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PREFACE 

Analysis concerned with problems of the rational use of natural 
resources almost invariably deals with uncertainties with regard to the 
future behavoiur of the system in question and with multiple objectives 
reflecting conflicting goals of the users of the resources. Uncertainty 
means that the information available is not sufficient to unambiguously 
predict the future of the system, and the multiplicity of the objectives, on 
the other hand, calls for establishing rational trade-offs among them. The 
rationality of the trade-offs is quite often of subjective nature and can not 
be formally incorporated into mathematical models supporting the 
analysis, and the information with regard to the future may vary with 
time. Then the challenge to the analyst is to elaborate a mathematical 
and computer implemented system that can be used to perform the 
analysis recognizing both the above aspects of real world problems. 

These were the issues addressed during the summer study "Real- 
Time Forecast versus Real-Time Management of Hydrosystems", organ- 
ized by the Resources and Environment Area of IIASA in 1981. The general 
line of research was the elaboration of new approaches to analyzing reser- 
voir regulation problems and to estimating the value of the information 
reducing the uncertainties. Computationally, the research was based on 
the hydrosystem of Lake Como, Northern Italy. This paper starts a short 
series of IIASA publications based upon the results obtained during the 
study. It describes the theoretical background for the new max-min 
approach to analysing multiobjective problems with uncertainties and 
outlines briefly some applications of the approach to water reservoir 
regulation problems. 

Janusz Kindler, Area Chairman 
Resources and Environment Area 
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1. INTRODUCTION 

A storage system may be considered a buffer between an uncontrolled sup- 

ply of a commodity and a demand for t h s  commodity expressing the needs of 

various users. The main goal of such systems is the s a h k j a c t i o n  01 the d e m a n d  

performed by releasing suitable amounts of the commodity stored in the system 

when the supply was abundant. Obviously, the demand can be better satisfied if 

the storage capacity is unlimited, or, equivalently, if there are no constraints on 

the storage peaks. However, large capacities are usually quite costly so that a 

second characteristic goal of such control systems is often the a t t e n u a t i o n  01 

storage peaks. 

A typical example of a storage control system is a regulated lake in which 

the runoff of the upstream catchment is stored and used later to satisfy agricul- 

tural, municipal, and industrial water demands of the downstream users while 

avoiding too large floods at  the lake site. Problems of this type have long since 

been analyzed (see, for instance, [I]) and many applications can be found in the 

flelds of economics, natural resources management, and industrial engineering. 

In the majority of the cases uncertain supplies and/or demands are modeled 

(with more or less adequate justification) by stochastic processes and the objec- 

tives are expressed in terms of expected values of suitable indicators. On the 

contrary. in this paper we suggest a max-min approach aimed at determining 

control laws that guarantee a given degree of satisfaction of the goals in the 

case of the worst possible pattern of supplies. The essential feature of the 

method is that the information available to the decision-maker (DM) to model 

the future behaviour of the system is given in the form of explicitly described 

sets of sequences of supplies. 

The basic idea of the approach suggested in t h s  paper has been developed 

a t  the Computing Center of the USSR Academy of Sciences and implemented 



there for flood protection problems in the multireservoir Volga River System. 

More recently, the method has been successfully applied to the multiobjective 

control problem of Lake Como in Northern Italy (see [4]). 

The paper is organized in sections as follows. In the next section the basic 

characteristics of the problem are described with emphasis on the information 

structure. Section 3 deals with the problem of demand satisfaction, and Section 

4 - with a similar problem of attenuation of storage peaks. Then the results 

obtained in Section. 3, 4 are used in Section 5 for analyzing the corresponding 

two-objective problem. The last section contains some comments on the appli- 

cation to Como lake and a few remarks on the possible extensions of the 

approach. 

2. D-ON OF THE SrORAGE CONTROL PROBLEM 

In this section we describe the characteristics of the storage control prob- 

lem that is dealt with in the paper. In doing this we shall sometimes be using the 

water management terminology although the approach suggested herein can 

also be applied to other types of systems. 

21. State -tion and Control Constraints 

Let us consider a storage system (water reservoir) and denote by zt (state 

variable) the storage (amount of water in the reservoir) at the beginning of t-th 

time-interval ( t  =0,1 ,...). We also denote by at the supply (the inflow of water) 

into the system during t-th time-interval, and by rt  (control variable) the 

release (of water) from the reservoir during the same interval. 

