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PREFACE 

The main purpose of this paper is to discuss the numerical procedures of 
optimization with respect to  unknown distribution functions which are based on 
ideas of duality. Dual problem is formulated as minimax type problem without 
concavity of "inner" problem of maximization. Numerical procedure allowed to 
avoid difficlties concerning "inner" problem solution is proposed. 





STOCHASTIC OPTIMIZATION PROBLEMS WITH 
PARTIALLY KNOWN DISTRIBUTIONS FUNCTIONS 

Y. Ermoliev and C.  Nedeva 

1. Introduction 

The conventional stochastic programming problem may be formulated 

with some generality as minimization of the function 

pO(x) = l$, f O(z.y) = f f O ( z , y ) d ~ ( ~ )  

subject to 

where y = (y l,y2, ...,y,) E Y, Y 3 Rn is a vector of random parameters; H ( y )  is 

a given distribution function; and f V(x ; ) , v  = aim are random functions pos- 

sessing all the properties necessary for expressions (I), and (2) to be mean- 

ingful. 



In practice, we often do not have exact information about H(y) ,  except 

some of its characteristics, for instance, bounds for the mean value or other 

moments. Such information can usually be written in terms of constraints of 

the type 

In particular, we could have the following constraints on joint moments: 

where cT1,T2, . . . , rr c T ~ , T ~ ,  . . . , rr are given constants. 

Constraints (4)-(6) are a special case of constraints (2) and (3). I t  seems 

therefore reasonable to consider the following problem: find a vector z which 

minimizes 

where K ( z )  is the class of functions H satisfying constraints (2), (3) for fixed z . 

The main purpose of t h s  paper is to find a method of solving such prob- 

lems using procedures based on duality ideas. Other approaches to optimiza- 

tion problems with randomized strategies have been examined by Fromovitz 

[I], Ermoliev [2, 31, Kaplinski and Propoi [4:], and Golodnikov [5]. 

2. Optimization with Respect to Distribution Functions 

Let us begin with solution procedures for the "inner" problem of maximi- 

zation. Suppose we have to solve a much simpler problem: find the distribu- 

tion function H maximizing 



subject to 

Ths  is a generalization of the known moments problem. If (9) were 

replaced by special constraints (6), it could also be regarded as the problem of 

evaluating system reliability subject to given upper and lower bounds for cen- 

tral joint moments. In particular, the case in which 

1, i f y  € A  

where A is a subset of Y, leads to  

and problem (8)-(10) becomes the problem of evaluating (11) with respect to a 

distribution from a given family of distributions. By solving t b s  probhem we 

could obtain generalizations of the well-known Chebyshev inequality. 

Problem (8)-(10) appear to be solvable by means of a modification of the 

revised simplex method ( see [ 31 and [6]). The following fact makes this pos- 

sible. Consider the set  

Suppose this set  is compact. T h s  will be t rue ,  for instance, if Y is compact and 

functions qv(y ),v = El are continuous. Consider also the set  



where N is an arbitrary finite number. The following statement is proved in 

Lemma 1 

Therefore problem ( € ! ) - ( l o )  is equivalent to maximizing z subject to 

According to the Caratheodory theorem each point of coZ is a convex combina- 

tion of at  most L + 2 points z E Z: 

Each point on the boundary of coZ can be represented as a convex combina- 

tion of at  most 1 + 1 points of Z.  Therefore, it is easy to see that problem (0 ) -  

--- 
(10 )  is equivalent to the problem of finding 1 + 1 points y j € Y ,  j = 1,1+1 and 

1 + 1 real numbers p  l , p 2 , . .  . , p i + l  such that 

1 + 1 C q O ( y j ) p j  = max 
j = 1 

subject to 

---  
Consider arbitrary 1 + 1 points i j j ,  j = 1,1+1 and for the fixed set 

1 -  2 tj-4 , y  , . . . ,  i j i + l ]  find a solution p = @ 1 ; P 2 , , , . , p l + I )  of problem (12) - (14)  with 

respect to p  . Assume that  p exists and ii = ( i i 1 , i i 2 , . . .  , T L ~ + ~ )  is a solution associ- 



- 5 -  

ated with it. The dual problem is then to minimize 

9 + 1  

subject to 

Uk % O ' k  = TL (17) 

Now let y be an arbitrary point of Y. Consider the following augmented prob- 

lem of maximization with respect to  ( p  I ,p2,  . . . ,pi+ l , p )  : maximize 

subject to 

It is clear that if there kxists a point y = such that 

then the solution p could be improved by dropping one of the columns 

- - .- 
(qO(ijj),q '$j) , . . . , q i  (iji), 1) j = l,L+ 1 from the basis and entering instead the 

