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PREFACE

It is known that stochastic automata can be applied to describe the
behavior of a decision maker or manager in the condition of uncertainty. This
paper discusses learning behaviors of stochastic automata under unknown
nonstationary multi-teacher environment. The consistency of sequential
decision making procedures is proved under some mild conditions.
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LEARNING BEHAVIORS OF STOCHASTIC AUTOMATA
AND SOME APPLICATIONS

Norio Baba

INTRODUCTION

The concept of learning automata operating in an unknown random
environment was first introduced by Tsetlin (1961). He studied the learning
behaviors of deterministic automata and showed that they are asymptotically
optimal under some conditions. Later, Varshavskii and Vorontsova {1983)
found that stochastic automata also have learning properties. Since then, the
learning behaviors of stochastic automata have been studied extensively by
many researchers. Chandrasekaran and Shen (1968), Norman (1968; 1972),
Lakshmivarahan and Thathachar (1973), Narendra and Thathachar (1974), and
others, have contributed fruitful results to the literature of learning auto-

mata.

Despite active research in this field, almost all research so far has dealt
with learning behaviors of a single automaton operating in a stationary
single-teacher environment, although Koditschek and Narendra (1977) con-
sidered the learning behavior of fixed-structure automata operating in a sta-
tionary multi-teacher environment. Thathachar and Bhakthavathsalam
(1978) then studied variable-structure stochastic automata operating in two

distinct teacher environments. Recently, Baba (1983) studied the learning
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behaviors of variable-structure stochastic avtomata under the general n-
teacher environment. He proposed the GAE reinforcement scheme as a learn-
ing algorithm and proved that this reinforcement scheme has good learning
properties such as z-optimality and absolute expediency in the general n-

teacher environment.

In this paper, we consider learning behavicrs of variable-structure sto-
chastic automata operating in a nonstationary multi-teacher environment
from which stochastic automata receive responses having an arbitrary
number between O and 1. As a generalized form of the GAE reinforcement
scheme, we propose the MGAE scheme and show that this scheme ehsures E-
optimality in the nonstationary multi-teacher environment of an S-model. We
also consider the parameter self-optimization problem with noise-corrupted,

multi-objective functions by stochastic automata.

Since the theory of the learning behavior of stochastic automata operat-
ing in the NMT environment has been developed only recently, its application
to real problems has not been discussed in the literature. However, the
author believes that it could be applied to the problems where one input eli-
cits multi-responses from multi-criteria environments. In the following, we

shall suggest two applications:

Commercial Game

Suppose that n players (Al....,An) are taking part in a game in which they
wish to open a store somewhere in r regions (B,.....B,). The mth player (4,,)
will choose the region B, with a probability p,,; (m.=1,....n: k=1,..,7r). Itis
assumed that we can not obtain any information about these probabilities.
However, if a player is to succeed, he must avoid regions containing a lot of
other players. The MGAE reinforcement scheme, which will be proposed in this
paper, can be used to find an appropriate region where there is a minimum of
overlapping. The learning behavior of automata using the MGAE scheme in
various commercial games has been simulated by computer and results indi-

cating the effectiveness of the scheme have been obtained.



Fishing

Suppose that there are r sea-areas in which a group of ships (Sl,...,Sn)
must catch fish. The learning behaviors of stochastic automata under multi-
teacher environments can also be applied to find an appropriate sea-area. In
this case, n ships and r sea-areas become n teachers and the r states of the
stochastic automaton, respectively. 1f the numbers {or volume) of the catches
of the ith ship S; are low, S; emits a penalty résponse. On the contrary, if
great numbers of catches have been obtained, then S; emits a reward
response. Depending upon the n responses from n teachers, the stochastic

automaton changes its state probability vector.

BASIC MODEL OF A LEARNING AUTOMATON OPERATING
IN AN UNKNOWN ENVIRONMENT

The learning behaviors of a variable-structure stochastic automaton
operating in an unknown random environment have been discussed exten-
sively under the model shown in Figure 1. First, let us briefly explain the
learning mechanism of the stochastic automaton A under the unknown ran-
dom environment (teacher environment) R(Cj.....C.). Then, we will explain

the basic norms of the learning behaviors of the stochastic automaton A.

