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PREFACE

Analysis concerned with problems of the rational use of
natural resources almost invariably deals with uncertainties with
regard to the future behavior of the system in question and with
multiple objectives reflecting conflicting goals of the users of
the resources. Uncertainty means that the information available
is not sufficient to unambiguously predict the future of the sys-
tem, and the multiplicity of the objectives, on the other hand,
calls for establishing rational trade-offs among them. The ra-
tionality of the trade-offs is quite often of subjective nature
and cannot be formally incorporated into mathematical models sup-
porting the analysis, and the information with regard to the fu-
ture may vary with time. Then the challenge to the analyst is to
elaborate a mathematical and computer implemented system that can
be used to perform the analysis recognizing both the above aspects
of real world problems.

These were the issues addressed during the summer study
"Real-Time Forecast versus Real-Time Management of Hydrosystems,"
organized by the Resources and Environment Area of IIASA in 1981.
The general line of research was the elaboration of new approaches
to analyzing reservoir regulation problems and to estimating the
value of the information reducing the uncertainties. Computation-
ally, the research was based on the hydrosystem of Lake Como,
Northern Italy.

This paper describes the application of an innovative ap-
proach to problems of reservoir management. This approach, which
focuses on a risk-adverse regulation of a hydrosystem, takes into
account both major aspects of this type of problem: wuncertainty
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with regard to inflows of water into the system, and also multiple
objectives which are faced by the manager. The theoretical basis
of the approach has been described in another paper of this series
of publications. This paper is more application-oriented, and

contains also computational results for the regulation problem
of Lake Como in Northern Italy.

Janusz Kindler
Chairman

Resources & Environment Area
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A MIN-MAX APPROACH TO
RESERVOIR MANAGEMENT

S. Orlovsky, S. Rinaldi,
and R. Soncini-Sessa

1. INTRODUCTION

The problem considered in this paper is the one of real-time
management of a multipurpose reservoir. For didactic reasons,
it will be assumed that there are only two management goals,
namely satisfaction of the water demand of the downstream users
and attenuation of the storage peaks in the reservoir. Since
these goals are conflicting and incommensurable, the solution of
the problem will be a set of efficient operating rules (see
Cohon and Marks 1975).

Many different methods for determining such operating rules
have been developed so far. They differ in the formal descrip-
tion of the objectives and constraints, in the way they deal
with uncertainties, and in the solution algorithms (linear
programming, dynamic programming, discrete dynamic programming,
optimal control, etc.). One common feature of these methods is

the explicit or implicit use of the notion of probability to
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describe future inflows and evaluate systems performance. For
this reason, all these methods could be considered as different
formal expr=ssions of the stochastic approach to reservoir
management.

Very frequently, managers react in an unfavorable way to the
above optimization methods (see Helweg et al. 1982). Reasons
for this may be the inadequate description of the physical
characteristics of the system, the complexity of the proposed
algorithms, and the need for on-line optimization. Other reasons
may be the lack of confidence in sophisticated stochastic tech-
niques and the feeling that single-value operating rules are tools
too rigid for solving complex but soft decision-making processes.
Finally, detailed analyses made in other fields of management
science have proved that decision makers very seldom consider
long-term expected values of physical and/or economic indicators
as representative measures of system performance. Indeed, very
often, a manager focuses his attention and effort on avoiding
dramatic failures when the system is under stress. In other
words, in most cases, decision makers are risk-adverse, even if
this entails a worse average performance of the system.

Reservolr managers are no exception. For example, when
the results of a detailed optimization study on Lake Como, Italy,
(see Guariso et al. 1982a) were presented to the manager, he
recognized that he was not completely satisfied by the kind of
objectives selected in that study (mean yearly water deficit,
average number of days of flood per year, and mean yearly hydro-
power production). Being risk-adverse, the manager instead

showed a pronounced interest toward the possibility of avoiding
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severe failures of the system during extreme hydrological episodes,
like those he had personally experienced in the past.

For all these reasons, we use in this paper a deterministic
(min-max) approach to the management problem, which overcomes
many of the above criticisms. The theoretical basis of the approach
in a more general context of storage control problems is described
in Orlovsky et al., 1982, 1In this approach, the performance of the
system is evaluated with reference to a few specific inflow
sequences suggested by the manager. These inflow sequences may
be some real or synthetic inflow records or some hypothetical
sequencés of inflows which the manager considers as particularly
well-suited for testing the realiability of any operating rule.

Of course, the solutions suggested by this approach will be
dependent upon the input data, namely the reference inflow
sequences. For this reason, one must be particularly careful
‘when selecting these sequences. For example, if there are dif=-
ferent seasons of potential droughts and floods, one should con-
sider inflow sequences characterized by extreme values in all
these periods.

