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Abstract
Given the pivotal role of probabilistic approaches with two-layer energy balance models in the
latest climate assessment, this study aims to gain deeper insight into their advancement by
comparing different approaches for generating constrained posterior ensembles. Several
methodological improvements are possible both in the calibration of model parameters to the
behavior of comprehensive Earth system models and in constraining the calibrated parameter
ensemble with other lines of evidence. The results imply that a conventional single parameter
representing evolving climate feedback characteristics is not a requirement for reliable climate
projections; rather, there are potential improvements on the forcing side regarding the separation
of forcing and feedbacks. Constraining the ensemble based on observational and expert-assessed
climate metrics, which critically affects probabilistic climate assessment, needs to appropriately
deal with different constraints on a multivariate space in a standardized and flexible way. The
method introduced here is an option that fulfills the need.

1. Introduction

In the sixth assessment of the Intergovernmental
Panel on Climate Change (IPCC AR6) Working
Group I (WGI) contribution, the two-layer model
shown in figure 1 was intensively used to assess global
warming levels and associated thermosteric sea-level
changes in response to changes in CO2 and other for-
cing agents [1–3]. The model formulation is the one
proposed in [4], and termed as EBM-ε [5], energy
balance model with an efficacy factor (ε) for deep-
ocean heat uptake [6]. Despite the difficulty of deal-
ing with the evolving heat uptake characteristics [7],
a two-layer model is simple and sufficiently accurate
to emulate complex full-scale Earth system models
(ESMs) in terms of the relationship between idealized
CO2 forcing and global annual mean temperature
response [5, 8]. In fact, ESM simulations are the basis
for EBM-ε and for other reduced complexity mod-
els, or emulators [9], and emulator-based assessment

in AR6 was based on the comprehensive ESM data-
set provided by the Coupled Model Intercomparison
Project Phase 6 (CMIP6) [10].

Simplicity is crucial for probabilistic climate
assessment [11–13] using a large-member parameter
ensemble that requires time efficiency in production
runs and conforms to multiple lines of evidence in
terms of forcing-response characteristics. The AR6
approach, described in AR6 WGI Chapter 7 [1, 14],
uses a final posterior set of approximately 2,000mem-
bers, constrained from a one million-member prior.
This constrained ensemble was applied to time integ-
rations ranging from hundreds to thousands of years
over numerous conditions to evaluate the warming
contributions of different forcing agents, including
greenhouse gases and aerosols.

An ensemble for an emulator was generated
through calibration and sampling processes [15].
Calibration is a numerical optimization for a set
of parameters to minimize differences between an
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Figure 1. Schematic diagram of the two-layer energy-balance model with the ocean heat uptake efficacy. The arrows represent
energy flow between the surface and deep ocean layers, and the top of the atmosphere (the top bar). Here,∆N is the net energy
flux,∆F is the forcing change,∆T and∆Td are the surface and deep ocean temperature changes, C and Cd are the heat capacities
of the surface and deep ocean layers, λ is the climate feedback parameter, γ is the heat transfer coefficient between the two layers,
and ε is the efficacy of deep ocean heat uptake. (a) Original form, where bypassing arrow on the right represents assumed energy
flow associated with the heat uptake efficacy, illustrated in the same way as in [23]. (b) Equivalent form, where the
efficacy-assuming flow is implicitly embedded in the deep layer with γ ′ = εγ and C ′

d = εCd. The two forms are mathematically
equivalent, as∆N in the latter form is diagnostically adjusted. See supplementary 1.1 for comprehensive descriptions.

emulator and an ESM, which will usually be per-
formed for all available ESMs and for several vari-
ables. Sampling typically consists of two stages: ran-
dom sampling according to the probability density of
the calibrated ensemble; and constraining the range
of the sampled ensemble to fit evidence other than the
base ESMs, such as observations and process under-
standing. In the AR6 approach, a parameter ensemble
for the two-layer model that describes the climate
response was combined with a forcing ensemble that
represents the uncertainties across different forcing
agents. The result of these processes is the synthesis
of multiple lines of evidence, and the application
of the combined climate-response/forcing ensemble
to many emissions scenarios [16–18], providing an
emulator can also translate emissions to forcing [19],
allows for knowledge transfer from climate science to
climate change mitigation [20]. This synthesis is the
most essential role of simple emulators.