The stochastic automaton A is defined by the sextuple {S,W,Y,g.P(t).T}.
S denotes the set of two inputs (0.1), where 0 indicates the reward response
from R(C;.....C,) and 1 indicates the penalty response. (If the set S consists of
only two elements 0 and 1, the environment is said to be a P-model. When the
input into A assumes a finite number of values in the closed interval [0,1], it
is said to be a Q-model. An S-model is one in which the input into A takes an
arbitrary number in the closed line segment [0,1]. In the next section, we will
deal with the S-model envirnment.) W denotes the set of r internal states
(w;....w,). Y denotes the set of 7 outputs (y,.....y,). g denotes the output
function y(t)=g[w(t)], that is, one to one deterministic mapping. P(t)
denotes the probability vector [p,(t),...p,{t)]' at time ¢, and its ith com-
ponent pi(t) indicates the probability with which the ith state w; is chosen at

time t{i=1,...7):

p,(0)= - =Pr(0)=;l__' Zrl p(t) =1
=1



Teacher {Random Environment)
R(C4 soeeesCp)

v, s(t) = (0,1)

Stochastic Automaton A

(w1,....,wr)

Figure 1. Basic model of a learning automaton operating in an unknown
random environment.
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T denotes the reinforcement scheme which generates P(t +1) from P(t).

Suppose that the state w; is chosen at time t. Then, the stochastic auto-
maton A performs action y; on the random environment R(Cl.....CT). In
response to the action y;, the environment emits output s(£)=1 (penalty) with
probability C; and output s{t)=0 (reward) with probability 1-C;(i=1,...,r). If
all of the C;(i=1,..,r) are constant, the random environment R(C,,....C,) is
said to be a stationary random environment. (The term ‘single teacher
environment" is also used instead of the term "random environment.") On the
other hand, if C;{i=1,...,7) are not constant, it is said to be a nonstationary
random environment. Depending upon the action of the stochastic automaton
A and the environmental response to it, the reinforcement scheme T changes
the probability vector P(t) to P{t+1).

The values of C;(i=1,...,r) are not known a priori. Therefore, it is neces-

sary to reduce the average penalty,
r
H(t)= ) p(t)C, (1
=1

by selecting an appropriate reinforcement scheme. To judge the effectiveness
of a learning-automaton operating in a stationary random environment
R(C,....C,), various performance measures have been set up. (See Chan-

drasekaran and Shen 1968; Lakshmivarahan and Thathachar 1973; Narendra
and Thathachar 1974.)

DEFINITION 1. A reinforcement scheme is said to be expedient if

lim E{M(t)} < i-i- ‘2 C,3 (2)

1=1

(E}-} is the mathematical expectation.)

DEFINITION 2. A reinforcement scheme is said to be optimal if
lim Bip(t)} = 1 (3)

where C,=min{C;}
1
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DEFINITION 3. A reinforcement scheme is scid to be g-optimal if

lim lim E{p (t)} =1
lim Lim E{p,(t)}

where ¥ is a parameler included in the reinforcement scheme.

DEFINITION 4. A reinforcement scheme is said fo be absolutely
expedient if

E{M(t+1)/ P(t)} < M(t) (4)

for all t, all p;(t)e(0.1) (i=1,...r), and all possible walues of
C; (i=1...r). (E{M(t+1)/ P(t)} is the conditional expectation.)

Remarks.

(a) The definition of s-optimality can also be described by using
M(t).

(b) In Definition 4, the trivial case in which all the values of

C;(i=1,...,r) are equal is precluded.

The learning behaviors of a variable-structure stochastic automaton

operating in the stationary random environment R(C'l,....C,) have been exten-
sively studied by many researchers. Norman (1968) proved that the Lp_;
scheme ensures g-optimality in the two state case. Sawaragi and Baba (1973)
showed that this property also holds in the general r-state case. Laksh-
mivarahan and Thathachar (1973) introduced the concept of absolutely
expedient learning algorithms.

Remark.

(¢) Lz_;scheme (Reward-Inaction scheme)

Assume y(t)=y;.

If s(t)=0, then
p; (t+1) = (1-=8)p,(t)+8 0O<B<1

py (£ +1) = (1-8)p; (¢) (5 #1)



1f S{t)=1, then

pm(t+1) :pm(t) (m:l,...,'l’)

Compared with the great number of studies related to the behavior of
learning automata in a stationary environment, only a few and specialized
results have been obtained concerning those in a nonstationary environment.