The efficient solutions suggested by the min-max approach
will be shown to have some definite advantage with respect to
those obtained by means of the stochastic methods. 1In fact,
they do not require complex algorithms and on-line optimization;
they can be visualized in terms of classical storage allocation
zones; they make reasonable use of the real-time forecast of the
inflows; and they suggest a whole interval of possible releases

instead of a single value. The last such property is particularly



important, since it introduces some flexibility into the decision-
making process. For example, the manager might use this freedom
to heuristically accommodate for secondary objectives which were
not taken into account in the description of the problem. He
might as well satisfy unexpected water demands or other unpre-
dictable needs. Finally, one might even use this freedom to
optimize the average long-term performance of the system, thus
putting risk-adverse and mean profit-maximizing attitudes in a
precise lexicographic order.

The paper is organized in the following way. In the next
section, the two objective management problem is formulated,
and feasible and efficient operating rules are defined. Sections
3 and 4 show how the problems of satisfaction of demand of down-
stream users and attenuation of storage peaks in the reservoir
can be solved with the min-max approach. Then, the results are
used in Sections 5 and 6 to point out feasible and efficient
operating rules of the double objective management problem.
Finally, Section 7 deals with the so-called "linear case" for
which explicit solutions are presented and applied in the next

section to solve a lake management problem.

2. PROBLEM STATEMENT
Let us consider a reservoir described on a daily basis by

the continuity (mass balance) equation

Sge1 T S B T T ()

where Sy is the storage at the beginning of day t, and a, and

r, are inflow and release during the same day. The problem we

consider is focused on the determination of operating rules of




the form

a,) ' (2)

which can be considered "efficient" in the sense specified below.

These operating rules must satisfy the following physical constraint

0 €£r(t, s a,) < N(st) ’ (3)

t’ Tt

where N(s,) is the maximum amount of water that can be released

t

in one day when the storage is equal to s_ at the beginning of

t
that day. In the case where the reservoir is a regulated lake,

the function N is the open-gate stage-discharge function associated

with the regulation dam.

Let us assume that the daily water demands of the downstream

users are given, so that the corresponding reference release
. v
T

t=20,1,...,364, is known. If the release r, is greater

t
*
than rt, there is no benefit surplus. If, on the other hand,

*
there is a deficit, i.e., if rt is smaller than T,

are detectable downstream damages. The minimum yearly value

then there
o of the ratio between actual and reference release, i.e.,
r
o = min —’-:1 ’
0<t<364 r,

is considered as a meaningful indicator of yearly damages suffered

by the downstream users. The maximization of this indicator is

therefore one of the goals of the management.
The second goal, obviously conflicting with the first one,

is the attenuation of the storage peaks. To describe this goal
*
tl

t =20,1,...,364, at which there are no damages, is known. This

in quantitative terms, assume that the maximum storage s



*
reference storage Sy

the lowest populated or cultivated area around the lake. The

may correspond, for example, to the level of

maximum yearly value B of the ratio between actual and reference

storage, i.e.,

S
t
B = max - '
0<t<36l S¢
will be used in the following as the indicator of flood damages.

The second goal of the manager is therefore the minimization of

this indicator.
In order to compare the performance of different operating
rules, reference is made to a set I of n one year-long daily

inflow sequences {at}, i.e.,
I={{ag), t=0,...,364; i=1,...,n)

In the following, this set is called the reference set. In

general, it contains recorded or synthetic sequences of inflows
that the manager considers aé possible in the future and par-
ticularly troublesome. The operating rules which the method

will select are those which guarantee satisfactory performance of
the system for such reference hydrologic years. For this reason,
they look appealing to the manager because they are particularly
robust when the system is under stress. In the case when the
reservoir is already in operation, one might consider as sequences
of the reference set a selection of the most wet and dry years
experienced by the manager. In so doing, the proposed operating
rules may also be compared with the performance the manager was

able to achieve in practice.



Operating rules which minimize flood damages and water
shortages in the worst possible case out of the reference set
are loocked for. 1In doing that, one must properly constrain the
reservoir storage at the end of the year (otherwise, in real
operation, good performances in one year could imply very poor
performances during the next year). For choosing this constraint
it was assumed that the same operating rule when applied during
the neéxt year must also guarantee satisfactory values of thé
deficit and flood indicators for any of the yearly inflow sequences
out of the reference set I. 1In order to quantitatively express

these constraints on the terminal conditions, let us indicate

1
t

operating rule r to a reservoir with initial storage Sq and in-

with s (so, r) the storage obtained at time t by applying the

flows aé, a%,...,at_1, where i = 1,...,n is the index of a

sequence from the set I. Similarly, let us indicate by al(so, r)

and Bl(so, r) the corresponding values of the deficit and flood

indicators. (In the following, the abbreviated notations st,
i i
a~, B

are also used). Thus, the terminal constraints can be

given in the following form

min [ai(s , )]