Besides the probabilistic approach, there is also
a method of mapping EBM-ε parameters to spe-
cific values of two climate sensitivity metrics—
equilibrium climate sensitivity (ECS) and transient
climate response (TCR)—which was applied in AR6
WGI Chapter 4 and 9 [2, 3] to assess future global
climate under illustrative scenarios. In this approach,
climate projections with EBM-ε configured with
AR6-assessed ranges of ECS and TCR were used in
conjunction with results from comprehensive CMIP6
scenario experiments [21].

Considering the importance of EBM-ε, the
present study explores different methods to advance
probabilistic approaches by comparing the AR6
method with alternative implementations. One

previous study [22] examined the performance of
EBM-ε and other models and presented emulation
errors and potential improvements in calibration
processes. Some of the findings and implications are
pertinent to the results of the present study and are
addressed in the discussion section.

2. Method

Table 1 summarizes four experimental cases, includ-
ing the AR6 Chapter 7-equivalent of Case 0. Cases
1–3 are designed to compare several modifications
regarding different calibrations, treatment of the
ocean heat uptake efficacy, fidelity to ESMs for
forcing-response properties, treatment of multivari-
ate constraints, and scaling of CO2 forcing. These
modifications are specific to either process of calibra-
tion and sampling/constraining and will be described
in the relevant result subsections.

The sampling process statistically generates ran-
dom variable series from distributions informed by
the calibrations to individual ESMs in a way that
maintains the multi-ESM variance-covariance struc-
ture in a multivariate parameter space. The random
series are constrained such that the ranges of sev-
eral climate indicators from historical emulation runs
match the ranges from their observation-based ref-
erence as closely as possible. In this study, the his-
torical runs were conducted with the perturbed for-
cing ensemble used in AR6 WGI Chapter 7. The
constraints were designed to reflect the observed
changes in global surface air temperature (GSAT) in
a recent past period of 1995–2014 and the observed
ocean heat uptake from 1971 to 2018, which are

2



Environ. Res. Lett. 20 (2025) 014059 J Tsutsui and C Smith

Table 1. Different cases for generating a large-member parameter ensemble.

# Label Calibration Sampling Constraining CO2 forcing for
emulation runs

0 EBM-ε AR6 orig WGI Chapter 7 q4x and λ
replaced
independently

Intersection of
individual constraint
ranges

Perturbed with AR6-assessed q2x

1 EBM-ε AR6 No replacing Acceptance-rejection
following probability
density based on
constraint ranges

Perturbed as in #0 and
scaled by calibrated q4x2 EBM-ε S21 Reference [25]

3 MCE-2l (standard EBM) Reference [26] Perturbed as in #0 and
scaled by calibrated q4x
and an additional
amplification factor

MCE-2l stands for a two-layer version of the Minimal CMIP Emulator [27], an implementation based on standard EBM, or a pure

impulse response model, combined with its own CO2 scaling scheme. q4x and q2x are forcing levels of quadrupling and doubling CO2.

See supplementary 1.1 for model formulations, and supplementary 1.2–1.3 for differences about calibration/sampling/constraining

procedures and relevant CO2 forcing schemes.

a subset of those used in AR6 WGI Chapter 7.
These indicators were implemented in the alternative
cases with a Metropolis-Hastings (MH) independent
sampler [24], a general acceptance/rejection method
following probability density based on constraint
ranges.

To examine the differences in future climate
projections between the constrained parameter
ensembles developed here, emulation runs were con-
ducted for future climate projections with five illus-
trative scenarios ranging from low to high emissions,
as in AR6 WGI Chapter 4 [2], for which perturbed
forcing series were used as in the historical runs.

See Supplementary Information for further
details, as noted in table 1. The following sections
describe and discuss the accuracy of individual calib-
rations, coverage of multiple ESMs, and consistency
with other evidence.

3. Results

3.1. Calibration to individual ESMs
Typically, calibration is conducted for ESM out-
put of top-of-the-atmosphere (TOA) net energy flux
(∆N) and the surface temperature change (∆T) over
150 years after instantaneous quadrupling of the
atmospheric CO2 concentration [28]. This is also for
the cases in table 1, except that Case 3 additionally
includes ESM output from a transient CO2 increase
experiment, where the concentration increases at a
1% per year until it quadruples after 140 years. Here,
the results are compared between EBM-ε with two
different calibrated parameters [1, 25] (Cases 1 and 2;
Case 0 is identical to Case 1) and a standard form of
EBM, i.e. ε = 1, combined with a super-logarithmic
CO2 radiative forcing scaling [26] (Case 3). The com-
parison focuses on how accurately the behavior of dif-
ferent ESMs can be emulated for time series of ∆N
and∆T and their relations from the two experiments.

