aspects related to all types of waste [37]. Scaling up and promoting the
global adoption of these LRM measures could substantially mitigate both short-term and
long-term emissions from the existing refrigerant bank.

Sustainability 2025, 17, x FOR PEER REVIEW 3 of 20 
 

while importers of bulk refrigerants and pre-charged equipment must participate in a 
product stewardship program [30]. The U.S.’s Clean Air Act [31] and similar EU 
regulations [32–34] mandate refrigerant recovery, recycling, and reclamation. Japan’s 
Fluorocarbon Recovery and Destruction Act also covers the entire lifecycle of 
fluorocarbons [35]. In 2017, Canada issued its Regulations Amending the Ozone-Depleting 
Substances and Halocarbon Alternatives Regulations (SOR/2020-177), which requires the 
proper destruction or recovery for recycling and reclamation of HFCs [36]. Similarly, in 
Norway, regulations concerning the handling of waste refrigerants post-recovery from 
products and equipment are outlined in the national waste regulation directive, which 
addresses collection, recycling, destruction, export, and other aspects related to all types 
of waste [37]. Scaling up and promoting the global adoption of these LRM measures could 
substantially mitigate both short-term and long-term emissions from the existing 
refrigerant bank. 

 

Figure 1. Flowchart of LRM processes, emissions, and activities. Note: Flowchart does not include 
GHG emissions from fluorocarbon manufacturing, nor the reclamation or destruction processes. 

1.2. Literature Review—Current Status of LRM 

LRM plays a vital role in mitigating ozone depletion by preventing the release of 
ODSs into the atmosphere. Although the Montreal Protocol has advanced the phaseout of 
most ODSs, these substances remain in use within legacy equipment worldwide [1]. 
Leakage from ODS refrigerants, caused by factors such as wear and tear, improper 
installation, and insufficient maintenance, is a significant source of emissions and ozone 
layer damage [19–21,38]. Regular monitoring and timely repairs are critical to reducing 
these risks and safeguarding both the ozone layer and the climate. In addition, enhancing 
the EOL management of ODS-containing products offers an opportunity to further 
mitigate the environmental impact of remaining ODS banks [21]. Refrigerants recovered 
from equipment should be either reused—through recycling (removal of impurities from 
single component refrigerants) or reclamation (removal of impurities and reconstitution 
of blended refrigerants to virgin specifications)—or destroyed to permanently eliminate 
their environmental harm. These key practices are central to effective LRM. While reusing 

Figure 1. Flowchart of LRM processes, emissions, and activities. Note: Flowchart does not include
GHG emissions from fluorocarbon manufacturing, nor the reclamation or destruction processes.

1.2. Literature Review—Current Status of LRM

LRM plays a vital role in mitigating ozone depletion by preventing the release of
ODSs into the atmosphere. Although the Montreal Protocol has advanced the phaseout
of most ODSs, these substances remain in use within legacy equipment worldwide [1].
Leakage from ODS refrigerants, caused by factors such as wear and tear, improper in-
stallation, and insufficient maintenance, is a significant source of emissions and ozone
layer damage [19–21,38]. Regular monitoring and timely repairs are critical to reducing
these risks and safeguarding both the ozone layer and the climate. In addition, enhanc-
ing the EOL management of ODS-containing products offers an opportunity to further
mitigate the environmental impact of remaining ODS banks [21]. Refrigerants recovered
from equipment should be either reused—through recycling (removal of impurities from
single component refrigerants) or reclamation (removal of impurities and reconstitution
of blended refrigerants to virgin specifications)—or destroyed to permanently eliminate
their environmental harm. These key practices are central to effective LRM. While reusing
refrigerants promotes a circular economy, destruction ensures their permanent removal
from the ozone and climate equation [20].

The Montreal Protocol has encouraged the environmentally sound destruction of sur-
plus or contaminated ODSs and HFCs, but has only mandated the destruction of HFC-23
generated as a by-product of HCFC-22 production [12,39], and even then only “as practical”.
Mandating the destruction of substances that are not under a phaseout can lead to perverse
outcomes; however, it underscores the critical importance of robust leak prevention and
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recovery practices to prevent their release. Historically, RRRD practices of ODS manage-
ment have not occurred consistently during operational servicing or at equipment EOL,
especially for small residential equipment and in Article 5 parties (primarily developing
countries) to the Montreal Protocol.

