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SUMMARY
Cost reductions are essential for accelerating clean technology deployment. Because multiple factors influ-
ence costs, traditional one-factor learning models, solely relying on cumulative installed capacity as an
explanatory variable, may oversimplify cost dynamics. In this study, we disentangle learning and economies
of scale effects at unit and project levels and introduce a knowledge gap concept to quantify rapid techno-
logical change’s impact on costs. Our results show that a substantial proportion of cost declines in several
technologies is attributable to economies of scale rather than learning processes. Thus, relying on one-factor
learning may underestimate cost declines during upscaling periods for technologies with strong economies
of scale effects and overestimate reductions for those approaching maximum size. Notably, the knowledge
gap concept can endogenously capture how rapidly technology sizes can evolve through learning. These in-
sights can improve decision-making and highlight the benefits of separating learning and economies of scale
effects to estimate technology costs.
INTRODUCTION

In order to limit global temperature rise to well below 2�C, clean
energy technologies need to be rapidly deployed and displace

existing CO2-emitting energy infrastructure. However, these

clean technologies require cost reductions in theirmanufacturing,

construction, and operation to make them cost-competitive with

fossil fuel alternatives.1–7 Accordingly, identifying strategies,

likely build-out needs, and required policy support to accelerate

cost reductions is essential.

Technological innovation theory and empirical evidence point

to a number of mechanisms by which cost reduction can be

achieved. These factors include learning-by-doing (accumu-

lating experience through increasing the number of deploy-

ments), learning-by-searching (via research, demonstration,

and development/RD&D), learning-by-using, economies of scale

(scaling up manufacturing, unit, and project size), manufacturing

location (moving production to lower cost locations), and knowl-

edge spillover.8–16 The interplay between learning by doing and

economies of scale is particularly relevant. While economies of

scale reduce costs at the unit and project levels, this might

impede the learning progress because the need for fewer units

and projects means the systemwill gain less experience in build-

ing them due to fewer iterations. In some cases, increasing sizes

may actually increase costs due to the knowledge gap effect

when the scale of technology changes too quickly, which might
iScience 28, 111644, Janu
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be caused by technical, logistical, and/or socio-economic chal-

lenges.17 As a result, quantifying the trade-offs between these

factors is crucial to understanding pathways for cost reductions.

Theconceptof technologycost learning (alsoknownasWright’s

Law) iswell established,supportedby literatureofferingparameter

data18–20 and model implementation analysis.21–29 Most studies

have focused on one-factor learning,5,7–9,11,21,23,24,29–36 using

cumulative capacity as an explanatory variable to aggregate all

factors involved in cost changes. This is partly due to scarce

literature providing parameters for a more granular analysis in en-

ergy-economy models.14,30,37,38 Numerous studies indicate that

cumulative capacity is a weak explanatory variable for essential

factors influencing cost reductions.7,8,11 Additionally, despite its

simplicity, such an approach offers limited insights into the contri-

butionsof each factor tocost changeandhow theprogresscanbe

accelerated.

Economies of scale can significantly reduce technology

costs.7,8,12,39,40 Mixing this factor in the one factor learning ex-

aggerates learning effects.32 Separating this factor from aggre-

gated learning is essential for understanding feasible and

affordable strategies for stringent climate mitigation goals.30,32

Accordingly, it is encouraged to implement this concept to es-

timate technology costs in decision-making processes and en-

ergy-economy models. However, literature on the parameters

required to separate economies of scale from learning effects

is limited.30 Some studies, such as in,12,15,41–43 provide these
ary 17, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1. Technology cost improvement implementation in IAMs

Framework Modeling approacha
Learning

approach

Technology innovation

implementation Reference

IMAGE Recursive dynamics One-factor Endogenous Detlef & van Vuuren50; Roelfsema et al.51;

Wilson et al.52

POLES Recursive dynamics Two-factor Endogenous Kouvaritakis et al.53; Kouvaritakis et al.54;

Criqui et al.55; Wilson et al.52

REMIND NLP optimization One-factor Endogenous Zhang et al.14; Bauer et al.56; Wilson et al.52

WITCH NLP optimization Two-factor Endogenous Bosetti et al.57; Wilson et al.52

AIM LP optimization Exogenous Exogenous Hibino et al.58; Matsuoka et al.59; Fujimori et al.60;

Wilson et al.52

COFFEE LP optimization Exogenous Exogenous Tagomori61; Callegari et al.62; Rochedo et al.63;

Rochedo64; Cunha et al.65; M€uller-Casseres et al.66

GCAM Recursive dynamics Exogenous Exogenous Binsted et al.67; Binsted et al.68;

Snyder et al.69; Wilson et al.52;70

TIAM LP optimization One-factor Endogenous, reformulation as MIP

Exogenous, iterative approach

Loulou & Labriet27; Loulou28

MESSAGE LP optimization Exogenous

One-factor

Exogenous

Endogenous, reformulation as MIP

Messner25; Healey & Grubler45;

Huppmann et al.46; Grubler et al.71; Wilson et al.52

AIM, Asia pacific Integrated Model, COFFEE, COmputable Framework For Energy and the Environment; GCAM, Global Change Assessment Model;

IMAGE, IntegratedModel to Assess theGlobal Environment; POLES, Prospective Outlook on Long-term Energy Systems; REMIND, REgional Model of

Investment andDevelopment;WITCH,World Induced Technical ChangeHybrid;MESSAGE,Model for Energy Supply Systems And their General Envi-

ronmental impacts; TIAM, TIMES Integrated Assessment Model; LP, Linear Programming; NLP, Non-linear Programming.
aRefers to the modeling approach in the module where technologies are represented.
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parameters for only a limited number of technologies and

emphasize the need for extendedworks across a broader range

of technologies.30

To leverage economies of scale, particularly for technologies

with a strong effect, technology sizes at unit and project levels

tend to increase over time.39 However, as previously mentioned,

increasing sizes beyond certain limits can lead to dis-economies

of scale, where economic disadvantages arise from scaling up

the technology. Coulomb and Neuhoff39 indicated that learning

processes are necessary to further increase technology sizes.

Therefore, understanding the relationship between learning pro-

cesses and size upscaling rates is essential. Literature has at-

tempted to model this relationship by deriving logistic functions

to detail the evolution of technology sizes over time44,45 or used

exogenous assumptions to limit technology size scale-up.43 This

analysis is useful for examining the historical evolution of tech-

nology scale-up and understanding various stages of technol-

ogy development. Nevertheless, similar to cost reduction anal-

ysis,22,32,33 implementing this exogenous timeseries estimate

in energy-economy models can lead to a model artifact, where

technology deployment is deferred to periods with substantial

immediate technology size increase, neglecting the need for

learning and initial investment to achieve this.