Figure 2 compares the results for a specific ESM
as a typical case, which is one of those shown in sup-
plementary table 1 and supplementary figure 1 for
each of 46 ESMs used in this study. Although all emu-
lated time series generally represent long-term ESM
tendencies well, there are some methodological dif-
ferences regarding (1) the scaling of transient CO2

forcing changes and (2) ocean heat uptake efficacy.
The first point is found from a better performance

of Case 3 in emulating ∆T in the transient experi-
ment (blue marker and line in figure 2(b)). This per-
formance can be measured by comparing the TCR
between the ESM output and the derivation from the
EBM parameters (supplementary figure 2). Forcing
changes to the first and second doubling of CO2 con-
centrations in the 1%-per-year increase trajectory are
not necessarily the same [30] or scaled with a fixed
factor, unlike the use of a standard approximate log-
concentration formula [14, 31]. Case 3 incorporated
an amplification factor from the first to the second
doubling, thereby resulting in the successful emula-
tion of all ESMs, as previously examined [26]. This
elaborate scaling would be beneficial for the other
cases to better emulate some CMIP6 models with
greater amplification.

The second point is associated with different
curvature of (∆N, ∆T) trajectories in response to
instantaneous CO2 quadrupling (red marker and line
in figure 2(c)), for which the ocean heat uptake effic-
acy in EBM-ε is responsible. As expected, the emu-
lated trajectories were curved in Cases 1 and 2 and
linear in Case 3. The degree of curvature is not neces-
sarily the same in the former cases and depends on the
different optimizations in their calibration.

In fact, ESM response to step forcing like a quad-
rupling CO2 increase often shows a concave traject-
ory on a ∆N–∆T plane, such that initial ∆N and
eventual ∆T are both shifted from an assumed lin-
ear line toward larger values [32, 33]. The intercept
points on the y- and x-axis correspond to the level
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Figure 2. Emulation of two idealized CO2 increase experiments with an individual ESM. As an example of ESM, IPSL-CM6A-LR
[29] is selected. See supplementary figure 1 panels S1–S46 for all the ESMs used in this study. The CO2 increase experiments are
150-year abrupt-4xCO2 and 140-year 1pctCO2 [10], labeled in the legend as ‘4x’ and ‘1p’, respectively. The markers show
annual-mean ESM output, and the lines show emulation results with the three different methods. (a) Timeseries of TOA net
energy flux. (b) Timeseries of changes in the surface temperature. (c) Relationship between the two variables. The emulation
period of abrupt-4xCO2 is extended to year 3000.

of quadrupling CO2 forcing (q4x) and an equilibrium
temperature change under q4x; scaling them down to
the level of doubling CO2 (q2x) provides an estim-
ate of the ECS. This is a well-established method for
estimating the ECS from an ESMexperiment, as given
in [34], and a curved trajectory may provide a bet-
ter estimate than a linear one [35]. However, there are
several CMIP6 models indicating relatively large dif-
ferences in the intercept points betweenCases 1 and 2,
thereby implying that the ECS estimation is sensitive
to calibration procedures.

In addition to climate sensitivity issues, incor-
porating the efficacy factor did not significantly
affect the emulation accuracy of at most a 150
year time series from the two idealized experiments.
These findings basically agree with the results of the
Reduced Complexity Model Intercomparison Project
(RCMIP) Phase 1 [9].

3.2. Sampling and constraining
Hereafter, a set of parameter ensembles and their
derivatives are referred to as ESM-calibrated, uncon-
strained, and constrained ensembles, which corres-
pond to the outputs of the calibration, sampling, and
constraining, respectively.

In the sampling stage, modifications in Cases 1–
3 affect statistics relevant to the climate feedback

parameter (λ) and forcing from a doublingCO2 (q2x).
The original Case 0 replaces these two components of
the unconstrained ensemble with an independently
generated series based on the AR6-assessed ranges
[1]. Given their dominant role in the temperature

response, this replacement ensures that the uncon-
strained ensemble is consistent with the AR6 assess-
ment. Unlike the original, the alternatives leave their

unconstrained ensemble until the constraining stage
to represent the statistics of their ESM-calibrated
ensemble as closely as possible.