2
(]
~
H
H
v
I>
e
)
R

S (s ,  (da)
365770 1<i<n ° °
83(sX (s, r), r) < max [8Y(s_, r)] & B(s_, r) (4b)
365 O' ’ - A O’ = OI ’
1<i<n
j=1,...,n; k=1,...,n

It is now possible to clearly define feasible and efficient
solutions of the double objective management problem (see, for

instance, Cohon and Marks 1975). A feasible solution is a




pair (so, r) of an initial storage and an operating rule which
is such that the storages and releases computed by means of
Equations (1) and (2) in correspondence to any reference inflow
sequence satisfy the physical constraint (3) and the terminal
constraints (4). Moreover, a feasible solution (so, r) is said
to be efficient if there are no other feasible solutions (s;, r')
which can improve one of the two indicators without worsening
the other one (see line BC of Figure 1). On the other hand,

a feasible solution is called dominated if there are other
feasible solutions with better values of both indicators (internal
points of the shadowed region of Figure 1). The feasible solu-

tions which are neither efficient nor dominated (see segments AB

and CD of Figure 1) will be called semi-efficient. These solu-

tions can obviously be improved by improving one of the two
objectives without perturbing the other one. Figure 1 shows all
these solutions in the space (a, B8) of the indicators and points
out the absolute maximum value Ynax and the absolute minimum
value Bmi of the indicators for which feasible solutions can

n

be found. The point U with coordinates (amax’ Bmin) is infeasible

because the goals are conflicting and is therefore called the

utopia point.

In order to find efficient and semi-efficient solutions to
the problem, we will first consider two simple problems. The

first one (see next section) is called demand satisfaction and

consists of determining solutions (so, r) which satisfy the
physical constraint (3) and the terminal constraint (4a) for a
given value, say o, of the indicator a(so, r). Similarly, the

second problem (see Section 4), called flood protection, consists
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of determining pairs (so, r) which satisfy constraint (3) and the
terminal constraint (4b) for B(so, r) = B, with B being a given

value.

3. DEMAND SATISFACTION

We are now interested in finding initial storage sg and
operating rules r® which can guarantee that the yearly deficit
indicator will not be smaller than a prescribed value a for all
inflow sequences of the reference set I. This is equivalent to
saying that we will find initial storage and operating rules

which can guarantee the satisfaction of the reduced water demand

*
£

ar
Of course, a solution to this problem exists, provided the
value a of the deficit indicator is sufficiently small. One

such solution corresponds to the so-called minimum release policy

a
r

min diven by

r, = %, (t, s

— : * }
+ nin = min{N(s, ), ar, . (5)

t) t

This policy satisfies, by definition, the physical constraint (3).

Therefore, a pair (so, rmin) is a solution to the problem,
provided the release
_.a o
Ty Thin (B st(so’ rmin)) '

*
never drops below the reduced demand ar,

straint (4a) is satisfied for all inflow sequences from the

and the terminal con-

reference set. Moreover, if the pair (so, rgin) is a solution
1
to the problem, then any pair (so, rgin) with greater initial

storage (sO > so) is obviously also a solution. Therefore, we

are actually interested in finding the minimum initial storage,
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, which together with the operating rule r¥.  can

o
say s
Y min

omin

*
guarantee the satisfaction of the reduced water demand ar The

p

minimum storage s can be obtained by solving the following

omin
simple mathematical programming problem, called Problem O. In
this problem, the constraint S§65 > So is a surrogate of the
terminal constraint (4a).
. . o
Problem O (Determination of somin)
o} o
omin ~ ™R S, (6a)
sg = s, i=1,...,n (6b)
i i o i . _
SE+1 St + ap rmln(t, st) i=1,...,n t=20,...,364 (6c)
% (¢, s = ar. i=1 n t=0 364 (6d)
min 7 t t 7 e o g 7 @ o o g
si > s i=1,...,n (6e)
365 ~ To ’ !

Problem O can be solved by simulating the reservoir behavior

with initial condition Sq and operating rule rgin for all inflow

seqguences {at} of the reference set I. If constraints (6d) and

o < s

. a
omin o’ otherwise s > s _. Thus,

(6e) are satisfied, then s omin o

a very simple one-dimensional searching procedure (e.g., bi-

. . o
section) can be used to determine s

omin ° In the case where the

stage-discharge function N is linear, Problem O is actually a

linear programming problem. In fact, in Equation (6c), rgin

i *
(t, si) can be replaced by oar (see Equation (6d)), and Equation

tl
(6d) can be substituted by

* i ,
ar, < N(st) i=1%1,...,n t=20,...,364 ’

which is a linear constraint in the case that N is such.
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The problem of finding the minimum storage simin that can

guarantee together with the minimum release policy (5) the

satisfaction of all the constraints throughout the rest of the

year (after day t1), can be formulated in the following way.
. . o _
Problem T (Determination of Srmin’ T=1,...,364)
% = min s ' (7a)
Tmin t
si = s, i=1,...,n {7b)
i _ i i« i o _
S si + ag rmln(t’ st) i 1,...,n ¢t T,.e0e,364 (7¢)
% (e, s¥) = ar. i= 1 n ot =1 364 (74)
min ’ t t 7 96 oy 7 o e ey
i o .
S365 > Somin i=1,...,n (7e)
As in the preceding case, s® . can be obtained by guiding simula-