This work aims to bridge these gaps by quantifying trade-offs

between factors that affect technology cost reductions in a

least-cost energy system modeling framework. Specifically, we

emphasize learning-by-doing and economies of scale effects at

both the unit and project levels. This study contributes to the ex-

isting literature by providing data and methods to estimate the

parameters for an extended range of technologies, particularly

focusing onpower generation technologies, given the substantial

role the sector is expected to play in climatemitigation scenarios.
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To quantify the dynamics between learning processes and the

rates of unit andproject scale-up,wepropose a concept that cor-

relates howquickly the experience stock allows the scalingof unit

and project sizes. This concept, called the knowledge gap effect,

identifies the point where gains from economies of scale are

negated. To our knowledge, this study is among the first, if any,

to quantify this relationship. In this work, we show how the imple-

mentation of this concept, with minor additional data and effort,

facilitates a better understanding of technology cost dynamics

for estimating future technology costs, which is a key to

improving technology cost representation in climate mitigation

analysis using energy-economy models.

Technology cost change in IAMs
Energy-economy models, including those within integrated

assessment models (IAMs), are frequently used to quantify the

impact of cost improvements on transition pathways of energy

systems.21–24 They can also be used to identify strategies to

accelerate cost reductions, depending on how these reductions

are represented in the model. Most importantly, insights from

IAMs are widely used to provide guidance for global climate

mitigation efforts. However, the representation of technology

cost dynamics in IAMs remains limited. For instance, several

IAMs treat technology cost reductions as exogenous vari-

ables.27,28,46 Other models incorporate these endogenously,

relying on the one-factor learning approach where cost reduc-

tions depend solely on cumulative installed capacity.25–28 Only

a few models adopt a more advanced approach, employing

two-factor learning that accounts for both cumulative installed

capacity and cumulative R&D expenditure.16,31,47–49 Therefore,

enhancing the representation of technology cost dynamics in

these models is essential.



A B Figure 1. Illustrations of learning, econo-

mies of scale, and knowledge gap effects

(A) Effects of learning and unit-level economies of

scale on cost reductions. Solid lines represent

cost trajectories for constant unit sizes, while dots

indicate specific investment costs at 1 GW of

cumulative capacity for each size-specific trajec-

tory.

(B) The knowledge gap effect dictates how quickly

a technology can increase its size as a function of

learning or experience.
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Table 1 summarizes how technology cost improvements are

implemented in IAMs. As can be observed in the table, many

models with recursive dynamic simulation or non-linear pro-

gramming optimization modeling approaches consider technol-

ogy cost improvements endogenously owing to the ability of

such formulation to directly implement the learning formulation

in the model. IMAGE and REMIND, for instance, are models

with one-factor learning where technology cost is a function of

cumulative installed capacity. IMAGE is a recursive dynamic

model that represents cost improvements of several selected

technologies exclusively using one-factor learning, while the

costs of other technologies are assumed exogenously.50,51 To

compare, in addition to the one-factor learning, REMIND also

takes into account different levels of spillover effect.14,56 These

include global learning with perfect spillover between all regions

and local learning with no spillover. Additionally, it also includes

formulations to incorporate multi-level learning approaches to

capture the effects of global and local cost components learning

and partial convergence of the global components. Other

models, such as POLES and WITCH, implement two-factor

learning,53–55,57 in which the impact of research and develop-

ment (R&D) expenditures on technology costs is incorporated.

In these models, perfect global spillover is assumed.

Conversely, models with linear programming (LP) optimization

approach tend to set technology cost changes as exogenous

variables. AIM and COFFEE, for instance, set technology ad-

vancements, such as efficiencies and costs, as exogenous vari-

ables.58–69 Endogenous representation of technology cost im-

provements leads to the presence of bi-linear terms between

investment cost and new capacity variables, which cannot

directly be implemented in linear programming-based models.

One approach to consider the cost improvements endogenously

in LP models is by reformulating the model into mixed-integer

linear programming (MILP/MIP), which was implemented in a

number of analysis in TIAM and MESSAGE.25–28 In MESSAGE,

earlier attempt to incorporate technology cost learning adopted

the one-factor learning.25 Later, an approach that separates

learning and economies of scale effects was introduced to quan-

tify trade-offs between the two factors.71

Similar to MESSAGE, technology cost improvements in TIAM

are taken into account as one-factor learning by reformulating

the model into an MILP problem.27,28 More recent applications

of the model incorporate the concept via an iterative-based

approach. Here, the technology cost learning module is soft-
linked to TIAM to reevaluate technology cost assumptions and

its deployment output until convergence criteria are achieved.34

Learning and economies of scale concepts
In 1936, aerospace engineer Theodore P. Wright observed a

concept now known as the Wright’s Law.72 It explains how pro-

ductivity increases with experience which then emerge into a

concept that explains technology costs reduction as cumulative

output increases due to learning-by-doing processes.13 Using

this concept, the investment cost of technology can be esti-

mated using Equations 1 and 2.

ICt = ICRef

�
KQt

KQRef

��a

(Equation 1)

KQt = KQt� 1 +Qt (Equation 2)

As shown in the equation, the specific investment cost IC in

period t is a function of the specific investment cost reference

ICRef and the accumulated experience represented by the ratio

of cumulative installed capacity KQ in period t and the reference

period. Here, a constant a is the learning parameter which ex-

plains technology progress- (PR) and learning rates (LR), as

described in Equations 3 and 4. In this context, a progress rate

of 85% or a learning rate of 15% would mean that the cost of

new capacity decreases by 15% with each doubling of cumula-

tive installed capacity.

PR = 2�a (Equation 3)

LR = 1 � 2�a (Equation 4)

Despite this commonly implemented learning approach, i.e.,

the use of cumulative installed capacity as the explanatory vari-

able, literature suggest that unit size correlate negatively with

learning,16,30,44,73 hence, scalingdownunit size of the technology

improves technology learning rates.30 The reason behind this is

that smaller technologies allow more repetitive and replicative

experience that drives technology improvements.44,73 Given

that the number of repetitions and experimentations can better

represent knowledge accumulation than does capacity, our

approach quantifies the learning effect using the cumulative

installed number of units KN instead of the cumulative capacity

deployment. As can be seen in Equation 5, cumulative installed

capacity in Equation 1 is replacedby cumulative installed number
iScience 28, 111644, January 17, 2025 3



Figure 2. Roles of different factors in historical cost changes across

power generation technologies

Using the proposed approach, we quantify the roles of learning, economies of

scale (EoS), and knowledge gap (KG) effects at both the unit and project levels.