Using this notation the state equation (mass-balance equation) of the sys- 

tem can be written in the form: 

zt +, = zt + at - rt , t  20, 

where the release rt  is subject to the the control constraint. 



Oart aN(z t ) ,  t 2 0  (2) 

with N(.) being a given function of the state variable (in the case of water reser- 

voirs N(.) is the so called stage-discharge function). In the following, we assume 

that this function is differentiable and such that 

d N z  N(0) =0 ,  Oa +< 1. z 2 0. 

Note that these,properties imply N(z) 5 z for all z 2 0 and this in turn, together 

with the nonnegativeness of the supplies and the initial storage, guarantees that 

zt 2 0 ,  for any t > 0. 

2.2. Information Structure and Control h w a  

We consider a multistage decision-malung process during which the 

decision-maker at  any current instant of time t chooses a value of the 

corresponding control variable rt based on the inlormation available to him at 

that instant. We assume that in the course of the control process a t  any current 

instant of time t (beginning of t -th time interval) the DM knows the value zt of 

the state variable and also the value q of the supply during f -th time interval. 

We also assume that at  any current instant f the DM models his knowledge 

wlth regard to possible future values of the supplies from instant f +l up to 

h b i t y  in the form of a set of inAnjte sequences of supplies. We shall denote this 

set as and its elements as  ate,...). In the sequel we shall use 

similar notation $ (t=) for a set of Anite sequences af.=(a,,.. . ,at) .  

In order to describe sets 4- we introduce a "reference set" A*:-' used for 

"generating" the elements of sets q. This set consists of sequences of supplies, 

each of length T, where T is a time period corresponding to "seasonal" Uuctua- 

trons of the supplies. In water management problems, for example, the time 

period T is usually one year and set A*:-' may contain past observations of the 

inflows for a number of years together with sequences generated using statisti- 



cal techniques, and possibly also hypothetic sequences added into this set by 

the DM to make it more representative from his viewpoint. For convenience the 

periods (years) will be numbered with integer variable k =1,2,3, ..... 

Using t b s  notation the structure of sets 4" can be described as follows. For 

any instant t of the form t =(k -1) T, (k =1,2,. . .) (beginning of a year) correspond- 

ing set &:-l)T consists of all infirute concatenations of the sequences from 

"reference" set A*:-'. This means essentially that at  the end of any year the DM 

does not use any information to model the supplies of the next year except the a 

priori information that is contained in the "reference" set. This implies 

Ag-4) = 4;-1)~ =&", k 2 1 ( 3 )  

On the other hand, we assume that the observations made by DM from the 

beginning of a year up to a current instant t can reduce ambiguity with regard 

to the future supplies for the remaining part of the same year. For example, in 

the case of lakes where the snowmelt occurs between May and July, if at time t 

= May 15 of year k snowmelt has already occurred, then all sequences charac- 

terized by too hlgh values of inflows after May 15 can be discarded from refer- 

ence set A*:-' before determining set  AjkTil. Therefore, we assume that for any 

current k r l  and t E [(k -1) T,kT-1) set bkTil may contain only some of the 

subsequences belonging to set A*:-'. In conclusion, for any k 2 l  and 

t E [(k -1)T,kT-1) set consists of all sequences obtained by concatenating a 

sequence of set &kIi' with a sequence of set A,*. 

Assuming that set A*:-' is known to the DM prior to starting the control 

process, we denote by tuple 

kT-1 (to z t ,  at, 4 + 1  1 
the information available to the DM a t  current instant t 

A control law is a rule for calculating a value of the control variable for any 

instant of time t E [(k-I)T,~T-11, k r l  and for any tuple of information. We 



shall describe this rule by a function 

kT-1) 7 0  *ztSt~Ac+l 

and use r as the short notation for this function and rt as the short notation for 

the value of this function corresponding to a fixed value of t and the other argu- 

ments. 

In the sequel we shall also denote by rp(r,t ,z,r ,a$-') the state of the system 

at instant t with z being the initial state a t  instant r, r being the control law and 

a$-' the sequence of supplies from r up to t -1. Of course, rp(r,t ,z,r ,a$") = z for 

t =r.  

