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-PREFACE

Methodologically, the IIASA research program on Regional
Development reflects the general attitude of the majority of
regional scientists. Among other things, this means that the
models developed deal with discrete sets of regions or loca-
tions. For specific planning purposes, this approach is extre-
mely efficient, due to computational advantages. On the other
hand, systematic information about regional structures, of the
geometric flavor associated with classical location theory, is
hard to obtain if one discretizes space from the outset.

To complement this main stream of regional analysis, two
scientists currently trying to revive continuous modeling of
the space economy, Martin J. Beckamnn and T&nu Puu, were invi-
ted to IIASA in September 1979. They started writing a compre-
hensive monograph intended to present the state-of-the-art in
the field of continuous regional modeling. The completion of
such an extensive work was not possible in the brief period of
three weeks.

The authors currently continued to work on the project.
The present paper by Ténu Puu is one chapter of the forthcoming
monograph, and it was finished during his renewed visit to IIASA
in April 1982.

It deals with planning models for the allocation of avail-
able labor and capital resources within a continuous two-dimen-
sional spance economy. The main results of the paper concern the
advantages of specialization and trade, in the absence of even
comparative advantages or localized input supplies. So, the
usual conditions for trade, as developed in general (spaceless)
economic theory, are not needed, as specialization and trade
seem to develop from the nature of bounded two-dimensional
space itself.

Moreover, the close parallel between the planning and
competitive equilibrium solutions is brought out.

March 1982 Boris Issaev
Leader
Regional Development
Group
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LONG-RUN PLANNING FOR CAPITAL AND LABOUR
ALLOCATION IN SPACE

Introduction

The model presented here is designed to handle the following planning
problem. We deal with a geographical region of given shape and given
extension. Considered is a number of different productive activities,
represented by linearly homogeneous production functions, allowing
smooth substitution among inputs. In order to emphasize the advantages
of geographical specialization, even in the absence of localized input
supplies, we assume the same production functions to apply at all
locations.

There is a local utility function, dependent on the quantities of pro-
duced goods available for consumption, and the goal is to maximize the
total utility obtained by aggregation with respect to all locations.

The means by which we obtain the maximum are the proper distributions
of given aggregates of capital and Tabour among locations and among
productive activities. The third classical input, land, is immobile
and hence we only consider the division of land between various acti-
vities at each location.

Local consumption may differ from local production for-any good and
hence we need to specify commodity flows and a production of transpor-
tation services. Transportation, of course, also uses up inputs. More
specifically, we assume that transportation services, being of a very
specific type, are produced by a Leontief technology without substitu-
tion and that only capital and labour, but not land are used.

This is fairly realistic if we consider the transportation costs in
term of wear of vehicles, fuel and drivers' services. The inputs
embodied in the existing network of roads are not taken into explicit
consideration, as the planning of a new network has an even more
long-run character than the planning of an optimal spatial distribu-
tion of production activities.



It should be stressed that housing is included in the productive acti-
vities considered. A flow of housing, which might seem to lack sense,
simply means that workers live at other locations than those of their
occupation. Whether the commodities are physically moved to the con-
sumer or the consumer moves in order to consume housing or public
services is of no importance. We can either consider a movement of
consumers or a movement of services provided that we account correctly
for the costs.

The main outcome of the analysis is a principle of geographical spe-
cialization in contrast to the possibility of producing everything lo-
cally without any interregional trade. This specialization occurs in
the absence of even comparative advantages, as the same productive
possibilities are available everywhere.

Noteworthy is that the main conclusions are independent of which uti-
1ity function we postulate.

The mathematical paradigm is that of a continuous two-dimensionsal
space where we consider areal densities of consumption, production and
inputs. For land, these areal densities, of course, are fractions that
at any location add up to a given constant, at most unity for all
space-consuming activities. A1l these areal densities are assumed to
be smooth functions of the space co-ordinates.

In the same way the flows of goods are regarded as continuous flows in
the plane. They take paths that minimize transportation costs between
any pair of locations. The structure of roads is represented by a
location-dependent, but direction-independent, need of capital and
labour, and transportation cost is the line integral of the costs for
inputs at all the locations traversed by the route. The optimal paths
are thus obtained by solutions to Euler equations for well-defined

variational problems.

The continuous flow concept also means that knowing the optimal flow
directions we can tie the local changes of flow volumes to the local

excess supplies.



The Model

Let x;,x, denote the space co-ordinates. We deal with a fegion A of

two-dimensional Euclidean space, bounded by a simple smooth curve 3A.
Unless the contrary is stated, all the variables introduced are func-
tions of x;,x,. Surface integrals are taken over all of A and curve
integrals along the boundary 9A, again unless the contrary is stated.

We deal with n different commodities (goods or services, including
housing, but not transportation). If the quantities of these commodi-
ties available for consumption at a given location x;,x, are
Qys--.,0n then the local utility is U(q;,...,q,, X1,%x2) and the

total utility to be maximized is

[I(U(ays.eesq, 5% 5%, )dx, dx, (1)

The explicit inclusion of the space co-ordinates makes it possible to

put different weights on consumption in various locations.

For the purpose of exemp]ification we simply delete these x;,x, and
put the utility function into the form Lejlngj. Unless the contra-
ry is stated all summations run over i=1,...,n.

Let kj,1j,mj denote the areal densities of capital, labour and
land used in the i:th productive process at a given location xj,x,.

The linearly homogeneous production functions are then

i ) i
flkysliom) = mof (ko /me 1 /m, 1), (2)

Unless the contrary is stated expressions written for some index i are
assumed to hold for all i=1,...n. As the space co-ordinates are not

explicitly included we assume that the same production possibilities
: ps . i aj Bi Y
are open everywhere. For exemplification we put f = Aiki 1,i ms where

the exponents sum up to unity.