Tmin

tions with a one-dimensional searching method, and again the prob-
lem reduces to a linear programming problem when the stage-

discharge function is linear. It is worthwhile noticing that

a

the solution to Problem O, namely s .
omin

, is used in Equation

(7e) in order to guarantee the satisfaction of the terminal con-
straint (4a). This implies that Problem O must be solved first.
On the other hand, the solution of Problem T can be carried out

independently for each value of T.

Now that we have found a solution to the problem of satis-

a a

faction of demand, namel . r,
€ ! Y (sonun’ min

), we can immediately

obtain all other solutions (sg, ) In fact, we only need to
; ; *
notice that a volume of water ro greater than 2, (t, sl) = ar
t min t t

can be released without any consequence provided that the reser-

voir storage and/or the inflow are sufficiently high. More pre-
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cisely, if (in some year i)

i i o *

S¢ t 3L 2 Seiqmin T OF v
a release ri between ar* and the minimum between (si + ai - sOC )
ny re t t t t t+1min
and N(sl) (see shaded area in Figure 2) will give rise to a

t

storage st+1 greater than or equal to s , which is indeed

o
t+1min

the minimum value of the storage that can guarantee the satis-

faction of all the constraints from time t+1 to the end of the

year. In conclusion, the solutions to the problem are given by
all pairs (sg, ) satisfying the following two inequalities
Sg 2 gmin ! (8a)
. * o . o *
mln{N(st), art} < r(t, Sy at) < mln{N(st), max{st+at—st+1min, art}}
(8b)

Equation (8b) is interpreted in Figure 2, which shows that

for sufficiently high values of the storage s, and/or the inflow

t
a,, there is a whole interval of possible releases (shaded area).
The figure also shows that the storage axis can be divided into

four storage allocation zones named I, II, III, and IV. The

t
by the storage at which the stage-discharge function N equals

first one depends only upon o since its upper limit s_ is given

the reduced demand arz. The first zone is never entered if the
inflow sequences {az} are those of the reference set. It is
therefore a kind of dead zone, which might nevertheless be reached
during real operation if a drought more severe than those con-
sidered in the reference set occurs. In the second zone, the

*
release equals the reduced demand oar,_, while in the third and

fourth zones the release can be greater than the reduced demand.
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Figure 2. The set of releases which can guarantee the satisfac-
tion of water demand (see Egquation 8b).
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In particular, in the last zone, the manager might even completely
open the gates of the regulation dam without worsening the per-

formance of the system with regard to the demand satisfaction.

It is worthwhile noticing that the values S¢ and S¢ dividing

these zones depend upon the inflow a since the straight line

tl
_ _Q . .
rt = st + at st+1min shifts to the left when at increases.

This means that Equation (8b) defines a priori only the dead
zone, while the others are adapted to the current value of the
inflow. In real operation, one must therefore be particularly

careful in forecasting the daily inflow a -

4. FLOOD PROTECTION

Using the preceding section as a guideline, we now deal

with the problem of flood protection. We are interested in
B

finding initial storages sg and operating rules r~ which can

guarantee that for each year i out of the reference set, the

sStorage st

*
Bst. Of course, solutions to this problem exist, provided the

will not be greater than the relaxed reference storage

value of B is sufficiently high. Moreover, if a solution
(sg, rB) exists, then the maximum release policy rnax (indepen-

dent of 8) given by

is also a solution for the same initial storage. Finally, any

pair (sg, rmax) will represent a solution provided the storage
sg is smaller than or egual to the maximum storage Sgrmuc ob-

tained by solving the following mathematical programming problem.
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. . B
Problem O (Determination of somax)
sB = max s (10a)
o max
st = s i=1 n (10b)
o o rest
i _ 1 _ i - =
St 41 St + a rmax(st) i 1,...,n t 0,...,364 (10c)
i * .
St < Bs i=1,...,n t=20,...,364 (104d)
t
st < i=1 n (10e)
365 T "o ey
As in the problem of demand satisfaction, once the value of sgmax
has been determined, the following problem can be considered.
. . 8 _
Problem T (Determination of S max’ T=1,...,364)
sB = max s (11a)
Tmax T
si-s i= 1 n (11b)
T - T - 7 7
i _ i i _ i _ -
st+1 = sy + ay rmax(st) i=1,...,n ¢t T,e..s364 (11c)
i * .
st < Bst i=1,...,n t=71T,...,364 (114)
i B .
S365 < S, nax i=1,...,n (11e)

