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P~F~E

The success of regional institutions frequently depends on
the quality of the software they use. Thus, software development
problems rank as key issues in the field of regional studies.
For this reason much of the research effort of the Regional De­
velopment Group has been devoted to examining such problems and
many software elements have been developed, tested, and imple­
mented with positive results.

This article by Alexander Birjukov describes some schemes of
unconstrained optimization and methods for solving nonlinear equa­
tions that have been found to be among the most effective.

August, 1982

Boris Issaev t
Leader
Regional Development

Group
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SUMMARY

A scheme of generating efficient methods for solving non­
linear equations and optimization problems which is based on a
combined application of the computation methods of linear algebra
and the finite-difference approximations of derivatives is pro­
posed. Examples of the new methods constructed with the help of
the approach proposed as well as the examples of its possible ap­
plications are given below.
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SOFTWARE FOR REGIONAL STUDIES:
ON THE DIFFERENCE-APPROXIMATION APPROACH
TO SOLVING SYSTEMS OF NONLINEAR EQUATIONS

Alexander G. Birjukov

1. INTRODUCTION

The difference-approximation approach (DAA) to solving non­

linear systems and optimization problems usually is understood

as embracing various forms of application of difference-approxi­

mations of derivatives. In the present work we interpret the

term DAA like that: it is the use of difference-approximations

only in the frames of applications of computation methods of

linear algebra for solving the above mentioned problems. The

examples are: discrete Newton method (see [1]), generalized

Gaussian elimination method [2], different variants of conjugate

directions method [3-6], unconstrained minimization problem so­

lution method which exploits approximations of eigenvectors and

eigennumbers of Hessian matrix [7] and other methods. From the

above list of methods it is possible to single out two principally

different forms of the use of approximations, or forms of DAA.

The first form consists of two steps: first a certain linearized

problem is being generated with the help of difference-approxima­

tions, and then this problem is being solved by a method of linear

algebra [1,7]. The second form does not tailor an explicitly

formulated linearized problem, but in the process of solving the

problem by one of the linear algebra methods difference-approxima-
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tions of the elements of the method are applied [2-6]. In the

present work on the basis of the analysis of the available methods

we gave the definition of the DAA with respect to solutions of

nonlinear systems of equations and the problem of unconstrained

minimization and we proposed a scheme of generating the methods

of the second form of the DAA. By way of illustrating the reali­

zation of the proposed scheme, new methods are put forward and in­

vestigated. These methods are shown to possess the quadratic con­

vergency rate of the discrete Newton method, and at the same time

they require considerably less memory (7n instead of n ·2(n+5),

where n - is the dimension of the problem). Some other cases of

possible uses of the DAA are also given in the work.

1. THE DISCUSSION OF THE DAA SCHEME PROPOSED CAN BE EASILY

SEEN ON THE FOLLOWING PROBLEMS

Praoblem 1. Find xEEn such that g(x*) = 0, wherae g:En-+En .

Problem 2. Find x* = a'l'lfJmin f(x), where f:En-+E 1 .

Problem 3. (Auxiliary). Find the solution x~En of the

linear system of equations Az + b = 0, where

z,bf:. En, A E: En~n.

It is supposed that g and f are sufficiently smooth and the

solutions of the problems do exist. Some additional constraints

depend upon the chosen method of solution.

Note that problem 2 is reducible to problem 1 because the

point x* in problem 2 satisfies equation fl (x*) = O. But at the

same time problem 2 has its own specific traits and that is why

it is discussed parallel to problem 1. Note as well that linear

approximations of problem 1 and equation fl (x) = 0 result in

problem 3.

It is known (see [8]) that nonlinear programming and optimal

control problems can be reduced to problem 1 and to problem 2.

Thus, the DAA is applicable to such problems of optimization as

well.

We shall search the solution of problems 1 and 2, as usual,

as a limit of the sequence of the form:
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x = x ' p - En ,rE1 kok k -1 + I\k k' Pk E... , I\kc. , = 1,2, ••• , (1)

The values Ak for problems 1 and 2 can be chosen, for example,

the following way:

a) Ak = argmin II g (xk - 1 + APk) 11
2

A
(2 )

b) Ak = argmin f(x
k

_
1 + APk)

A

The purpose of the approach under consideration is, first

of all, the generation of methods to choose vector Pk. We pro­

ceed from the following considerations: if to assume problem 1

we have A = g I (x), and for problem 2 we have A = f" (x) and b = f I (x) ,

then the values

T TAs, r As, s b where r, sE:En
(3 )

can be approximated, for example, by the following well known

formulae:

a) As = [g(x+hs) -g"(x)]/h

b ) As - [f' (x+hs) - f I (x) ] / h

c) rTAs = [f (x+hs+hr) - f (x+hs) - f (x+hr)+f (x)] /h

(4)

d)
T I

S f·(x) - [f(x+hs) -f(x)]/h

where Ihl # 0 is a small number.