The annual quantity of ODS-containing equipment and foams reaching end-of-life is
estimated to be 250–400 kt (approximately 0.5–0.8 Gt CO2e) between 2020 and 2050 [38],
with peak volumes anticipated in the mid-2030s. Additionally, the stockpile of HCFCs and
HFCs requiring management is expected to grow until these substances are fully phased
out. Small commercial and residential RACHP systems are particularly prone to high EOL
refrigerant loss rates. According to Theodoridi et al. [24], 100% of recoverable refrigerants
from small RACHP equipment at EOL can be lost if barriers to effective refrigerant recovery
are not addressed.

In recent years, LRM has drawn attention as a vital climate solution beyond the ODS
phaseout and HFC phasedown efforts [21,24]. New studies support previous assessments
that the decline in ODS emissions due to compliance with the Montreal Protocol avoids
global warming of approximately 0.5–1.0 ◦C by mid-century compared to an alternative
scenario with an uncontrolled increase in ODSs of 3–3.5% per year [13]. Additional envi-
ronmental benefits could be achieved by actions under the Montreal Protocol, by managing
the emissions of HFCs and/or implementing alternative low-GWP refrigerants. Recent
studies anticipate a substantial rise in atmospheric HFC levels in the coming decades, along
with rising demand for RACHP equipment and the ongoing HCFC phaseout [4,5,40,41],
portending negative repercussions for the global climate [42]. The KA phases down the
consumption and production of high-GWP HFCs and constitutes perhaps the single most
significant contribution to keeping warming to 1.5 ◦C to date [16]. Achieving complete
adherence to the KA is projected to prevent a temperature rise of 0.3–0.5 ◦C by 2100 [13].
Notably, this estimation does not account for the impact of HFC-23 emissions.

In 2022, Theodoridi et al. [24] estimated that the implementation of LRM measures
could determine the fate of 91 Gt CO2e by 2100, approximately equivalent to three years’
worth of emissions from the global energy sector [24]. In addition to ratifying and imple-
menting the Kigali Amendment, parties can achieve more HFC mitigation through various
methods: an accelerated phasedown schedule [8]; collecting and destroying HFCs from
EOL equipment [43]; reducing HFC refrigerant leaks through better RACHP equipment
design, manufacturing, and servicing; and replacing older inefficient equipment [2]. Ac-
cording to the Global Cooling Watch Report 2023 [44], additional policy measures, surpassing
the objectives outlined in the Kigali Amendment, can expedite the phasedown of HFCs
by adopting low-GWP technologies in new equipment and improving LRM to minimize
leakages and EOL emissions [21,44]. This could potentially halve HFC emissions by 2050
compared to the KA’s schedule [1]. Rapidly transitioning away from high-GWP HFCs,
together with improving refrigerant management and collection, and the destruction of
HCFCs and HFCs, could avoid emissions in the order of 50 Gt CO2e through 2060 [13,45].

In 2012, approximately 60% of newly produced HFCs were estimated to be used for
servicing or “topping up” leaks in RACHP equipment, while the remaining 40% was allo-
cated for filling new equipment [46]. By implementing LRM measures, emissions from the
installed refrigerant bank can be significantly reduced [47–49], conserving the refrigerants
in use and decreasing the demand for virgin production. However, reclaimed refrigerants,
when emitted, have the same adverse effects on the ozone layer and climate as virgin
refrigerants [21]. Therefore, robust leak management is critical to complement recovery and
reclamation efforts. Recovered refrigerants can also be destroyed, permanently preventing
their release into the atmosphere. In instances where recycling or reclamation is feasible
and there is market demand for reused HFCs, these options are generally more environ-
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mentally favorable than destruction. A lifecycle assessment by Yasaka et al. [29] found
that reclamation or recycling typically results in lower emissions compared to destruction.
However, logistical challenges (e.g., lack of local reclamation facilities), technical issues
(e.g., contaminated or complex refrigerant mixtures), or environmental considerations may
necessitate destruction in certain cases.