As in Section 3, all these problems can be solved by simulating

the reservoir behavior for different (guided) values of the

initial storage. Moreover, Eguation (9) substituted into Egquation

(11¢c) gives rise to a linear programming problem if the storage-

discharge function is linear.

notice that the

All the solutions (sg, rB) can immediately be obtained from
. B8
the solution (somax’ rmax)' In fact, one can

performance of the system does not change if the release r. is
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smaller than rmax(st)' provided the reservoir is sufficiently

empty and/or the inflow is sufficiently low. More precisely,

if (in a year i)

i i B i
<
St T2 S Sitimax T N(st) !
then any release ri between max{0 si+ai-sB } and N(si) (see
t " Tt Tt Tt+Tmax t

i

41 smaller

shaded area in Figure 3) will give rise to a storage s

B

than or equal to St+1max’

which, by definition, is the maximum
value of the storage at time t+1 that can guarantee the satis-
faction of the constraints from that time up to the end of the

year. In conclusion, the solutions of the problem are given

by the pairs (sg, rB) satisfying the following inequalities
B B
So = S0 max (12a)
min{N(s, ), max{s,-a —sB 0}} < rB(t s a,) < N(s,[) (12b)
t’’ t "t “t+1lmax’ - ! t’ t’ T t -

Equation (12b) is interpreted in Figure 3. The storage axis is
divided into three zones, named I, II, and III. In the first
one, any decision is possible: the manager might even close the
gates of the dam, thus storing all the inflow, without worsening
the future performance of the system. In the second zone, dif-
ferent options are still possible, although the manager is

forced to become more and more aware of the potential floods when
the storage and/or the inflow increase. Finally, in the third

zone, which might be properly called the spilling zone, the

manager is obliged to release the maximum he can by keeping the

gates of the dam permanently open.
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5. FEASIBLE SOLUTIONS TO THE TWO OBJECTIVE PROBLEM

ofB

Feasible solutions (sO ’ raB) to the double objective prob-

lem formulated in Section 2 can now be found. In fact, by taking

the intersection of the intervals defined by Equations (8a), (12a),
and by Equations (8b), (12b), and by suitably re-arranging the
various terms, one can prove that any pair (sgB, raB) such that
a aB . B
Somin = So = Somax ! (13a)
. _.B * < 0B

mln{N(st), max{st+at St +1max’ art}} Srot(t, s, ay)

< min{ {s,+a -5 1) (13b)

< min N(st), maxis,+a, =S, i’ OF¢ ,

is a feasible solution of the problem described in Section 2.
Equation (13b) constraining the feasible operating rules

is interpreted in Figure 4. The storage axis is divided into

six parts. The first (I) and the last (VI) are the dead and

spilling zones which have already been discussed. 1In the second

zone--which might be called the buffer zone--the manager has no

*

alternative except to release the reduced water demand ar, .
" 3

Then, we have the conservation zone (st < st < sZ), which is

in turn sub-divided into three subzones (II, III, and IV). 1In

these zones, there is a whole range of possible releases among
which the manager can freely choose without any conseguence on
the system performance. Nevertheless, the three subzones III,
IV, and V show the declining importance of one goal (satisfaction
of demand) versus the other (flood protection). 1In fact, in

zone III, it is possible to release the reduced water demand,
thus saving water to compensate possible future periods of low

inflows, while in zone V it is possible to release water from
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the reservoir at the maximum rate, thus avoiding future floods.
On the other hand, in zone 1V, none of these limit management
policies is allowed.

The shaded region in Figure 4 is more or less wide, depending
upon the time of the year and upon the values a and B of the two
indicators. Actually, the fact that a pair (a,B) cannot be
guaranteed at all is simply revealed by the vanishing of this

region. This obviously happens when

o S

St min > St max
on some day t. On the other hand, if

a < <P

St min > St max ’ t=20,...,364 (14)

feasible solutions to the problem always exist. Moreover, if

o and B are such that

a < B

Stmin ° Stmax ’ t =0,...,3604

we can say that the corresponding feasible solutions given by
Equation (13) are dominated, since we can increase o and reduce
B until we obtain Equation (14) with the equality sign holding
in at least one constraint. This could actually be a useful
test for finding efficient or semi-efficient operating rules.
Nevertheless, a much more direct method can be devised, as shown

in the next section.

6. EFFICIENT SOLUTIONS
We will now describe a simple method for finding efficient
and semi-efficient solutions to the double objective problem

‘described in Section 2. The method includes two steps. First,
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*
given a value o smaller than or equal to a (see Figure 1),

max

* K
the corresponding minimum value B (a ) of the second indicator

* kK * %k
is computed. Second, the feasible solutions (sg 8 (a ), r B (o ))
are determined b means of Ecuation (13). These solutions are

either efficient or semi-efficient (see points X and Y in Figure
1).