Local excess supplies are

fl(kys15m) - q, (3)
These excess supplies must enter the commodity flows or, if negative,
be withdrawn from them. We denote the commodity flows by ¢ij. These
flows are vector fields, i e ¢ are two-dimensional vectors with the
components being functions of the space co-ordinates x;,x,. A vector
field, of course, has both direction and magnitude. The direction is
simply the actual direction of the flow considered and the magnitude
is the quantity of commodities shipped in the flow.

Due to one of the basic theorems in vector analysis, Gauss's diver-
gence theorem, the divergence of a vector field represents source den-
sity of an incompressible flow such as the transportation of commodi-
ties. The source density, of course, is the local excess supply and we
may hence write, in view of (3),

1.,m.) - q. ()

div g; = £ (ky,1.,m, 1

i
As mathematically the divergence of a vector field equals the partial
derivative of its first component with respect to the first space co-
ordinate plus the partial derivative of its second component with
respect to the second space co-ordinate, (4) are partial differential
equations for the magnitudes |¢if of the vectors as soon as the flow
directions ¢1/|¢1| and the excess supplies in the right hand sides

are known. We will return to the determination of the flow directions.

As stated in the introduction, the transportation of goods uses up
capital and labour inputs, say K1|¢j| and A1|¢1| respectively.

The xj and A4 are given functions of the space coordinates and

reflect the structure of fixed transportation capacity provided by the
existing road network. The linear dependence on flow magnitudes means
that we presently abstract from congestion. This simplifies analysis a
lot. A non-linear dependence on |¢i| is not difficult to handle, but
the interference of the different flows makes the degree of analytical
complication grow disproportionately to the increase in realism.



If there are given aggregate resources of capital and labour, denoted
K and L, we arrive at the following constraints:

] .
e

ffz(ki+K1|¢i|)dxldx2 ’ (5)

n
—

ff£(1i+xi|¢i|)dxldx2 (6)
Production uses up ki units of capital and 15 units of labour and
transportation uses xj[¢j| units of capital and Xj|¢;| units

of labour. Summing over all commodities and integrating over all loca-
tions yields the total usage of these inputs.

As mentioned in the introduction we assume that we are completely free
to plan to move capital and labour between locations and between acti-
vities.

As for land it may only be transferred between activities. So
Im; =m (7)

where m is a positive, at most unitary, location-dependent number. In
general it is less than unity, as some space has already been used up
in constructing the given fixed transportation capacity or is other-
wise not available for further exploitation.

We thus have a well-defined optimization problem, i e to maximize (1)
subject to the constraints (4), (5), (6) and (7) by choosing the
appropriate scalar fields kj, lj, my and q; and the vector

fields ¢5.

This will be accomplished by a Lagrangean method. We associate
Lagrange multipliers: pj with (4), r with (5), w with (6) and g with
(7). At present they are only undetermined multipliers, but the nota-
tion indicates that they turn out to be shadow prices for goods, rent
of capital, wage rate and land rent respectively. They can also be



interpreted as equilibrium prices in a competitive system with indivi-
dually optimizing agents.

Optimum for Production

We will now derive the optimum conditions, starting with those obtain-
ed by maximizing with respect to kj, 1 and m;. They obviously

are.
p‘i f:((k'i’]'i’m'i) =r (8)
P f::(k]"]]'am]') = w (9)
and
py folkysliomy) = g (10)

We recognize them as the common marginal conditions for profit maxi-
mizing firms. With production function§, homogeneous of degree one,
the mqrgina] productivity functions, f; for capital, f} for labour,
and f& for land, become homogeneous of degree zero. So, taking the
first two marginal conditions alone we get the system:

f;(ki/m1,1i/mi,1) = r/p; | (11)
and
f}(ki/mi,u/mi,l) = w/p; (12)

This system (11) - (12) certainly is smoothly invertible as the
Jacobian in non-zero due to second-order conditions for profit maximi-
zation. So, by the inverse function theorem, we get

k/mg = Fo(r/ps,w/p,) (13)



and

11/mi = F:(r/pi,w/pi) (14)

As (10) can be put into the form

f:n(k,i/mi,li/mi,l) = g/p. (15)

we obtain, by substituting from (13) and (14)

9/p; = f;(F;(r/pi,W/pi),F;(r/pi,w/pi),l) (16)

which links product price to the three input prices.

The conclusion is that, if capital rent, wages, and land rent are
given, (16) determines the prices of all produced goods at all loca-
tions, provided that production is to take place. This is an important
conclusion to be used later on.

The equivalence of the optimum conditions presented and the profit-
maximizing conditions for an individual firm at a given location are
obvious from the following considerations.

Say that a firm has to maximize its profits by choosing an appropri-
ate mix of productive activities. Capital and labour services are
freely available at the local prices r and w, whereas the firm owns a
fixed amount of land m available for all its activities. For capital
and labour the optimum conditions at given product prices pj are
(8)-(9) or equivalently (11)-(12). We can then invert the system to
obtain (13)-(14).

Substituting (13)-(14) into the production function and using (2) we
get the profits of the firm as



Hpifi(Fl(r/pi,w/pi),F](r/pi,w/pi),l) - v Flr/pg,wipy) -

-w F;(r/pi,w/pi)}mi

This is to be maximized subject to the constraint (7) on the total
quantity of land available. In view of the fact that both the maximand
and the constraint are linear, the solution is to put my = m for

that i which maximizies

i i i

énd mij = 0 for the other activities. If several activities are to be
profitable (18) must be equal for all these. This common value could
be called g which is hence the profits imputed to the land-owning
firms as land rent. If all activities should take place we get

j j j
pif -r Fk -w F] =g (19)

for all 1.

In view of Euler's theorem for homogeneous functions,

i j
f _fk

i i
ks + f 1, + fom, (20)
and using (7), (11)-(12), and (13)-(14), we see that (19) is exactly
the same as (16). This establishes the local equivalence of profit

maximization and overall planning.

There, however, is an additional information to be obtained from the
conditions (8)-(9), namely, that in view of the fact that (5)-(6) are
integral constraints, the associated Lagrange multipliers r and w are
to be constant with respect to the space co-ordinates., This means that
the efficiency conditions for allocating capital and labour in space
require capital rent and wage rate to be constant with respect to
location.