2.3. Goal Constraints 

As already pointed out, the goak in controlling a storage system consist in 

satisfying demands for the releases (of water from the reservoir) and in 

attenuating storage peaks. Formally these goals can be expressed in terms of 

inequalities whch are to be observed when choosing an appropriate control of 

the system. In our case these inequalities have the following form (god con- 

st-raints): 

r t  r a r ? .  t 5 0  ( 4 4  

2: spz*:, t 2 0  (4b) 

with 75, Z? being prespecified reference values for the minimal release and the 

maximal storage at  which there are no losses or damages at time t .  The 

coefficients a (-1) and p (el) are introduced to make these constraints more 

flexible. Clearly, the ideal case would be to And a control law whch guarantees 

the satisfaction of the goal constraints with a=l and p=1; but if such a control 

law does not exist then constraints (4) can be relaxed by introducing some 

values a<l and/or @>I. In these cases the problem of controlling the system is 

of the multiobjective nature and consists in providing the greatest possible 

values of a (the lowest possible water deficits) and the lowest possible values of /3 



(the lowest possible flood damages). We assume that both r*' and z*' are 

periodic in the sense that 

T*( = T * ( + ~ ,  =z*(+T 

for any t10, with T being the time period introduced above. 

The problem considered in this paper consists in determining couples (z, , r )  

of initial states and control laws which guarantee the satisfaction of constraints 

(2) and (4) for given values of a and 8. To be more precise we shall introduce the 

following 

Definition 1 ((a,@)-feasibility of ( z , ,~ ) ) .  &en an instunt of time T and set A,,? of 

possible sequences of supplies a couple (z,,r) is called (a,8)-feasible z .  storage 

q ( ~ , t  ,z,,r ,a$-') and fha corresponding values r, of the control variable satism 

consfrahts (2) and (4)for all t= m d  all a$-I E At-'. 

Similarly a couple (z,,r) will be called a-feasible [P-feasible]. il control con- 

straints (2) and goal constraints (4a) [(4b)] are satisfied for all t r r  and all possi- 

ble supply sequences. Thus, a couple (z,,r) is (a$)-feasible iff it is both a- and 

8-feasible. 

In the following we determine sets of a-, 8-, and (a$)-feasible couples which 

w i l l  be denoted by Ft, and FFP respectively. 

3. SATISFACI'ION OF DEMANDS 

In this section we suggest a way for determining a set Ff of a-feasible cou- 

ples (z, , r )  which has the form 

where 

= tz, I there ezists r such that (z,,r) is a -feasible{, T r 0 

and set Ra, which is described later, is such that if r E F then for any z, 

couple (z,,r) is a-feasible. Therefore, set Ft can be obtained by separately 



determining sets and FP 

In what follows we shall denote by rmin the control law which specifies the 

value ar? for the control variable at any current instant of time t .  This control 

law, that we shall refer to as minimal release policy,  will be used to determine 

sets &a. 

Lemma 1 .  For a n y  -0 i f  z ,  E &a then couple (z,,rmh) is a-feasible.  

Proof. If z, E Sa then, by detlnition, there exists a control law T such that ( z , , ~ )  

is a-feasible. Denote as rt and z t  the wrresponding values of the respective 

variables for some Plxed sequence a,' E &. Let us also denote by rtmh (= a r e t )  

and zt releases and storages obtained for the same sequence of supplies by 

applying the minimal release policy. Then, from state equation (1) we have 

(zt +1 -t + 1 )  = ( z t  -zt + (rt -trnh). 

But 2 , - z , = O  and rt -rtm%O since T is a-feasible, so that 

5 a z t  

for all t a r .  Therefore, using the a-feasibility property of ( z , , ~ )  and the assump- 

tion that N ( . )  is nondecreasing we have 

rtmh = aT *: 6 ~t 6 N.(z t  ) 6 N ( z t )  

for all and all sequences a,' E ~ ,  which shows that rmh satisfies control 

constraints (2) and therefore couple (z,,rmh) is a-feasible. Q.E.D. 

Lemma 1 implies that set Ka contains those and only those storages z,  that 

satisfy the following conditions: 

m? < N ( z t ) ,  t 21, 

= z t  + a t  - a r ? ,  t 2 r  

for all supply sequences a,' E &. 

