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FOREWORD

Spatial interaction models have played an important role

in two tasks in the Human Settlements and Services
the Public Facilities Location Task they have been

Area. In
used to

represent the locational behavior of establishments and house-
holds. 1In the Urban Change Task they have been used to describe

internal migration patterns. In this paper, Waldo
duces a new spatial interaction model and outlines
properties. Variants of the basic model are noted
listing is provided for readers wishing to explore
of the model as a descriptor of movement patterns.

Andrei Rogers
Chairman

Human Settlements
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ABSTRACT

In the Quadratic Transportation Problem the objective is to
minimize the functional

2
g § X334 5

subject to the constraints

Here we interpret X5 5

commuters, trade, telephone calls, etc.) between places i and j

as the quantity of movement (migrants,

during a given interval of time. The transport disutility or

cost is labeled cij

= (ai+Bj)/cij, and the Lagrangians can be in-

and is assumed to be known. The problem
solution is Xij
terpreted as estimates of shadow prices. Variants of the basic
model are noted and competing spatial interaction models are

cited. The model is tested using empirical data on the visita-
tion of persons to a set of recreational facilities. A compu-

ter program listing is provided.
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THE QUADRATIC TRANSPORTATION PROBLEM
AS A MODEL OF
INTERREGIONAL MIGRATION PATTERNS

INTRODUCTION

Spatial interaction models purport to describe the amount
of movement between sets of places. There are many such models,
each with many variants, and the literature is extensive. In
this short report I introduce a "new" spatial interaction model
and outline some of its properties. Whether, or when (under
which circumstances), this model should supersede those now
in use will need to be decided by the reader. To introduce

the subject a well-known model is described.

1. THE LINEAR TRANSPORTATION PROBLEM (L.T.P.)

The objective function is to

Min: ) Z Xi4%i5 i=1,...,R
1] i=1,...,C
Subject to: ) Xj4 = 03 j=1,...,C
J
g xij = Ij i=1,...,R
X = 0

ij



This problem has a dual, whose variables are normally
interpreted as shadow prices, and several variants, of which
the transshipment problem is worthy of citation in the present
context. Further detail is not required since the L.T.P. is
well known. Recall,however, that the number of non-zero xij in
the solution does not exceed C+R -1, and that these values

will be integers if the marginal sums Oi and Ij are integers.

The L.T.P. can be laid out in the form of a rectangular

table, as follows:

TO PLACES
1 TR e c Row Sum
1 1
FROM : Quantity
PLACES ; Shipped Out
=0,
& i

Column Sum =i

Quantity Shipped In = Ij

In addition to the known marginal totals Oi and Ij’ the trans-

port cost quantities c.. are also given. The solution to the

ij
L.T.P. consists in finding the entries x..

i3 in the box to satisfy

the objective function.

The important point is that virtually all of the current spa-
tial interaction models can be cast in this same rectangular table
format, and with virtually identical constraints. What distin-
guishes one model from another is the objective function. Several
possibilities are given in the ensuing paragraphs. The context
of the study should enable one to decide between various objec-
tive functions. Whether the point is to obtain a realistic
description of natural events or an idealistic (normative) one

will influence this decision.



-3-
2. THE QUADRATIC TRANSPORTATION PROBLEM (Q.T.P.)

2.1 The Problem

The objective function is to

min: [ ] x{jeqy i=1,...,R
tJ j=1,...,C

subject to the previous constraints. With Lagrangians this

becomes

™
()
i
-

(W N

2
X55%4 5 + z ai(oi % xij) + Z Bj<Ij z xij)

J

Setting the appropriate derivatives to zero yields

1
X3 = glag * By) /oy ¢j5 > 0
and
1 B
o § 4] A =20,
1 & C.. T C. . 1
j “i3 3§ ©ij
Q. 1
PR S B S
i Cij J i %5 y

These last two equations are easily written as a single simple
matrix equation, of rank R+C -1, and directly solvable. Once
the Lagrangians are known the xij can be computed. This deriva-
tion does not consider the non-negativity constraint which must
be taken into account by means fully discussed in Dorigo and
Tobler (1983).

Properties which distinguish the solution to the Q.T.P.
from that of the L.T.P. are that

a) The xij are on average smaller numbers. This is forced

by the quadratic term in the objective function.

b) The number of non-zero xij will exceed R+C -1, and

will approach RC.

c) The xij are generally not integers.



Properties a) and b) are more in accord with empirical
spatial interaction tables than are the solutions to the L.T.P.
This is expected because commodity flows are rendered more re-
liable by a diversity of sources, urban traffic is diverted to
avoid congestion, and migration patterns are rendered diffuse
due to information inadequacies. Spatial allocation models
which use the L.T.P. thus yield results which are less realis-
tic than can be obtained through the use of the Q.T.P. solution.
Property c¢) of the L.T.P. is desirable, however, and suggests

investigation of an Integer Q.T.P.