This is not true for land rent, g, as it is a Lagrange multiplier for
the constraint (7) which is local, i e not in integral form.

The conclusion of all this is that (16) determines all the pj for
which production is to take place, and that the variations of the pro-
duction opportunity prices in space are determined by the variation of
land rent alone, capital rent and wages being spatially invariant due
to distributive efficiency requirements.

Optimum for Flows

We next turn to the optimum conditions for the commodity flows, i e,
to the maximization of (1) with respect to the ¢j, given the con-
straints (4)-(7). The flows appear in two ways in the constraints,
namely by |¢i| in (5)-(6), and by div ¢; in (4). The Lagrange mul-
tipliers associated with these constraints are the p;j and the r and
w. The optimum conditions expressed as Euler equations are

(rey +wa)e./|¢.| = grad p, (21)

These conditions mean that the flow directions ¢1/|¢1| agree with
the directions, grad pj, of steepest increase of p;j and that along
thé flow lines the pj increase at a rate of (rxj + wixj). We re-

call that «j and x; were the local requirements of capital and la-
bour for transpo?tation of a unit of the i:th commodity. Accordingly
(rej + waj) is the local cost for transportation. As p; were
interpreted as product prices, (21) simply tells that each commodity
flow takes the direction of the steepest increase of its price and
that in this direction prices increase by transportation cost. This
makes good economic sense.

From the previous section we concluded that an efficient distribution
of capital and labour on the region requires capital rent and wage

rate to be Tocation-independent. In passing, we can note that this can
be interpreted in market equilibrium terms by saying that when capital
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and labour are free to move they seek the place of production where
the reward is the highest. In the absence of relocation costs this

equalizes factor prices in space.

The consequence of this, and of the fact that xj and XA; were given
functions of the space co-ordinates, is that the increases of prices
along the optimal routes are given functions of the space co-ordi-
nates. In fact, we obtain from (21)

|grad pj] = rej + wj (22)

These are partial differential equations for the prices pj with the
right hand sides given fucntions of the space co-ordinates.

Specialization

We are now in the position to prove a general specialization theorem.
From (16) we see that with r and w given, g and pj are related by
continuous one-to-one mappings as long as the Jacobians of the systems
(11)-(12) are non-zero, which we assume according to traditional eco-
nomic theory. We could write (16) as:

pi = pi(9) (23)

From these, we obviously get |grad pi| = p%(g)lgrad g|.

In (22), the right hand sides are given functions of the space co-
ordinates, say rkj + wxj = 0jh(x1,xp). The 85 can be

interpreted as characteristic constants for each good. This is so
because it is a reasonable simplification to assume that if the shipp-
ing of one good costs twice as much as the shipping of another good at
one location, the the same relation will hold everywhere in the

region.

Hence, equating the two expressions for |grad Pj{, we get:
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0. h(xy,x,) = pi(g) |grad g| (24)

These conditions can hold for several commodities, say the i:th and
the j:th, only if the ratios p%(g)/pj(g) take the constant value ei/ej
everywhere. But there is no reason whatever why the p%(g) functions
should be linearly dependent. After all, they were obtained from (16),
which depended on the various independent production functions.

So, we conclude that with goods that are transported, only one commo-
dity will be produced in each point of the region. The continuity of
the production function and a non-zero Jacobian to system (11)-(12)
guarantee that this specialization will not only apply to sets of
measure zero like isolated points or curves, but will split the region
into a finite collection of subregions of nonzero areas with speﬁia-
lized activity in each. The land rent in each of these regions will be
determined by the local revenue shares for these specialized activi-
ties.

The reader should note the affinity of our conclusion to v. Thiinen's
theory, where specialization in concentric rings occurs, despite the
fact that there are no localized productivity differences. In general
economic theory, trade is supposed to occur only when there are at
least comparative localized advantages, due to immobility of inputs.
In our model there are no such advantages. Nevertheless, specializa-
tion occurs. The reason is that when there are numerous outputs ulti-
mately produced from a few primary inputs, then output prices are tied
to the few input prices. In order that production of all the outputs
should be equally profitable, their prices must co-vary spatially in a
very specific way. On the other hand, the prices of transported goods
co-vary in another specific way. The result is a specialization
pattern that is inherent in two-dimensional space itself. It is not
surprising then that this point is missed in trade theory as general
economics lacks the spatial dimension.
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Independence of Utility Functions

Before continuing we should just observe the fact that the optimality
conditions for production and transpoftation are independent of the
utility function (1). Hence, no matter how we evaluate the availabili-
ty of the various commodities in different locations, the following
conclusions apply: Labour and capital should seek the locations of
best reward, which with free mobility equalizes capital rent and wages
over space. Production should everywhere be so arranged as if land-
owning firms tried to maximize their profits, which must equal local
land rents. Commodity flows should take the directions in which prices
increase most steeply, and the price increases in these directions
should equal local transportation costs. The result is such that, if
there are commodity flows, then there should be specialization in the
production of only one commodity at each location.

These conclusions resulted from the consideration of a planning prob-
lem constrained by available resources. But the result could equally
well be interpreted in terms of rationally behaving individual work-
ers, capitalists, landowning producers, and transporters in a state of
general equilibrium. In particular, the conclusions are independent of
which social utility function U(gl,...»0pnsX1,X2) we use.

The only optimality conditions in which this function plays a role

are:
au/3qy = pj (25)

stating that marginal utility should equal price everywhere. The con-
ditions (25) pose a set of additional constraints on the model relat-
ing local commodity prices to local consumption of goods.

A similar result is obtained by considering the behaviour of individu-
al consumers, disposing of their incomes so as to maximize their indi-
vidual utility functions. The demand functions thus obtained are simi-
lar in structure to the inverted system (25), but care should be taken



- 13 -

that in the planning case, local budget constraints might not be auto-
matically fulfilled. So if we still wish to admit autonomy of the
consumers we might have to consider an interregional income transfer
policy as a means of fulfilling the pianning purposes. This, however,
is the only point where a contradiction between planning and market
equilibrium cou1q arise.

