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ABSTRACT This note presents the derivation of gen-
eralized Ambartsumian-Chandrasekhar X and Y func-
tions for stationary transfer in a plane-parallel slab. An
algebraic formula relating these functions to the usual
reflection function is also presented, together with the
appropriate generalization of the Chandrasekhar H-
equations for the semi-infinite medium. The planetary
problem will also be briefly discussed.

1. Problem statement

We consider the plane parallel slab H(a,r), r > a, having
boundaries z = a and z = r. The distribution of radia-
tion in the direction of increasing and decreasing z is
represented by I i(z), respectively. These quantities
take into account frequency, degree of polarization,
direction, and so forth. Thus, I+(z) take on values in a
reproducing cone K of nonnegative functions in a suit-
able separable Banach space B.
To each subsIab H(z,z'), (z,z') c (a,r), there is as-

sociated reflection operators R ±(z,z') and transmission
operators Q ±(z,z'), which assume values from the
Banach algebra (B of bounded linear operators acting in
B. The signs of + refer to illumination of the subslab
from the left and right, respectively (Fig. 1).
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FIG. 1. Plane-parallel slab.

In the medium, we assume |IQ± + R-|1 < 1 (no
fission) and Q-(z,z') -- I, R±(z,z') -s- 0 for z' z + 0.
We also assume the existence of the limits

T±(z) = lim Q(zz') [1]
Z'-2+O Z -

Z±(z) = lim R(,z')+
z'-*z+O z - z

In general, T 1, Z± are nonnegative operators. For an
homogeneous medium, T±, Z± are independent of z,
while for a locally isotropic medium, T+ = T- and
Z+= Z-.

On the medium H(a,r), let the flow Io+ be incident
from the left. Then consideration of the regimes on the
boundaries of the sub-slab H(z,z') shows that I+(z)
satisfy the equations (ref. 1):

d- = -A AIi + Z±(I+(z) + I-(z)),
dz [2]

I +(z) = Io + I -(r) = 0,

where A i(z) = T (z) + Z±(z).
In concrete transfer problems, the operators A ±(z),

Z±(z) are known and we are interested in methods for
determining RI and Q±.

2. Reflection, transmission, and X-Y operators

Consideration of Fig. 1 shows that for z' = r, we have

I-(z) = R(z)I+(z), R(z) =- R+(z, r). [3]
Substitution of [3 ] into [2 ] leads to the Cauchy problem
for the operator R:

-dR = Z-(z) - T-(z)R - RT+(z) + RZ+(z)R, [4]
dz

R(r) = 0.
Knowledge of R(z) allows us to simultaneously solve a

family of different problems with different values of a.
We determine I +(z) from the Cauchy problem

- = (Z+R - T+)I+, I+(a) = Io+,dz [5]

while I-(z) is determined from [3 ].
Since the pioneering work of Chandrasekhar (2) and

Ambartsumian (3), it is well known that, in some cases,
the solutions to the operator Riccati Eq. 4 may be ex-
pressed by an algebraic combination of lower-dimen-
sional operators, the so-called X and Y operators. Our
main result shows when this may be expected.
THEOREM 1. Assume the medium is homogeneous,

i.e., T±, Z± are independent of z. Further, assume
(i) dim range Z- = p < X

(ii) dim range Z+ =q < o

and that Z± are factored as Z- = MN, Z+ = UV, where
dim range N = p = dim domain M, dim range V = q =
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dim domain V. Then R admits the algebraic representation

T-R(z) + RT+(z) = Z- + XI(Z)X2(Z) - Y (Z)Y2(Z),
where Y1, Y2, X1, X2 satisfy the equations

dYi(z) = (T- - Xi(z)V)Yi, Y1(r) = -Al,
dz

dY2(z)
= Y2(T+ - UX2(Z))dz

dX2(z) - Y ydz

Y2(r) = N,

X1(r) = 0,

X2(r) = 0.

Proof: We follow the proof of ref. 4, which was given
for a special case of Eq. 4. Differentiate Eq. 4 with re-

spect to z. This yields the following homogeneous equa-
tion for the operator clR/dz:

d IdR) (T- RZ+)
dR

+
dR

(T+-Z+R)
dz ~dz dz dz

dRf = Z- = -SIN.

We make the definitions Xi(z) = RU, X2(z) = VR, and
use the representation

dR
dz = aMIN#,dz

where

da
= (T- XiV)a,

da - (T+ - UX2)
dz

a(r) = I,

(3(r) = I.

The theorem follows with Y1 = aM, Y2 = N(3.
Remarks: (i) For an isotropically scattering medium,

Z+ = Z- and T+ = T-, with TA being self-adjoint.
Thus, Y1 = Y2*, X1 = X2*, and the usual situation of a

single X and a single Y operator is recovered.
(ii) For slabs with a reflecting surface at z = r, the

Riccati Eq. 4 has a nonzero initial condition at z =7

say R(r) = F. If F is independent of z, the fore-
going arguments carry through, replacing assump-
tion (i) of the Theorem by (i') dim range [- (Z --

T-F - FT+ + FZ+F) ] < p < oo. For a specific applica-
tion of this case to an atmosphere bounded by a Lam-

bert law reflector, see ref. 5.
(iii) The finiteness of p and q is not essential. All that

is required is that Z+ and Z- project into lower dimen-
sional subspaces of B. However, for computational coin-
siderations, the finite case is the most appropriate.

3. Semi-infinite media

We now treat the case of a semi-infinite medium. In
order to derive an equation for the operators X1(-- o),
X2(-a), we utilize the following lemma:
LEMMA 1. Let P,A,Q be bounded linear operators of

B to B. Then

o(PAQ) = (Q* 0 P)u(A), [6]
where o: L(B,B) C(dim B)2 is the operator of "stack-
ing" the "columns" of an element of L(B,B), and 0 is
the usual tensor product of two operators.

Proof: Using the separability of B, the proof follows
by a coordinate-wise comparison of the left and right
sides of [6].
The result, which generalizes the Chandrasekhar H-

equation. for the semi-infinite medium, is

THEOREM 2. Let X1(-a ) = H1, X2(-a ) = H2.
Then H1 and H2 satisfy the equations

a(Hi) = (U* 0 I) (I 0 T-

+ (T+)* 0 I)-lo(Z- + HlH2),
u(H2) = (I 0 V) (I 0 T

+ (T+)* I-la(Z- + H1H2).
Proof: From the Riccati Eq. 4, we have

T-R(- a) + R(- oz)T+ = Z- + H1H2.
Applying o- to both sides of this equation and using the
identities

o(HI) = a(RU) = (U* (1I) a(R),

a(H2) = 0(VR) = (I 0 V)a(R),
the theorem easily follows.

Remarks: (i) Theorem 2 assumes that X' + 4j $ 0,
where { xi} are the characteristic roots of T- and {yjI
are the roots of (T+) *; (ii) in both Theorems 1 and 2,
considerable simplification occurs if Z- and Z+ are
self-adjoint, while T+ = T-*, since in this case Xi =
X,2 Y1 = Y2*, and H1 = H.*. This is the situation that
prevails in the classical plane-parallel, isotropic scatter-
ing, homogeneous case.
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