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PREFACE 

I t  is known tha t  stochastic automata can be applied to describe t h e  
behavior of a decision maker or manager in the  condition of uncertainty. This 
paper discusses learning behaviors of stochastic automata under unknown 
nonstationary multi-teacher environment. The consistency of sequential 
decision making procedures is proved under some mild conditions. 
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LEARNING BEHAVIORS OF STOCHASTIC AUTOWLATA 
AND SOME APPLICATIONS 

Norio Baba 

INTRODUCTION 

The concept of learning automata operating in an unknown random 

environment was first introduced by Tsetlin (1961). He studied the  learning 

behaviors of deterministic automata and  showed tha t  they are  asymptotically 

optimal under  some conditions. Later, Varshavskii and Vorontsova (1963) 

found tha t  stochastic automata also have learning properties. Since then, t h e  

learning behaviors of stochastic automata have been studied extensively by 

many researchers.  Chandrasekaran and Shen (1968). Norman (1968; 1972). 

Lakshmivarahan and Thathachar (1973), Narendra and Thathachar (1974), and 

others,  have contributed fruitful results to  the li terature of learning auto- 

mata.  

Despite active research in this  field, almost all research so far  has dealt 

with learning behaviors of a single automaton operating in a stationary 

single-teacher environment, although Koditschek and Narendra (1977) con- 

sidered the  learning behavior of fixed-structure automata operating in a sta- 

t ionary multi-teacher environment. Thathachar and Bhakthavathsalam 

(1978) then studied variable-structure stochastic automata operating in two 

distinct teacher  environments. Recently, Baba (1983) studied the  learning 



behaviors of variable-structure stochastic aut.ornata under the  general n- 

teacher environment. He proposed the  G,4E reinforcement scheme as a learn- 

ing algorithm and proved tha t  this reinforcement scheme has good learning 

properties such as E-optimality and absolute expediency in the  general n- 

teacher  environment. 

In this paper, we consider learning behaviors of variable-structure sto- 

chastic automata operating in a nonstationary multi-teacher environment 

from which stochastic automata receive responses having an arbitrary 

number between 0 and 1. As a generalized form of the GAE reinforcement 

scheme, we propose the  MGAF: scheme and show tha t  this scheme ensures E- 

optimality in the nonstationary multi-teacher environment of an S-model. We 

also consider the parameter  self-optimization problem with noise-corrupted, 

multi-objective functions by stochastic automata. 

Since the  theory of t he  learning behavior of stochastic automata operat- 

ing in t he  NMT environment h a s  been developed only recently, i ts  application 

to  real problems has not been discussed in t he  l i terature.  However, the  

author  believes tha t  i t  could be applied to  t he  problems where one input  eli- 

cits multi-responses from multi-criteria environments. In the  following, we 

shall suggest two applications: 

Commercial Game 

Suppose tha t  n players ( A  l,....4) are  taking part  in a game in which they 

wish t o  open a store somewhere in r regions ( B  I,...,B,). The m t h  player (&) 

will choose t h e  region Bk with a probability pmk (m=l ,..., n; k = l ,  ..., r ) .  I t  is  

assumed tha t  we can not  obtain any information about these probabilities. 

However, if a player i s  to  succeed, he must  avoid regions containing a lot of 

other  players. The MGAE reinforcement scheme, which will be proposed in this 

paper. can be used t o  find a n  appropriate region where there is a minimum of 

overlapping. The learning behavior of automata using the MGAE scheme in 

various commercial games has  been simulated by computer and results indi- 

cating the  effectiveness of t he  scheme have been obtained. 



FLY hing 

Suppose that there are r sea-areas in which a group of ships ( S  I,....Sn) 

must catch fish. The learning behaviors of stochastic automata under multi- 

teacher environments can also be applied to find an appropriate sea-area. In 

this case, n ships and r sea-areas become n teachers and the r states of the 

stochastic automaton, respectively. If the numbers (or volume) of the catches 

of the i t h  ship S1 are low, Si emits a penalty response. On the contrary, if 

great numbers of catches have been obtained, then Si emits a reward 

response. Depending upon the n responses from n teachers, the stochastic 

automaton changes its s tate probability vector. 

BASIC MODEL OF A UEARNING AUTOMATON OPERATING 
IN AN m o m  ENVIRONMENT 

The learning behaviors of a variable-structure stochastic automaton 

operating in an unknown random environment have been discussed exten- 

sively under the model shown in Figure 1. First, let us briefly explain the 

learning mechanism of the  stochastic automaton A under the unknown ran- 

dom environment (teacher environment) R(CI. ... , C, ). Then, we will explain 

the basic norms of the learning behaviors of the stochastic automaton A .  