Macro Relations

We next establish a number of macro relations of the model. Observe
that, due to a general formula in vector analysis,

div(piei) = (grad pij)éi + pj div ¢; (26)
hold identically for any scalar field pj and any vector field ¢;.

From Gauss's divergence theorem it now follows that
[Idiv (pi¢i)dx dxp = [pi(e4)p ds (27)

The left hand double integral is taken on all of the region, whereas
the right hand line integral is taken along the boundary of the re-
gion. The (¢j)pn are the components of the vector fields ¢5 nor-

mal to the boundary. Hence, pj(¢i)y depending on sign have the

simple interpretations of value exports or imports across the bounda-
ry. The line integrals take care of all flows across the whole bounda-
ry and hence the right hand sides of (27) equal net exports from the
region. Let us therefore define:

Xi = Mj =] pi(¢i)p ds (28)
Next we should note that, due to (21),

(grad pij)e§ = (rx; + wj) |¢'i| (29)
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The right hand expression is the product of local transportation
costs, as evaluated by the input requirements and the local factor
costs, and the quantities of commodities shipped. Taking the double
integral of (29) we certainly arrive at the total transportation
costs, denoted Tj. Thus

[J(grad p.)e, dx; dx, = T, (30)

On the other hand (4), along with the well-known fact that with line-

arly homogeneous productioq functions all revenues are distributed
as factor shares, i e, pif1 = rki + W1i + gms, yields

P, div ¢1 = r‘k.i + W]i + gm. - p.q . (31)

Denoting in aggregate for a given branch, capital incomes by Rj,
wages by Wi, the profits of landlords by Gj, and the value of con-

sumption at local prices by Cj, we get:

/f P, div ¢ dxq dx, = R. + W, + G, - C, (32)

Now, integrating both sides of (26) and substituting from (27)-(28),
(30) and (32) we finally have: '

Xj - Mi = Ti + (Ri + wi + Gi) - Ci (33)

i e, net value exports for each branch equals factor incomes plus
transportation costs minus consumption.

If we now sum over all the various branches, we can define X - M =
L(X;-M), T = IT;» 6 = ]G, and C = JC.. But with capital and Tabor
income we have to remeber that not all of these inputs are accounted
for in (33). Due to (5) and (6) some quantities are used in transpor-
tation. We have not accounted for the incomes of the transporters
yet. Hence, L(Rj + Wj) =R + W - T, The result is then:



X -M=R+W+G-2C (34)

which simply means that in value terms net exports equal factor
incomes minus consumption.

In a regional economy with zero balance of payments where it holds
that X = M, so that net imports of some goods are bought by net ex-
ports of other ones, we conclude that aggregate factor incomes sum up
to the value of aggregate consumption. This is not a trivial conclu-
sion because both incomes and consumption are evaluated at local
prices.

The result establishes an aggregate budget constraint for the economy
and hence the model is consistent with consumer autonomy and locally
fulfilled budget constrainté. Consistency, however, does not guarantee
local fulfillment of budget constraints for any state we wish to con-
sider. But it establishes that, if a socially desirable spatial orga-
nization of the region does not lead to local fulfillment of budget
constraints, we can always design an appropriate completely internal
income transfer policy that makes budget constraints hold locally and
admits free choice for the consumers.

Examples

We now supply two examples of spatial organization patterns possible
with the model outlined. '

Assume first that the fixed transportation capacity is equally distri-
buted in space so that all the xj and Aj are constants. Due to the
constancy of r and w, we conclude that the local transportation costs
0j = (rcj + waj) as well are invariants in space.

Put all ¢./|6;| = * grad o = £(x,/p,x,/0), where p = /(x% + xg). If

p; = 51 + @i|°'pi|’ we see that equation (21) is fulfilled. The flows
all become radial and the constant price contours become concentric
circles. This suggests a production specialization structure in con-

centric rings, as in the familiar v. Thiinen case. The difference is
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that there is not a single CBD in the centre to which all commodities
flow. Rather the whole region is supplied by commodities produced in

each ring.

The case is illustrated in Figure 1 where we, for illustrative pur-
poses, show a four-commodity model with acitivities called: public
services (S), industry (I), housing (H), and agriculture (A).

Figure 1. Ring-shaped spatial organization.

For the second example, we suppose that fixed transportation capacity
is not equally distributed in space but rather concentrated to the
central parts of the region. Suppose that all the x4 and x; are
proportionate to p, where again p = /(xi + xg). Thus we can write
local transportgtion cost as (r<1+ wAi) = in where again the 01 are

constants.
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We can now put all ¢1/‘¢i| = * grad-%(xi - xg) = # (x1’°x2)’ If we

let p, = b, + 91.|-]2‘-(x§ - xg) - 3| we see that (21) is again fulfilled.
The flow lines integrate to hyperbolas, xy = constant, and the con-
stant price lines are hyperbolas, (x2 - y2) = constant, rotated by

459 in comparison to the paths.

h -]
wn
>

Figure 2. Sectoral spatial organization.

These illustrations are in perfect agreement with the optimality con-
ditions stated. They are not chosen at random, but represent spatial
organization around singularities of the only types admitted under the
assumption of structural stability. We are not going to repeat the
discussion about this from the preceding chapter. The considerations
of structural stability apply to the planning case, as do the conside-
rations in this chapter on specialization to the equilibrium case.
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Intermediate Goods

The preceding analysis does not consider intermediate products. In
particular, it would be interesting to know whether the specialization
theorem would still hold even if it implies that an output could be
shipped to another place to produce something that is re-imported
rather than produced at the place itself.