This figure illustrates the contributions of these factors to total historical cost

changes in absolute terms, with the total for each technology adding up to

100%. Data are represented as median with interquartile range (IQR).
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of units (KN), with KN in period t is the sum of KN in previous

period and newly installed unitsN at the present period (Equation

6). Here, Equation 7 shows that capacity addition in Equation 2 is

the product of number of units and the size.

ICt = ICRef

�
KNt

KNRef

��a

(Equation 5)

KNt = KNt� 1 +Nt (Equation 6)

Qt = Nt St (Equation 7)

In contrast to the learning effect, economies of scale refer to

cost advantages from increasing the unit size, project size or

production capacity. These advantages might have a physical

basis, among other factors. For instance, the economies of scale

in engineering can relate to the square–cube law, i.e., the surface

area of a vessel is the square of its dimensions, while the volume

is the cube. To illustrate, the cost of a spherical vessel can be

estimated based on the amount of materials required for its con-

struction, which can be assumed proportional to the surface

area. Using these, Equation 8 derives a cost-capacity relation-

ship of vessels with different sizes. Given that radius of a sphere

r is proportional to the cube root of its volume (V ), Equation 9

can be derived, showing an economies of scale parameter of

2/3 or 0.67. Similar analytical approaches apply to other technol-

ogies, such as in.39,74 Finally, Equation 9 can be generalized into

Equation 10, in which the capital cost C to build a unit of size St

can be estimated using the cost of a unit with size SRef . Here,

parameter b is equal to 1 if the scale proportionally affects the

cost, and less than 1 if larger units benefit from economies of

scale. It is important to note, however, that economies of scale
4 iScience 28, 111644, January 17, 2025
are not solely due to the physical factors. Other factors such

as potential discounts from bulk material purchases, labor and

capital efficiencies, increased manufacturing difficulties and

materials strength requirements, also play roles.75 These factors

can be difficult to separate from other factors. Hence, econo-

mies of scale parameters ðbÞ in literature,8,12,40–42 including

this work, are empirically estimated from historical data, rather

than analytically calculated.

C1

C2

=
4pr1

2

4pr22
(Equation 8)

C1 = C2

�
V1

V2

�2
3

(Equation 9)

Ct = CRef

�
St

SRef

�b

(Equation 10)

Capital cost ðCÞ is the product of the size of the technology

and the specific investment cost (see Equation 11). By substitut-

ing C in Equation 10 with this definition, we derive Equation 12,

which can then be simplified to Equations 13 and 14. As can

be seen, Equation 13 demonstrates how the specific investment

cost ðICÞ of a plant with different sizes can be estimated.

Notably, this equation resembles the learning concept described

in Equations 1 and 5. Therefore, drawing from the learning

concept, we introduce the economies of scale rate (ESR), which

explains the percentage reduction in cost with each doubling of

the size of the unit or project, as shown in Equation 15.

Ct = St ICt (Equation 11)

St ICt = SRef ICRef

�
St

SRef

�b

(Equation 12)

ICt = ICRef

�
St

SRef

�b� 1

(Equation 13)

� b = b � 1 (Equation 14)

ESR = 1 � 2� b (Equation 15)

Thecombinationof theconceptsabove is illustrated inFigure1A

for a technologywith equal learning and economies of scale rates.

The dark blue line represents the cost trajectory if the technology

development exclusively focused on learning through deploying a

thousand 1 MW units to reach the 1GWmark, assuming an initial

cost of $100/kW. Conversely, the red line depicts a strategy that

initially emphasizes the economy of scale by increasing unit size

to 125 MW to reduce the initial specific investment cost to $ 14/

kW. In this strategy, further cost reduction to $6/kW is achieved

through deploying 8 units of 125 MW each. The figure demon-

strates that, due to similar learning and scaling rates, the same

cost can be achieved at the 1 GWmark, regardless of the strate-

gies. However, it is important to note that the learning effect de-

creases as unit size increases, which might be important for a

technologywith different learning and economies of scale effects.



A B

C D

Figure 3. Historical data and curve fit for

offshore wind

(A–D) These figures illustrate insights from (A) one-

factor learning and (B) separated learning and

economies of scale approaches. Figure A shows

that offshore wind deployment slightly increases

technology costs due to a negative learning rate.

In contrast, Figure B demonstrates that, although

increasing the number of units increases costs,

unit size scale-up can significantly reduce costs.

Historical (C) water depth and (D) distance to

shore data of offshore wind projects illustrate how

other factors can affect the aggregated learning

value of a technology. Data for (C) and (D) are

adopted from Musial.81
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Following the concepts illustrated in Figure 1A, prioritizing

rapid upscaling is economically advantageous when economies

of scale outweigh the learning effect in a technology. This ap-

plies to technologies where significant cost reductions through

further experimentation are less likely due to a low learning

rate or when the technology is approaching technical maturity.

In such cases, rather than attempting to incrementally reduce

costs via learning, size upscaling may provide significant cost

reductions. However, changing the technology size too quickly

might lead to dis-economies of scale, that adversely impact the

technology cost.39,76 Numerous studies have provided statisti-

cal evidence as well as analytical and physical analyses of this

phenomenon.39,74,76 Notwithstanding this, historical data anal-

ysis shows that the size at which dis-economies of scale starts

to arise has increased over time.39,44 In this context, it is essen-

tial to recognize that increasing technology size also requires a

learning process.39 As illustrated in Figure 1B for historical

onshore wind data, the unit size can increase at a rate that is

directly proportional to the logarithm of the experience stock.

This relationship can be described by Equation 16.

As can be seen in Equation 16, g represents size scale-up rate

of a technology, with Smax indicating the maximum size the

technology can achieve before the knowledge gap affects costs.

In each period t, the technology size S can be smaller than, equal

to, or greater than Smax. A positive variable d in Equation 17

shows the technology size S relative to Smax. Here, auxiliary

non-negative variables Cl+ and Cl� are introduced in Equation

18. If S is greater than Smax, i.e., d> 1,Cl� is zero andCl+ is pos-

itive. Otherwise, Cl� is positive and Cl+ is zero. In other words,

Cl+ represents fraction of S that exceeds Smax. Using Equations

16, 17, 18, and 19 can be derived.

