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AN ECOLOGICAL APPROACH TO SYSTEMS ANALYSIS 
BASED ON THE VOLTERRA EQUATIONS 

M. Peschel and W. Mende 
14. Grauer 

1. PHENOMENOLOGICAL BACKGROUND 

Development processes are very often described using math- 

ematical models based on the idea of exponential growth. One 

example of this is Malthus' theory of population growth, which 

states that a population tends to increase more rapidly than its 

means of subsistence and that, unless this growth is checked in 

some way, widespread poverty and degradation will inevitably 

result. This type of growth is called "uniformly proportional 

growth" and may be described by the equation 

where K is a constant. 

However, exponential growth is actually observed only in 

isolated systems, and we should therefore try to express the 

real evolutionary process in a more complex way, as illustrated 

in Figure 1 [ 1 , 2 ] .  In this new formulation, growth is divided 

into two distinct phases: an extensive stage, which may be 

represented by the autocatalytic expression 



[ E - -  Intensive Stage 

Figure 1. EVOLON - transition between two stationary states 

followed by an intensive stage, given by the saturation equation 

In the first stage, k is very often greater than 1, leading to 

hyperbolic growth, while in the second stage R is generally less 

than 1, which represents parabolic growth. The above expressions 

can then be combined to yield 

which is a generalization of the logistic curve (k=R=l). 

This description of evolutionary processes (known as EVOLON) 

developed from the study of rate-coupled systems (e.g., food 

chains, energy chains, enzyme chains [I]), which have the general 

form 

where Lo = 0 and KN = 0.  If we neglect the secondary effects 

associated with state variable x (the growth indicator), we i 
obtain the exponential chain 



which is the basis of our ecological approach. 

It may be useful at this stage to compare the properties 

of the exponential chain with those of the Taylor series ex- 

pansion of the function xo = x(t). Table 1 provides an outline 

comparison of these series; a more detailed discussion is given 

in ref. 2. 

TABLE 1. Comparison between the exponential chain 
and Taylor series expansion of xo = x(t). 

Taylor expansion Exponential chain 

Characteristics 

xo = x (t) 

Normalization 

Computation of coefficients 



As an example, let us consider the function 

The Taylor expansion is: 

and the corresponding exponential chain is: 

If K forms a periodic sequence with period (KO,K1,...,Kr-l), 

we describe it as a hypercycle of order r (see ref. 1). 

Figure 2 compares the basic chain structure with the structure 

of a hypercycle; the modes of a hypercycle of order 2 are il- 

lustrated in Figure 3. 

Figure 2. Illustration of the basic chain structure (a) 
and the Hypercycle of order r = 2 (b) 



F i g u r e  3 .  Behavior  modes o f  t h e  Hypercycle o f  o r d e r  r = 2 

The d e f i n i t i o n s  g iven  above show t h a t  t h e  f u n c t i o n  xo = 1/ 

(1-Kt) can be i n t e r p r e t e d  a s  a  hype rcyc l e  o f  o r d e r  1 .  However, 

long  c h a i n s  o f  homogeneous r a t e - coup l ed  " e x p o n e n t i a l "  sys tems 

x = KX.X i 1 i + l  t e n d  t o  d i s p l a y  h y p e r b o l i c  growth: 

T h i s  c an  be i n t e r p r e t e d  a s  t h e  Law of  Large Numbers i n  ecology.  

A s  a  g e n e r a l i z a t i o n ,  l e t  u s  c o n s i d e r  a  homogeneous c h a i n  

w i t h  t h e  b a s i c  o p e r a t o r  

where @ i s  a monotonic f u n c t i o n .  The g e n e r a l  s o l u t i o n  is:  



t 
~ e t  5. @-l{loydtl. Then, for @(5)1t=0 = 0, eqn. (5) becomes: 

This is a generalized statement of the principle of superposition. 

Using these definitions, the equation for each element 

(module) of the chain becomes: 

employing the normalization $ (Ei) 1 t=O = 0. 

As an illustration, we shall consider the two special cases 

$(u) = u and @(u) = En u. 

$(u) = u. In this case we have linear superposition and 

eqn. (7) becomes: 

where ci(0) = 0. This is the Taylor expansion. 

$(u) = Rn u. In this case we have the exponential chain: 

and from Rn Ei(0) = 0 we can deduce Ei(0) = 1. 

K A more interesting example is given by @(u) = u . In this 

case we have 

and Si(0) = 0. 



The next section presents an approach to the structural 

design of nonlinear and nonstationary systems based on the de- 

scription of growth processes outlined above. 

2. STRUCTURAL DESIGN OF NONLINEAR AND NONSTATIONARY SYSTEMS 

The basic operator corresponding to (4) for rate-coupled 

chains is 

There are many complex ecological systems built up from food 

chains; these chains are usually internally consistent with a 

relatively small number of linkages between them. This observa- 

tion leads to certain conclusions about the structure of the 

overall system. 

STRUCTURAL DESIGN PRINCIPLE 

Interacting coupled systems should be composed 

of a small number of long chains of rate-coupled 

systems with relatively few feedbacks within 

each chain and a small number of linkages be- 

tween different chains. 

We consider these chains or hypercycles to be the structural 

elements of the ecological system, just as shift registers and 

counter registers are the basic building blocks in automata 

theory. 