Baba and Sawaragi (1975) considered the nonstationary random environment

which has the property that

Colt.w)+8; < Cj(t,w)
(holds for some a, some §,>0, all j(ix), all ¢, and all w; w is a point of a basic
w-space {0.)

They showed that the Lp_; scheme ensures g-optimality under the above
environment. Recently, Srikantakumar and Narendra (1982) studied the
learning behaviors of stochastic automata under the following nonstationary

random environment:

(i) G[P(n)] (i=1...r: n=0,..) are continuous functions of p;(i=1,...,7)

aC;
(ii) >0 for Vi

9p;

ac, oG
iii >» ——  for V1i.J 139
(iii) o o, 7 (i)

This work has a very interesting application in the area of telephone network

routing.
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LEARNING AUTOMATON MODEL UNDER THE NONSTATIONARY
MULTI-TEACHER ENVIRONKENT

In this section, we generalize the model given in Figure 1 and discuss the

learning behaviors of the variable-structure stochastic automaton B in the

nonstationary multi-teacher environment (NMT) as illustrated in Figure 2.

The stochastic automaton B is defined by the set {S.#,Y,g,P(¢),T}. S is
the set of inputs (S"l ..., 5) where Sf(jzl,...,n) 1s the response from the jth
teacher Rj(j=1,...,'n) and the value of .5;‘ can be an arbitrary number in the
closed line segment [0,1]. (We are dealing with an S-model multi-teacher
environment.) In this model, the definitions of #,Y,g.P(¢t), and T are the
same as in the last section.

Assume now that the state w, is chosen at time £. Then, the stochastic
automaton B performs action y; on the nonstationary multi-teacher environ-
ment (NMT). In response to y;. the jth teacher }?J emits output .5;‘ In this
section, we shall deal with the case in which 53‘ is a function of £ and w. (co e

[} is the basic w-space of the probability measure space (Q,E,p). and B is the

smallest Borel field including |y F;, where F;=0[(P(0).....P(¢).C(0).....C(¢)].)
t=0

Consequently, from now on we shall use the notation Sz‘(tco) to represent the

input into the stochastic automaton 5.

Depending upon the action y; and the n responses S‘l(tw).S:(tw) from
n teachers R,....,R, ., the stochastic automaton B changes the probability vec-
tor P(t) by the reinforcement scheme 7.

The nonstationary multi-teacher environment (NMT) considered in this

paper has the property that the reiation

1 1
{dea't(s) + %({sd}'},t (s) (5)

where F . (s) (i=1,..7) is the distribution function of

st{t,w)+ - +si{t.w
1 - r ), holds for some state w,,

7 (3a), and all w(en).

some 6>0, all time £, all



Nonstationary Multi—Teacher Environment NMT

I
| o nth Teacher R n I
I n I
| —
I I
| ]
I —» jth Teacher Rj I
|
I —— ———
L —
I s} |
| ¥ 1st Teacher R1 :
I |
% (5'1 pevene Sn)
Stochastic Automaton B

Figure 2. Stochastic automaton B operating in the nonstationary
multi-teacher environment (NMT).
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no
The objective of the stochastic automaton B is to reduce E{}; Sy(t.w)},
=1
the expectation of the sum of the penalty strengths. Therefore, condition (5)

means that the ath action y, is the best among r actions y;,...,y, since y,

T
receives the least sum of the penalty strengths in the sense of mathematical

expectation.

Before we proceed to introduce the norms of learning behaviors of sto-
chastic automata under an NMT environment, we will explain several basic
norms of the learning behaviors of stochastic automata under a stationary
multi-teacher environment of a P-model. Baba (1983) discussed the learning
behaviors of stochastic automata operating in the general stationary n-

teacher environment in which there exists a fth state W such that
cl+. . +CE < Ch+..4C (6)

for all 1<i<r  (i18)

He gave the following definitions:
DEFINITION 1. The average weighted reward in the n-teacher
environment W(t) is defined as follows:

T b4

w(t) = Y [pi(t) ), iD; ;1] (7)

i=1 j=1

where D}; j s the probability that j teachers approve of the ith action y; of

the stochastic automaton B. (5=1,...n)