The stochastic automaton A is defined by the sextuple IS, W,Y,g,P(t),Tj. 

S denotes the se t  of two inputs (0.1), where 0 indicates the  reward response 

from R(C ]...., C,) and 1 indicates the penalty response. (If the set  S consists of 

only two elements 0 and 1, the environment is said to be a P-model. When the  

input into A assumes a finite number of values in the closed interval [0,1], i t  

is said to be a Q-model. An S-model is one in which the input into A takes an 

arbitrary number in the  closed line segment [0, I]. In the next section, we will 

deal with the  Srnodel envirnment.) W denotes the  set of r internal states 

(url,..,ul,). Y denotes the  set of r  outputs (y  l....,yr). g denotes the output 

function ( t  )=g [w ( t  )], tha t  is, one to one deterministic mapping. P ( t  ) 

denotes the probability vector b l ( t )  ,...,p,( t ) ] '  a t  time t ,  and its i t h  com- 

ponent pi( t)  indicates the  probability with which the i t h  state wi is chosen a t  

time t (i=1 ,..., r ) :  



Figure 1. Basic model of a learning automaton operating in an unknown 
random environment. 

+ 
Teacher (Random Environment) 

R ( C l  ,.v-.,Cr) 

Y i  

Stochastic Automaton A 

(w, ,...., wr) 



T denotes the reinforcement scheme which generates ~ ( t  + I )  from ~ ( t ) .  

Suppose that  the state w, is chosen a t  time t .  Then, the stochastic auto- 

maton A performs action yi on the random environment R(C I,...,C,). In 

response to the action yi,  the  environment emits output s ( t ) = l  (penalty) with 

probability Ci and output s ( t  )=0 (reward) with probability 1-Ci(i = l , . . . , ~ ) .  If 

all of the Ci(i=l ..... T )  are constant, the random environment R(C1, ..., C,) is 

said to be a stationary random environment. (The term "single teacher 

environment" is also used instead of the term "random environment.") On the  

other hand, if Ci(i=l,  ..., r )  are not constant, it is said to be a nonstationary 

random environment. Depending upon the action of the stochastic automaton 

A and the  e n v i r ~ n m e ~ t a l  response to it, the reinforcement scheme T changes 

the probability vector ~ ( t )  to P ( t  +I) .  

The values of Ci(i=l ,..., r )  are not known a priori. Therefore, it is neces- 

sary to reduce the  average penalty, 

by selecting an appropriate reinforcement scheme. To judge the effectiveness 

of a learning automaton operating in a stationary random environment 

R(C l,...,Cr), various performance measures have been set  up. (See Chan- 

drasekaran and Shen 1968; Lakshmivarahan and Thathachar 1973; Narendra 

and Thathachar 1974.) 

DEFINITION 1. A reinforcement scheme is said to be ezpedient if 

1 
lim EtM(t)j c [ -  Ci] 
f * =  i= l  

(El.] .is the mathematical ezpectation.) 

DEFINITION 2. A reinforcement scheme is said to be optimal if 

lim Etpa( t ) j  = 1 
t-.= 

where C,=minl Ci j 
a 



DEFINITION 3. A reinforcemsnt scheme is scid to  be &-optimal if 

lim lim ~ l , p , ( t ) ]  = 1 
9-0 t -+- 

where i? is a parameter included i n  the reinforcem,ent scheme. 

DEFlNlTION 4. A reinforcement scheme is said to be absolutely 

ezpedient if 

f o r  all t ,  aLl p i ( ) ( 0 1 )  1 r )  and all possible values of 

ci ( i  =l....,r ) .  (Et M ( t  +I)/  P ( t ) ]  is the conditional ezpectation.) 

Remarks. 

(a) The definition of E-optimality can also be described by using 

1. 
(b) In Definition 4, the trivial case in which all the values of 

Ci(i=l ,..., T )  are equal is precluded. 

The learning behaviors of a variable-structure stochastic automaton 

operating in the stationary random environment R(C I , . . . ,  C,) have been exten- 

sively studied by many researchers. Norman (1968) proved that  the LRml 

scheme ensures E-optimality in the two state case. Sawaragi and Baba (1973) 

showed that this property also holds in the general T-state case. Laksh- 

mivarahan and Thathachar (1973) introduced the concept of absolutely 

expedient learning algorithms. 

Rema~k. 

(c) LR-I scheme (Reward-Inaction scheme) 

Assume y (t  )=yi. 