The Technology and Economic Assessment Panel (TEAP) has assessed and analyzed
the “banks” of controlled substances in use, in collaboration with the Intergovernmental
Panel on Climate Change (IPCC) in 2005 [50], and the Scientific Advisory Panel (SAP)
in 2022 [13]. The 2022 Assessment Report of the Medical and Chemical Technical Options
Committee (MCTOC) of TEAP [38] documents the ongoing efforts to maintain ODS/HFC
bank data and estimates by GIZ Proklima [51], providing valuable insights into past and
future opportunities for climate and ozone benefits through LRM. In 2022, the active bank
contained around 6 million tons (Mt) of ODSs and HFCs, equivalent to 16 Gt CO2e [38].
This amount represents approximately 30% of global GHG emissions (53.8 Gt CO2eq) in
2022 [52]. Active global ODS banks of the five most common ODSs (CFC-11, CFC-12, HCFC-
22, HCFC-141b, and HCFC-142b) amount to 3.2 Mt, equivalent to 9.9 Gt CO2e in 2022 [38].
Moreover, active HFC banks in the RACHP sector, which is the predominant usage of
HFCs, are estimated at 2.8 Mt in 2022 and 3.9 Mt by 2030 [38]. While ODS banks have been
more concentrated in non-Article 5 parties (developed countries that are not considered
Article 5 countries are required to phase out ozone depleting substances more quickly than
Article 5 countries), HFC banks are currently more evenly distributed between non-Article
5 and Article 5 (developing countries that consume less than 0.3 kg of controlled substances
per capita per year are considered Article 5 countries. These countries are allowed to delay
compliance with control measures for ten years to meet their domestic needs) parties, and
are expected to become concentrated in Article 5 parties. Banks of ODS refrigerants will
diminish to relatively low levels by the early 2030s, including for HCFC-22 [38].

Existing stocks of fluorocarbons, or “banks,” pose a significant long-term climate
change risk [19,21]. While extensive research has been conducted on these banks and
their emissions [3–5,9,13,53–62], a comprehensive strategy to mitigate delayed emissions
remains elusive. For example, Velders et al. [9] simulated the banks and emissions of HFCs
from 1990 to 2050, allowing an assessment of the effectiveness of the Kigali Amendment
in reducing the climate impact of HFC emissions. Similarly, Purohit et al. [40] developed
multiple long-term scenarios (2005–2100) for HFC emissions under various levels of climate
policy stringency, also evaluating co-benefits such as electricity savings and reductions
in GHG and air pollutant emissions. The long-term consequences of delayed emissions
from these existing stocks are a major concern. To significantly enhance climate change
mitigation efforts and protect the environment for future generations, a focused approach
to mitigating delayed emissions is crucial. In a thorough analysis, Bai et al. [53] proposed a
pathway for China to achieve near-zero HFC emissions—both territorial and exported—by
2060. Although their research tackles emissions from banked HFCs [63], further studies are
required to explore ODSs and climate benefits associated with the effective management
of current and future HCFC and HFC banks at the global level. This study addresses the
potential incremental climate and ozone benefits associated with LRM and quantifies the
value of LRM as an additional strategy for reducing ODS and HFC emissions.

The structure of this study is as follows: Section 2 outlines the methodology used to
evaluate the ozone and climate benefits of LRM. Section 3 presents the results, detailing the
ozone benefits in terms of HCFC mitigation potential (expressed in ODP) achieved through
leakage prevention, recovery, recycling, and reclamation, as well as the climate benefits in
terms of HCFC and HFC mitigation potential (in Gt CO2e). Section 4 discusses additional
benefits associated with LRM. Finally, Section 5 provides the conclusion.
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2. Materials and Methods
The Greenhouse Gas–Air Pollution Interactions and Synergies (GAINS) model de-