Another property of set Ka implied by Lemma 1 is the following: 

2, E]Ca = > z  E ~ ,  z 22, .  

Therefore, if we introduce the value 



z,0 = minz, 
z - 

then set  can explicitly be described as 

% = 12 12 r z ; ] .  (8) 

Problems of type (7 )  are not practically solvable since they involve an 

inftnite number of constraints (see (6)). However using periodicity properties 

( 3 ) ,  ( 5 )  we can conclude that 

I&&=%, k 2 1 ,  ( 9 )  

and therefore zk% = z,0 for all k  r 1. This fact allows the following to be proved: 

h m a  2. For a n y  k  2 1  m d  any r E [ ( k  -1) T ,kT -11 if z,  E t h e n  

zkT = O(r ,k~ , z , ,~m6r ,a$T-1  ) r z,0 

JOT a n y  E llrkT-', 

Proof. If we assume the contrary, then using (9) we obtain that for some k r l ,  

kT-1 ),,min) is s ~ [ ( k  -1) T ,k T-11, z,€= and atT-' E eT-' couple (q ( r , k  T , z , , ~ ~ ~ , a ,  

not a-feasible and therefore using (3 )  we conclude that z ,  Ft =. Thls contradic- 

tion completes the proof. 

This result shows that by adding constraint (10) to equations of type (6) we 

can describe set = by means of a finite number of constraints. More 

speciflcally, we can formulate the following sequence of mathematical program- 

ming problems for calculating values z,0, r r 0: 

z,0 = min z, 

a?*' sN(z t ) ,  t=o ,..., T - I ,  

zt+l=zt + q  - a ~ q ,  t = O  ,..., T-1, 

ZT 2 2, , GT-l E A*!-'. 

Problem-. ( r  E ( ( k  -1) T ,kT -11, k  r 1).  



Notice that Problem-0 should be solved flrst since its solution zf appears in 

the formulation of Problem-r. Moreover, it is important to point out that 

Problem-r (r>O) must be solved in real-time since set hkT-' is known only at 

time (r-1). If the real-time computations are not feasible (due to costs involved 

or some other reasons), then the reference set can be used instead of set gT-' 
and the corresponding problem may be solved prior to starting the control pro- 

cess. In such cases no advantage is taken of the observations obtained during 

the course of the process and values zf computed in this way are generally 

greater than those computed using the real-time dormation in the form of sets 

khT-1. 

Another property of z: (needed in Section 5) is that zf is nondecreasing 

with a. In fact, as is easily verifled, storages zt obtained by applying to system 

(1) with z,=z: minimal release policy rtmh=ar5 with a<a, certainly satisfy all 

the constraints in Problem-r with a substituted by a, and this implies z:Szf. 

In practice, the determination of values zf is very simple. If the number of 

sequences of set gT-' is flnite then it suffices to solve the corresponding 

Problem-r for each supply sequence atT-' and select the maximal of those 

values (the determination of each of these storages may be done by simulating 

the behavior of the system for different initial storages z, from time r to time 

kT for a given supply sequence and the minimal release policy until the lowest 

initial storage satisfying conditions (6a) and (10) is obtained). 

We can now deflne set FP of control laws which was mentioned at the begin- 

ning of this section. 

Defhition 2 (set FP). S e t  FP consis ts  o f  d l  control l aws  



satisfying the inequalities 

Now we can prove the following 

Theorem 1 .  I '  a control law r E l? t h n  the couple (z ,  , r )  is a-feasible for any 

Z ,  EXoQ. 

Proof. Notice first that the right-hand side inequality in (11) implies the satis- 

faction of control constraint (2) while the left-hand side inequality is equivalent 

to goal constraint (4a) provided 

r ~ ( 2 ~ ) .  (1 2) 

Therefore, we should prove that any control law r satisfying (11) gives rise to 

releases rt and storages z t  that satisfy (12) for any t ,  provided z, E x. 
At time t = O  the satisfaction of (12) is guaranteed by the definibon of Xa 

(see Problem-0). As for the future, there are two cases: either z, +a, -zf ar *, , 

or, on the contrary, z, +a,, -zf < ar *, . In the @st case, (1 1) implies 

2 1  =z,+a,,-r, azp. 
i.e. z1  EX?, and therefore the defbition of Xf (see Problem-r for r= l )  guaran- 

tees the satisfaction of (12) for t =l .  In the second case, (11) implies r ,  = ar*, 

and thus (12) for t =I is implied by the deflnition of Ka (see Problem-0). 