This Principle suggests a number of flexible rules for the 

design of complex systems: 

d 1. We apply the basic operator F = - Rn successively to any dt 
explicit or implicit signal x(t) (output, growth indicator, 

etc.) to try to build up a chain Fxi-xi+,, where - implies 
proportionality. In general, Fxi- Ai is an expression con- 

taining both familiar signals and new signals. 



2 .  If Ai contains signals that have already been identified, 

these are labeled according to the existing structure. 

There is some degree of freedom in labelling the unknown 

signals, which are then expanded as in step 1. 

3. This procedure comes to an end when no new signals can be 

identified, yielding a finite structure. 

4. Finally, we introduce names x for the output signals of i 
the basic modules F into the structure. 

Our experience in using these rules has shown that it is 

possible to construct the system topology for a signal x(t) 

without considering the multiplicative constants. Only when 

the topology of the system has been completed is it necessary to 

determine these arbitrary coefficients. 

We will now discuss two examples illustrating the use of 

structural design rules listed above. 

The first example involves growth in which the driving force 
k w R is a product of exponentials, such as & = Kx (B-x ) . Applying 

the structural design rules, we obtain 

On relabelling the variables, we obtain the following equa- 

tions for the structure of the system (illustrated in Figure 4a): 

This is a second-order Volterra-Lotka system driving an exponential 

integrator. 



The second example is based on the simple pendulum, the 

motion of which may be represented mathematically as follows: 

Applying the structural design rules, we obtain: 

The corresponding structure is illustrated in Figure 4b. 

Figure 4. Structure of a system with power driving force (a) 
and of the simple pendulum (b) 



3. SPECIAL FEATURES OF STRUCTURES PRODUCED BY A DESIGN PROCESS 

WITH EXPONENTIAL CHAINS 

The basic elements of an analogue computer include addition 

of constants, multiplication by constants (amplification), in- 

tegration (and its inverse) and signal multipliers x = y1y2; 

our proposed approach requires only$he basic module 
F = -  . -1 10 in (and its inverse F = e . Nevertheless, the following dt 
statement can be shown to be true: All structures which have a 

finite representation on an analogue computer have a finite de- 

scription in terms of exponential chains. The reverse is also 

true. (It should be noted that this result holds only in the 

sense of the topological structure of the system, and has nothing 

to do with its behavior, e.g., its numerical stability). 

en do not require All finite structures employing F = 

signal multipliers -- this means that the structural design ap- 
proach uses more complex basic elements than the analogue computer 

and yields a unified system description. 

If we introduce the output signals of the basic modules as 

state variables xi, the system will always be described by a set 

of Volterra equations [3-71: 

The resource parameters E; and the interaction coefficients 
-- 

Yi j are constant, where the ci can also be used as a parameter 

for manipulating the system. 

However, it would be more. general to consider nonautonomous 

Volterra equations ("Volterra networks") of the type: 

This would make it possible to use optimal control approaches 

in conjunction with the Volterra-type models, in view of the 

fact that: 



1. The representation of a given system by Volterra equations 

is not unique -- there may be a large number of equivalent 
Volterra representations. 

2. There is already a well-established theory of bilinear 

systems 

in control theory, where A and Bk are constant matrices 

and yk are scalar controls. 

The relationship between the theory of bilinear systems and 

Volterra equations is discussed in more detail in ref. 9. Here 

we shall just state the main result: - there exists a finite 
Volterra structure for every bilinear system, but every Volterra 

system does not necessarily have an equivalent bilinear structure. 

4. RELATED PROBLEMS 

When a given signal x(t) or a given differential equation 

for x(t) is put through the topological structural design 

process it yields a structure with a set of free parameters. 

This suggests the inverse problem: that of identifying the 

differential equations embedded in a given topological 
k w R structure. In the case ;( = Kx (B-x ) the inverse problem 

can be solved (assuming normalization with xi(0) = 1) to 

give the original differential equation and the following 

f o m s  : 

2. The degrees of freedom associated with a given signal x(t) 

or differential equation during the design process can result 

in a set of equivalent Volterra representations. This 



suggests the second problem: what are the transformation 

rules between equivalent Volterra representations? The set 

of all equivalence transformations is obviously a semigroup, 

but what are the generators of this group? 

3. Can we establish rules for structure simplification through 

approximation? Are there dominated and non-dominated 

structures? 

4. Can we develop a general approach that stabilizes the nun- 

erical behavior of Volterra representations sufficiently 

to perform reliable simulation experiments on the computer? 

5. Is it po,ssible to develop general parameter estimation 

procedures for Volterra representations, and methods for 

studying their robustness? 

6. Can we use qualitative analysis to find the pZlrameter con- 

figurations in a given Volterra structure that result in 

singularities, catastrophes (in the sense of catastrophe 

theory), or that produce strange attractors and chaotic 

phenomena? 

7. The following principle may be deduced from the design 

procedure outlined above: the order of the Volterra re- 

presentation, i.e., that of the equivalent representation 

of lowest order, is higher than the original order of the 

differential equation. This suggests the following problem: 

how is the original state space related to the full state 

space of the Volterra representation? 

8. When we randomize the Volterra representation by substituting 

independent stochastic variables for the parameters, how are 

the corresponding stochastic phenomena related to the behavior 

of the real system under uncertainty? 
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