An analogous procedure starting from a given value B* of
the flood indicator could also be followed. 1In this case, the

* ok :
corresponding maximum value o (B ) of the flood indicator is

* ok X k%
first obtained, and then the solutions (sg (8 )8 ’ r* (8 )8 ) are
determined by Equation (13). Again, these solutions are either

efficient or semi-efficient (see points X and Z of Figure 1).
The two above procedures can be used sequentially in order

to detect if a solution is efficient or semi-efficient. For

;, point X is obtained, and

then the second procedure applied with B* = B;

example, starting from the value o

(see Figure 1)

*
X
is an efficient solution. On the other hand, if one starts from

*
Qv point Y will first be obtained, but then the second procedure

)

. . . . . . *
will again give the same point X, thus confirming that (ax, B

will generate point B.

Now, only the first step of the method is described, since
the second one has already been discussed in Section 5. For
this, assume that a value a* of the first indicator is given.
Equation (8b) can therefore provide operating rules which can

* ok
guarantee the satisfaction of the reduced water demand « r,.
*

. . : . a .
In particular, consider the operating rule rhax which corre-

sponds to the right-hand side of Equation (8b), i.e.,

* *

a .
r aX(t, s a,) = mln{N(st), max{s, +a

Q * %k
m t’ %t 72t 5t+1min’

a rt}} (15)
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*
Among all the operating rules which guarantee the value o for
the first indicator, this is obviously the one which minimizes
the flood indicator B. Thus, the following simple mathematical

*x
programming problem can be set up for determining B (o ).

* %
B (o ) = min B (16a)
s; = SO i=1,...,n (16b)
*
o
o omin (16c)
. . * 0
i _ i _ 0 i i o _
St+1 St + ap rmax(t' Sy at) i 1,...,n t 0,...,364 (16d)
i gs" i o= 1 t =0 364 (16e)
st < Bst i=1,ce.,n = 0,c.., e
i

L P
s365 < Sq i 1,...,n (16%)

In this paper, constraint (16c) is needed to guarantee Equation
(8a) , while constraint (16f) ensures the satisfaction of the

terminal condition (4b). The problem can be solved by simulating

*
o

the reservoir behavior with initial storage Sq 2 Somin and

* .
operating rule r%ax for all inflow sequences {at} of the reference
set. If all constraints (16f) are satisfied with the strict

inequality sign, then

i

x % S¢
B (o) < max max - !

1<isn 0<Lt<364 St

since one can obviously find better solutions by lowering the
initial storage Sq (and hence the maximum flood peak). Therefore,
one must simulate the reservoir behavior again for a smaller
value of the initial storage and repeat this operation until at

least one of the n constraints (16f) is satisfied with the equality
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sign. The corresponding value of max max is

1<i<n 0<t<364

n )]
o x| b

. *
obviously B (a ).

7. THE LINEAR CASE
In the case where the stage-discharge function N is linear,

i.e.,
N(s) = ys + § '

Problem O and Problem Tt of Sections 3 and 4 become linear pro-
gramming problems and can be solved explicitly.

Let us first consider the problem of demand satisfaction
and define the cumulative water demand R:t in the interval

[T, t] as

t

b the lowest cumulative inflow of

Moreover, let us denote by A
the reference set in the interval [T, t], i.e.,
t

Ag = min I a
1<i<n d=7

i
s .

%k
Notice that these data (R : and Ag) can be pre-computed. Finally,

let us indicate by §t(a) the minimum storage needed to guarantee

*
the reduced water demand ar, at time t, i.e.,

%k
* (lrt"s
) =

t Y

§t(a) = N—1(ar

Problem O of Section 3 is therefore equivalent to the following

problem:
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o .
omin ~ M S, (17a)
st = s i=1,...,n (17b)
o o
i _ i i _ * .o -
st+1 = St + ap ar, i=1,...,n t=20,...,36U (17¢c)
so > So(a) (174)
i ~ . -
st > st(a) i=1,...,n t=1,...,364 (17e)
365 = "o e

From Equation (17c) we obtain

i
i S = s + A - Q
min [s. ] o o o
1<i<n

so that Equation (17e) can be substituted by

. *t-1 t=-1 _
So > Sy (o) + aRo - AO t=1,...,364 .

Similarly, constraint (17f) is equivalent to

*
A36Ll > aR 364

o o
Thus, in conclusion, the solution of Problem O is given by

t=1 _t-1.,
J

= max{3_(«), max (& (a)+ar C '-at7l]} (18)

S .
o ml
n © 1<t<3es °©

provided o is sufficiently small, namely

A364

o
a £ —=5=r
= T
gr364
o

One must remark that this is a well-known result of mass-curve
analysis (see Rippl 1883).