In fact, it still holds, as will be shown now for the case of a Cobb-
Douglas technology. Put:

j aj Bi Yj J &3]
f = Ai ki 11 m, g (fi) . (35)
where f% denotes the quantity of the output j used as input in the
production of output i. The product in (35) is taken over all indices
j from 1 to n. Linear homogeneity now means that:

.+ B, t Y,
a1 B1 Y

+Le,, =1 (36)
T

ij

The optimum conditions corresponding to (8)-(10) obviously are

a;p; Fl/ks =r (37)
B P; f1/11 = w (38)
Y; P f1/mi =g (39)
and

i3
ei; Py T /F5 = py (40)

We can substitute back from (37)-(40) into (35) and obtain, in view of
(36),

. . . . X €
Ai a, B. Y. g (e..) p. =r w g g (p:) I (41)
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Taking logarithms we get a set of n linear equations in the logarithms
of the (n + 3) prices. Regarding r, w, and g as given, we can solve
for the logarithms of all the pj, as the matrix of the system,

[eij - 8ij], where 85 is the Kronecker delta, is non-singular.
Accordingly, the 1In pj are obtained as explicit linear expressions

of Inr, In w, and 1n g. After taking exponentials and substituting,
we transform (41) into the explicit form:

p. = B, r ' g ! (42)

where the Bj, as well as the exponents, are constants that can be
calculated from the original constants in (35).

Consider now a proportional change of r, w, g, and all the pj. Then
obviously the solution to (37)-(40), whatever it is, is unchanged and
so (35) is still fulfilled. This demonstrates that (42) must hold for
proportionate changes in all prices, i e, that:

ai+Bi+Yi=1 : (43)

We can hence substitute back from (37)-(39), disregarding (40)
altogether, and obtain:

e k01, | (44)

due to (43). Now these are Cobb-Douglas production functions in the
primary inputs only, and they are linearly homogenous in them.

Accordingly, as (44) fulfills the condition (2), the whole reasoning
about specialization still holds. This, of course, does not preclude
that, if there is a certain hierarchy, so that goods produced at a
certain stage are never used in the production of any of their inputs,
then the flows should simply take a one-way route to higher levels.
With a more complicated interdependence, however, it is possible that
goods are re-imported at a later stage of refinement.
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Local and Global Optima

We should note that the optimality conditions stated so far are local
in character. The determination of the global optimum is a matter
whose outcome is likely to change with the boundary conditions.

Our specialization theorem states that in every location of the region
there is complete specialization in the production of traded goods.
But, if the utility function does not include the space coordinates as
explicit arguments, i e, if a certain consumption is equally valued at
all locations, then local production and no trade is a solution that
fulfills all local optimality conditions. And, since the goods are not
traded, the specialization theorem does not exclude this possibility.
For certain cases the solution is probably a global optimum as the
given input quantities are most efficiently used when no part of them
is "wasted" in moving commodities around.

To illustrate, we could as well simplify the model. As trade rather
than specialization is at issue we can discuss a one-commodity econo-
my. We can also put the production function for this commodity in a
Cobb-Douglas form, and assume the utility function to be logarithmic,
and without explicit dependence on the space coordinates. Finally, we
do not specify any production technology, but assume in the tradi-
tional v Thiinen way that the product may be used up in transporta-
tion. We normalize the unit of distance so that the cost of moving one
unit of goods one distance unit uses up exactly one unit of them.

So, we have the following problem: Maximize

/] 1nq dx, dx, (45)
subject to

K =[] k dxqdx, (46)
L = [f 1 dx,dx (47)

1772
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and

K1 - q -[o] = div e (48)

The optimality conditions are then:

1/q9 = p (49)
a k%18 /K = r/p (50)
g k*18/1 = wp (51)
and

¢/]¢| = grad In p (52)

In these conditions r and w are independent of the location coordi-
nates, whereas p is not. The conditions state that:

(i) Local marginal utility is everywhere equal to opportunity
cost for goods in the flow.

(i1) Production is everywhere so arranged that marginal value
products of the inputs equal their local opportunity costs.
With constant r and w, these opportunity costs are equal in
space and there is no incentive to relocate inputs.

(iid) The flow of traded goods is in the direction of steepest
price increase and the rate of increase in this direction is
exponential as moving one unit of goods uses up one unit of
its own value.

We see that (49)-(51) determine inputs, k and 1, output, k218, and
consumption, q, once r, w, and p are known. As r and w take constant
values, determined by the constraints (46)-(47), we see that p com-
pletely determines the spatial densities.



-2 -

So, let us pick any function p(x1,x2) such that |grad In p| = 1.

Then (52) is fulfilled and ¢/|¢| = (cos 8, sin 8) is a known unit
vector field. As div ¢ = grad |¢‘ . (cos 8, sin 8) + ‘¢| div(cos 8,
sin 8), (48) becomes a partial differential equation in the flow
intensity |¢|. The solution of this differential equation solves the
whole problem. Hence we have c<een that any price structure such that:

grad In p| =1 (53)

holds can represent a sensible local optimum. We will now illustrate
the matter by two different solutions.

First, put p = /(xi + xg) and ¢/|¢| = grad p. This flow obviously
satisfies (52) for p = eP. Assuming now that « =8 =r = w = 1/4 we
get from (49)-(51): k®18 = p, and q = 1/p. Thus: k®18 - q =

eP - e™P = 2 sinh p. This result can be substituted into (48). But
div ¢ = grad |¢ « grad p + \¢| div grad p. Using polar coordinates,
Xx] =p COS w and xp = p sin w, we easily get grad |¢| . grad p =

d]¢|/dp. Moreover, div grad o = 1/p. Thus (48) becomes an ordinary
linear differential equation:

4l¢]

de

+ (1 +-%J‘¢l = 2 sinh p (54)

Given a simple boundary constraint the equation is readily solved. The
spatial organization associated with this solution is one where goods
flow radially outward and price increases at an exponential rate in
that direction, whereas consumption is decreasing outwards and produc-
tion is increasing outwards.

As in the example chosen, excess supply is zero at the origin and de-
creases outward, the case is imcompatible with an outward flow unless
there is a singularity with net outflow at the origin.

Second, we easily see that, putting k, 1, k®18 = q = 1/p constant,

and |¢ equal to zero identically, we get all the eguations fulfilled
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and so this case of no trade and local production is another Tlocal
optimum. It is hard to tell which of the two cases is global optimum.