2.2 Variants on the Q.T.P.

It is obvious that a Quadratic Transshipment Problem can be
formulated, with solution procedures modeled on those of the
linear case. This can be given an interesting interpretation.
Let bij be the length of the border between regions i and j.

Then the objective function
Min: Z Z xij/bij bij > 0
17
represents a problem in which the square of the flux across these
borders is minimized. Now most regions in the domain of interest
will not have common boundaries, bij = 0. In order to satisfy
the constraints it may be necessary to "transship" entities

through adjoining regions. Actual routing of movements can thus
be modeled.

Alternately consider objective functions as follows

2.2.1 Min:

1

2
% xijcij/OiIj

or

2.2.2 Min: Y .P.
1) 13 1]

-~

) x? /P.P
3



The second of these yields

P.P.

1
(a; + B.)—=3
3 . .
1]

*i3 T 2
as solution, neglecting the non-negativity constraint (easily
added, as before). This is recognized as a variant form of the
"spatial gravity model", as widely used in Geography, Regional
Science, and related fields. The variant 2.2.1 requires less
data (the Pi’ Pj are "populations" of the source or destination
regions). Both of these variants can be interpreted as incor-
porating "economies of scale" into the transportation system by
allowing the magnitude of the movements to influence the trans-
portation cost structure. Further details on these Q.T.P.

model variants can be found in Tobler (1983).

The spatially continuous version of the basic Q.T.P.

requires minimization of the double integral

2 2 2 2
da da 3B 3B 2 2
J J [ax + 3y + = + 3y + A% (a+8)° + 2Y(a-+e)]dxdy

, 3o, _ 3B
with Tﬂ = ﬁ
solution to this least squares problem is

= 0 as the Neumann condition on the boundary. The

v2a I - U(a + B)

v O - U4(a + B)

™
lI

where a(x,y) and B(x,y) are differentiable spatial functions
and O(x,y) and I(x,y) are spatially continuous source and sink
density functions. This is a coupled system of simultaneous
linear partial differential (Helmholz) equations. Observe that
this solution yields two-way flows, continuously routed from
one place to another through adjacent places. Subtraction of
one equation from the other yields Poisson's equation with the
difference between the in and out, i.e., the amount of change
at a place, as the driver. The solution of this single partial



differential equation can then be represented as a spatially

varying attractivity field or potential, with flows shown as a
curl-free vector field; see Tobler (1981) for examples. Addi-
tion of the two equations yields a single P.D.E. for the gross

movements with similar properties.

3. OTHER SPATIAL INTERACTION MODELS

Most widely used today is the entropy model (Wilson 1967):

Max: - g % %44 1n X, 5

where the following condition
ZZx..c.. = D
: 3 .1] ij

is added to the previous constraints. D is a quantity which is
(rather unrealistically) assumed known a priori. This model

has as solution

= o.BR.0.1I. exp(-ycij)

Here the Lagrangians enter in multiplicative form, not in the
simpler additive form of the Q.T.P. These two models (and some
others) are applied to empirical migration data in Tobler (1983),
with the Q.T.P. yielding a very slightly better fit to the data
than the entropy model. 1In the migration case R = C and the
interaction table is square, but this does not add complexity.

Of course a separate analysis may be undertaken for each migrant
category or age group.

It is perhaps of interest to consider an even simpler model,

namely

min:

o~
.~
»
[l ]
o



subject to: ]} x,. =0, , ] xi5 = I, x5 20
3
% % Xi5%i5

The constraints are identical to those used in the entropy
model but a somewhat simpler objective function is specified.

The solution is

The solution procedure is similar to that used for the Q.T.P.,
and it is again necessary to be careful to not violate the non-
negativify constraint. This simple linear model resembles the
regression equation often used in movement studies, with origin
effects, destination effects, and an impedence between the sets

of places. Of course we expect Y to be negative.

. . . 2 . .
Since xij 1n xij is not very different from Xy., an objective

function of the form g % xij(ln xij)cij or ; § xij(ln xij)cij/Oin
is suggested and these can also be found in the literature. The

total cost constraint D is then no longer needed.

4. EMPIRICAL EXAMPLE

The data, tabulated in the Appendix, come from Cesario
(1973); also see Slater (1974), Cesario (1974), and Baxter and
Ewing (1979) who analyze the same table. Given is the number
of people from each of ten counties who visited five parks during
a single day, and the distance between these parks and the
counties. It is rather absurd that one distance be used to
represent the separation of a county and a park (see the map
in Baxter and Ewing, 1979), but this is common in this type

of modeling and the convention is accepted here.