--- 
co1um.n. (q0(2J*),q1(y*), . , . , q Z ( y * ) , l )  j = 1,L $1 following the revised simplex 

method. Point y * could. be defined as 

1 
= arg max [qO(y)-  C %kgk(y)I  

Y EY k = l  

Theorem 1. (Optimality condition) Let p be a solution of problem (12)-(14) for 



fixed iv1;y2, . . , , i j i + ' ]  and C = tu17u2, . . . , T i L C 1 )  be the associated dual vari- 

ables. The pair @ l a 2 ,  . . . , i j L C 1 ] , p  is an optlmal solution of problem (12)-(14)  

if and only if 

1 
g O ( y ) -  z ' ~ L ~ ~ ~ ( Y ) - E L + ~ ~  O, y E X  

k = 1 
(22)  

The proof of t h s  theorem follows immediately from the facts mentioned above 

and the following inequality 

Let y 1 ~ S , y 2 1 S , .  . . , y l + 1 8 S  be a set  of points y j g S  E K Suppose that 

p S  = ( p s  , p z ,  . . . , p f + l )  is a solution of problem (12)-(14)  with respect to p for 

yi = y i s s  and that us = ( U S  ,uz, . . . , u ? + ~ )  is the corresponding solution of the 

dual problem (15) - (17) .  For an arbitrary pair of solutions @I , E )  the following 

lemma holds: 

Lemma 2 

where 

In fact, 

- 
6 = max [ z o  ( z o , z l  , . . . ,  z l )  E coZ, zk < 0, k = T1j 

and w e  have 

1 
max IzO - z u . z z k  - u;+~ l ( z O , z l ,  . . . , z l )  E COZ,  zk I 0,  k = m j  + 6, % 

k = 1 



- - 
max ~ z O ( ( z O , z l ,  . . . , z l )  E coZ, zk 1 0 ,  k = I , Z ]  = 6 

But on the other hand 

This proves the desired inequality. Consider now the following minimax- 

type problem: 

This problem is dual to (8)-(10) or (12)-(14). 

Theorem 2. Let a solution of either problem (8)-(10) or problem (24) exist. 

Then a solution of the other problem exists and the optimal values of the objec- 

tive functions of both problems are equal. 

Proof. Fix 3 ,  and consider problems (12)-(14), (15)-(17). 

1. Let pair &'3j2, . .  . , 3' + ' j  . 7) = (p . . . ,pL be a solution of the 

---  
primal problem (12)-(14) equivalent to (8)-(10). For fixed y i  = g i ,  j = 1,1+1 

consider the pair of dual problems (12)-(14) and ( 1 5 ) - ( 7  Let 

ii = ( Z L ~ , Z U ~ ,  . . . , uLC1)  be a solution of problem (15)-(17). According to condi- 

tion (22) point u = ii satisfies the inequalities 



and we also have 

Since an arbitrary feasible solution u = (ul ,u2,  . . . ,u,+)) of dual problem 

(15)-(17)  satisfies the inequality 

then a feasible solution u = (u1,u2, . . . ,u ,+~)  of equation (25)  will certainly 

satisfy the same inequality. From t h s  and (26 ) ,  (27)  we can conclude that 2L is 

an optimal solution of the problem of minimizing u , + ~  subject to (25) .  This 

problem is equivalent to problem (24 )  and from (26 )  the optimal values of the 

objective functions of the primal problem (12) - (14)  and the dual problem (24 )  

are  equal. 

2. Suppose that Z = ( Q l , % 2 , . . . , ~ + l )  minimizes u , + ~  subject to (25), where 

- 
Zk>O, k = 1,r  ; Zk = 0, k = 5 1  . Then there exist points y"j , j  = 1.r+ 1  such 

that 

r t l  
qO(y"j)  - C z k q k ( y " j )  -2,+., = 0 ,  j = l , r + l ,  

where vectors ( q 1 ( y " j ) , q 2 @ j )  , . . . ,qf(y"j),  l ) ,  j  = i? are linearly independent. 

Therefore the point Q also minimizes u , + ~  subject to 

According to duality theory there exists a solution p" = . . . ,p",+l,O . . . ,  0 )  

to the following dual problem: maximize (with respect t o p )  



subject to 

Since from (25) 

1 

. . 
qO(y )  - E z k q k ( y )  -el++lgog y Ye 

k = 1 

1 2  then, from Theorem 1, the pair iy" ,"y . . . ,y"'"{, (FIZZ,  . . . is a solu- 

tion of the original problem (12)-(14) with the optimal value of the objective 

function (12) equal to GL Therefore Theorem 2 is true. 