veloped by the International Institute for Applied Systems Analysis (IIASA) has previ-
ously been used to produce detailed future scenarios for HFC emissions extending to
2100 [3,40,64], which have fed into climate models to assess potential impacts on global
warming [10,65–69]. This study employed the GAINS modeling framework to assess the
mitigation potential of LRM strategies. A brief description of the GAINS model is provided
in the Supplementary Information. For a full explanation of the GAINS model, please refer
to ref. [70,71]. Figure 2 illustrates the step-by-step process for modeling F-gas emissions
within the GAINS framework [3].
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The analysis begins with current HFC consumption levels, as reported to the United
Nations Framework Convention on Climate Change (UNFCCC) or estimated by the GAINS
model using a consistent methodology (see ref. [3]). Future HFC demand is then projected
based on factors such as population growth, economic development (GDP and sectoral
value-added), and climate conditions (cooling degree days), assuming a continuation of
HFC use in cooling applications [40]. To the extent that alternative technologies (i.e., low-
GWP alternatives) are already adopted due to existing national and regional regulations
(i.e., EU F-gas regulations), impacts are reflected in both historical HFC consumption levels
and in future baseline scenarios [40,64]. The pre-Kigali baseline scenarios provide a refer-
ence point for evaluating the necessity and potential impact of alternative technologies. The
mitigation scenarios developed in GAINS maintain equivalent levels of cooling services as
their respective baselines but substitute high-GWP HFCs with low-GWP alternatives and
adopt LRM measures such as leakage prevention and end-of-life recovery. The selection
and sequencing of technology adoption within specific sectors is determined by marginal
abatement cost curves [64]. These curves are used to identify the most cost-effective tech-
nologies for reducing fluorocarbon emissions and to assess co-benefits [40]. In addition,
species-specific emissions data, derived from the GAINS model, are utilized to assess
radiative forcing and climate impacts across various scenarios (Figure 2). For comprehen-
sive details regarding sectoral drivers, source-specific emission factors, and implemented
control policies, please consult the Supplementary Material of ref. [3].

This study commenced by evaluating the current and future emissions of HCFCs and
HFCs, utilizing the GAINS pre-Kigali baseline scenario as a reference point. The GAINS
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model was then used to project expected emissions with full Kigali Amendment compliance,
alongside the implementation of LRM strategies (i.e., leakage prevention and RRRD of
refrigerants) in regions with established regulations (i.e., Australia, EU, USA, Japan) prior
to the Kigali Amendment’s entry into force. Finally, a “Maximum Technically Feasible
Reduction” (MFTR) scenario was developed to investigate the potential for further emission
reduction by utilizing all existing best available technologies (BATs), in addition to current
regulatory measures including LRM, and a rapid transition to low-GWP refrigerants.

The GAINS model considers “Good Practices” as a control or abatement option that
encompasses a comprehensive set of measures: leakage prevention during use and recovery
of the refrigerant after EOL of the equipment [3,72]. In refrigerant management, monitoring
the effectiveness of leakage prevention and EOL processes is crucial for ensuring that
refrigerants are effectively captured and properly managed during both their use and
disposal, thereby preventing emissions. In this context, ‘removal efficiency’ of abatement
technologies refers to the effectiveness in reducing refrigerant leak rates during the equip-
ment’s operational life, as well as minimizing refrigerant losses during EOL processes. For
example, the removal efficiency of leakage prevention during equipment use is estimated at
20 to 50%, meaning that if robust leak prevention practices are adopted, average leak rates
can be reduced by 20 to 50%, depending on the type of equipment [72–76]. The removal
efficiency of servicing and equipment EOL recovery measures is considered to be higher,
ranging from 70% to 90% for RACHP technologies [72,73,77,78], as indicated in Table S1 of
the Supplementary Information. This study developed an alternative Lifecycle Refrigerant
Management (LRM) scenario to evaluate the technical mitigation potential for ODS and
HFC/HCFC emissions from leakage prevention and EOL recovery. This scenario assumes
that both Article 5 and non-Article 5 parties will implement good practice LRM measures
during the use and EOL phases of RACHP equipment.

In addition, implementing improved LRM practices—specifically the use of recycled
and reclaimed refrigerants—could result in approximately 4% further reduction [38] if
the recovered (and subsequently recycled or reclaimed) refrigerant displaces new (virgin)
refrigerant production and is not simply added to the supply of refrigerant. To evaluate
the ozone and climate benefits of LRM, this study explored three key aspects: preventing
leakage during equipment operation, ensuring effective refrigerant recovery at the end
of the equipment’s life, and replacing the use of virgin refrigerants with reclaimed or
recycled alternatives.

3. Results
As detailed in the previous section, the GAINS modeling framework was employed

to construct a pre-Kigali baseline and alternative scenarios. This facilitated an assessment
of the ozone and climate benefits associated with the implementation of effective LRM
measures. Figure 3 presents HFC/HCFC refrigerant emissions in the pre-Kigali baseline
and alternative lifecycle refrigerant management (LRM), Kigali Amendment (KA), and
Maximum Technically Feasible Reduction (MTFR) scenarios as discussed in Section 2
above. The baseline annual HFC emissions, prior to the KA to the Montreal Protocol, were
projected to increase from around 0.5 to 4.3 Gt CO2e between 2005 and 2050 [40]. The
estimated 2050 emissions align with the range (4.0–5.3 Gt CO2e) from Velders et al. [4].
It is important to note that current policies have lowered the anticipated 2050 emissions
from the initial estimate of 4.0–5.3 Gt CO2e by Velders et al. [4] to a reduced range of
1.9–3.6 Gt CO2e [9].