From the data the outsums Oi and insums Ij are computed,

and the objective is to re-estimate the movement quantities by
filling in the body of the table. The results include the



Lagrangians as "pushes" and "pulls". They are of course estim-
ates of the shadow prices, and are determined only up to a con-
stant of integration as in any Neumann problem.

The root mean square errors compare with a value of circa
5.8 ><1O6 reported by Cesario (1974) and a value of 7.0 ><106
computed by Baxter and Ewing (1979). Cesario's model (1973,
1974) minimizes the RMSE without exactly satisfying the marginal
constraints, and thus is not directly comparable to the L.T.P.,
Q.T.P., or entropy models. But the results suggest that the
Q.T.P. solution is a plausible candidate descriptor of the
events in question. It is more difficult to decide whether it
is a better descriptor than the other models (except the L.T.P.

which would only poorly represent the actual movements.

5. COMPUTER PROGRAM

The appended computer listing is slightly modified from
an earlier version written by Dr. G. Dorigo while a post-doctoral
resident at the University of California at Santa Barbara in
1980. It should be self explanatory.
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100
102
105
110
115
120
125
130
140
200
210
220
230
600
610
620
630
640
650
658
660
670
680
630
700
710
720
730
735
740
750
760
765
0
780
790
800
810
820
830
840
850
860
870
830
900
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REX CUADRATIC TRANSPORTATION PEOBLES
RE4d W.R.TOBLER 25 SZPT 1582
REM ROWS» COLU4NS

DATA 445

REM OUT» IN-SUMS
DATA?+39511511:8181994

REM DISTANCES
DATAG14+3179514929712+5
DATAZ» 7112149915149 3:501
READ NRsHC:RE4 # ROWS» #COLS
DIN O(NR)»I(NC)»I9Q(NC)»OG(ANR)
DIMM (MR NC) » D{LR» NC)
GOSU33000

REM

DIH R(NC)+E(NR)»R1(NC)s» L1 (NR)
FORK=1TOXR:E(X)=1:E1(K)=0:NEXTK
FORK=1TONC:R1(K)=0:HEXTK
LP=65999:IR=0:0T=0:T2=2:LP=12:5K=0-S
REM GET TRIAL SOLUTIOH

TS=1

GOSU3 2000

OT=0T+1:T=1.0L32

REM CHECK SOLUTIOX
FORK=1TOAXR

IFE(K)>TTHEX720

T=r(K)

NEXTK

FORJ=1TOXC

I19(J)=0

RIJ)=R(J)+T

NEXTJ

FORK=1TONR

08(K)=0

E(X)=E{(X)~-T

NEXTK :
F1=1:T=0:DF=0:T3=0:5=0:51=0
FORK=1TONR

FORJ=1TONC

H(K»J)=0

NEXTJ

KEXTK

REM

FORK=1TOiR

FORJ=1TONC
SH=(R{J)+E(K) ) *DIKsJ)
S4=SM*SH

S01
902
903
904
9058
906
807
908
910
920
930
940
950
$60
8S70
980
850

1000
1010

1020
1030
1040
1050
1060
1070
1080
1090
1100
i110
1120
1125

Rk{ LINES 904,905 FOECE
EEd AN INTEGER SOLUTIOH
REM THEY MAY BE REMOVRD
Q7%=S4+SE

SH=Q%

Rzd PUSH»PULL <« FUNCTIOXAL
REM VALUES ALSO CHANGE
RE4 WITH INTEGER SOLUTIOX
MtK,J)=8S4 '
I9(J)=1G(J)+S:
0S(X)1=09(K)+S4
IFSii>=Q0THENS70

F1=0

D(K,J)=0
XEXTJ
REXTK

REX

D¥=0

FORK=1TONR

DF=DF+ABS(0(K)-09(X))
MEXTK

FORJ=1TOXC .
DF=DF+ABS(I(J)-IS(J))
NEXTJ

REd

IFF1>0T3EN1100

G0TO0650

EEM DOKE» PRINT RESULTS
PRIATI™ *
PRINT!"RESULTS ARE"
PRIAT!"ITERATIONS="30T;:" “;IR



1130
1135
1140
1150
- 1182
1154
1156
1158
1160
lie61
1162
1165
1170
1172
1173
117<
1175
1176
1177
1178
1179
1180
lia1
1182
1183
1184
1186
1187
1188
1150
1200
1205
1210
1220
1230
1233
1235
1237
1245
1246
1280
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FORK=1TOKR

§2=0

FORJ=1TONC

PRINTIK; J3M(K»J)
IFD(K»J)<=0T35N1160
S=4(K+J)/DIKsJ)

T=T+§

T3=T3+M (K, J) S
$2=S2+M(K»J)
S1=S1+H(K»J)

NEXTJ ' ‘
PRIXT!“ROW SU4="3S2;0(K)
NEXTX

PRINT!"GRAND SUd="3S1
PRINT!"COLUAK SU:#S="
FORJ=1TONC

5=0

FORK=1TONR

S=S+i4 (4 J)