Smaxt = St� 1 +g log2

�
KNt

KNt� 1

�
(Equation 16)

St = dt Smaxt (Equation 17)
d = 1+Cl+ � Cl� (Equation 18)

St

1+Cl+ � Cl�
= St� 1 +g log2

�
KNt

KNt� 1

�
(Equation 19)

In this work, the knowledge gap effect (KG) negates the gains

fromeconomies of scale (EoS) when technology size is increased

exceeding Smax. This is shown in Equations 20 and 21. Accord-

ingly, Equation 22 shows the knowledge gap effect as a function

ofS,Smax, and b for all S>Smax. As discussed earlier, this is the

condition where d is equal to 1+Cl+. Finally, Equation 23 is

derived by substituting 1+Cl+ for d in Equation 17 and then use

the substitution result to replace S in Equation 22.

1 = KGt EoSt c St >Smaxt (Equation 20)

1 = KGt

�
St

Smaxt

�� b

c St >Smaxt (Equation 21)

KGt =

�
St

Smaxt

�b

c St >Smaxt (Equation 22)

KGt =
�
1+Cl+t

�b
(Equation 23)

By combining technology learning, economies of scale, and

knowledge gap concepts at the unit and project levels, the spe-

cific investment cost can be described by Equations 24, 25, 26,

27, 28, 29, and 30. The A term reflects the learning effect, while

the third and fourth blocks of Equation 25 (Bu and Bp) represent

the economies of scale effect. Additionally, the 1+Cu+ and

1+Cp+ terms capture the knowledge gap effect, with gu and

gp as scale-up rate parameters at unit and project levels, respec-

tively. Cu and Cp here are similar to Cl in the illustration used in

Equations 18 and 19.
iScience 28, 111644, January 17, 2025 5



Table 2. Technology change parameters for separated learning and economies of scale approach

Technology ICRef , $/kW LR, % ESR (unit), % ESR (project), % SUR ðgÞ (unit), MW SUR ðgÞ (project), # of Units

Nuclear pre-1967 4699 �11.7 42.6 38.4 338.5 0.89

Nuclear post-1967 1719 �17.3 0.0 0.0 576.4 0.59

Coal 2131 14.1 13.5 0.0 1442.3 1.14

Gas-OC 946 3.4 2.1 9.2 N/Aa 1.05

Gas-CC 1055 1.4 0.0 0.0 224.9 N/Aa

Geothermal 3560 �100.0 21.0 0.0 67.5 3.39

Onshore Wind 5005 4.7 13.5 0.0 2.2 N/Aa

Offshore Wind 2313 �27.5 47.5 0.0 2.1 N/Aa

Solar PV (Utility) 5690 22.1 N/Ab 21.5 N/Ab 108,401.72c

Solar CSP 27356 18.8 2.7 19.9 68.0 N/Aa

ICRef , investment cost reference; LR, learning rate; ESR, economies of scale rate; SUR, scale up rate (g).
aNot applicable. Unit/project size trends show constant or decreasing.
bNot applicable. Unit size for Solar-PV is assumed constant at 300 W/panel.
cThe SUR at the project level for solar PV is high compared to other technologies due to the significantly smaller unit size of this technology compared

to others.
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ICt = ICRef 3 Learningt 3EoSunit;t 3EoSproject;t

3KGunit;t 3KGproject;t

(Equation 24)

ICt = ICRef At
�a But

� bu Bpt
� bp

�
1+Cu+

t

�bu �1+Cp+
t

�bp
(Equation 25)

At =
KNt

KNRef

(Equation 26)

But =
Sut

SuRef

(Equation 27)

Bpt =
Spt

SpRef

(Equation 28)

Sut

1+Cu+
t � Cu�

t

= Sut� 1 +gu log2

�
KNt

KNt� 1

�
(Equation 29)

Spn

1+Cp+
t � Cp�

t

= Spt� 1 +gp log2

�
KNt

KNt� 1

�
(Equation 30)

As mentioned earlier, this study aims to quantify the roles of

factors affecting investment cost reductions in technologies,

focusing on learning and economies of scale at both unit and

project levels. Additionally, it provides a quantitative analysis of

the knowledge gap effect, which measures how quickly unit

and project sizes can be increased with a given addition of expe-

rience stock. It is also aimed to provide the required data and pa-

rameters to perform the analysis and implement the concept in

energy-economy models.

To achieve these goals, we used the historical timeseries data

of investment cost, cumulative installed capacity, and sizes at

unit and project levels. First, we used the data to estimate the

scale-up rate parameters ðgÞ, which measure the rates of unit

and project sizes increase for a given experience stock addition.
6 iScience 28, 111644, January 17, 2025
Here, unit and project sizes are expressed in capacity per unit

and number of units per project, respectively, to avoid econo-

mies of scale at unit level being attributed to the project level.

Following this, we used these parameters to identify how

much the scale up rates historically exceed the ‘‘knowledge

limit’’ for each period (Cu+ andCp+). For these given parameters,

learning (a) and economies of scale parameters (bu and bp) can

be estimated.

Following this, we use the estimated parameters to quantify

the roles of each factor and compare historical data with curve

fits from the proposed approach and the conventional one-factor

learning. In this context, comparison with other multifactor

learning approaches might be valuable. However, this work

does not pursue this analysis due to the limited availability of

data and parameters necessary for such comparisons across

the technologies examined. Finally, we provide a tool that can

be used to implement this approach in energy economy models.

Using installed capacity projections from the literature, we used

the tool to estimate future costs of several power generation

technologies, serving as a proof of concept for our proposed

methods. We then demonstrate how the results compare with

other estimates in the literature.

In this study, we focus on economies of scale effects at the unit

or project levels of the technology, such as the impacts of wind

turbines ratedcapacity andPVproject sizesoncosts. Economies

of scale at higher levels, such as supply chain andmanufacturing

facilities7,8,44,77,78 arenotwithin the scopeof thiswork. Therefore,

their effects remain aggregated in the overall learning effect. It is

also important to note that in addition to these supply chain and

manufacturing economies of scales, other factors wementioned

earlier in the introduction can also substantially contribute to

technology cost changes. Previous studies8–13,16,47–49 have

contributed to disentangle those effects. Rather than developing

a new approach to entirely replace them, this approach comple-

ments those contributions by providing the research community

and policymakers a new tool and data to disentangle economies

of scale effects at the unit and project levels. Therefore, this

contribution can be integrated to enhance factors represented



Table 3. Technology change parameters for one-factor learning

approach

Technology ICRef , $/kW LR, %

Nuclear pre-1967 14760 21.1

Nuclear post-1967 1733 �14.7

Coal 1677 7.6

Gas-OC 1062 6.0

Gas-CC 1051 1.0

Geothermal 2923 �96.0

Onshore Wind 3967 8.9

Offshore Wind 2678 �6.8

Solar PV (Utility) 6330 27.3

Solar CSP 22205 14.6

ICRef , investment cost reference; LR, learning rate.