The reader might ask whether there are always just two local optimum:
one with trade and one without. In fact, it is easy to find cases with
more than two local optima. Let us change the model (45)-(48) by
assuming that the cost of movement is not the same everywhere in the
region, but that it increases in proportion to the distance from the
origin, so that the communications are best in the center and become
worse at the periphery. Thus, we suppose that p|¢| units of the goods
are used up in moving one unit of goods one distance unit. Then (48)
is changed to:

1P - q - ele| = dive (55)
Only (52) in the optimality conditions is changed by this and takes
the form: '

p ¢/|¢| = grad In p ' (56)

In accordance with this, (53) is changed to:

grad In p| =p = /(xi + xg) | (57)

We can now easily find at least three different solutions to (55),
namely p = constant and p = exp((:xitxg)/Z). The latter are actually
four cases, but discarding only reversals of flow directions we are
left with two qualitatively different flows, one radial and one saddle
flow. It is easy to see that the nontrade, the radial, and the saddle
flows are all local optima.

Again it is hard to tell which one is a global optimum without consid-

ering the boundary conditions.
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This multiplicity of local optima did not occur in our equilibrium
model in the préceding chapter, as a price-flow distribution on the
boundary was taken as given from world market conditions. To the
extent one finds it reasonable to use an analogous boundary condition
in the planning problem the arbitraryness will be removed. This might
be reasonable, as an acceptance of the trade conditions, determined by
trade outside the region studied, might lead to a maximum benefit from
trade with the exterior.

Boundary Constraints

Let us consider this from a more formal point of view. From (55) we

see that

‘a,B

k- 1" - pg = p div ¢ + po|o] (58)

But, from (56), pp|¢| = grad p » ¢. Substituting this, and using th

identity div(p¢) = grad p « ¢ + p div ¢, we get

J1(pk*1% « pa)dx dx, = ff div(pe)dx dx, (59)

The right hand side, due to Gauss's theorem, equals the curve integral
[p(¢)n. This, however, is zero in two cases: When (¢)n vanishes
identically on the boundary, and when it does not vanish, but trade
with the exterior balances. Obviously, we only need to be concerned
with the two cases of either insulation or balancing interregional

trade.

Putting the right hand side of (59) equal to zero yields

B
[IpET" dxgdx, = [fpa dx;dx, (60)
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Accordingly the aggregate value of output equals the aggregate value
of consumption. Now, the optimality condition (49) states that margi-
nal utility equals product price. w1th our logarithmic utility func-
tion we have pq = 1 on the whole fegion. So, the integrand in the
right hand side of (60) being unitary, we conclude that the integral
equals the area of the region. Denoting this (the total quantity of
land) by M, we get

[1ok®1® dxqdx, = M (61)

Let us next substitute from (50)-(51) into the production function,
and solve for

al/y B/y
(&)

- p(G+B)/Y (62)

a.B _ ra
k=17 = (;J

where vy = 1-a-B. We see that, r and w being spatial constants, local
output is proportionate to a power function of the price p. We can
also solve for k and 1 from (50)-(51) and integrate to obtain:

%prk°1B dx,dx, = K (63)
and
%ffpka18 dxqdx, = L (64)

Substituting from (61) into (63)-(64) we get a/r = K/M and B/w = L/M,
which can be substituted into (62). The result is

a/Y B/Y
K218 - [_rfjl_) (FLJ) p(0+8)/Y (65)

Local output thus is a Cobb-Douglas function of the average areal
densities of capital and labour, multiplied by the aforementioned
power function of local price.
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The relations derived in this section must hold in any case where
either there is no trade with the exterior or the exterior trade

balances.

We note that output k@18 is an increasing function of price. This
function is given and identical in all cases that may be considered as
candidafes for a global optimum. From (49) we, on the other hand, know
that consumption g is a decreasing function of price. So, excess

supply

a

z =% g (66)

certainly is an increasing function of p. Thus, considering two
different cases, distinguished by subscripts, we conclude that

(pi-pj)(zi-zj) >0 (67)

must hold at all locations.

Let us now consider two alternative price-flow patterns fulfilling the
optimality conditions. Consider the value flows

8 _ . J
p1kJ]J - p.qu' = p.id1V "+ pip|¢ | (68)

It is true that

B (¢i/|¢i|) s (69)

as by projecting the vector ¢J on the direction ¢1/ |¢1| at most
results in the norm |¢i|. So, using the optimality condition (56)
for the flow ¢1 we get from (69)

p.o|o?| > grad p, - ¢ (70)
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If we substitute from (70) into (68) we see that the right hand side
must at least equal div(p1¢j). Using the notation zj for excess
supply from (66) we thus get

.

pizj > diV(pi¢J) (71)

and by integration and use of Gauss's theorem

ffpizj dxldxz > fpi(‘bJ)n (72)
with equality when i = j as seen from (66).

For the right hand side of (72) we conclude that it is zero if i = j,
as already seen. This results from the trade balance condition. We
also conclude that it is zero if both cases considered are cases with
trade across the boundary, as then pj = pj are determined by the
"world market" on the boundary, and the trade balance condition re-
quires the integrals [pi(¢'), and ij(¢j)n to be zero. The

same is true when both cases represent insulation, as then (¢')q

and (¢j)n are identically zero.

Theronly situation where the right hand side of (72) can be nonzero is
when the case i represents insulation and the case j represents
balancing trade. Then we evaluate the non-zero flow across the bounda-
ry in the case of trade at the prices in the case of insulation. We
have no reason to expect that an integral like this should be zero.

But let us postpone the discussion of this case for a moment and con-
sider the situation where both cases represent insulation or balancing
trade. Then all the right hand sides of (72) are zero however we per-
mute i and j. Recalling that (72) hold as equalitites when i = j we

get
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The only way a non-positive integral can be obtained from a non-
negative integrand according to (67), is by having an integrand that

is identically zero, i e,

(pi-pj)(zi—zj) =0 (74)

As our excess supply function is strictly increasing we conclude that
pi = pj and zj = zj must hold identically. The conclusion

hence is that any two solutions, where the optimum conditions are
fulfilled, along with the boundary condition, stating either that
there is no trade with the exterior or that trade balances, are iden-
tical. So, the solution is unique. More specifically, there is a
unique solution with trade and a unique solution with insulation.