A full implementation of the Kigali Amendment could achieve a reduction of up to
92% in annual emissions compared to the pre-KA baseline in the mid-term (see Figure 3),
while the adoption of existing best available technologies under the MTFR scenario could
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lower emissions by over 99% relative to the pre-KA baseline by 2050. As shown in Figure 3,
the effective implementation of LRM measures could reduce annual HFC/HCFC emissions
by 44–48% between 2025 and 2050 under the LRM scenario. The following subsection
delineates the ozone and climate benefits derived from effective LRM strategies, contrasting
the pre-Kigali baseline and LRM scenarios.
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3.1. Ozone Protection Benefits of LRM

LRM can help to reduce ozone depletion by preventing the release of ODSs into the
atmosphere. Even though the phaseout of most ODSs under the Montreal Protocol is in
the advanced stages, ODS refrigerants are still being used in legacy equipment around the
world. In the past, commonly utilized HCFCs included HCFC-22 (mainly as a refrigerant),
in cooling applications. Even though new RACHP equipment is now prohibited from using
HCFC refrigerants in many parts of the world, the refrigerant banks still contain significant
quantities of HCFC-22 because, once installed, RACHP equipment can remain in use for
anywhere between 10 and 25 years, depending on the equipment type. Figure 4a presents
the ozone benefits in terms of HCFC mitigation using the pre-KA and LRM scenarios, pri-
marily in relation to HCFC-22, due to leakage prevention using the methodology outlined
in Section 2 above. Taking an Ozone Depletion Potential (ODP) of 0.055 for HCFC-22 [38],
effective leakage prevention is anticipated to yield cumulative reductions in HCFC emis-
sions totaling 1.6 kt ODP from 2025 to 2040 (Figure 4a). Figure S2a in the Supplementary
Information details the annual ozone benefits from leakage prevention during this period.

Figure 4b presents the ozone benefits in terms of HCFC mitigation due to EOL recov-
ery and the substitution of virgin refrigerant due to reclamation using the GAINS model
(see Section 2 above). The effective EOL recovery of refrigerants is anticipated to yield
cumulative reductions in HCFC emissions totaling 3.6 kt ODP from 2025 to 2040. Further-
more, implementing improved LRM practices through the displacement of new (virgin)
refrigerant could result in a further reduction of approximately 4% [38] if the recovered
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refrigerant displaces new refrigerant production and is not simply added to the supply of
refrigerant. As a result, the technical mitigation potential of RRRD is projected to reach
3.7 kt ODP between 2025 and 2040. Figure S2b in the Supplementary Information details
the annual ozone benefits from EOL measures during this period.
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3.2. Climate Change Mitigation Benefits of LRM

This section quantifies the potential reduction in global HFC and HCFC emissions
achievable through LRM best practices, as illustrated by a comparison of the pre-Kigali
and LRM scenarios (see Figure 3). Figure 5 illustrates the climate benefits achieved through
the mitigation of HCFC and HFC emissions via leakage prevention using the methodology
outlined in Section 2. This assumes the effective implementation of policies, measures,
and regulations for leakage prevention by both Article 5 and non-Article 5 parties. Ef-
fective leakage prevention considered under the LRM scenario is projected to result in
cumulative HFC/HCFC emissions reductions of 15.6 Gt CO2e from 2025 to 2050 relative to
the pre-Kigali baseline, as illustrated in Figure 3 above. Figure S3a in the Supplementary
Information details the annual HFC/HCFC mitigation from leakage prevention of RACHP
equipment during this period.
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Applying the methodology detailed in Section 2, Figure 6 depicts the climate advan-
tages arising from HCFC and HFC mitigation through EOL recovery. This assumes the
successful implementation of policies, measures, and regulations for leakage prevention
by both Article 5 and non-Article 5 parties. From 2025 to 2050, effective LRM practices
of refrigerant management at the EOL of RACHP equipment are projected to result in
cumulative reductions of approximately 23.4 Gt CO2e in HFC/HCFC emissions relative
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to a pre-Kigali baseline. Figure S3b in the Supplementary Information details the annual
HFC/HCFC mitigation from EOL measures of RACHP equipment during this period.
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4. Discussion
This study demonstrates significant potential for climate change mitigation through