If s (t )=O, then 



If ~ ( t ) = l ,  then 

p , ( t+ l )  = p , ( t )  ( m = l  ,..., T )  

Compared with the  great  number of studies related to the  behavior of 

learning automata in a stationary environment, only a few and specialized 

results have been obtained concerning those in a nonstationary environment. 

Baba and Sawaragi (1975) considered the nonstationary random environment 

which has the property tha t  

(holds for  some a,  some bl>O, all j ( ~ a ) ,  all t ,  and all w; w is a point of a basic 

w-space R.) 

They showed tha t  the  LR-l scheme ensures E-optimality under the above 

environment. Recently, Srikantakumar and Narendra (1982) studied t h e  

learning behaviors of stochastic automata under  t h e  following nonstationary 

random environment: 

(i) c i [p(n) ]  ( i = l  ...., T; n =O ....) are  continuous functions of p i ( i = l  ,..., T )  

a ci 
(ii) - > 0 for Vi 

'pi 

ac. ac, 
(iii) - >> - for V ( i t j )  

api apj 

This work has a very interesting application in the  a rea  of telephone network 

routing. 



UARNING AUTOMATON MODEL UKDER THE NONETATIONMIY 
MULTI-TEACHER ENVIROh7t;ENT 

In this section, we generalize the model given in Figure 1 and discuss the 

learning behaviors of the variable-structure stochastic automaton B in the 

nonstationary multi-teacher environment (NMT) as illustrated in Figure 2. 

The stochastic automaton B is defined by the set IS, w,Y ,g  , P ( ~ ) , T ] .  S is 

the set  of inputs (* .  , , . , $) where ,!$(j=l. .... n )  is the response from the j t h  

teacher Rj(j =l. ..., n )  and the value of ,$ can be an arbitrary number in the 

closed line segment [0,1]. (We are dealing with an S-model multi-teacher 

environment.) In this model, the definitions of W , Y , g  ,P ( t ) ,  and T are the 

same as in the last section. 

Assume now that the state wi is chosen a t  time t .  Then, the stochastic 

automaton B performs action yi on the nonstationary multi-teacher environ- 

ment (NMT). In response to yi, the j t h  teacher Rj emits output $. In this 

section, we shall deal with the case in which 2 is a function of t and o. ( w  E R: 

R is the basic w-space of the probability measure space (O ,E ,~ ) ,  and E is the 
00 

smallest Bore1 field including u F,,  where &=u[(P(o) ,.... P(t),C(O) ,.... C(t)].) 
t = O  

Consequently. from now on we shall use the notation $(t.o) to represent the 

input into the stochastic automaton B. 

Depending upon the action yi and the n responses %(t,w) ,...,%( t ,w) from 

n teachers RIB. ..,R,, the stochastic automaton B changes the probability vec- 

tor P(t  ) by the  reinforcement scheme T. 

The nonstationary multi-teacher environment (NMT) considered in this 

paper has  the property tha t  the relation 

where , s )  1 T )  is the distribution function of 

s f ( t , w ) +  . , #  +s:(t,o) 
, holds for some state w,, some 6>0, all t ime t ,  all 

n 

j ($a), and all ~ ( E R ) .  



Nonstationary Multi-Teacher Environment NMT 

I I 
I 
I jth Teacher 

I 
I I 
I I 
I 

s i  I I 
1 s t  Teacher I I I 

Stochastic Automaton B 
(wl ,....., w ) r 

1 

Figure 2. Stochastic automaton B operating in the nonstationary 
multi-teacher environment (NMT). 



n 
The objective of the stochastic automaton 4 is to reduce Et q ( t , o ) j ,  

j = 1  

the expectation of the sum of the penalty strengths. Therefore, condition (5) 

means that  the  a t h  action y, is the  best among r actions y l ,  ...,y, since y, 

receives the least sum of the penalty strengths in the sense of mathematical 

expectation. 

Before we proceed to introduce the norms of learning behaviors of sto- 

chastic automata under an NMT environment, we will explain several basic 

norms of the learning behaviors of stochastic automata under a stationary 

multi-teacher environment of a P-model. Baba (1983) discussed the learning 

behaviors of stochastic automata operating in the general stationary n -  

teacher environment in which there exists a pth state  w such that  B 

for all l<i<r ( i tp)  
He gave the  following definitions: 

DEFINITION 1. The a v e r a g e  w e i g h t e d  r e w a r d  in the  n - t e a c h e r  

e n v i r o n m e n t  W( t  ) is d e f i n e d  as fo l lows:  

w h e r e  Di , j  is t h e  p r o b a b i l i t y  that j t e a c h e r s  a p p r o v e  of the  i th a c t i o n  yi of 

t h e  stochrrstic a u t o m a t o n  B .  (j =l ,..., n )  