In a similar way we can deal with Problem t and prove that
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a _ y a *364 364
Soimin = max{sf(a), Somin T OR; - A ’ max
T+1<t<364
- * -1 t-1
[st(a) + aR_ - AT 1} . (19)

Equations (18) and (19) actually also hold if the function N is
non-linear. Nevertheless, in the linear case, one can prove that

o o \ . . , .
. and . ar iecewi ar reasi and convex
omin S min e piecewise linear, increasing, d con

with respect to o (in fact, all the terms appearing in Equations
(18) and (19) are linear functions of a). These properties can
be used in an obvious way to save computation time when the
opefating rules r® must be found for different values of a.

Let us now consider Problem O of Section 4. Such a problem

can be re-formulated as

B =
Somax max sO (20a)
sl = 5 i=1 n (20b)
5 o yeeay
si = si +a, - ys, - 8§ 1 =1 n t =20 364 (20c)
E+1 £ £ YSL =1,..., g ooy
< Bs" 204
So = Sso ( )
i< gst =1 = 1 364
sy < Bst i=1,...,n t=1,...,36 (20e)
si < s i=1 n (20£)
365 - o 7 = = o

But from Equation (20c) one obtains

X [si] = (e Fsgw T
with
ot - max tg1(1—y)6(ai - 8)
O  1<is<n é=o £-1-9 |

which are data that can be pre-computed. Thus, constraints (20e)
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and (20f) are eguivalent to

* t-1
Bst - Co

(1-v) ©

C36u
o

1-(1-v) 3

v

S

o 5 -

From this, it follows that

t-1

g ' * Bst - Co

S max = mln{Bso, min T } p (21)
1<t<364L (1-v)

if, and only if, the data satisfy the following condition

364 * t-1
CO * [Bst Co ] }

> min{B8s _, min
1-(1-Y)365 1<t<364 (1-Y)t

(Notice that this inequality holds if B is sufficiently high).

Problem t of Section 4 can be re-formulated and solved in a

B

can b iv h
TIax e given the

similar way and the final result is that s

following explicit expression

* -
B . * Sgmax - Cisu BSt - CtT: 1
= min{Bs_, ' min = | !
(1=v)

S
rmax T (1-y) 38T T+1<t<364

(22)

where C? are the following pre-computed data

" t-T 5 3
Cr = max I (1-7)%(al_g - &) .
1<i<n ¢&=o

Equations (21) and (22) can only be derived by making explicit
use of the linearity of the stage-discharge function. Indeed,

that property has been used to explicitly integrate the con-

tinuing equation with rt

£ Moreover, the

i
p

are piecewise linear,

linearly related to s

B and sB

linearity of N implies that 56 max Tmax

increasing, and concave with respect to B.
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8. EXAMPLE OF APPLICATION

The method described in the previous sections has been applied
to the case of Lake Como (MNorthern Italy). This lake has been
regulated on a daily basis since 1946. The main goals of the
manager (actually a committee) are the satisfaction of the water
requirements of the downstream users and the protection of the
lake shores from floods. The water demands of the various users
(seven run-of-river hydro-electric power plants with an installed
capacity of 92 MW, and six agricultural districts with a total
irrigated surface of 114 000 hectares) have been properly com-

*
bined to generate the desired daily reference release r_ which

t
is constant during the winter and obviously attains its peak

. *
in summer (see Figure 5). The reference storage s

£ corresponds

to the lake level at which the most sunken part of the town of
Como (namely the main square) is flooded. Thus, SZ is constant
throughout the year. The stage-discharge function has been
approximated by a linear function with a very satisfactory
fitting (5% maximum deviation in the range of interest). As
inflow sequences of the reference set I we have selected the
five recorded one year-long daily inflow sequences {(over the
last 15 years) which were estimated as the most critical ones
by the manager. Among them, we have the inflow sequence of 1976,
which is characterized by a very dry summer period followed by
quite severe floods in early autumn.

On the basis of these data, the efficient and semi-efficient
solutions of the double objective management problem have been

obtained by using the procedure indicated in Section 6, and the

explicit formulae reported in Section 7. The results are shown
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Figure 5., The reference release ry of Lake Como.
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in Figure 6 in the space (a,8) of the indicators. 1In this figure,

point H represents the historical solution, namely the real per-

formance of the manager during the years of the reference set.
The value Ay = 0.30 corresponds to the water shortage of July
1976, while the value B, = 1.5 corresponds to the flood of
October 1979 (flood peak of 1.36 meters above the main square

of Como). The figure shows that the historical solution is
"dominated" and can therefore be improved. In fact, all points
belonging to the shaded region H P B Q are characterized by
better values of the indicators. 1In particular, point P shows
that B could be reduced to 1.35 leaving o unchanged. This would
correspond to an attenuation of the maximum flood peak of about
30 cm. Similarly, point Q shows that a substantial improvement
in demand satisfaction can be obtained without worsening the
maximum flood peak in Como. Obviously, solutions of greater
interest are the efficient ones belonging to the line BQ. Among
them, point X has been selected and suggested to the manager for
implementation. The formulae for the determination of the upper
and lower limits of the feasible releases (see Equation (13b))
have been programmed on a microcomputer which also contains soft-
ware for the real-time forecast of the inflow during the current
day. This computer is now used every day by the manager as a

tool for his final decision.