As expected, by using ESM-derived calibrations,
the relationship between q2x and λ is maintained.

Figure 3 indicates a weak positive correlation in all the
calibrated ensembles inherited through the sampling

and constraining stages (figures 3(b)–(d)), except for

Case 0 (figure 3(a)). λ also has weak correlations with
the other parameters although not as distinct as with
q2x (supplementary table 2).

Figure 4 compares the ranges of five key indicat-
ors: q2x, λ, ECS, TCR, and the ratio of TCR to ECS,
where the two climate sensitivitymetrics were derived
from themodel parameters (supplementary 1.4). The
ratio of TCR to ECS is denoted as RWF70, which
represents the realized warming fraction (RWF) [36]
when the CO2 concentration doubles in the 70th
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Figure 3. Relationships between the doubling CO2 forcing and climate feedback parameter from calibrated, unconstrained, and
constrained ensembles. The markers indicate individual calibrated values, and the contours indicate ranges covering 66% and
90% of each of the unconstrained and constrained ensembles.

year in a 1% per year increase trajectory. The ranges
from the unconstrained ensembles widely cover those
from the ESM-calibrated ensembles, except for Case
0 where q2x and ECS, among others, are adjusted
to bring their medians close to the AR6-assessed
3.93 Wm−2 and 3 ◦C. These medians reflect the
replaced λ with a median of about 1.3 Wm−2 ◦C−1.

Case 3 is distinguished from the others by a lower
q2x such that most of the likely (17%–83%) ranges do
not overlap. Meanwhile, the ranges of climate sensit-
ivitymetrics, which are proportional to the ratio of q2x
to λ, are rather comparable between the cases. This is
due to the large uncertainty in λ itself and its value
that is also relatively smaller in Case 3. Differences
between the cases were also observed in the range

of extreme values. Case 3 is again distinguished by
overall smaller very likely (5%–95%) ranges, reflect-
ing fewer uncertainties in the calibration.

Overall, the constraining process works toward
reducing climate sensitivity, and the constrained
ranges are somewhat biased toward the lower side
compared with the AR6-assessed ranges for both the
ECS and TCR. Although most of the ranges overlap,
the low-sensitivity bias was relatively large for Case 3.
In contrast, the ranges of the GSAT and ocean heat
uptake indicators from the historical emulation runs
were similar for the four cases (supplementary figures
3 and 4). The characteristics of Case 3 are related to its
relatively short response time scales, as observed from
the greater RWF shown in figure 4(e).
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Figure 4. Ranges of selected key parameters from different ensembles denoted by colors, indicating likely (17%–83%) and very
likely (5%–95%) ranges with a central value. (a) Doubling CO2 forcing (q2x); (b) Climate feedback parameter (λ); (c)
Equilibrium climate sensitivity (ECS); (d) Transient climate response (TCR); (e) Realized warming fraction at doubling CO2 in a
1%-per-year increase trajectory (TCR-to-ECS ratio). Each panel contains three grouped ranges: calibrated, unconstrained, and
constrained. As a reference, the groups of the constrained ranges are accompanied with corresponding AR6-assessed ranges,
based on [1], Table 7.4, 7.10, 7.13, and 7.14 for q2x, λ, ECS, and TCR, respectively, and the ratio of the assessed central TCR to the
assessed central ECS.

3.3. Future climate projections by constrained runs
Figure 5 compares the GSAT changes from the four
ensembles for the mid-term (2041–2060) and long-
term (2081–2100) 20 year periods relative to 1995–
2014. The results for the four cases agreed with each
other in terms of ensemble ranges as well as time
series (supplementary figure 5), suggesting that the
four ensembles would be nearly equivalent in terms
of probabilistic climate projections. The small differ-
ences between cases confirm that the MH sampler
introduced in the alternative cases is working prop-
erly. See supplementary 1.5 for further explanation
and comparison between the MH sampler and the
AR6 original method.

Figure 5 also compares the emulation runs with
the Chapter 4 assessment material, CMIP6 multi-
model projections with observational constraints
[37–39] and emulation runs configured with five dif-
ferent ECS-TCR pairs corresponding to the upper/
lower bounds of likely/very likely ranges and best
estimates (supplementary 1.4), which were combined

with a 50–50 contribution as the AR6-assessed future
warming projections.