DEFINITION 2. The stochastic automaton B is said to be "absolutely

expedient in the general n-feacher environment' if
E{W(t+1)7 P(t)} > W(¢) (8)

forall t, all p;(t) €(0,1), i=1,...,r, and al C} €(0,1), i=1,....7; k=1,...,n.
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DEFINITION 3. The stochastic cutomaton B is said to be "expedient in

the general n-teacher environment" if

}:im E{W(t)} > W, (9)

— r 1 no
where W, = E -7_—22 J 7112;
i=1 j=1

DEFINITION 4. The stochastic automaton B is said to be "optimal in

the gener al n-teacher environment" 1,’
¢ Pp( ) (10)

with probability 1.

DEFINITION 5. The stochastic automaton B is said to be e-optimal in
the general n-leacher environment” if one can choose parameter ¥

included in the reinforcement scheme of stochastic automaton B such
that

lim lim Efpg(t)} = 1 11
lim lim E{p(t)] (11)

Baba proposed the GAE reinforcement scheme and proved that it ensures

e-optimality and absolute expediency in the general n-teacher environment.

By analogy from Definitions 4 and 5 given above, we can give the following
definitions concerning learning norms of stochastic automata under nonsta-

tionary multi-teacher environment NMT satisfying the condition (5):

DEFINITION 6. The stochastic automaton B is said to be optimal in
NMTif

%iﬁl’pa(t) =1 (12)

with probability 1.
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DEFINITION 7. The stochastic automaton B is said te be g-optimal in
NMT if one can choose a parameler ¥ included in the reinforcement

scheme T of the stochastic automaton B such that the following equality

holds:

lim lim Eip,(t)] =1 (13)

On the other hand, the extensions of Definitions 2 and 3 can not be easily

given. Presumably, we need a different interpretation.

£-OPTIMAL REINFORCEMENT SCHEME UNDER THE NONSTATIONARY
MULTT-TEACHER ENVIRONMENT

The GAE reinforcement scheme (Baba 1983) has been introduced as a
class of learning algorithms of stochastic automata operating in a multi-
teacher environment which emits 0 (reward) or 1 (penalty) responses. This
scheme can not be applied to the S-model environment in which teachers

emit arbitrary responses between 0 and 1.

In the following, let us propose the MGAE scheme which can be used for

the S-model environment.
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MGAE SCHEME:
Suppose that y(t)=y, and the responses from NMT are (5’35’2 ..... v).

(S;(] =1,...,n) means the response from the jth teacher.) Then,
[t 4,452

pi(t+1) = py(t) + [ R (S [P (14)

J#i

i i
sit...+s,

—l1- —]z Y ¥ [PO]

n J#i

i i
sy 448t

pi{t+1) =p;(t) - - te; [P(t)]} (15)

st+..+s} o
+ [1 - ‘n—] ty;[P(t)]3 (#1)

where p;,%; (i=1,..,r) satisfy the following relations.

p[P(t)] o P(t)] v, [P(t)]
nlP(t)]  ylP()] 3, [P()]
;1<t> 0 N O I (17

p;(t) +¢;[P(t)] >0 (18)

pi(t) + 3 ¢, [P(E)] >0
Il

p;(t) —¢;[P(t)] <1 GG=t1,...r i=1l..7)
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As to the learning performance of the MGAE reinforcement scheme, the

following theorem can be obtained.

THEOREM 1. Suppose that A[P(t)]=s{A[P(t)]} (¥>0) (19) and
u[P(t)] =sulP(t)] (20). where N[P(t)] and u[P(t)] are bounded func-
tions which satisfy the following conditions: A[P(t)] <0 (21), p[P(t)] <0
(22), and A[P(t)] + u[P(t)] <0 (23), for all P(t) and t,

Then, the stochastic automaton B with the MGAE reinforcement scheme
is g-optimal under the nonstationary multi-teacher environment NMT satisfy-

ing condition (5).

Since the proof of the above theorem is rather lengthy, we will begin by

deriving several important lemmas.