It is important to note that  if it is assured that the functions qO(y ) , qk (y )  

are concave and the set  Y is convex, problem (24) is dual to the nonlinear pro- 

gramming problem 

- 
max f q o ( y )  I qk (y )  c: 0, y E Y, k = l , l j .  (28) 

Thus (24) and (28) would remain dual in the general case if the concept of a 

solution in a mixed. stratgy of problem (24) is accepted. 

3. Existence of Solutions. Connections With Gaming Problems 

The existence of sol.uti.ons to the dual problem follows from nondegeneracy 

assumptions. For instance, assume that there exists a distribution j?(y) which 

satisfies the following generalized Slater condition (see Ermoliev 1970): 

In accordance with Lemma 1,  the left-hand side of the inequality in (29a) 

belongs to coZ. Thus, (29a) is equivalent to the existence of a set 



p1,?j2, . , . ,Q'+~ of points in Y and a v e c t o r F  = . . withnonnega- 

tive components such that  

Now consider the Lagrange function 

*..: * 
and let apa i r  ( H  , u  ) be a saddle point of iP(H,u) : 

The problem of finding a saddle point (H*,u*) could be viewed as a gaming 

problem with the following payoff function: 

and mixed strategy for the first player. I t  follows from (29a) that  for a n  arbi- 

* 
trary saddle point (H *,u *),u = (u ,u2, . . , ,u:) we have 

Thus the second component of point. (H*,u*) is bounded. If we now assume that  

Y is a compact set  and qO(y) ,qk(Y) ,k  = c1 are continuous functions, then gen- 

eral results from two-person game theory suggest the existence of an optimal 

strategy (H*,u*) satisfying (30) with distribution H* concentrated over a t  most 

1 +1 points of Y. Then the following three quantities (31-33) are all equal to 

each other: 



1  + 1  1  1 + 1  - - -  

maxi min x [ q O ( y j )  - x u k q k ( y j ) ] p j  l y j  E Y .  p j  = 1 j = 1 ( 3 2 )  
u S O  j k = l  j = 1  

Since 

max 
H 

otherwise 

then  problem (31)  is equivalent to the  original problem (€3)-(10). In the  same 

way, problem (32 )  is equivalent to  problem (12)-(14) .  It is easy t o  see tha t  

and, therefore problem (33)  is equivalent to  the dual problem (24) .  

4. Computational Methods 

Algorithm 1 

Theorem 1 makes it possible t o  create  a numerical "procedure" based on 

the  general idea of the revised simplex method (see Ermoliev 1970). 

Fix ( 1  + 1 )  points y  O * l , y  012, , , , , yoqLc l  in Y and solve problem (12) - (14)  with 

respect  t o  p for y j  = y O ' j ,  j = 1,1+1. Suppose tha t  a solution 

0 0 = ( p ; , p : ,  . . . to  t h s  problem exists. Let uO = (ul , u2 ,  . . . ,uLO) be a 

solution of dual problem (15) - (17)  with respect  t o  u .  'The vector u0 satisfies 



the constraints (25 )  for y  E t y011 ,y012,  . , . 8 Y  O n L + ' j  , If uO satisfies the con- 

0 , l  0 ,2  straints ( 2 5 )  for all y  E Y ,  then the pair t y  , y  , . . . , yol '+'j  and 

p0  = ( p  10 ,p 2 ,  . . . ,plO+l) is a solution of the original problem (12) - (14) .  If this is 

0 , l  0,2 not the case, we can improve the solution fy , y  , . . . , y O 1 l + l j , p O  by intro- 

ducing a new point y o  such that 

1 

= arg max [ q O ( y )  - C q o q i ( y ) l  
Y E Y  k = 1  

Denote by p  l = ( p  , p ; ,  . . . , p L i l )  a solution of the augmented problem (18)-  

(20)  with respect to p  for fixed i j j  = y o 3 j ,  y  = y o  . We shall us 

l , l ,  192 , . . .  , y  lv'+l to denote those points yo ' ' ,  . . . , yo l '+ ' , yO  that correspond 

to the basic variables of solution p  l .  

Thus, the first step of the algorithm is terminated and we can then pass to 

the next s tep:  determination of u l ,  y l ,  etc.  In general, after the s - t h  iteration 

we have points y S 1 1 . y S ~ 2 ,  , . , , y S 1 l + l  , a solution P S  = ( p ; , p d ,  . . . , ~ f + ~ )  of 

problem (12)-(14)  for y j = y S 1 j ,  and a corresponding solution 

us = ( U S  ,u:, . . . , Z L ~ + ~ )  of the dual. problem (15) - (17) .  Find 

then the solution f y S " , y S ' 2 ,  . . . , y S 1 ' + ' {  , p S  = ( p s , p $ ,  . . . , p f + l )  can be 

improved by solving the augmented problem (18) - (20)  for yj = y S 1 j ,  y  = y s  . 