Application of expression (4) instead of (3) in the first

and the second forms of approximations implementation is the

essence of the difference-approximation approach to the solution
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of problems 1 and 2. If it is desirable one can apply formulae

of higher level of accuracy in h, of course, if g(x) and f(x) are

smooth enough. It is easily seen, that f' (x) in (4b) can also be

approximated, with the accuracy required, with the help of corre­

sponding formulae, which opens the possibility of using only the

values of f(x) for solving problem 2.

The methods of solving problems 1 and 2 on the basis of the

first form of DAA are well investigated and are not discussed here.

Below under the term DAA its second form is ment.

The following scheme of generating methods for solving prob­

lems 1 and 2 can be formulated for this form: 1) take 'any method

for solving problem 3 in which the values of the form (3) are used;

2) in the process of computing vector Pk to substitute values (2)

by their approximate values (4); 3) to apply some method of choos­

ing Ak .

The possibilities of the scheme above can be extended if in­

stead of the methods of solution of problem 3 to use in this scheme

other computational methods of linear algebra, for example, the

methods of finding eigenvalues and eigenvectors of matrices g' (x)

or fll(x), note that eigenvectors or their combinations are taken

for vector Pk.

It is natural that for each of the methods generated thorough

analysis of its stability against the difference-approximation

errors is required.

2. EXAMPLES OF THE NEW METHODS GENERATED ON THE BASIS OF DAA

For the methods 1, 2, and 3 described below, for solving

problem 1 we assume that g(x) is differentiable and matrix g' (x)

is symmetrical. The principal merit of the methods, in addition

to the high rate of convergence, is a relatively small (of the

order of 7n numbers) volume of the memory required for the reali­

zation. In the discussion of the methods proposed we compare

the generated vectors Pk = P(xk - 1 ) with the Newton vector

P~ = pH(Xk _ 1 ) =-g'(xk _ 1 )-1 g(xk - 1 ) on the sequence of points (1),

however, the evaluations obtained for II Pk - P~ II are true for an

arbitrary point x E: En because the initial point xOt:.. En in (1) is

chosen arbitrarily.
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IVector Pk in (1) is calculated using the relation

where

P~ =

m
L

j =1
a. s.

J J

Zj = [g(xk - 1 +hS j ) -g(xk _ 1)]/hs1 = r o - -g(xk - 1)

T Ta j = r. 1 r. 1/s.z.J- J- J J

b. T T
= r.r./r· 1 r. 1

J J J J- J-
= r.+b.s.

J J J
j=1, .•• ,m

m <:. n

wi th m be ing the minimal member for which II r mII 2 E:k II g (xk -1) " ,
where 0 < E: k < 1, and Ihl ~ 0, is a sufficiently small number.

Method 1 is the result of application of DAA to the conju­

gate gradient method [9]. It was proRosed in [5] and in a slightly

different form [6]. Here and below the index k with the values

a
J
., s., r., z., b., and so on, which are in the formulae for cal-

J J J J
culating Pk is omitted to shorten the notation.

Theorem 1. Let g' (x) and E: k answer the conditions:

Ilg' (x)-g' (y) If ~ Ll! x-yll L > 0 (6 )

E:k = min· (E:,M II g (xk - 1 ) II) , o < E: < 1, M > 0 (7)

Then with a sufficiently small Ihl for method 1, the evalua-

tion
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where C1 > 0 depends only on Y1' Y2' Lis admissible.