The GSAT changes from the constrained CMIP6
and ECS-TCR mapped emulations generally agree
well with each other, as well as with those from the
four ensembles. However, it is noticeable that the
ranges from the ECS-TCR mapped emulation are
narrower in the long term than those from the con-
strained CMIP6 in low and very low emissions scen-
arios, labeled SSP1-2.6 and SSP1-1.9, respectively.
The four ensembles lie between the two Chapter 4
elements with respect to range width. This differ-
ence implies that climate sensitivity alone is insuffi-
cient to comprehensively represent the uncertainty of
GSAT changes. In fact, the ECS-TCR mapped emu-
lation does not consider forcing uncertainty, which
is important in lower-emissions scenarios, particu-
larly for aerosols [40]. The emulation was run with
each ensemble incorporating forcing perturbations,
as in the constraining stage, which increases the GSAT
range.
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Figure 5. Ranges of global surface air temperature (GSAT) changes for mid-term (a, 2041–2060) and long term (b, 2081–2100) of
five illustrative scenarios. The emulator ensembles are compared with evidence of the AR6-assessed future warming—constrained
CMIP6 simulations, and two-layer model simulations configured with AR6-assessed ECS and TCR ranges, labeled as CMIP6
constrained and ECS & TCR mapping, respectively. GSAT changes are shown as changes relative to 1995–2014 plus 0.85 ◦C, the
central estimate of the observed warming from 1850–1900 to 1995–2014 [41]. The scenarios are labeled as SSPx-y, where ‘SSPx’
refers to the Shared Socio-economic Pathways [42], and ‘y’ refers to the approximate level of radiative forcing (in W m–2).

Looking at the details, one notices that the ranges
from the four ensembles are biased slightly lower
than those from WGI Chapter 4, and that there are
small but consistent differences between the four
ensembles in terms of the magnitude of the central
values. These differences are essentially a matter of
constraint, and the ranges of the constrained para-
meters can be adjusted as necessary.

The emulation runs are characterized by forcing
contributions, measured by forcing levels divided by
λ, in conjunctionwithRWFs to changing forcing con-
tributions, which depend on EBM parameters other
than λ (supplementary figures 6 and 7). These dia-
gnostic indicators explain the differences in GSAT

between cases. Although the level of CO2 forcing is
generally smaller in Case 3 than in the others, its
contribution to warming is rather close to each other
owing to being divided by smaller λ. Warming gener-
ally occurs earlier in Case 3, which is associated with
greater RWFs and also reduces the GSAT change dif-
ferences between cases.

4. Discussion

Emulating ESMs often involves an ‘out-of-sample’
problem; that is, an emulator calibrated to a spe-
cific ESMwith particular experiments does not always
accurately represent other experiments with the same
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ESM. A recent study on this problem provided sev-
eral remedies, while highlighting the potential diffi-
culties in improving accuracy [22]. The findings from
the calibration stage in the present study, which are
mainly related to the scaling of CO2 forcing and ocean
heat uptake, are in line with those of the previous
study [22]. In fact, scaling CO2 forcing to represent its
super-logarithmic dependence onCO2 concentration
leads to a more general concept of forcing-specific
efficacy [43], which is one of the remedies proposed
in the previous study. The ocean heat uptake effic-
acy is one way to represent changing ∆N–∆T slope
under fixed forcing, termed as an ‘effective’ feed-
back parameter that evolves over time depending on
changes in spatial patterns of forcing and response
[44]. However, potential difficulty in representing the
pattern effect to different forcing changes implies that
single calibrated ε may not be suitable for general
cases, leaving the standard EBM a feasible choice.

Aside from an estimation of an uncertain equilib-
rium state or a particular interest in historical changes
in the effective climate feedback, the effect of includ-
ing efficacy was observed for two distinctive time
scales represented by a two-layer model. Calibrated
time scales are generally longer with an EBM-ε than
with a standard EBM, and longer time scales are
attributed to a greater heat capacity of the model
layers. In this regard, it should be noted that EBM-
ε uses two different heat capacities—one for solv-
ing the two-layer energy balance equations, and the
other for diagnosing ocean heat uptake, the latter of
which is reduced by an ε factor (supplementary 1.1).
Although this two-way use is a valid implementa-
tion of the equations, it may lead to physical ambi-
guity, particularly when emulating thermosteric sea
level changes, as in AR6WGI Chapter 9 [3]. One way
to clarify the physical meaning and improve repres-
entation on a longer time scale would be to increase
the number ofmodel layers [23, 45, 46] with an exten-
ded period of calibration experiments [47]. However,
that leaves issues regarding data processing for robust
calibration.