* *
o B .
The values St min and St max of thi proposef solution are
. . . B a .
shown in Figure 7. During the year, S{ max *stnﬁ11 with the
exception of one day (August 22), on which simax = sinﬁn (as

shown in Section 6, this indicates that the solution is not
* *

dominated). The difference between sB and sa

. is maximal
t max t min
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Figure 6. Efficient and semi-efficient solutions for Lake Como.
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during the winter (November-February), which means that the con-
servation zone (see Figure 4) in that period is quite large
(in fact, this is perhaps the most relaxed period for the

manager). When the snow-melt season approaches, this difference
*

o

narrows down, and in the middle of May St min

almost equals the

%*
reference storage Sy-

the reduced water demand in April and May, until the lake is

This forces the manager to only release

sufficiently full. Furthermore, this is what the manager of

Lake Como does every year (perhaps following a slightly different
* *
B

. a .
schedule). Then, the difference between St max and St min 1P~
creases in June and July but shrinks again during the second

half of August, a period which is often characterized by sudden
%k

heavy rainfall. In particular, SEmax drops dramatically during
that period, thus forcing the manager to release the maximum
possible amount of water (see spilling zone of Figure 4) just

before the potential floods. The two pronounced minima of
*

B

St max in August and September correspond to the two most probable

periods of heavy rainfall in the Alps.

This solution to the management problem of Lake Como must
only be considered as a realistic numerical example of application
of the min-max approach. In reality, the operation of the regu-
lation dam of Lake Como is subject to a certain number of con-
straints imposed by a formal act of the Ministry of Public Works.
These constraints can be taken into account without conceptually
modifying the method proposed in this paper. Nevertheless, the
ideas behind the method become somehow less transparent. For
this reason, the complete analysis of the risk-adverse management

of Lake Como is described in another paper (see Guariso et al.
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1982), where the reader can find all the details about the hydro-
logic, economic, and institutional characteristics of the problem.
Moreover, in the same paper, an interesting comparison with the

solution obtained by means of a stochastic method is also shown.

9. CONCLUDING REMARKS

A deterministic (min-max) approach to a simple but typical
multipurpose single-reservoir management problem has been described
in this paper. The approach is particularly attractive in the
case where the manager is risk-adverse and concentrates his
efforts on avoiding substantial failures of the system during
severe hydrological episodes. The key data necessary for appli-
cation of the method is a set of one year-long daily inflow
sequences. These inflow sequences should be suggested by the
manager as reference for evaluation of the system's performance.
For reservoirs already in operation, these sequences may be the
recorded daily inflows of the years that the manager considers
as particularly critical. In such a case, the performance of
the proposed solution can be directly compared with what the
manager was able to achieve in practice. For obvious reasons,
this might be a real advantage, in particular when the final
goal of the study is the implementation of the results.

The efficient min-max solutions have a few interesting
properties. First of all, the operating rules can be interpreted
in terms of storage allocation zones. In the most general cases,
four zones can be identified (dead, buffer, conservation, and
spilling zone). The conservation zone is in turn divided into
three subzones (see Figure 4). Second, the boundaries between

these zones are not fixed a priori, but depend upon the forecast



-35-

of the daily inflow. This is a second property which recognizes

a precise role to real-time inflow predictors. Third, and certainly
most important, whenever the storage is in the conservation zone,
the manager can select the value of the release within a pre-
scribed set of possible releases. This flexibility is certainly
welcomed by the manager who is often interested in satisfying

other (hopefully minor) objectives than those considered by the
optimization model.

From a computational point of view, the method is very
effective. The efficient solutions can be obtained by repetitive
simulations of the reservoir behavior for different values of
the initial storage. The selection of these values is guided by
a simple one-dimensional searching method (e.g., bisection).
Moreover, in the case where the stage-discharge function is
linear--as in the lake management example considered in Section
8--the determination of the different storage zones and subzones
is very simple.

Finally, it is worthwhile noticing that the method avoids
on-line optimization. In fact, all the data necessary for
determination of the set of possible releases can be computed
off-line. 1If, on the other hand, on-line optimization is allowed,
one could introduce some further improvement. In particular,
one could solve Problem 1t 0f Sections 3 and 4 at the beginning
of each day only with regard to a few reference inflow sequences,
namely those that make more sense under the current situation.
If, for example, snow-melt is over by May 20, there is no
interest after that data, in considering all those reference

inflow sequences which have inflow peaks in June.
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As a last remark, we might point out that the method seems
to interpret in a formal way what practitioners have been doing
for a long time. In fact, the solution procedure recalls the
mass~-curve method, in particular when single-objective management
problems are considered (see Sections 3 and 4). However, this
is not a surprise, since even stochastic optimization prccedures

have been proved to have very much in common with this old method.
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