LEMMA 1. Suppose that all of the assumptions of the above theorem
hold. Then, the MGAE reinforcement scheme has the following learning

performance under the NMT environment satisfying condition (5):

Eipg(t+1)/ P(t)] = py(t)

Proof. For notational convenience, let us abbreviate time ¢ and pro-
bability vector P(t) as follows:

p; =pi(t). ¢ = [P(t)], ¥ =9 [P(E)]
A=AlP(t)], u =u[P(2)]. (i=1,...7)
Let F; ;(¢) be the distribution function of

si(t,w)+...+si(t,w)
n

(i=1,...7) (24)

Then, the conditional expectation Ef{p (t+1)/ P(t)] can be calculated as

follows:

Elpo(t +1)/ P(t)] f[:n FECY p;) = (1-O0 3 ¥;)] dF, (O

J#a Jj#a

+ 3 P; f [p, — £(wa) + (1~EWg] dF; (£)

j*a

Pa—Pal ¥ Vi) +p,l % (p;+¥;) [ftd (8]

Jjva J*a
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r 1
+ (1P Wa = (2o t¥ )l Y p; [ EdF; ,(8)] (25)
7 #a 0
Let
1
Ce(t) =1 { ¢dF;, ()] (k=1,...7) (26)

Then, using the relations (16) and (17), the above equality can be

represented as:

Elpo(t+1)/ P(t)] =p, + pa(1-p ) A+u]Chlt) (27)

— Dl Y p; () pe

J#a

From the definition of the distribution function F; 1(¢), and from condi-

tion (5),

6

C,(t) + —< C;(t) for all j{j#a 1<j<r)andw (=28)

Let

Cﬁ(t) = min[Ckl(t),...,Ckr_l(t)] (kg0 ky g 700) (29)

Then, from the relations (19) ~ (29), we can get
Elpg(t+ 1)1/ P(t)] 2 po(t) + Mul(1-po)pa[Calt) - Colt)] Zp4lt)

[Calt) - Cﬁ(t) <0 and A+u<0] (30)

Remark. (30) is the Semi-Martingale Inequality (Doob 1953). From
this inequality, we can get E[p (t+1)]= E[p,(t)] for all ¢t. This means
that the mathematical expectation p,(t) increases monotonously with

time £.
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LEMMA 2. Suppose that all of the assumptions of the theorem hold.

Let
o) = SRR (g o
po(t) = 1—p (t) (32)

Then, there exists some positive constant 2z which satisfies the inequality

Eth, ,ﬂ[pa'(t;rl)]/ Pt} =h, 4lp,(t)] forall t and P(t)

Proof. The conditional expectation Efh, 4[p,'(t+1)]/ P(t)} can be

calculated as follows:

Ethy glpg (¢ +1)]/ P(t)} = J[-1 (33)

' 1
a

+ exp 2}; {pq f exp [—zp (EN-(1-§)R)] dF, 4 (¢)
0

T 1 _
+ Y { explzp ,(EA-(1-E)m)dF} ; (£)}]
J*a

where

J=————  pa'=1-p,(t)., and p,=p,(t)

Assume that
IX +&| <0, (0, : positive constant) (34)

Then, by using Taylor’'s expansion theorem, the following two inequalities

can be obtained:
ezp[—zp ((A-(1-L) = 1 —zp (EA-(1-6)1) (35)

+ 20, | A +1z| z%p ' [ezp(R0,z)]
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ezp [zp (EA-(1-)w)] = 1 +zp (EX—-(1-O)R) (38)
+ 20, |A+7| 2% [exzp (20,2 )]

From (33), (35), and (36), we can get

Ethy olp (t+D1/ P} < =7+ Jlexp 2041 (37)

~Pal MEl 2[4 Calt)

- ZT: p; Gi{t) + f y(=.P)]3

foa
where

f{z.P) = —4z0,p,[ezp(20,z)] (38)
From (28),
Bty olpo(t +11/ P()) < =7 + Jezp 2201 (39)

- Papa MBIz (S
- 4zx0,exp(20,z))]

In the above equality (39), lir% 4z0,exp(20,z) = 0, pop, |A+R| = 0, and %
=

is a positive constant. Hence, there exists some positive constant 2z

which satisfies the inequality

Eth, 5lp'(t+1))/ P(t)} <h, 4[p,(t)] for all t and P(t). (40)