Our future warming projections and those in the
model intercomparison of RCMIP Phase 2 [48] both
indicate that methodological differences in the cal-
ibration and sampling stages can be largely elimin-
ated after the constraining stage. A similar temper-
ature response corresponds to a similar ratio of for-
cing to feedback, which is not necessarily the same
for each of forcing and feedback. This provides fur-
ther insight into the causal relationship between the
forcing and response. Currently, the concept of effect-
ive radiative forcing (ERF) is the basis of the forcing
definition [49]. However, estimating the ERF from
ESM experiments is not straightforward, and uncer-
tainty is inevitable when separating forcing and feed-
back in accordance with the ERF definition, which
requires special treatment for boundary conditions

at the land and ocean surface [50]. The need for
an advanced method to separate forcing from feed-
back was also pointed out in the previous study [22].
Introducing the concept of efficacy on the forcing side
rather than the feedback side would be beneficial in
this regard as a clue to fill the gaps between the stand-
ard ERF and ESM-specific forcing derived from cal-
ibration. In the present method, the scaling of non-
CO2 forcing agents was not considered, and the rela-
tionship between the AR6-assessed perturbed forcing
levels and ESM-specific scaling was not examined.
These issues should be addressed in future studies.

Although the above clarifications remain, the
sampling stage should retain as much information of
the base ESM ensemble as possible, assuming that the
constraining stage can appropriately accept themem-
bers of the sampling results. It is rational to reflect
the ESM ensemble in terms of its covariance struc-
ture in a multivariate parameter space, which also has
the technical benefit of reducing member size. The
constraining process critically affects probabilistic cli-
mate assessment as the final outcome, such as crossing
times of 1.5 ◦C and 2 ◦Cwarming levels. The method
used in this study is a tool that assists in the selection
of appropriate constraining indicators in a standard-
ized and flexible manner.

5. Conclusion

In the context of climate assessment, the most essen-
tial role of simple emulators, such as the two-layer
energy balance model, is the synthesis of multiple
lines of evidence, reflected in an ensemble of model
parameters generated through calibration, sampling,
and constraining processes. The present study intens-
ively compared the AR6 method with three altern-
atives in terms of model formulation and calibrat-
ing procedures, fidelity to ESMs for forcing-response
properties, and treatment of multivariate constraints.

Despite methodological differences, the con-
strained ensembles in these four cases showed sim-
ilar climate projections in terms of central values
and uncertainty ranges. The findings imply that con-
straining is the most critical process and is a high
priority area in advancing the probabilistic approach.
The MH sampler used in the alternative cases would
be a promising option, which enables setting mul-
tivariate constraints in a standardized and flexible
manner.

Being properly adjusted in the final constraining
also implies that there is more flexibility in the prior
processes. In sampling for unconstrained ensembles,
there is a tradeoff between reducing bias and retaining
consistency. While the original AR6 method partially
introduces bias-free independent parameter series,
the alternative inherits the statistics of the CMIP6 cal-
ibrated ensemble for all parameters. Since bias reduc-
tion can be left to constraining, there would be an
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advantage to the latter consistent alternative. The heat
uptake efficacy term in the two-layer model improves
the accuracy of emulation under certain conditions
but may not work robustly under all conditions. Its
practical usemay be limited to specific purposes, such
as the evaluation of ECS or transient effective climate
feedback. Model improvement with a kind of effic-
acy can be approached from the forcing side of the
two-layer model. Scaling CO2 forcing and the addi-
tional super-logarithmic scheme, either or both used
in the alternative cases, were beneficial for accuracy
and would be extended to non-CO2 forcing.

Through revisiting the probabilistic approach
with the AR6 two-layer model, the present study
has identified improvements in its design and imple-
mentation. The findings can be reflected in better
synthesis of multiple evidence in the next assessment
cycle, leading to a more robust mitigation scenario
assessment.
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