NEXTX

PRIKT!J3Si1(J)

NEXTJ

IFDF<1THEN1186
PRIXT!"DISCREPANCY DUE TO™
PRINT!"FORCEZD INTEGER SOLUTION IS™
PRINT!DF

PRINT!™ ~
PRINT!=PUSIES"™
FOPK=1TOHR

PRINT!K: 2(K)

NEXTX |
PRINT!"PULLS"
FORJ=1TONC
PRIKT!J5R(J)

NEXTJ
PRINT!"FUNCTIOKAL VALUE FOR™
PRINT!"LINBAR="}
PRINT!"QUALRATIC="}T3
PRIET!™ *
PRINT!"DONE"

EXD

2000
2002
2004
2010
2020
2025
2030
2040
2050
20690
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2230
2220
2250
22690
2270
2280
2230
2300
2310
2320
2330
2340
2330
2360
2370
2380
2390
2200
2410
2440
24590
2500

REM MAIN ITERATIOK ¥OR LAGRANGIAKS
REN PULLS ASSOCIATED WITH SINXS
REM PUSHZS ASSOCIATED WITH SOURCES
FORL=1TOLP

SS=TS:TS=0

REM ESTIMATE PUSH (R)
FORJ=1TONC

T=0:S0=0

FORK=1TONR
SO=S0+ID(K»J)
T=T+E(K)*D(K»J)

AEXTK
R(J)=(T2*I(J)-T)/SO
NEXTJ

REM ESTIMATE PULL (E)
FORK=1TOMNR

T=0:S0=0

FORJ=1TORC
S0=S0+D(KsJ)
T=T+R(J)*D(K»J)

NEXTJ
E(K)={T2*0(K)-T)/SO
NEXTK

Rid NOW CHECK CONVERGENCE
IR=IR+1:T=0

FORK=1TOKR
DF=ABS(E(K)-E1(X))
L1(K)=E(K)
IFABS(B(K))<TSTHEN2280
TS=ABS(E(K))
IFDF<SSTEEN2310
IFDF<TTHEN2310

T=DF

NEXTK

FORJ=1TONC
DF=ABS(R(J)-R1{J)}
R1(J)=R!(J)
IFABS(RIJ))<TSTHEN2370
TS=ABS(R(J))
IFDF<SSTHEN2400
IFDF<TTHEEN2400

T=DF

NEXTJ

IFT=0THEN2500
TS=TS*10t-EP

NEXTL

RETURK



3000
2005
3006
3010
3020
3025
3030
2035
3040
3050
3055
3060
3062
3063
20€5
3066
3067
3068
3070
3080
3085
3090
3100
3110
3112
3114
3120
3130
3140
3150
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REA READ DATA _
REM OUTSUNS=ORIGINS=SOURCLS=SUFPLIES
SM=0

FORK=1TONR

READ 0(X)

Sy=SM+0(K)

KEXTK

REM INSUMS=LDESTINATIOLS=SIN{S=DL:ANLS
FQRK=1TONC

READ I(K)

SH=S4-I(K)

XEXT1K

IFSAH=0THENZ066
PRINT!"SU{4AATICX ZRBOR"
RE4 DISTANCLS

X=1

PE4 SET X=0 TO HODULATE
PEd DISTANCLS BY FLOW SIZa
FORK=1TONR

FORJ=1TONC

D(K»J)=0

READ T

IFT=0THEN3120

D(Ky»J)=1/T

IFX=1THEN3120
DIE»J)=D(K,J)®*O(K}*I(J)
SEXTJ

HRXTK

PRIMT!"ALL DATA ARE IX"™
PETUEN

ROX

ALL DATA ARE IN

RESULTS ARE
ITERATIONS= 2 <1
1 1 0

1 2 2

1 3 3

1 4 2

1 5§ 0
RO¥W SUH= 7 7
2 1 0

2 2 1

2 3 0

2 & 2

2 5 0
RO¥ STH= 3 3
31 0

3 2 1

3 3 1

3 & 3

3 5§ 0O
ROW SU4= & &
4 1 1

4 2 3

4 3 4

4 4 3

£ 5 ¢

20%W SU4= 15 16
GRAXD SUd= 30
COLUAX SUMS=
1 1 1

2 7 8

3 8 8

4 10 9

LISCRIPANCY DUE TO
FORCED INTRGER SOLUTION IS
2

FUSERS

1 14.78815888
2 0

3 14-2863485
4 22.4428273
PULLS

1 -12-4179448
2 4£-06595424
3 2-€8715162
4 7.16224817
5 -14-482015
FUNCTIONAL VALUE FOR
LINEAR= 120
GUADRATIC= 2350

DOXE
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