LEMMA 3. Suppose that all of the assumptions of the theorem hold.
Then, the MGAFE reinforcement scheme has the following convergence pro-
perty under the nonstationary multi-teacher environment (NMT) satisfy-
ing condition (5): p,(t) converges with probability 1. Further, let
ii_’rgpa(t) = p2 with probability 1. Then,pS = 1 or 0 with probability 1.
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Proof. |p,(t)| <1 for all t. Then, from Lemma 1, py(¢t) converges
with probability 1 (Doob 1953). Now we will prove that p& = 1o0or 0 with
probability 1. Assume that there is a region D such that w(D)#0 and
0<p&<1in D. It follows from (30) that

Elpa(t +1D)]-Elpa(t)]= { Mw](1-p Q)P ol Calt) —Cplt) Jdu (41)

Since p,(t) converges with probability 1 topZ and |p (¢)] < 1 for all £,
lim Elpa(t)] = £lp2] (42)
Hence,
lim {Elp(t +1)] = Elp (1)) = limElpy (¢ +1)] ~LmElp (1)1 =0 (43
Let
Au < -G (G>0)

Then, from (28),

11m f[)\+u (1-p )Pl Ca(t)- Cﬁ(t)]du >11mf (1-p )P, du (44)

_[ TG 1-p2)p &du
Q

—f (1-p2)p&du >0

It is clear from (41) that (43) is incompatible with (44). Therefore
p2 =1o0r 0
with probability 1.

Taking advantage of the above three lemmas, the Theorem can easily be

proved.

Proof. From Lemma 2,
h, [P q'(0)] = .(/]-hzlﬁ[pa'(l)] du= - (45)

Consequently,
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hz'ﬂLpa'(O)]ziimfhz_ﬂ[_pa'(t)] du (486)
-0 0
Since | h, s[p4(t)]| is bounded above {<1),
%imfhzlgﬁpa'(t)] du = fiim h, slpa'(8)] du (47)
~$00 o) o) —$00
Let
pf=1-p2 (48)
Then, from lemma 3,
pf =00r1 (49)

with probability 1. Since h, 4(p) is a continuous function of p, we obtain

the following equality:
lim hy o[Pa'(£)] = bz 5(PL) (50)
with probability 1. Furthermore,
0<h, g(p) <1 awhen O<p<l (51)
h, 5(0) =0, hys(1)=1
It follows from (49) and (50) that
lim h, o[, ()] = pL (52)
with probability 1. Therefore, from (46), (47), and (52),

hz,ﬂ[pa'(o)] E{Pf, du

It is clear that

im h, 4[p,'(0)] = 1i [exp[Z(:;l)]—lll_
m h, slp, = lim = (54)
o el |

Hence, from (53) and (54),

lim lim £ ) =1
B0 £+ [palt)]
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APPLICATION TO NOISE-CORRUPTED, MULTI-OBJECTIVE PROBLEM

In this section, we consider a parameter self-optimization problem with
noise-corrupted, multi-objective functions as an application of learning
behaviors of stochastic automata operating in an unknown nonstationary

multi-teacher environment.

Suppose the J;(a)...., and J,(«) are unknown objective functins of a
parameter a€la;, ..., a,] except that they are bounded
(-M=J,(c)....dp(a)<M). It is assumed that measurements of Ji{a) (i=1,....,n)

can be obtained only from the noise-corrupted observations.
g;(e.;) = L{a) +¢  (i=1...m) (55)

Here, J;(a) is assumed to have unigque maximum J; (aﬁ‘):
Ji(aﬁ‘) = max [J; (aq)....J; (e, )] (58)

Each objective function J;(a) has the claim to be maximized (i=1,...n).

However, generally, the relation ag =g, = ' = ag does not hold. This is
one of the most difficult points of multi-objective optimization problems.

The learning behaviors of stochastic automata operating in the last sec-
tion can be used to find an appropriate parameter in this problem. Let us try
to identify the ith action y; of stochastic automaton B with the ith parameter
value g; {i=1,...,7). Choosing the ith parameter a; at time ¢t corresponds to B
producing the output y, at time £. For simplicity, we consider the stochastic

automaton F under P-model environment.