Table 4. Technology data sources

Technology Data Sources

Nuclear Lovering et al.85; IAEA87

Coal McNerney et al.88; Yeh & Rubin89

Gas-CC Colpier & Cornland90;

International Energy Agency91

Gas-OC Rogner92

Geothermal IRENA79; IRENA83; Ediger & Akar93;

Barbier94; International Energy Agency95

Onshore Wind IRENA79; IRENA83; International

Energy Agency95; 96; Wiser et al.97

Offshore Wind IRENA79; IRENA83; International Energy Agency95

Solar PV

(Utility)

IRENA79; IRENA83; International Energy Agency95;

Barbose et al.98; Barbose & Darghouth99

Solar CSP IRENA79; IRENA83; International Energy

Agency95; Lilliestam et al.100; Thonig et al.101
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in themulti-factor learning concept. Particularly, our contribution

allows quantification of the optimal rates at which technology

sizes can be scaled up.

RESULTS AND DISCUSSION

Roles of different factors in technology cost changes
Using the parameter estimation model, we quantify the role of

each factor affecting cost changes in power generation technol-

ogies, namely learning, economies of scale, and knowledge gap

at unit and plant levels.

As shown in Figure 2, the learning effect dominates cost

changes, averaging around 69% of the total. Following the

learning effect, economies of scale at unit and project levels on

average drive 22% and 5% of the changes, respectively. Inter-

estingly, the impact of cost penalty due to rapid changes in

unit and project sizes to the total change tends to be limited as

technologies gradually scale up their sizes. Notwithstanding

this, for some technologies such as coal power plants, this

knowledge gap factor at the unit level can be essential.

The learning effect plays a significant role in technologies

with limited scalability, particularly those at early development

stages, such as concentrated solar power (CSP), which undergo

initial experimentation and demonstration at smaller scales. This

effect is also observed in mature technologies, such as Nuclear

post-1967, Gas-CC, and Gas-OC, which have reached their

maximum size. While the impact on costs is negligible for the

latter group, our results demonstrate a 59% reduction in the

cost of CSP as experience accumulates rapidly.

As scalable technologies progress and mature over time, the

role of learning in changing the costs diminishes. Our results

show that technological learning in coal, onshore wind, and solar

PV, for instance, contributes to around 18–71%of cost changes.

For those technologies, further cost reduction can be achieved

by increasing the size of the technology at the unit (e.g., wind

and coal) and project (e.g., solar PV) levels. For wind, the econ-

omies of scale at the unit level account for 74% of technology

cost changes. To achieve this, the unit sizes of onshore wind

were increased by 100 times the initial sizes. On the other

hand, the impact of economies of scale at the project level
was significant for solar PV. Hence, further cost reductions

were achieved by increasing the number of units at the same

project. Interestingly, project sizes marginally affect the cost of

wind due to the minor contribution of expenses at project level

to the total investment cost.

In economies of scale, the plant’s cost structure plays a

crucial role. For PV, the impact of economies of scale at the proj-

ect level is notably stronger than that at the unit level. In this

context, module prices constitute only 18–50% of the technol-

ogy cost.79 In other words, around 50–82% of costs arise from

the shareable balance of system and infrastructure expendi-

tures, allowing the technologies to considerably reduce costs

via increasing project sizes. Conversely, for wind, 80% of the

costs are spent at the unit level, i.e., for turbine, foundation,

and assembly (installation), with only 13% of the total for share-

able items, such as site access, electrical infrastructure, engi-

neering, and development.80 In addition, the turbines for the

same project are installed far apart, further limiting cost reduc-

tion potential through shared infrastructure. As a result, efforts

to reduce cost at the unit level, such as via increasing turbine

size, are a priority for wind technologies.

While increasing the unit size can result in cost reductions,

rapid scaling may incur a cost penalty due to knowledge gap.

For example, a swift increase in the size of Coal contributes to

a 39% cost penalty. As technologies diverge significantly from

prior experiences, a knowledge gap effect emerges, negating

the benefits derived from previous learning. Our results demon-

strate that this effect is noticeable at the unit level but more

manageable at the project level. As increasing unit size may

require new technology and supply chain setup, increasing proj-

ect size can be achieved simply by increasing the number of

units. Thus, as shown in Figure 2, the knowledge gap effect at

the project level is negligible for all technologies.

Separated learning and economies of scale can explain
cost dynamics better
We showed that economies of scale can significantly contribute

to cost reductions. As a result, separating learning and econo-

mies of scale can explain technology cost dynamics better than
iScience 28, 111644, January 17, 2025 7



Figure 4. Comparison between historical data, one-factor learning, and the proposed approach for different technologies
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the approach that exclusively uses the learning concept. To illus-

trate, Figure 3 compares historical data fit between one-factor

learning and the proposed approach, that is the separated

learning and economies of scale approach, for offshore wind.

As can be seen in Figure 3A, the one-factor learning approach

shows that thepotential for offshorewindcost reductions is negli-

gible. Doubling the technology capacity slightly increases the

cost rather than decreasing it. This result is in line with the values

of the learning rates reported by other studies. In this context,

some studies prefer to also report segmented values of the

learning rates, showing negative learning for the first segment

and positive learning afterward.35

Figure 3B demonstrates that the separated learning and econ-

omies of scale approach can distinguish the impact of each fac-

tor on the technology cost dynamics. Using this approach, we

show that doubling the number of units increases the cost of

offshore wind by 28%. In addition, the approach also identifies

that the technology can significantly benefit from increasing

the unit size. As can be seen in the Figure, doubling the unit

size reduces the cost of offshore wind by 48%. This explains

why up to a thousand units of turbines are installed, that is a

period with constant unit size, the cost of offshore wind in-

creases, followed by rapid cost reductions as turbine sizes in-

crease. Further investigation from the literature shows that the

negative learning of offshore wind is, among other factors,

strongly caused by an increased sea depth and distance from

the shore at which recent turbines were installed.11,82 As the cur-

rent global offshore wind markets are dominated by China, the

UK, and Germany, increasing the number of units rapidly occu-

pying potential sites with shallow sea floors near the shore. Such
8 iScience 28, 111644, January 17, 2025
a factor explains why area/site-specific technologies, such as

offshore wind and geothermal, may have negative learning rates

(see Tables 2 and 3). As seen in Figure 3C and 3D, the depth and

distance to the shore of offshore wind rapidly increase.

Finally, we compare historical data with curve fits based on

one-factor learning and the proposed approach for power ge-

neration technologies. As shown in Figure 4, the proposed

approach consistently outperforms the one-factor learning in ex-

plaining the cost dynamics of power generation technologies,

especially for technologies affected by economies of scale at

unit or project levels.