If at time t =l 2 ,  E Xp we can repeat the above argument and prove that 

(12) holds for t =2. If, on the contrary, z l  et we can consider the following two 

cases: either zl+al-2% r ar*, or z l+a l - z$  < ar*,. In the &st case, (11) implies 

z z = z l + a l - r l a f  so that the definition of guarantees the satisfaction of (12) 

at time t =2. In the latter case, (1 1) implies r 1  = ar *, and therefore, recalling 

that r0 = ar f , the satisfaction of (12) for t =2 is guaranteed by the definition of 



By recursively using the same arguments the theorem is proved. 

From Theorem 1 it follows that the multistage decision-making control pro- 

cess providing for the satisfaction of goal constraints (4a) consists of the follow- 

ing. At any instant of time the DM uses set ~(~fr l  to calculate value by solv- 

ing Problem-s for s=t +1 and then chooses any value of rt (release during time- 

interval t )  satisfying inequalities (11). Of course, the initial state of the system 

at time t =O must belong to set obtair:ed by solving Problem-0. 

We can give a useful interpretation of this process. Let us introduce for any 

state z and. for any nonempty set X distance d from z to set X as follows: 

Now for any Axed trO we formulate the problem: 

d(p(t , t  +1,zt r t  ,a t )X+l)  + =in 
"t 

s.t.  min1N(zt),ar*t j 5 r t  5 N(zt) (13) 

with zt ,at ,r *' ,a being tixed values of the respective variables. 

As can be seen the set of all solutions rt to problem (13) is described by ine- 

qualities (11). From here it follows that at  any current instant t the behavior of 

DM is equivalent to the tendency of bringing state z t + ~  of the system into "tar- 

get" set lrp+l determined on the basis of the inlormation currently available. 

4. ATTENUATION OF =ORAGE PEAKS 

The problem of attenuation of storage peaks is sunilar to the problem of 

demand satisfaction described in the preceding section. Indeed, while the 

satisfaction of demand can be facilitated by hgher  initial storages (Xa is 

bounded from below) and realized by applying the minimal release policy, it is 

intuitive that the storage peaks decrease with the initial storage and are 

attenuated by releasing the maximal amount of the cornmo&ty N(zt) at  any 

time t .  (For example, in a regulated lake the lowest possible flood is obtained by 



keeping the gates of the regulation dam permanently open) 

In this section we are determinig a set F,b of 8-feasible couples (z ,  , r )  which 

has the form similar to that of Ft (Section 3): 

P f = & P x R g  

and all the results obtained in Section 3 have their dual which can formally be 

obtained by replacing the set Sa with the set 

= fz,  I there ezists T such that ( z , , ~ )  is / 3 - f e d l e  1 
and rm* with the rnazha l  release policy rmOL given by 

kT-1 rt- = r ( f  ,zt,at,4+1 ) = N(zt). 

The dual of Lemma 1 is the following 

Lemma 3. For any -0 i f  z ,  E then the couple (z,,rmOI) is @-feasible. 

Proof. The proof is a direct consequence of the property dN(z)/& < 1 which 

implies 

N(zt -N(zt s zt -2: 

for all zt r zt r 0 .  In fact, if z, E then, by definition, there exists a control law 

T that gives rise to releases rt and storages 5 which satisfy constraints (2) and 

(4b) for t r ~ .  On the other hand, storages zt and releases rtM=N(zt) obtained at  

time f by applying the maximal release policy are such that (see eq. (1)) 

zr +1-zt +1 = zt -zt +N(zt 1-rt . 
But rtsN(zt) since (z,,r) is 8-feasible; hence 

zt+1-t+12 zt -2: +N(zt)-N(zt). 

Therefore z t a t  implies zt+lazt +l.  Since z,=z, we have zt4zt~Bz*. for all t  w, 

and this implies the Lemma. 

Moreover, it can be shown that to obtain an explicit description of set X$$ i t  

sufllices to And the value 

z,P = max z 
z EXP 



since 

* = [ z I 0 g z  gz,bj. 