Let us return to the case where one case, say i, represents insulation
and the other, j, represents trade. Then one of the right hand side
integrals of (72) need not be zero and accordingly the zero in (68) is
replaced by the expression :

- o, (69), (75)

Should this curve integral be strictly negative, then we are in
trouble, as (73) does not hold, and the discussion leading to unique-
ness would no longer be valid.

How likely is it that the curve integral in (75) is negative? Negati-
vity obviously means that insulation prices pj are lower than world
market prices pj where the flow ¢5 leaves the region, and higher

where it enters. -The world market prices, on the other hand, are low
where the flow enters and high where it leaves the region. This is so
as the flow of trade adjusts to the direction of increasing prices. We
conclude that spatial price differences in the case of insulation must
be smaller than the differences in world market prices.



- 29 -

But, the price differences in the case of insulation are obtained as
accumulated transportation costs. As thus world market price differ-
ences, between various points on the boundary, are greater than the
costs of transportation between them, ‘there seems to be a profit to be
obtained from arbitrage across the region. This profit can be convert-
ed into an increased consumption in the region.

So, it seems that the planning authorities should open up trade with
the exterior when boundary price differences exceed transportation
costs. As this case was the only one leading to trouble with the
uniqueness proof, we conclude that it holds when the planning authori-
ty takes due consideration of trade opportunities with the exterior to
the benefit of interior consumption.

Relocation Costs for Capital and Labour

Let us now return to the problem of planning the use of capital and
labour in a region, but relax the assumption that relocations of capi-
tal and labour are costless. We still have initially given quantities
of capital and labour. Now there are not only aggregates, but spatial
distributions of these aggregates given. From these initial distribu-
tions the future distribution can differ in two ways. First, capital
wears out and if it is not completely replaced by new equipment the
stock of capital will change, whereas labour stock normally changes
with the net reproduction rate. Second, labour and capital can actual-
ly be transferred in space by the application of transportation
services.

We have to make the assumptions more precise. Suppose we consider only
one commodity produced, and that this commodity can be used as con-
sumers' goods or equally well be invested as capital stock.

Capital stock wears out exponentially at a given depreciation rate.
Accordingly, local production, minus local consumption, minus local
capital depreciation, minus local net capital accumulation is the
quantity entered into the flow of capital goods, or; if negative,
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withdrawn from it. As we focus the interest on capital flows and accu-
mulation, we disregard flows of consumers' goods. If we wished to in-
clude them there would be no difficulty in doing so as the model does
nét distinguish between consumers' goods and capital goods.

Labour stock accumu1at¢s with a given net reproduction rate, and the
quantity entered into the flow of labour, or, if negative, withdrawn
from it is local labour reproduction, minus local accumulation of
labour. Again, we disregard short-run phenomena like commuting, and
focus interest on migration and labour accumulation.

Production is thus determined by the local labour and capital stocks,
per unit land area, or rather, what remains of them after the fixed
coefficient transportation technology has withdrawn what is needed for
the transportation of capital goods and migrants.

The goal function is now a utility index dependent on local
consumption, aggregated on both space and time.

Accordingly, we maximize

[f] u(q) dx,dx, dt (76)
By introducing the space and time coordinates as arguments in the.
uitility function we can account for temporal and spatial

discounting. Of course, q denotes consumption. The rate of consumption
as well as the utility index is a continuous and differentiable
function of the space and time coordinates.

The production technology is again represented by a neo-classical

production function:
f(k,1) (77)

where k is capital stock used in production of goods and 1 is labour
stock used for the same purpose.
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Transportation services are again produced by a Leontief technology of
fixed coefficients. We suppose that each unit of flow uses up x units
of capital and X units of labour. To simplify notation we normalize
the units of measurement of capital and labour so that transportation
costs for one unit are the same for both flows.

Denoting the flow of capital by ¢ and the flow of labour by ¥, we know
that x(|¢|+|w|) units of capital and A(|¢|+|w|) units of labour are
withdrawn from the local stocks for production of transportation
services. What remains is used in production of goods (for consumption
and investment). Thus, denoting the local stocks of capital and labour
by K and L respectively, we have:

k = K - x(|¢|+|¢|) (78)
and
1 =1L -x(|¢|+|w|) - (79)

Suppose capital wears out in proportion to the accumulated stock at
the rate a. We then deal with a need of replacement that is aK.
Denoting net capital accumulation by K, where the dot represents a
derivative with respect to time, we see that the quantity aK + K is
withdrawn for investments. As the quantity q is withdrawn for
consumption the difference f(k,1) - q - oK - K is added to the flow at
each location, or, if negative, withdrawn from it. Accordingly,

div ¢ = f(k,1) - q - ak = K (80)

For labour the stock increases with the net reproduction rate, denoted
8. Thus, the local increase of labour due to reproduction is BL,
whereas the local accumulation of labour is denoted L. The difference
enters the migration flow or, if negative, is withdrawn from it.

Formally:

divy = 8L - L (81)
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The optimization is now a well defined problem. We seek the maximum of
(76) subject to the constraints (78)-(81). As a preliminary step we
substitute for k and 1 from (78)-(79) into (80). In this way we dis-
pose of two constraints and of the two substituted variables. Only the
constraints (80)-(81) remain (with the substitutions being made). We
have to choose consumption, q, capital stock, K, labour stock, L, and
the flows of capital and migrants, ¢ and y respectively. What we seek
are optimal function forms defined on space and time. So, we deal with
a variational problem whose solution is obtained in terms of Euler
equations. We associate Lagrangean multipliers, p and w with (80) and
(81) respectively. It is to be noted that the Lagrangean multipliers
are not constants, but change over space and time, due to the fact
that the constraints are in local, not aggregate, form.