Technology cost change parameters
This subsection discusses cost change parameters associated

with power generation technologies. Parameters for separated

learning and economies of scale approach are summarized in

Table 2. The parameters for one-factor learning are presented

in Table 3. The historical data used to derive these parameters

are from sources outlined in Table 4, with details provided in

Figure 7 in the STAR Methods and Tables S1–S10 in the supple-

mental information.

Table 2 illustrates the varying effects of each factor on poten-

tial cost reduction across technologies. Cost reduction for

onshore wind, for example, is strongly dominated by scaling

up the unit size. Here, doubling the size reduces costs by

13.5%, almost triple the effect of learning. Thus, increasing the

size of the turbines is a priority in cost-reduction efforts for

onshore wind. Conversely, for coal, the learning effect is compa-

rable to the impact of economies of scale at the unit level. This

highlights the need to balance the speed of installing more units



Figure 5. Technology change parameters across different historical time segments compared to full dataset estimates

Each plot displays the ranges of learning (LR) and economies of scale (ESR) rates for various power generation technologies at the unit (U) and project (P) levels.

We assumed constant panel size for PV, therefore, ESR(U) plot for the technology is left empty. Black circle dots represent change rates across different historical

time segments, with boxplots illustrating their range. Maroon rectangular dots indicate the rates estimated using the full dataset. Positive values in this figure

indicate the percentage of cost reductions that can be achieved by doubling the cumulative number of units and sizes for each respective factor. The figure also

highlights that some technologies show both positive and negative learning rates across different periods, driven by a range of factors, such as regulatory and

site/resource constraints during the corresponding periods, underscoring the importance of disentangling these factors from learning effects to better under-

stand cost dynamics. Data are represented as median with interquartile range (IQR).
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and increasing the unit size to accelerate technology cost reduc-

tion. Interestingly, both learning and economies of scale at the

project level strongly and positively affect cost reduction in Solar

PV, allowing the technology to reduce its cost by more than 80%

in the last decade alone.83

In the one-factor learning approach, cost changes solely

depend on learning rates, making it easy to identify the direction

of cost change for the investment cost of newly installed capac-

ity. As shown in Table 3, while the investment cost of the newly

installed capacity of most technologies is expected to be

cheaper, the increased costs of Nuclear post-1967, geothermal,

and offshore wind should be anticipated. Although the approach

is useful for estimating the direction and magnitude of technol-

ogy cost change, as discussed in the motivation of this study,

it cannot be used to identify strategies to accelerate cost reduc-

tion. Most importantly, aggregating all factors affecting cost

change into a single predictor, i.e., cumulative installed capacity,

can bemisleading. In this context, the approach simply assumes

that the historical trends will persist in the future, which may not

be the case. For instance, the upper limit for technology unit size,

dictated by construction structure, material strength, supply

chain, or other factors, constrains the application of one-factor

learning. This limitation can lead to an overestimation of cost

reduction for technologies exhibiting a strong economy of scale

effect that is already approaching its unit size limit.

Technology innovation is a complex process where uncer-

tainty is inherent and can significantly affect the quality of future

cost estimates. While the values above show parameters esti-

mated across the full period data we have, here, we also show

the distribution of those parameters across different time seg-

ments. As can be observed in Figure 5, parameters associated
with economies of scale exhibit robustness, while those related

to the learning effect may have a higher level of uncertainty. For

economies of scale, the robustness of the parameter can be

attributed to physical factors, such as materials and installation

cost savings, that are less affected by temporal factors. On the

other hand, the learning effect may be affected by safety and

environmental regulations, currency variations, material prices,

and other factors that consistently evolve. This result highlights

the need to regularly update historical data to allow policy de-

signs derived from learning assumptions to adapt tomore recent

observations. In addition, it also emphasizes the significance of

considering multiple factors influencing technology cost change

rather than solely relying on the one-factor learning approach.

Future outlook of technology costs
In this section, we used the IEA’s installed capacity projections

to estimate future technology costs using our proposed tool,

which optimizes the number of units and technology sizes at

both the unit and project levels. We compared our cost projec-

tions with those from the IEA. While changes in technology costs

can influence future capacity projections, energy prices, and de-

mand in energy-economy models that implement this tool,

exploring these interactions is beyond the scope of our study.

This section demonstrates a proof of concept for our methods

in quantifying cost reductions from learning and economies of

scale effects while endogenously limiting unit and project size

upscaling through the knowledge gap effect.

Figure 6 compares investment cost projections between our

proposed approach and existing literature. We derived future

costs for wind, solar PV, and nuclear technologies using central

values from the literature for current investment cost and future
iScience 28, 111644, January 17, 2025 9



Figure 6. Projected investment cost benchmark

This study uses future capacity and the range of investment costs from the IEA.84 Estimateswere performed using the current central value of investment costs as

the reference. This figure shows that our projections for Wind Onshore and Solar PV align with the IEA’s estimates. However, our results for Nuclear and Wind

Offshore diverge from the IEA’s projections due to assumed negative learning rates, whichwere primarily driven by increased safety requirements for Nuclear and

greater water depths at deployment sites for Wind Offshore. Additionally, we provide projections using a 0% learning rate to illustrate the future costs of these

technologies if the negative learning effect is disregarded. Similar analyses for Wind Onshore and Solar PV were not performed as these technologies face

relatively fewer regulatory and site constraints that can significantly affect their observed learning rates.

iScience
Article

ll
OPEN ACCESS
capacity estimates, along with technology cost change parame-

ters from Tables 2 and 3. Other technologies are excluded from

the comparison due to unavailable cost or future capacity esti-

mates in the literature.84

Our projections for offshore wind and nuclear diverge from the

IEA estimates. As can be seen in the figure, the IEA assumed that

nuclear will be 11–32% cheaper than the current levels. Our

study finds that the cost of nuclear increases by 23% every

doubling the number of units while the potential for economies

of scale is limited as the technology is already at a GW scale

per project and may not be easily increased further. Similarly,

our study also found a negative learning rate for offshore wind.

As discussed earlier, negative learning rates for offshore wind

is mainly due to the increased water depth at deployment sites in

the countries currently deploying the technology.11,82 This trend

might change if the technology is adopted in other regions where

sites with shallower water are available. On the other hand, nega-

tive learning rates for nuclear is contributed by the required im-

provements in safety performance that leads to an increase in

system complexity for the technology construction.85 As an ex-

ercise to these, we estimated potential cost reductions for nu-

clear and offshore wind by omitting the learning effect, focusing

solely on the impact of economies of scale.