The following property (dual of Lemma 2) also holds: 

Lemma4. For a n y  k r l  and  a n y  T E [ ( k - l ) T , k T - 1 1  i f z ,  E #  t h e n  

Z ~ T  = p ( ~ , k ~ , z , , r m o ' , a $ T - l )  g z t  

for  a n y  a$T-l E &kT-l, 

This property implies that values z f  can be obtained by solving the follow- 

ing mathematical programming problems 

z,b = max z, 

zt qwt, t=o ,..., T-1, 

zt+1 =zt + &  - N ( z t ) ,  t=O ,..., T-1, 

ZT  5= 2, , %T-l c hT-1 .  

Problem9 ( T  c ( ( k  -1)T,kT-11, k r l ) .  

Now we can deflne se t  M similar to set  F. 

Definition 3 (set IEb). S e t  M consis ts  of dl control l a w s  

kT-1)  rt = r ( t  , z t ,a tA t+l  

stztisjyLng inequal i t i e s  

The properties of control laws from t h s  set  are  given by the following 

Theorem 2. If a control  l a w  r E M t h e n  the  couple (z, , r )  is @-feasible for  a n y  



The proof of this Theorem is similar to that of Theorem 1 and is therefore omit- 

ted here. 

All the comments made in Section 3 and related to Theorem 1 can now be 

rephrased in terms of Theorem 2. In particular, the decision-making process 

can be interpreted as the minimization at any time t of the distance (see Sec- 

tion 3) between state zt +l and set 

5. TWO-OBJECTIVE PROBLEM AND SICMI-CIENT CONTROL MWS 

In this section .we consider a problem of satisfaction of both goal con- 

straints (4) for some k e d  values of a and @, and find a set c . p  of (a,@)-feasible 

couples that has the form 

where 

g* = n &P, 

RaJ"'FnRp. 

with sets Ka, &p, F ,  I@ deflned in the preceding sections. 

Obviously, from the previous discussions and from (16) it follows that 

= lz JzE s z s z:], 

where z: and z,b are obtained as in Section. 3, 4, while set F.p is described by 

the following 

Theorem 3. A contro l  law 

kT-1) 
7; = ~ ( t , z t , a t , A ( + ~  

belongs t o  set  FeP i .  if satisfies inequal i t ies  

The proof of t h s  theorem is straightforward and consists in combining inequali- 

ties (11) and (14) using (17). 



Another problem of interest in this context consists in obtaining in some 

sense "the best" values of a and @ whch can be guaranteed using control laws 

from sets of the type W.@. To discuss this problem we introduce the following 

Deiinition 4. A couple (a0 ,$) .is caUed semi-efftcient i f j  s e t  F f . p  .is n o t  e m p t y  

and for a n y  other couple (a,@) s u c h  that a>ao and @<$ corresponding s e t  F,Q.@ is 

e m p t y .  For a n y  semi-efficient couple (ao ,$ ) w e  r e f e r  to  control laws  f r o m  s e t  

@.f as semi-81p'icient control l a w .  

Then the problem we now consider consists in determining a set of semi- 

emcient control laws and a corresponding set of initial states for the system in 

question. The procedure for solving this problem suggested here includes the 

following stages: 

a) obtaining a semi-efficient couple (a0,$) of the values of the indicators con- 

sidered, 

b) obtaining set &a.p and set of (a0 ,$)- feasible control laws. 

To obtain a semi-efficient couple (a0,$) we use the standard procedure: 

&st we fix some value a0 of a and then obtain the minimal value $ of @ such 

that the inequalities 

rt 2 aOr*: (lea) 

zt * $z*t (1 8b) 

can be satisfied for all t2O and all sequences &-€ krn uslng a,-feasible control 

laws. As t b s  analysis should be performed prior to starting the control process 

the only information with regard to the possible future supplies that is available 

at this stage is set that is defined using the reference set as discussed in Sec- 

tion 2. 

Let us flx some value a'. Then by solving the problem of demand satisfac- 

tion as in Section 3 we can obtain the set of control laws of the type @ provid- 

ing for the satisfaction of inequalities (18a) for all t z 0  and all sequences G' E krn. 