the effective implementation of LRM strategies within the refrigeration, air conditioning,
and heat pump (RACHP) sector. As illustrated in Figures 5 and 6, implementing effective
LRM practices during the use phase and EOL of RACHP equipment could reduce HFC
and HCFC emissions by approximately 39 Gt CO2e between 2025 and 2050. Notably, EOL
measures and the substitution of virgin refrigerants via reclamation account for 60% of this
mitigation potential. Several Article 5 countries are currently formulating LRM policies and
measures targeting the EOL phase of equipment [21,47,79]. However, addressing leakage
prevention is just as essential, as it represents 40% of the overall mitigation potential.
Additionally, LRM practices are anticipated to reduce HCFC emissions by about 5 kt ODP
between 2025 and 2040, during the ongoing HCFC phaseout under the Montreal Protocol.
Our results reveal that implementing LRM measures could reduce annual HFC/HCFC
emissions by 44–48% from 2025 to 2050 compared to the pre-Kigali baseline scenario. LRM
still provides proportionately the same climate mitigation, even with an effective Kigali
Amendment-driven HFC phasedown. Therefore, prioritizing effective LRM is essential to
maximize the environmental benefits of the HFC phasedown under the Kigali Amendment
to the Montreal Protocol.

Enforcing LRM policies is challenging due to the large number of end-users, distrib-
utors, and independent contractors responsible for leak prevention, refrigerant recovery,
recycling, and reverse supply chains for destruction and reclamation. Various manda-
tory and voluntary LRM policies are implemented in many countries, but effective LRM
requires strong stakeholder support and adequate capacity, particularly for developing
reverse supply chains and training technicians. This support is less available in Article
5 countries. Additional factors to consider in policies and programs include complementary
policies related to safety and the safe handling/transportation of refrigerants.

For example, the European Union (EU) has established a comprehensive regulatory
framework for managing RACHP equipment, including mandatory inspections, stringent
leak detection protocols, and mandatory refrigerant recovery. To address the environmental
impacts of refrigerants, the EU has enacted a series of directives including the ODS, F-gas,
and WEEE (Waste from Electrical and Electronic Equipment) regulations [33,34,80,81],
which collectively cover CFCs, HCFCs, HFCs, and hydrocarbons. The evolving F-gas
regulation, now covering HFOs, highlights the EU’s proactive approach to promoting sus-
tainable cooling and heating solutions. Similarly, in the U.S., refrigerant leak reduction has
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been incentivized through vehicle emissions credits and the Green Chill Program [82–87],
which partners with the food retail industry to reduce refrigerant emissions. In Australia,
Refrigerant Reclaim Australia (RRA) manages a government-backed extended producer
responsibility program, legally requiring refrigerant recovery and funded by an industry
levy, successfully reducing leak rates [30]. In Article 5 countries such as China, regula-
tions require measures to prevent ODS leaks, with strict fines and mandatory monitoring
for non-compliance. Standards have been developed to address refrigerant leakage and
refrigerant recovery and recycling from mobile air conditioning (MAC) systems.

Most HFCs and some ODSs are considered short-lived climate pollutants (SLCPs),
chemicals with short atmospheric lifetimes and a high GWP. It is now well understood
that pairing decarbonization with the additional mitigation of SLCPs can slow the rate
of warming a decade or two earlier than decarbonization alone [10,88]. Growth in ODS
and HFC banks is fairly “front-loaded” in the next few decades, suggesting that mitigation
potential—and possible mitigation of near-term temperature rise—are immediate and criti-
cal. According to the MCTOC report [38], it is projected that within the current decade, the
predominant banks of ODS and HFCs will emerge from non-Article 5 parties, underscoring
the necessity of immediate management strategies. Therefore, there is a pressing need to
commence the development of LRM capacities and foster awareness now to address these
forthcoming challenges effectively and efficiently.

While RRR practices can prolong the life of existing equipment, they may also re-
sult in the continued use of inefficient systems. Additionally, recovered refrigerants may
not meet the necessary standards for reuse, creating challenges in recycling and reclama-
tion. Establishing and maintaining LRM infrastructure can be expensive, particularly for
smaller organizations and developing countries. Even with preventive measures in place,
refrigerant leaks may still occur. Article 5 countries may face difficulties in implementing
comprehensive LRM due to limited resources and technological gaps. Furthermore, com-
patibility issues and inconsistent regulations across regions can complicate the effective
implementation of LRM.