If thenegative learning effect is neglected, our results indicate a

potential 25% reduction in offshore wind investment costs by

2050. These reductions can be achieved by increasing the unit

size of offshore wind from the current global average of 7.7

MW/unit to 8.7 MW/unit by 2030 and 10.4 MW/unit by 2050.
10 iScience 28, 111644, January 17, 2025
For nuclear, the impact of economies of scale on future costs is

negligible as the technology is approaching its maximum size.

While onshore wind capacity is projected to increase 8-fold,84

our estimates show that the cost is expected to marginally

decrease from $1425/kW to $1213/kW by 2050. This modest

reduction is attributed to the unit size reaching 4.2 MW/unit,

approximately 50% larger than the current size of 3.0 MW/unit,

with only a moderate economies of scale effect. It is important

to note that the project-level economies of scale for Wind tech-

nologies are negligible.

The cost of solar PV is also expected to rapidly decrease from

currently $880/kW to$287/kWby2050.Here, cost reductions are

attributed to both learning and project-level economies of scale.

In this context, cost reduction is acceleratedby rapidly increasing

project size, allowing the technology to benefit from the project-

level economiesof scalewithout affecting cost reduction from the

learning effect. As a result, the cost estimates for solar PV in our

study are slightly more optimistic than the benchmark value.

Conclusion
In this study, we demonstrated that learning, economies of scale,

and knowledge gap at the unit and project levels can significantly

affect the costs of power generation technologies. Thus, our pa-

per offers methodologies and parameter data crucial for technol-

ogy cost estimation by considering these factors.

Notably, we identified limitations in the common practice of

using aggregated one-factor learning to estimate future technol-

ogy costs. This approach’s assumption that historical unit and
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Figure 7. Historical data for parameter estimation in the proposed approach

(A) investment cost, (B) annual average unit size, (C) annual average project size, and (D) cumulative installed capacity of power generation technologies.
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project size scale-up trends will persist in the future can be

misleading. It may underestimate cost declines during upscaling

periods for technologies with strong economies of scale effects

and overestimate cost reductions for technologies that have

reached their maximum size.

Most importantly, we observe that enhancing the factors ac-

counted for in cost estimations for several technologies shows

significantly lower learning rates than the rates observed in the

one-factor learning approach. Estimates developed using our

approach better fit the historical data than the one-factor

learning curve. These findings suggest that a substantial portion

of the historical cost decline in these technologies is attributable

to economies of scale rather than learning processes.

Moreover, our newly introduced knowledge gap factor can

capture trade-offs between rapid scale-up of unit size, to quickly

harness benefits from economies of scale, and the knowledge

gap effect that negates benefits from previous learning. By offer-

ing a more comprehensive understanding of these dynamics,

our proposed approach allows decision-makers to design

more informed choices in technology development to accelerate

technology cost reductions and deployment.

In light of this conclusion, while the utilization of one-factor

learning within IAMs (and other energy economy models in gen-

eral) is able to capture the cost dynamics of emerging yet fairly
established technologies, its continued application may inher-

ently underestimate the timing for novel technologies to achieve

cost competitiveness and the magnitude of their role. This is

particularly likely to be observed in those technologies with

strong potentials for harnessing economies of scale effect, but

still in the nascent developmental phase. This primarily arises

from the small-scale deployment of technology at this stage for

demonstration and experimentation purposes, thus impeding

its ability to fully leverage the potential cost reductions stemming

from economies of scale. Notably, the one-factor learning

approach inherently assumes that these trends persist, implying

that the technology will never be able to harness the economy of

scale. This behavior is highlighted in29 which shows that IAMs’

forecasts often underestimate the cost reduction of renewables

and batteries in the early phase of their development. Addition-

ally, the competitiveness of such technologies is further under-

estimated, as the approach assumes that mature technologies

still have significant room for improvement (i.e., unit size scale-

up) even though they may have already reached their maximum

size, such as In the case of nuclear.29,86

Limitations of the study
Although the technological learning concept is valuable for esti-

mating future costs, it has faced significant criticism for its heavy
iScience 28, 111644, January 17, 2025 11
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reliance on cumulative installed capacity as explanatory vari-

ables.7 This study attempted to fill this gap by providing tools

to separate economies of scale at the unit or project levels

from learning effects, along with data and parameters to esti-

mate future technology costs using the proposed concept. We

also introduce a knowledge gap effect to quantify how quickly

a technology can scale up its size to harness the economies of

scale effect.

In addition to these contributions, this study identifies several

limitations and areas for future research that warrant attention

and would enhance the insights obtained thus far.

Firstly, despite its significance in disentangling economies of

scale at the unit and project levels, the learning effect in this

study remains an aggregate of other factors. These include the

‘‘true’’ learning, regulations, resource depletions, R&D expendi-

tures, knowledge spillover, and economies of scale at higher

levels (e.g., supply chain and manufacturing facilities), etc. Fully

separating these factors requires additional data, which may be

difficult to obtain and likely to vary in quality, regional coverage,

and increasingly more complex system boundaries.7 Neverthe-

less, these factors can significantly contribute to cost changes

and may, in some cases, also require to be disaggregated

from learning. For instance, in line with our findings at the unit

and project levels, aggregating the economies of scale at

the supply chain and manufacturing facilities levels into the

‘‘overall’’ learning effect can further underestimate cost reduc-

tions potential for granular and modular technologies.7,44 This

is particularly relevant, given the weak correlation between the

learning effect of the technology and the scales of supply chain

and manufacturing facilities.7 Therefore, this work complements

existing efforts to disentangle factors contributing to cost

changes, offering the research community additional tools to

enhance dynamic representations of technology costs in en-

ergy-economy models.

Secondly, this study focuses on the capital cost of technology.

Hence, the effects of learning, economies of scale, and knowl-

edge gap on other technology features, such as efficiency, life-

time, capacity factor, emissions factor, etc., are not captured.

Notwithstanding this, the application of the proposed approach

in energy-economy models can be easily expanded to include

other technological features to allow the approach capturing

technology progress more holistically.