Let k/ be a measurement of gj(o.¢;) at time t. Further, let

I;?(t =0,1,...; =1,....n) be defined as

ki if —Ms<kj<M
kI =M ifki>H (57)
M it kic-m
ti_l(“;‘l"l HRD ~M<kj<H
Kl = ﬁ(t-i{_l + M) itk{>H
1 if kf<-M

t+1 (t kg ~ &)
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Using these values, we define reward and penalty as follows:

Suppose that aft) = a; (i=1,...,7). If k;leg'_l, then the stochastic automa-
ton B receives reward response ,S;" =0 from the jthe teacher RJ- (j =1,...,'n).
(This means that the jth noise-corrupted, objective function J; (o) gives an

affirmative answer to the parameter «;.)

On the contrary, if k{(l?tj_l, then the stochastic automaton B receives

penalty response S; = 1from the jth teacher k; G=1,....n).

The stochastic automaton chages the state vector P(t) to P(t+1) by the

M. responses (S" ,s,‘L) which it has received from the n teachers K, .. ., and
R, .

Now let us consider the learning behavior of B. If the parameter q; is
selected at time £, B receives penalty from the jth teacher K; with the proba-
bility

pulg; (o8 (t)) <kf_y]
From (55),
ﬂ'[gj(a-i-gj(t)) < Ei.—]] =ul¢;(t) < E{_l — Ji(e;)] (58)

=pgle; () < k{_y = J;(o)]

(p;j(') is the distribution function of ¢; (j=1,...,n).)

Since Jj(a) is assumed to have unique maximum J'J-(cxﬂj),
wlg;(t) <y —Jilog)] <ult;(t) <kf_y—J;(a)] (59)
for all k{_, and all (aﬂj#a) (=1....n)

(See Figure 3.)
Let

C}:(t-&’) =M[Qj(ai-$j(t)) <EZ—1] (60)

The reason why we use the notation C;i(t,m) is to represent the probability that
stochastic automaton B receives penalty response from the jth teacher when
it selects the ith parameter o; at time ¢. (Here, we(), Q being the supporting

set of the probability measure space { 0, B.u).
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1—ulg M<K —J(a) _
l P A 1 —ulE 0 <K —dlag )

Jife) / ]

a
e,
1 I 7
/| 1 T T
I | | I
| | | l |
| | | |
-1 | | |
| ! | I |
{ | ] ‘ | } a
01 ai aﬁ] ar \

Figure 3. The value of {l—p[fj(t) < ic_f_l -.I'J-(aﬁj)]}.
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F, = o[P(0),...P(t)kt k3. kpki, . . kT.kt k]
(o[ P(0),....k]*] is the smallest Borel field of w-sets with respect to which
P(0)...., and K[* are all measurable.) 5 is the smallest Borel field which con-

tains |J F;. u is the probability measure which satisfies u(Q2) = 1.)
t=0

Therefore, it follows from (58), (58), (59), and (80), that

cfitt o) + 65 < Cilt ) (61)

for all t, all i (i=1,..,7;i#B;), all w € (), and some positive number §;  (j=1,...

If the strict condition
ag-=ag = ' =ag (62)
holds, then it can be easily derived from (61) that

CF (t.w)+...+CF(t . w)+6 < C4 (¢, w)+...+CL(t,w) (63)
(6=6,+...+6,)
forall t,all i (i=1,...,7; i#8*), all we(), and the positive number §

Therefore, using the theoretical resuits obtained in the last section, we

can prove that

lim lim E[pg.(t)] =

90 { o0

is ensured by the MGAE reinforcement scheme.

Even if the strict condition {62) does not hold, the MGAE reinforcement
scheme finds the parameter a which satisfies the relation (5). (The result

obtained so far is a generalization of the work done by Baba (1978).)

Remark: Although we have used P-model, all of the studies done in the

last section can be applied to this case.
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CONCLUSION

We have discussed the learning behavior of stochastic automata under
the nonstationary multi-teacher environment (NMT) in which penalty
strengths are functions of ¢ and w, where ¢ represents time and w is a point of
the basic w-space (). It has been proved that the MGAE reinforcement scheme,
which is an extended form of the GAE reinforcement scheme, ensures g-
optimality under the nonstationary multi-teacher environment {(NMT) which
satisfies condition {(5). We have also considered the parameter self-
optimization problem with noise-corrupted, multi-objective functions by sto-
chastic automata and showed that this problem can be reduced to the learn-
ing behaviors of stochastic automata operating in the nonstationary multi-

teacher environment (NMT) satisfying condition (5).
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