Denote by , . . .  those points from ys+l , l , ys+l ,2  

t y s ~ l , y s ~ 2 ,  . . . , yslL+lj  u that correspond to the basic variables of the 



obtained solution p s + l  . The pair 1 ys+101,ys+1~2 , . , , , yS+ lv l+ l j  , p s + l  is the new 

approximate solution to the original problem, and soon if A(yS,uS) r 0, then 

according to (22) the pair ~ y S ' 1 , y S n 2 ,  . . , , yS8L+1j,ps is the desired solution. 

Algorithm 2 

Using Theorem 2 we can create a method which gives a solution to the dual 

problem of minimizing the function 

with respect to u 2 0 . 

Although the function y ( u )  is convex, we need a solution (at  least an  E -  

solution) of the "inner" problem in order to minimize y (u) .  If the functions 

gO(Y) ,gk (Y)  are nonconcave it becomes difficult to use well-known methods, 

and therefore we adopt the following approach, whch is based on stochastic 

optimization techniques. Suppose we have to solve the more general problem 

of minimizing 

subject to u E U , where $ (u ,y )  is a convex function with respect to u and U is 

a convex compact se t .  The algorithm may then be constructed as follows. Let 

P( , )  be a probabilistic measure on Y ,  and fix arbitrary u 0  E U ,  y o  E Y .  Sup- 

pose that  the s - t h  iteration we have arrived at some points u S , y S  . Then the 

next approximation uS+ l , yS+ l  is derived as follows: 

(i) based on the probabilistic measure P choose N r I. points: 

(ii) Take 



ys ,  if 7 (us  .yT~') = mpx 7(uS,yilS) L 7(uS ,ys) .  

yS+l  = 
yTvS, if > 7 (uS ,yS ) ;  

(iii) Compute 

us+1 = n[uS - p , $ , ( ~ ~ , y ~ + ~ ) ] ,  S = O , l ,  . . . ,  

$, (us , y )  E t g  I $(u ,Y) - $(us  , y )  2 <g , u  - u s > ,  u E U J  

where p, is the step size; n is the result of the projection operation on U .  

As will be shown in a forthcoming article, this procedure converges with 

probability 1 under rather weak assumptions whch include (in addition to 

those mentioned above): 

I ~ ( u , y )  - 7 ( u , z ) 1  ( L  I Iy-z I ) ,  by,z E Y, u E U ;  

and the assumption that measure P is in some sense nondegenerate. 

5. Stochastic Programming Problem 

The stochastic programming problem with unknown distribution function 

introduced earlier is the minimization of 

with respect to x ,  where set K(X) is defined by the relations 

Suppose that for each x E X there exists an optimal solution of the maximiza- 

tion problem (34). In practice, this assumption is not as restrictive as it 



seems. We can always change problem (34) - (35)  slightly so that  a feasible solu- 

tion H satisfying ( 3 5 )  for fixed z E X will exist. To do this it is necessary only 

to increase the dimensionality of y  by introducing new variables 

* and considering the minimization of Y ~ ~ Y ~ * ~ .  . . oyn 

I 
max J [ f O ( z  - M? (y: + yi-) 

HE+)  i = l  

where / c ( z )  is described by the constraints 

+ - ~ [ ~ i ( z , y ) + y ~ - y ~ ] d ~ ( y . y * ) ~ O ,  i=xm. x E X .  Y i  L O .  Y i  2 0  ( 3 5 ' )  

with M sufficiently large. For fixed z E X there always is a degenerate distri- 

bution H ( y  , y  *) satisfying ( 3 5 ' ) .  

According to the duality theorem above, for each fixed x E X 

m 

m a r  J ~ O ( Z . ~ ) ~ H ( ~ )  = min max [ f O ( z D y )  - C y f i ( z . y ) l .  
H E K ( z )  uzO ~ E Y  i=  1 

The whole problem ( 3 4 ) ,  ( 3 5 )  can then be reduced to a minimax-type problem 

as follows: minimize the function 

with respect to x E X,  u 2 0. This type of problem can be solved using Algo- 

rithm 2. 

The purpose of thls paper is to consider methods for sol.ving opti.mization 

problems with unknown distribution functions. The algorithms discussed here 

have been successfully applied to real problems, dealing, for instance, with 

superconducting power cable lines, where the class of unknown distributions 



consisted of distributions with given bounds for the mathematical expectations 

and the variance of the random parameters. The main advantage of Algorithm 

2 is undoubtedly its computational simplicity. In addiion, this method does not 

require concavity of f '(x ,y ), f i(x ,y ) as functions of y . 
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