Finally, in conducting the analysis, we used data from various

sources which may have different levels of completeness. This

may lead to data uncertainty issues that can significantly affect

the results and analysis.7 Although this limitation is inherent in

modeling work, this emphasizes the importance of continuously

updating data input when using this approach for decision-mak-

ing processes.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Nuclear pre-1967 Historical Data This paper Table S1

Nuclear post-1967 Historical Data This paper Table S2

Coal Historical Data This paper Table S3

Gas OC (Open Cycle) Historical Data This paper Table S4

Gas CC (Combined Cycle) Historical Data This paper Table S5

Geothermal Historical Data This paper Table S6

Wind Onshore Historical Data This paper Table S7

Wind Offshore Historical Data This paper Table S8

Solar PV (Utility) Historical Data This paper Table S9

Solar CSP Historical Data This paper Table S10

Wind Offshore Depth Historical Data This paper Table S11

Wind Offshore Distance to Shore Historical Data This paper Table S12

Software and algorithms

Code to perform the analysis Zenodo Zenodo: https://doi.org/10.5281/

zenodo.14387258
METHOD DETAILS

Data collection
In this work, the historical data on cumulative installed capacity, the number and average size of units and projects, as well as the

investment costs are required to estimate learning and economies of scale parameters. For each technology, data sources used

for this study are listed in Table 4.

It is important to note that some assumptions need to be made when the required data are not available. Among those data, the

number of units and unit size are not always available. If either of these is available, the other can be estimated using capacity addition

data. If both data are not available, we used Global Power Tracker102–104 data, which list installed units, projects, and their sizes, to

estimate the annual average unit and project sizes of the technology for each period. Figure 7 below visualizes the data input used for

parameter estimation for the various technologies included in this study. The data and code required to perform the analysis for this

paper can be seen in the supplemental data and code.

Parameter estimation model
While one-factor learning parameters for numerous technologies have been well documented, literature on the parameters for sepa-

rated learning and economies of scale is limited.8,42,45,105 In this work, we used Equation 25 and the curve-fitting approach to esti-

mate the learning (a) and economies of scale (b) parameters, as well as the scale up rate (g) parameter to incorporate knowledge gap

effect. To perform this, we used the number and size of installed units and projects, as well as investment cost historical data, as an

input for the parameter estimation model, aiming to minimize the least square error. Here, Equation 25 is linearized via the log-log

transformation, shown in Equation 31, allowing the model becomes more tractable.

log2 ICt = log2ICRef � a log2At � bu log2But � bp log2Bpt + bu log2ð1 + CutÞ+ bp log2ð1 + CptÞ (Equation 31)

Therefore, the objective function of the model is:

Min :a;b =
XT
t

x2t (Equation 32)
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where xt is the estimation error (residual) in period t, that is the distance between the estimated and historical values of Log ICt,

calculated using Equation 33. icRef in this equation is the intercept of the fitted curve with the y axis, which implies the estimated value

of the reference plant’s specific investment cost. Equations 29 and 30 is included as constraints in its logarithmic form, shown in

Equations 34 and 35.

xt = log2 ict � log2ICRef + a log2At + bu log2But + bp log2Bpt � bu

Xt

t0
log2ð1 + cut0 Þ � bp

Xt

t0
log2ð1 + cpt0 Þ c t0 % t

(Equation 33)

sut

1+cut

% sut� 1 +gu log2

�
knt

knt� 1

�
(Equation 34)

spt

1+cpt

% spt� 1 +gp log2

�
knt

knt� 1

�
(Equation 35)

To estimate learning parameters for the one-factor learning, Equation 31 is replaced by Equation 36, which is derived from the line-

arized form of Equation 1. Hence, estimation residuals are calculated by using Equation 37. For one factor learning, Equations 34 and

35 are omitted.

log2ict = log2ICRef � a log2

�
kqt

kqRef

�
(Equation 36)

xt = log2ict � log2ICRef +a log2

�
kqt

kqRef

�
(Equation 37)

ICRef ;bu; bp;gu;gp R 0 (Equation 38)
Cost estimation model
One of the advantages of separating learning and economies of scale effects is that the trade-offs between the two effects can be

quantified to optimize technology cost improvement. Here, we introduce an optimization model to perform this type of analysis. As

shown In Equation 39, the objective of the model is to minimize total investment cost by varying the number and size at the unit and

project levels, aswell as the speed of unit scale up. Byminimizing total investment cost, this implies in themodel that cost reduction is

capacity weighted. As a result, the model may select strategies that initially focus on learning to slowly reduce cost during the forma-

tive phase and increase unit and project sizes later to reduce cost further when the technology is rapidly deployed. Strategies might

be different if the focus is rapid cost reduction during the formative phase to gain market share, which might be preferable from tech-

nology developers’ perspective.

Min :N;KN;Su;Sp =
XT

t
INVt (Equation 39)

Here, annual investment (INV ) is a function of specific investment cost and capacity deployment in each period. Although future

capacity is assumed as a parameter, the number of units and unit sizes are decision variables (Equation 40) which, in turn, can affect

specific investment cost (Equations 41 and 42).

INVt = ICt qt = ICt Nt St (Equation 40)

ICt = ICt� 1

�
KNt

KNt� 1

��a�
Sut

Sut� 1

�� bu
�

Spt

Spt� 1

�� bp

ð1+CutÞbu ð1+CptÞbp (Equation 41)

KNt = KNt� 1 +Nt (Equation 42)

Similar to the parameter estimation model, this problem is solved in its logarithmic form for tractability. The log-transformed equiv-

alent of the cost estimation problem is outlined in Equations 43, 44, 45, and 46.

min
N;KN;Su;Sp

XT

t
2log2 INVt (Equation 43)

log2ðINVtÞ = log2ðICtÞ + log2ðNtÞ+ log2ðStÞ (Equation 44)
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log2ðICtÞ = log2ðICt� 1Þ � a log2ðAtÞ � bu log2ðButÞ � bp log2ðBptÞ + bu log2ð1 + CutÞ+ bp log2ð1 + CptÞ (Equation 45)

KNt = KNt� 1 +Nt (Equation 46)

In this model, variableCut andCpt represent the acceleration of unit and project scale up rates required to exceed unit size achiev-

able by the technology at the normal scale up rate, calculated using Equations 47 and 48, respectively.

Sut

1+Cut

% Sut� 1 +gu log2

�
KNt

KNt� 1

�
(Equation 47)

Spt

1+Cpt

% Spt� 1 +gp log2

�
KNt

KNt� 1

�
(Equation 48)

Meanwhile, cost estimates using one factor learning approach are preformed using Equations 49 and 50.

log2ðICtÞ = log2ðICRef Þ � b log2

�
kqt

kqRef

�
(Equation 49)

kqt = kqt� 1 +qt (Equation 50)
QUANTIFICATION AND STATISTICAL ANALYSIS

All data expressed as median with interquartile range are indicated on the appropriate figure legends, as appears in Figures 2 and 5.

Numpy Python package was used for these statistical analysis. Matplotlib Python package was used to generate all the figures.
e3 iScience 28, 111644, January 17, 2025
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