5. Additional Benefits of Lifecycle Refrigerant Management
5.1. Energy Efficiency

Refrigerant leakage in cooling equipment typically diminishes its energy efficiency [89–91].
While primarily focused on preserving the system’s designed efficiency, addressing leaks
in underperforming units can sometimes restore or even enhance their performance [91,92].
Minimizing refrigerant leaks can greatly reduce environmental impacts [93] while also
delivering significant energy savings [16,40,94]. This increases the viability of vital cold
chains for ensuring supply of food and medication in hot developing countries. For
example, DECC [95] observed that a refrigerant charge reduction of just 10%, due to leakage,
would lead to an equipment coefficient of performance (COP) reduction of about 3% in
heating mode and 15% in cooling operation. A major leak leading to undercharging by 40%
would reduce the COP by 45% in heating mode and 24% in cooling operation [95,96]. Kim
and Braun [97] estimated that a 25% decrease in refrigerant charge below “full” operating
charge can lead to a 16% increase in energy use. Thus, ensuring optimal charge and leak
tightness can help significantly reduce both direct and indirect GHG emissions over the
lifetime of the equipment. Optimal energy performance also results in environmental and
economic benefits due to a reduced cost burden on the consumer for electricity.

Previous TEAP Energy Efficiency (EE) Task Force reports have also shown that com-
bining HFC mitigation with energy efficiency would lead to substantial reductions in
cumulative GHG emissions between now and 2050 [1,38], and leaks are a major contributor
to low EE, especially in old/locally fitted equipment. Increased energy demand due to
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refrigerant leaks can, in turn, lead to greater air pollutant emissions from power plants of
sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter, all of which contribute
to adverse health and ecological impacts associated with poor air quality.

5.2. Circular Economy and Sustainability

From a holistic lifecycle emissions perspective, LRM practices, such as the reuse of
recycled/reclaimed refrigerants, have a lower carbon footprint compared to the new (virgin)
production of fluorocarbons. This is because some GHG emissions associated with the
production of new (virgin) fluorocarbons are avoided when existing gases are recovered
and reused. Even though there are GHG emissions related to recovery and reclamation,
the magnitude of those GHG emissions may be lower compared to virgin production.
Three recent studies estimated the lifecycle emissions of F-gas separation technologies and
compared those with the lifecycle emissions of virgin F-gas production. Their findings
indicate that the overall environmental load (or carbon footprint) for the blending and
separation technologies can be between 50% to 99% lower than virgin production [98,99].
Yasaka et al. [29] conducted a lifecycle assessment using actual plant data and found that
the GHG emissions associated with recovery and reclamation process were 80% lower than
the GHG emissions from the destruction and production of new (virgin) refrigerants. These
preliminary results are encouraging, but there is a larger need for full lifecycle assessments
to quantify the circular economy benefits of recovery, recycling, and reclamation.

5.3. Additional Benefits Beyond Ozone and Climate Protection

Apart from climate pollution or global warming, refrigerant releases can also con-
tribute, either directly or indirectly, to air pollution. Direct increases in air pollution can
occur when certain refrigerants that are classified as volatile organic compounds (VOCs) re-
act with other chemicals in the atmosphere to form harmful pollutants. For example, some
non-fluorinated refrigerants (e.g., hydrocarbons), as well as hydrofluoroolefins (HFOs),
can react with nitrogen oxides to form ground-level ozone, a major component of photo-
chemical smog [100,101]. While ODS and HFC refrigerants do not have a direct impact on
air quality, RACHP equipment operating with sub-optimal refrigerant charge due to leaks
results in inefficient operation and increased energy use. Increased energy demand due to
refrigerant leaks can, in turn, lead to greater air pollutant emissions from power plants of
sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter, all of which contribute
to adverse health and ecological impacts associated with poor air quality. Thus, LRM plays
a supporting role in minimizing direct and indirect air quality impacts.