I t  is important to note here that values ztaO trO present in the description of this 

set as in (11) are obtained at this stage using only the a priori information in the 

form of set A*!-'. To indicate that we denote by zro the values obtained at  t h s  

stage of the analysis. Let us also introduce the notation 

rt-(ao ) = nnin~N(zt),max~zt +at -ztaIl , a O r  *t ]j (19) 
for the control law corresponding to the right-hand side of inequalities (11) 

describing set I?'@ of control laws obtained at  this stage. Clearly, as this follows 

from Dewtion 4 and from (15)-(17), the value @O such that (a0,$) is a semi- 

efficient couple can be obtained as the minimal @ for which the problem of peak 

attenuation has a solution in set I?'@ of c o n t r o l  laurs. Formally this implies that 

when solving the problem of demand satisfaction at  this stage we should use 

control law (19) as the maximal release policy (but not the stage-discharge pol- 

icy N(.)). Using the results obtained in Section 4 we can formulate the following 

problem for determining $ : 

Having thus obtained fP, we come to the second stage to find set I ? ' O * P  of 

semi-efficient control laws together with set of initial states xa0,p.  The pro- 

cedure for that consists in solving the problem of demand satisfaction for a = a0 

as in Section 3 and the problem of peak attenuation for /9 = @O as in Section 4. 

Then usmg (18), (17) and Theorem 3 we can obtain sets xa0'p and fPO.p. 

6. CONCLUDING RElURKS 

A two-objective storage control problem has been considered in this paper 

and solved using a min-max approach. This approach allows a set of control laws 



to be determined (see Theorem 3) which guarantees given degrees of satisfac- 

tion of the goals in the case of the worst sequence of supplies out of a 

prespecifled set of possible sequences. Using this approach the DM at any time 

can determine a range of feasible releases. 

Operationally the approach is characterized by two optimization stages. The 

&st stage can be performed prior to starting the control process and consists in 

determining the 'kghest" degrees of satisfaction of the goals by solving some 

mathematical programming problem over the whole characteristic time-interval 

(a  year). This is done by using only the a priori information with regard to future 

supplies. The second stage involves solving a sequence of mathematical pro- 

gramming problems which are defined in real-time since they depend upon the 

information obtained in the course of the control process. This stage may be 

relatively costly as its implementation requires a computer at  the disposal of 

the DM. However the use of an on-line computer can be avoided ii the DM decides 

not to use all the current information. 

The approach suggested in this paper has been applied to solvlng problems 

related to Lake Como (Northern Italy) whch has been regulated since 1948. The 

reference releases r*(  are in that case the yearly periodic water demands of 

seven hydroelectric power plants and six agricultural districts covering 120,000 

hectares of land, while the reference storage z?  is constant and corresponds to 

the level of the main square of the town of Como whch was very frequently 

flooded during the last decades. The hstorical values of a and /3 are respectively 

0.30 and 2.10 and correspond to 70 percent shortage of the demand which 

occurred during the most severe drought of the last years (July 1976) and to the 

peak of 1.36 meters above the main square in Como (flood of October 1979). The 

application of the approach has demonstrated that the above values of the goals 

are not efficient in the sense specifled in Section 5 of thls paper. In fact, for the 



historical value a=0.3 the efficient value of @ is 1.86 (the peak of the worst flood 

is lowered by 30 cm), while the efficient value of a corresponding to the hstori- 

cal value @=2.10 is 0.82 (the shortage of demand during summer 1976 period was 

reduced to 18 percent). 

The approach presented in this paper must be slightly modified to make it 

applicable to some situations differing from those discussed in Section 2. For 

example, in some cases the storage is constrained from below (zt 2 z ), while in 

other cases the goals are not expressed in pointwise form as in (4) but in an 

integral form. The &st case can be dealt with by suitably redefining the control 

constraint (2), while the second case can be solved assuming that the control 

laws are functions also of the current values of the goals. Both cases have been 

considered in a lake management study [4], in which the constraint q 2 z has 

been introduced to take into account navigational requirements, and the two 

goals were the minimization of the yearly water deflcit and of the number of 

days of flood per year. 

Of course, not all the extensions are as simple as the two mentioned above. 

For example, the cases of multistorage systems and of uncertain demands, as 

well as some others, probably require substantial and conceptual modifications 

of the material presented in t h s  paper. 
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