Proc. Nat. Acad. Sci. USA
Vol. 72, No. 3, pp. 1210-1211, March 1975

X and Y Operators for General Linear Transport Processes

(radiative transfer/atmospheric physics/scattering processes/Riccati operators/

dimensionality reduction)

J. CASTI

International Institute for Applied Systems Analysis, Laxenburg 2361, Austria

Communicated by S. Chandrasekhar, December 16, 197/

ABSTRACT This note presents the derivation of gen-
eralized Ambartsumian-Chandrasekhar X and Y func-
tions for stationary transfer in a plane-parallel slab. An
algebraic formula relating these functions to the usual
reflection function is also presented, together with the
appropriate generalization of the Chandrasekhar H-
equations for the semi-infinite medium. The planetary
problem will also be briefly discussed.

1. Problem statement

We consider the plane parallel slab II(a,r), r > a, having
boundaries z = a and z = r. The distribution of radia-
tion in the direction of increasing and decreasing 2 is
represented by I#*(z), respectively. These quantities
take into account frequency, degree of polarization,
direction, and so forth. Thus, I*(z) take on values in a
reproducing cone K of nonnegative functions in a suit-
able separable Banach space B.

To cach subslab II(z,2), (2,2') C(a,r), there is as-
sociated reflection operators R+(z,2’) and transmission
operators Q=*(z,2’), which assume values from the
Banach algebra ® of bounded linear operators acting in
B. The signs of = refer to illumination of the subslab
from the left and right, respectively (Iig. 1).
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F1c. 1. Plane-parallel slab.

In the medium, we assume |[|[@* + R%| < 1 (no
fission) and Q*(z,2’) > I, R*(z,2’) > O forz’ — z + 0.
We also assume the existence of the limits
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In general, T+, Z* are nonnegative operators. For an
homogencous medium, 7'+, Z+ are independent of z,
while for a locally isotropic medium, 7'+ T- and
Z+ =7~
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On the medium II(a,r), let the flow I,* be incident
from the left. Then consideration of the regimes on the
boundaries of the sub-slab II(z,2’) shows that I%(z)
satisfy the equations (ref. 1):

dI =

4+
dz

—A*E+ ZI*e) +17(), [2]

I+(Z) = 10+y I—(T) = O;

where A*(z) = T*(z) + Z*(2).

In concrete transfer problems, the operators A *(2),
Z%(2) are known and we are interested in methods for
determining R+ and Q=.

2. Reflection, transmission, and X-Y operators

Consideration of Fig. 1 shows that for 2’ = r, we have
I-(2) = R()I*(2), R(z) = R+(z,r). [3]

Substitution of [3]into [2]leads to the Cauchy problem
for the operator R:

% = Z-() — T-@)R — RT+() + RZ+()R, [4]
R(@r) = 0.

Knowledge of R(z) allows us to simultaneously solve a
family of different problems with different values of a.
We determine I +(z) from the Cauchy problem

daI+

—— = (Z*R — THI+,

I+(a) = I,*
dz (a) 0,

(5]
while I —(z) is determined from [3].

Since the pioneering work of Chandrasekhar (2) and
Ambartsumian (3), it is well known that, in some cases,
the solutions to the operator Riccati Eq. 4 may be ex-
pressed by an algebraic combination of lower-dimen-
sional operators, the so-called X and Y operators. Our
main result shows when this may be expected.

TuEOREM 1. Assume the medium is homogeneous,
i.e., T+, Z=* are independent of z. Further, assume
(7)) dimrange Z- =p < «
(#7) dimrange Z+ = ¢ < @
and that Z* are factored as Z— = MN, Z+ = UV, where
dim range N = p = dim domain M, dim range V = q =
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dim domain V. Then R admits the algebraic representation
T-R(z) + RT+*(z) = Z= + Xi(2)X:2(2) — Yi(2) Y2(2),
where Yl, Y,, X1, X, satisfy the equations
arie)
dz

de(z)

dz
dXi(2)

dz
dX(2)

dz
Proof: We follow the proof of ref. 4, which was given
for a special case of Eq. 4. Differentiate Eq. 4 with re-
spect to z. This yields the following homogeneous equa-

tion for the operator dR/dz:

d {dR dR dR
— e = p— +) — —_ + +
< ) (T RZ+) + (T Z*R),

dR
—| = —Z- = —MN.
dz z=r o

We make the definitions X. 1(2) = RU, X,(2) = VR, and
use the representation

dR

(T- — Xi(2)V) Yy, Yi) = —M,

YVo(T* — UXs(z)), Yu(r) =N,

= —-Y,Y,U, Xi(r) = 0,

= —VV.Y,, X(r) = 0.

= = —alING,
where
da '
= (T- = XiV)a,  a() =1,
dj
P —sr - Uux), 60 -1

The theorem follows with ¥; = aM, ¥, = NB.

Remarks: (i) For an isotropically scattering medium,
Z+ = Z-and T+ = T-, with T+ being self-adjoint.
Thus, ¥; = Y»* X; = X,* and the usual situation of a
single X and a single Y operator is recovered.

(7%) For slabs with a reflecting surface at z = r, the
Riccati Eq. 4 has a nonzero initial condition at z = 7,
say R(r) = F. If F is independent of 2, the fore-
going arguments carry through, replacing assump-
tion (¢) of the Theorem by (') dim range [—(Z— —
T-F — FT++ FZ+F)] < p < «. Foraspecific applica-
tion of this case to an atmosphere bounded by a Lam-
bert law reflector, see ref. 5.

(¢742) The finiteness of p and ¢ is not essential. All that
is required is that Z+ and Z— project into lower dimen-
sional subspaces of B. However, for computational con-
siderations, the finite case is the most appropriate.
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3. Semi-infinite media

We now treat the case of a semi-infinite medium. In
order to derive an equation for the operators X;(— »),
X,(— ), we utilize the following lemma:

Lemma 1. Let P,A,Q be bounded Linear operators of
B to B. Then

o(PAQ) = @* ® P)a(4),  [6]

where o: L(B,B) — C@™B* js the operator of “‘stack-
ing”’ the “columns” of an element of L(B,B), and ® is
the usual tensor product of two operators.

Proof: Using the separability of B, the proof follows
by a coordinate-wise comparison of the left and right
sides of [6]. ‘

The result, which generalizes the Chandrasekhar H-
equation for the semi-infinite medium, is

THEOREM 2. Let Xi(— ) = H;, Xo(— ) = H,.
Then Hy and H, satisfy the equations

o(H) = (U*@N) I ®T- »
+ (TH*®I)'e(Z~ + H\H)),

oH;) =IQV)I®T-
+ (TH* Q@ I)"'e(Z~ + H.H>).

Proof: From the Riccati Eq. 4, we have
T-R(— ) + R(— )T+ = Z- + H,H..
Applying o to both sides of this equation and using the
identities
o(Hy) = o(RU) = (U*® I)o(R),
o(Hy) = o(VR) = (I ® V)a(R),
the theorem easily follows.

Remarks: (i) Theorem 2 assumes that A\; + u; 5 0,
where {\;} are the characteristic roots of T~ and {us}
are the roots of (T'+)*; (¢i) in both Theorems 1 and 2,
considerable simplification occurs if Z— and Z+ are
self-adjoint, while 7'+ = T—* since in this case X; =
Xo* Y, = Yo* and H, = H,* This is the situation that
prevails in the classical plane-parallel, isotropic scatter-
ing, homogeneous case.
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