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PREFACE 

This paper deals with minimax problems in which the "inner" prob- 
lem of maximization is not concave. A procedure based on the approxi- 
mation of the inner problem by a stochastic set of elements which can 
contain only two elements at each iteration is shown to converge with 
probability 1. 





A STOCHASTIC ALGORITHM FOR MrNZIIIIAX PROBLEMS 

Yu. Ermoliev and A. Gaivoronski 

1. Introduction 

The main aim of t h s  paper is to prove the convergence of the algo- 

rithm proposed in Ermoliev and Nedeva (1982). This algorithm was 

designed to treat the following problem: 

where f (z ,y ) is a continuous function of (z ,y ) and a convex function of z 

for each y €Y,X>Rn,Y3Rm. A vast amount of work has been done on . 

minimax problems, but virtually all of the existing numerical methods fail 

if f (z ,y ) is not a concave function of y . Although 

is a convex function, to compute a subgradient 



requires a solution y (z)  of nonconcave problem (3). In order to avoid the 

difficulties involved in computing y (z)  one could try to approximate Y by 

an &-set Ye and consider 

instead of y ( z ) .  But, in general, this would require a set Y, containing a 

great number of elements. An alternative is to use the procedures 

described in this paper, which are based on the following ideas. Consider 

a sequence of sets Y,, s = 0,1, ... and the sequence of functions 

FS(z)  = max f ( z ,y )  . 
u=q, 

It can be proved (see, for instance, Ermoliev and Gaivoronski, 1982) that, 

under certain natural assumptions, the sequence of points generated by 

the rule 

(where the step size p, satisfies assumptions such as 

0 
! 

p, 2 0, p, -> 0, ps = m) tends, in some sense,'to follow the time-path 
8 =O 

of optimal solutions: for s -, m 

lirn [FS(zS) - rnin F ( z ) ]  = 0 . 



In this paper we will show how Y, (which depends on 2') can be 

chosen so that we obtain the convergence 

min P (2) -, min F (2) 

where Y, contains only a finite number N, a 2 of elements. The principal 

peculiarity of procedure (4) is its nonmonotonicity. Even for differenti- 
I 

able func t ionsP(z ) ,  there is no guarantee that 2'" will belong to the 

domain 

{ z I F t ( z )  .:Ff(zs)j, t 2 s  + 1 

of smaller values of functions P+l,FS C2,..  . (see diagram below). 

Various devices can be used to prevent the sequence lzsj:.o from 

leaving the feasible set X. 



2. Algorithm 

We start by choosing initial points zoIy0,  a probabilistic measure P 

on set Y and an integer N o r  1. Suppose that after the s- th  iteration we 

have arrived at points z S , y S .  The next approximations z " + ~ , ~ ~ + '  are then 

constructed in the following way: 

(i) Choose N, r 1 points 

v s ~ 1 , y s ~ 2 , . . . , y  s ,Ns 

according to measure P, and determine the set 

y, = l y ~ l l , y s + 2  ,..., y S p N 8 j  u yS*O, where ys*O = y s  

(ii) Take 

(iii) Compute 

where p, is the step size and n is the result of a projection operation on 

X. 

Before studying the convergence of this algorithm, we should first 

explain some notation: 

P ( A )  is a probabilistic measure of set ADY,  



? ( E )  = inf p ( E J )  , 
z E X  

k -1 
T ( ~ , E )  = max 17) C p, 5 E 7 ~ k I  

~ = k - T  

i.e., T ( ~ , E )  is the largest number of steps preceding step k  for which the 

sum of step sizes does not exceed E .  

Theorem 1. Assume that 

(a) X is a convex compact set in R~ and Y is a compact set in Rm;  

(b )  f ( z  , y )  is a continuous function of ( z  , y )  and a convex function of z 

for any y  EY, 

(c) Measure P is such that ? ( E )  > 0  for E > 0  

- ( d )  p, + + 0. ZP,  - = 
I =o 

Then for s + = 

If, in addition, there exists co > 0  such that for all E < co and each 

O < q  < I  

then, as s + =, 

rnintIIzs -zII I Z E X * { - , O  



with probability I.  

Proof 

1. First of all let us prove that 

F(zs) - f (zS,yS) -, 0 

in the mean. To simplify the notation we shall assume that N, = N r 1 .  

According to the algorithm 

- 
f (zS ,yS+l) 2 f (zS,yS"') , v = O,N 

and therefore 

+ [f (zS ,yS1") - f ( ~ ~ + ~ # y ~ * " ) ]  

Since there is a constant K such that 

then 

We also have 

or, in particular, for v = 0 - 
f (zS+l,ys+2) 2 f ( ~ ~ + ~ , y ~ + l )  , 

Therefore 

and in the same way 



- 7 -  

f (,s+2 , y  s+2 ) 2 f - 2 ~ ' ( ~ ,  + , k = s,s+l, v =  - O,N 

etc. 