LRM is a critical component to reduce ecosystem risks and protect the environment
from the harmful impacts of refrigerants. There are growing concerns about fluorocarbons
that fall under the definition of per- and polyfluoroalkyl substances (PFAS), as defined by
the Organization for Economic Cooperation and Development (OECD) in 2021 [102,103].
Even though there is currently a lack of consistent definitions and policies related to PFAS
across different geographies [104], LRM can help safeguard ecosystems and human health
for future generations by limiting the emissions of those new chemicals.

Managing refrigerants throughout their lifecycle can generate substantial employment
opportunities in both non-Article 5 and Article 5 parties. The LRM sector offers diverse
job opportunities, including roles such as refrigeration technicians for system installation
and maintenance, trained refrigerant reclaimers specializing in recovery and recycling, and
refrigerant auditors evaluating and optimizing management practices. As businesses and
governments increasingly recognize the importance of managing refrigerants responsibly,
the demand for skilled LRM professionals is expected to grow significantly in the coming
years. The adoption of lower GWP refrigerants, mandated by the Kigali Amendment,
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is also creating demand for professionals capable of handling these alternatives safely.
For example, the American Innovation and Manufacturing (AIM) Act [87] is projected to
create 150,000 U.S. jobs and generate nearly USD 39 billion in economic benefits annually
by 2027 [105].

When implemented with incentives or rebates for technicians, LRM can supplement
incomes for RACHP technicians. This might be especially valuable in Article 5 parties, in
which technician wages are low relative to the value of recovered refrigerant. The success of
LRM also relies on the upskilling of technicians across the world, many of whom currently
do not possess the skills and/or training to implement LRM best practices. Training and
certification, especially if financially sponsored by governments, multilateral agencies, or
equipment manufacturers, can provide much-needed workforce development, particularly
in Article 5 parties.

6. Conclusions
Lifecycle refrigerant management (LRM) is an important strategy for safeguarding

the ozone layer and addressing climate change. By preventing the release of ozone deplet-
ing substances (ODS) and hydrofluorocarbons (HFCs), LRM helps control downstream
emissions of controlled substances that are currently not covered under the Montreal Proto-
col. Implementing LRM at scale can also aid compliance with the Montreal Protocol, by
increasing volumes of recovered refrigerant that can then be reused. Reusing refrigerant in
large enough volumes could ease demand for new (virgin) refrigerant, helping to facilitate
the HFC phase down under the Kigali Amendment to the Montreal Protocol. A sufficient
supply of recycled and reclaimed refrigerant can provide additional supply, especially
for servicing only Article 5 parties. Eventually, environmentally sound destruction of
refrigerants will be necessary to permanently avoid emissions and to dispose of refrigerants
that cannot be reused. Ultimately, LRM aligns with the core objectives of the Montreal
Protocol: protecting the ozone layer and combating climate change.

Effective LRM is projected to reduce Hydrochlorofluorocarbon (HCFC) emissions
by 5 kt ODP between 2025 and 2040. This reduction is expected to be achieved through
effective leak prevention (1.6 kt ODP) and end-of-life recovery and reclamation (3.7 kt
ODP). The cumulative climate mitigation potential of HFC/HCFC emissions from 2025
to 2050 of effective LRM is projected to be 39 Gt CO2e, with 15.6 Gt CO2e through leak
prevention, and 23.4 Gt CO2e through RRRD. To achieve these benefits, governments and
businesses must prioritize leak prevention and implement RRRD strategies.

The distribution of refrigerant banks and availability trends at the end of their lifespan,
especially for HFCs, is shifting from being concentrated in non-Article 5 parties toward
a roughly even split between non-Article 5 and Article 5 parties by 2030. After 2030,
Article 5 parties will be the primary source of banks and opportunities for LRM in the
future. Therefore, Article 5 parties face an urgent need to prioritize the implementation of
comprehensive LRM to maximize the potential climate benefits. Likewise, it is crucial to
ensure that Article 5 parties maintain a focus on effective LRM, to maximize the long-term
climate benefits. Meanwhile, global cooperation and strong national policies are essential
to effectively manage ODS and HFC banks.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/su17010053/s1, Figure S1: The GAINS modeling framework; Figure S2:
Ozone benefits from HCFC mitigation (kt ODP) due to: (a) leakage prevention, and (b) end-of-life
recovery; Figure S3: HFC/HCFC mitigation (Mt CO2e) due to: (a) leakage prevention, and (b)
end-of-life recovery; Table S1: Emission removal efficiencies of leakage prevention and EoL recovery
of the cooling technologies.
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