If (5) is not satisfied and gl (x) has negative eigenvalues,

method 1 might turn to be unstable because of upzeroing product

s~ Zoo This deficiency is absent in the following method.
J J

IIMethod 2. vector Pk in (1) is calculated using the rela-

tion

where

=
m
Lao s.

j =i J J

s 1 = r 0 - - [g (xk -1 + h g (xk -1 )) - g (xk -1 ) ] / h

w. = [g (xk - 1 + h s .) -g(x
k

_
1
)]/h

J J

z. = [g (xk -1 + h wj) - g (xk -1 ) ] / h
J

T '/ T -aoz.a. = r. 1 r. 1 so z 0 r. = r. 1
J J- J- J J J J- J J

b T / To = r.r. r. 1 r 0 1
J J J J- J-

s. 1 = r.+b.s.
J + J J J

j = 1, .. o,m, m < n

where m is the minimal number for which "rm " 2 ck II g (xk - 1) II,
with 0 < Ek< 1, and Ihl # 0 - is a sufficiently small number.

This method is proposed in [10] and it is a result of appli­

cation of DAA to the conjugate gradient method for solving sys­

tem of the form: AAp + Ab = 0 [9]. Note that though the field

of application of method 2 is wider than that of method 1, the

former is double labor-consuming (the number of operations

to calculate Pk when m = n is meant here).

Theorem 2. Let conditions (6) and (7) were satisfied, and

the following unequality be true
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2 122
0111YII < II g (x) yll < 0211yll , °2 ~ °1 > 0 (8)

n
'Ii x, yf..E

Then with a sufficiently small Ihl for method 2 we have the

evaluation

where C2 > 0 depends only on 01' °2 , L.

Method 3. vector p~II in (1) to be calculated with the help

of the following expression

m
= L

j=1
a. s.

J J
where 50

Z. = [g (xk - 1 + hs j ) -g (xk - 1 )] /h
J

T T
61 0a.. = z. 5./5. 5. =

J J J J J

6·
T T

j= 5.5./5. 1 s. 1 > 2
J J J J- J-

T Ta j = r. 1 5. 1/5.5. r. = r. 1 -a.z.
J- J- J J J J- J J

j = 1, ... ,m m < n

here m is the minimal number for which II r m II 2 e:k II g (xk - 1 ) ", where

o < e: k = < 1, and Ihl ~ 0 is a sufficiently small number.

The described method was proposed in [11] and is a result

of application of DAA to a modification of the minimal iterations
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methods [12], (see also [9]). The method has the same merits as

method 2, and its labor-consumption is almost equal to that of

method 1.

Theorem 3. Let condition (6), (7), (8) be given. Then, if

in method 3 Ilr~ 1/ 1 <0 Ils~lI, j = 1,2, ... ,m-1, where r~ 1 and s~
")- - J 0 0 J-

O
J

are obtained s~ = g' (xk - 1 )· r O' Zj = g' (xk - 1 )· Sj' and r j _ 1 then

with a sufficiently small Ihl evaluation

is true, in which C3 > 0 depends only on 01' 02' L, O.

In Theorems 1,2, and 3 the properties, which do not depend

on Ak , of vector Pk were analyzed. For specific ways of choos­

ing Ak the following statements are valid.

Theorem 4. Methods 1,2, and 3 within the frames of corre­

sponding Theorems 1,2, and 3 with sufficiently small E and Ihl

ensure convergence' of oroeess 1, (2a), to tbe solutionx* of problem 1

from any initial point xo~En. In this case convergence in the

vicinity of £*- is quadratic, that is: Ilxk - x* II .:. c II x k - 1 - x* Ii 2,

where C is a certain constant.

Theorem 4 is valid not only relative to the way of choosing

Ak (2a), but it is true for all the ways proposed in [131.

Let conditions (5) and (6) with g substituted by fl be

given for problem 2. If so, methods 1,2, and 3 with g substi­

tuted by f' are applicable for solving problem 2 as well and in

this case, Theorem 1 remains correct, and Theorems 2 and 3 after

putting m1 = y 1 and m2 = y 2 would be correct too.

Theorem 5. Methods 1 ,2, and 3, with f 1 instead of g, in the frames

of the corresponding Theorems 1,2, and 3, ensure convergence of process

(1), (2b) to ~he solut.!-:on x* of problem 2 from any initial point xO€En ,

the rate of convergence being quadratic in the vicinity of x*.

Theorem 5 is true as well for other ways of choosing Ak which

are described in [1, §8.3].

In the present work only three examples are given of OAA

for solving problems 1 and 2 besides the examples from [2-6],
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but the field of DAA application might be sufficiently extended.