We can now state the Euler equations for optimality. For consumption

we obtain:
U'(q) = p , (82)

For production we obtain the two conditions:

pf,=ap-p (83)
and
pf, = -B8W-w (84)

1
For transportation we obtain:

p(zfk + Af1) T%T = grad p (85)

and

p(xf, + Afy) T$T = grad w (86)
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These conditions are obtained as solutions to a planning problem. But,
again, it is not too hard to find interpretations of the conditions in
terms of market equilibrium. We note that the left hand sides of
(83)-(84) are marginal value productivities of capital and labour.
Hence, we expect the right hand sides to be input costs. Due to the
fact that the goods produced are also capital goods, p is related to
the price of capital stock as well. Compared to the static optimum
conditions, we might be surprised to find, not the input prices, but
their time derivatives (and the reversed signs).

However, if we assume that the firms are not maximizing their momenta-
ry profits, but their accumulated profits on a time interval, then it
is obvious that a decrease of input prices in the future should be an
incentive to postpone accumulation of capital stock, and so the nega-
tive of the time derivative of price is a reasonable measure of tempo-
rary input cost. Likewise, the depreciation and the consequent need of
replacement of capital is an obvious cost item.

As for labour the net reproduction plays the same role as depreciation
of capital, but the sign is reversed. This may seem a bit odd at
first. But, a natural increase of the local stock of labour makes it
possible to avoid wage raises in the future to attract more immi-

grants.

To some extent the firm is protected by transportation costs from the
surrounding competitors. A local surplus of labour may be assumed to
emigrate only if the wage difference is greater than the transporta-
tion cost. Likewise, in order to attract immigrants the local wage
rate ought to be higher than in the surroundings, the difference again
being greater than transportation costs.

So, in terms of dynamic optimum, the conditions (83)-(84) are not
without sense in a market economy setting. These conditions come
pretty close to those found in the recent theory of "micro-economic
foundations of macro-economics", where the firms are supposed to plan
their stocks of inputs by designing an appropriate dynamic price

policy.
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The conditions (85)-(86) are even more easy to interpret in market
equilibrium terms. Each unit of flow uses up x units of capital and A
units of labour. By the marginal productivities we know the sacrifice
in terms of goods not produced due to this withdrawal of inputs. The
opportunity cost in terms of commodities is (xfx+iafy). If we
multiply by commodity price p we obtain the monetary opportunity cost
p(xfg+Afi). This naturally is the local cost of transportation,

and so it is natural to find it in the left hand sides of (85)-(86).
Accordingly these conditions again tell the familiar story that flows
‘take the direction of steepest price increase, and that the price
increases in these directions equal transportation costs. Thus (85)-
(86) are conditions of efficient trade and spatial equilibrium.

We notice that we can take squares of both sides of the vector equa-
tions (85)-(86) and equate. Then the unit flow fields multiply up to
unit scalars and we obtain the equations:

pZ(ka + )‘f])2 = (grad p)2 = (grad w)2 (87)
Next, we see that we can substitute for the marginal productivities

from (83)-(84), so that (87) becomes:

(akp - BAW - kp - x&)z = (grad p)2 = (grad w)2 (88)

This is a pair of differential equations in the price of commodities
and the wage rate. Solving it we know the development of price and
wage in space and over time.

By substituting the solutions for price and wage into the right hand
sides of (83)-(84) we can then solve for capital, k, and labour, 1,
used in production. Next, (77) gives the resulting output.

But, knowing capital and labour stocks used in production. we see that
total capital and labour stocks, K and L, only depend on flow

volumes, Accordingly, the right hand sides of (80)-(81) only depend on
flow volumes.
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On the other hand, the directions of the flows are gradient to price

and wage, as we learn from (85)-(86). Knowing p and w we also know the
unit flow fields ¢/!¢| and w/|w|. But, we know that div ¢ = grad |¢
/18| + |¢| div (¢/|¢]|) and Tikewise for y. Thus, the left hand sides
of (80)-(81) too depend on flow volumes and their gradients only. This

means that (80)-(81) supply us with another pair of partial differen-
tial equations. Solving them for flow volumes we know all the vari-
ables of the model.

Thus, the differential equations (88) contain the initial information
from which we can calculate everything else. As soon as we know price
and wage rates we know the essential facts of structure in terms of
the flow lines and the corresponding potentials, including their
development over time. This means that the solution to (88) is
extremely interesting in the context of the present model.

In fact, these equations are easy to discuss if we introduce an arti-
fice to separate spatial and temporal aspects of price-wage changes.

Let us define a new scale for time and space by putting t = 8t, x1 =
€fy and xo = egp. We note that this coordinate change does not
distort space, it only introduces a linear change of scale. By letting
e approach zero we magnify the scale so that we are in the limit deal-
ing with a point only. Likewise, by letting & approach zero we magnify
the time scale so that in the limit we are only dealing with condi-
tions at a certain moment of time. |

Let us now change the system (88) so that we let the time derivatives
be taken in the Tt coordinate, whereas the gradients are taken in the
£1,52 coordinates. As a result of this:

(akp = BAw - §xp - GAQ)Z = (egrad p)2 = (egrad w)2 (89)

If we now let ¢ » 0, 6§ = 1, then

K;.j + kW = aKp - BAiw (90)
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whereas if we let 6 +0, € = 1, we get:

(grad p)2 = (grad w)2 = (axp - wa)2 (91)

Equation (90) is a pair of dependent linear differential equations in
p and w. It is very easy to sclve as we deal with ordinary linear
differential equations with constant coefficients. The only fact we
need notice is that we can choose one of the functions arbitrarily as
far as (90) is concerned.

Likewise, equations (91) are easy to deal with in terms of the quali-
tative features of two-dimensional flows. This equation separates the
spatial aspect so that we can study flow patterns as we do in the
stationary cases. Likewise, the former equations separate the temporal
aspects, so that we can study the price-wage dynamics in a point eco-
nomy without spatial extension as in traditional economic theory.