Continuing this chain of inequalities, we arrive at the following con- 

clusion: 

Thus, if 

then 

f ( z s t y s )  2 max f ( zS  , y )  - 2K2& 
VEr.,, 

It is easy to see from this that 

P ~ F ( Z ~ )  - f ( z S , y S )  > ( 1  + 2K2)&] I 

P f F ( z S )  - max f ( z S , y )  > E {  s [ I  - y ( ~ ) ] N r ( s J )  
VEYa,r 

Since p, + 0, then r(s ,  E )  + OD as s -, =. Hence 

for s -, m ,  and this proves the mean convergence of F ( z S )  - f ( z ~ , ~ ~ )  to 

2. We shall now show that, under assumption (5), F ( z S )  - f ( z ~ , ~ ' )  -, 0 

with probability 1. It is sufficient to verify that 

k k  Plsup [ F ( z L )  - f (z  , y  ) ]  > ( 1  + 2K2)&{ -r 0 . 
kats 



We have 

Ptsup [F(zk)  - f (zk,yk)]  > (1 + 2 ~ ~ ) c j  s 
k* 

Pisup [F(zk)  - max f (zk,y)]  > cj s 
h a s  v e y k , c  

.D 

P ~ F ( Z ~ )  - max f (zk ,y )  > cl s c [ I  - 7(c)1N~(k~)  -b 0 , 
k = s  v E  Yk,c k =s 

since from assumption (5) the, series 

a s s  -r ma 

3. We shall prove that Ew (zS) -r 0 as s -, m, where 

w ( z )  = min ( ( z  - z ( I 2  
8 EX* 

We have 

I w(zs)  - 2ps[f (xS ,yS) - min ~ ( z ) ]  + IFp: 
t E X  

w(zs) - 2ps[F(zS) - min F(z)]  + 2ps [F(zS) - f (zS ,yS)] + K ~ ~ :  . 
= E X  

Taking the mathematical expectation of both sides of this inequality leads 

to 

~ w ( z ~ + ~ ) G ~ u r ( z ~ )  - 2 p s ~ [ ~ ( z S ) - m i n F ( z ) ]  +2psBs +IFp: , (6) 
t E X  

where /Is + 0 as s -, = since it has already been proved that 



E [ F ( z S )  - f ( z S , y S ) ] +  0  fors + . 

Now let us suppose, contrary to our original assumption, that 

& ( z S ) > a > O  , s z s o  . 

It is easy to see that in this case we also have 

E  [ F ( z S )  - min F ( z ) ]  > d > 0 
OEX 

, 
where d is a constant. Then for sufficiently large s 2 s l  

since P, + 0 ,  Bs + 0  and therefore we can suppose that 

Summing the inequality ( 7 )  from s l  to k ,  k + m, we obtain from 

assumption (d) a contradiction of the non-negativeness of E w ( z S ) .  

Hence, a subsequence { zSk )  exists such that 

&(z") + 0  

as k -, =. Therefore for a given a > 0  a number k (a)  exists such that 

& (zsk) < a  

where sk > sk (,I. Since, from (6), 

E P U ( Z ~ + ~ )  s &(zs)  + 2ps& + IFp: 

there exists a number s ( a )  such that 

& ( z s )  s 2a , s 2 s ( a )  

Because a  was chosen arbitrarily, this means that EZw ( z s )  + 0 .  



4. I t  can be proved that w ( z s )  converges to 0 with probability 1 in the 

same way that we have already proved mean convergence. We have the 

inequality 

where ys + 0 with.probability 1 because it has already been shown that 

under assumption (5) 

F ( z S )  - f ( z s , y S )  + 0 a s s  + m 

with probability 1. If we now assume that 

we will also have 

F ( z S )  - min F ( z )  > 6 > 0 
r EX 

etc. 

We shall now give some special cases in which condition ( 5 )  is satis- 

fied. 

Lemma. Assume 

Then condition ( 5 )  is satisfied. - 
Proof. Let us evaluate ~ ( s  , E ) .  If 

thenm - 1  s & m b / a  and 



max pk 
LSkUn mb - 1 

b - s 
E r n  min pk [m ] b  l r k r m  l b  (I-c) 

a urn a 

Therefore, we have 

and 

Then 

- 
where p = g < 1 , 

.D 

The convergence of psb can easily be verified by Raab's test. 
a=O 

5. Maximization with respect to unknm distribution functions 

Minimax problems arise frequently in practice, in particular in deci- 

sion making under uncertainty. An important class of problems of this 

type was discussed in Ermoliev and Nedeva (1882); this is the class of 

duals to problems involving maximization of mathematical expectations 

with respect to distribution functions of unknown parameters. The prob- 

lem is to find the distribution function H (2) that maximizes (minimizes) 

the integral 



subject to 

This can be regarded as the problem of evaluating system reliability, 

where the integral (8) defines the expected reliability, ~ ( z )  is a partially 

'known distribution function of random disturbances z , and constraints 

(9) and (10) contain known information about H (for instance, its 

moments or upper and lower bounds to the disturbance's). 

Maximization and minimization of integral (8) with respect to a dis- 

tribution function H which possesses properties (9) and (10) then gives us 

the upper and lower bounds, respectively, of the system reliability. 

Under rather general assumptions, for instance, if Z is a compact set 
- 

and g v ,  Y = O,L, are continuous functions, the dual problem to the above 

is to minimize the convex function 

subject to 

u 2 0  

In this case the "inner" problem of maximization is not concave. 
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