In particular, for solving problem 1 in the frames of Theorem 1,

one can apply DAA, for example, to the method of A-minimal itera­

tions, to its binomial form, and to various forms of the s-step

gradient method of steepest descent [9].

Memory volume required to realize the methods based on appli­

cation of DAA to the method of A-minimal iterations and to its

binomial form is equal to approximately 7n, just as in the case

of methods 1,2, and 3.

It should be expected that the rate of convergence of se­

quence (1), (2a) of the problem 1 solution under the conditions

of theorems 1 and 4 for these methods remains of the same high

rate. Application of DAA to the s-step gradient method of steepest

descent with the help of conjugate gradient scheme is only slightly

different from method 1. Its specific feature is formulated like

that: summation in the formula for Pk proceeds up to s < m. It

is clear that at s < m the rate of convergence of sequence (1)

(2a) of the solution of problem 1 turns to be linear:

Ilxk - x*11 .s. g Ilxk _ 1 - x* II, 0 < g < 1. DAA is applicable for solving

problem 2 under the restrictions of Theorem 2, for example to the

method of columns orthogonalization [9], in which case matrix

A = g' (x) might as well be non-symmetric. These methods with g

substituted by f~ are also applicable for solving problem 2.

Note that the usage of DAA with the s-step gradient method

of steepest descent for solving problem 2 is equivalent to the

method of steepest descent at s = 1, and to a modification of

discrete Newton method at s = m (method 1). In the authors'

work [11, p. 160] a modification of the s-step method on the

bases of DAA and method 1 for solving problem 2 in case of a

nonconvex function f(x) is proposed. The essence of this modi­

fication as opposed to method 1 is in Pk' which is here expressed

in that way:

s
Pk = L

j =1
la ·Is.

J J

where s < m or s = m. If the process of calculating Pk turns to
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be sufficiently stable, the direction of Pk would always be the

direction of decreasing f(x) and the saddle point is not the point

of attraction for it. Note also that the above s-step method for

solving problems 1 and 2 opens the possibility to calculate Pk

with variable number of steps sk, k = 1,2, ... ,. Taking small

values sk < m at the beginning of the iteration process (1) and

setting sk = m ~ n at high values of k, it is possible to realise

an economic computational procedure for solving the above mentioned

problems.

A deficiency of methods that use DAA for solving problems 1

and 2 is the errors in difference-approximation of derivatives.

These errors can, to a certain degree, be controlled by the value

of h. To this end it is possible to determine approximate values

hopt in the process of solving the above mentioned problems with

the help of methods 1,2, and 3. It is to be done with the help

of the following relations:

a) hopt = argmin II g (xk - 1 + hPk) -g (xk - 1 ) + hg (xk - 1 ) II /l:i
h

(9 )

II f' (xk - 1

,
hf' (xk - 1 ) II /hb) hopt = argmin + hPk) -f (xk - 1 ) +

h

It is evident that the values under the sign of norm in (9)

are difference-approximation of residual R = A . Pk + b for the

system of equations (3). Another way of reducing the errors of

difference approximations is, as was shown above, the use of a

formula of higher level of accuracy in h instead of (4).

3. CONCLUDING REMARKS

Often in the course of solving a system of equations or an

optimization problem information about eigenvalues of matrices

g' (x) and fll (x) might become useful. It is known [9], that while

solving problem 3 with the help of the methods of conjugate gra­

dients and minimal iterations one can in parallel to the main

process of calculations compute coefficients of the matrix A

characteristic polinominal and, after determination of eigenvalues,
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it is not difficult to calculate eigenvectors of this matrix.

Thus, by way of not too complex additional calculations in methods

1 and 3 it is possible to approximately determine eigenvalues and

eigenvectors of matrices g' (xk - 1 ) and f"(x
k

_
1
). The characteristic

polinominal in methods 1 and 3 in this case is obtainable when

m = n, which corresponds to the case of absence of multiple eigen­

values. As for non-symmetric matrices gl (x) their characteristic

polinomial can be obtained with the help of application of DAA

to the method of orthogonalization of sequential iterations [9].

Of course, in all the discussed cases we shall receive approximate

values of polinomial coefficients and eigenvectors and they would

be the more accurate the less the value of Ihl.

A number of numerical experiments were accomplished with the

methods proposed in the present work. The results had shown, that

the methods are not inferior to the discrete variant of Newton

method in terms of the rate of divergency [8, p. 389, Algorithm A89] .
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