DEFINITION 2. The s t o c h a s t i c  a u t o m a t o n  B is s a i d  t o  be  " a b s o l u t e l y  

e z p e d i e n t  in t h e  g e n e r a l  n - t e a c h e r  e n v i r o n m e n t "  i f  



DEFINITION 3. The s t ~ c h a s t i c  a u t o m a t o n  B is said to be "exped ien t  in 

t h e  genera l  n - t e a c h e r  env i ronmen t"  if 

lirn E I  W ( t ) j  > Fo 
t += 

I 1  
w h e r e  = x -I x j ~ : , ~ ] .  r i=] j=]  

DEFINITION 4. The stochast ic  a u t o m a t o n  B is said to be "op t ima l  in 

t h e  genera l  n - t e a c h e r  env i ronmen t"  i f  

lim p g ( t )  = 1 
t+- 

with pro bab i l i f y  1 .  

DEFINITION 5. The s tochas t ic  a u t o m a t o n  B is sa id  t o  be  &-opt imal  in 

t h e  genera l  n - t e a c h e r  env i ronmen t"  i f  o n e  c a n  choose p a r a m e t e r  19 

i n c l u d e d  in t h e  r e i n f o r c e m e n t  s c h e m e  of s tochas t i c  a u t o m a t o n  B s u c h  

t h a t  

lirn lim E i p a ( t ) ]  = 1 
a+o t +- 

( 1 1 )  

Baba proposed t h e  GAE reinforcement scheme and proved that  i t  ensures 

E-optimality and absolute expediency in the general n- teacher  environment. 

By analogy from Definitions 4 and 5 given above, we can give the  following 

definitions concerning learning norms of stochastic automata under nonsta- 

tionary multi-teacher environment NMT satisfying the  condition ( 5 ) :  

DEFINITION 6. The s tochas t ic  a u t o m a t o n  B is sa id  t o  be op t ima l  in 

NMTi f  

with probabil i ty  1 



DEFINITION 7.  The s t o c h a s t i c  a u t o m a t o n  B .is sa id  t o  b e  E - o p t i m a l  in 

NMT i f  o n e  c a n  choose  a p a r a m e t e r  5 i n c l u d e o ~  in t h ~  r e i n f o r c e m e n t  

s c h e m e  T o f  t h e  s t o c h a s t i c  a u t o m a t o n  B s u c h  t h a t  t h e  f o l l o w i n g  e q u a l i t y  

h o l d s :  

lim lim E b a ( t ) ]  = 1 
.6+0 t +- 

On the other hand, the extensions of Definitions 2 and 3 can not be easily 

given. Presumably, we need a different interpretation. 

&-OPTIMAL REXWORCQlIENT SCHEME UNDER THE NONSTATIONARY 
KULTI-TEACHER ENYIRONbinmT 

The GAE reinforcement scheme (Baba 1983) has been introduced as a 

class of learning algorithms of stochastic automata operating in a multi- 

teacher environment which emits 0 (reward) or 1 (penalty) responses. Thi.s 

scheme can not be applied to the S-model environment in which teachers 

emit arbitrary responses between 0 and 1. 

In the following, let us propose the MGAE scheme which can be used for 

the S-model environment. 



MGAE SCHEME: 

Suppose that  y ( t )=y i  and the responses from NMT are (sf ,si , . . . ,sk).  

($(j =1,  ..., n )  means the  response from the j t h  teacher.) Then. 

sf +...+ s; 
P j ( t + l )  = f i ( t )  - [ ] iPj[P(t)II ( 1 5 )  

sf +...+ s; + 11 - 
n 1 t+,[p(t)]I ( j  

where (p,,$,(i=l,..,~) satisfy the  following relations. 

PI[P(t 11 - PZ[P(t ) I  - = . . .  = P ,  [P(t  >I  
P l ( t )  p z ( t )  P, ( t  ) 

= A[P(t ) I  ( 1 6 )  

p=(t)  + 2 ( ~ j [ P ( t ) l  > O  
j t i  



As to  the  learning performance of the MGAE reinforcement scheme, the 

following theorem can be obtained. 

THEOREM 1. S u p p o s e  that A [ P ( ~  ) ]  = d l h [ P ( t  ) ]  j ($>o) ( 1 9 )  a n d  

p [ ~ ( t ) ]  = I J i j i [ ~ ( t  ) ]  (20 ) ,  w h e r e  A [ P ( ~  ) ]  a n d  j i [P( t )]  a r e  b o u n d e d  f u n c -  
- 

tions w h i c h  s a t i s f y  t h e  f o l l o w i n g  c o n d i t i o n s :  A [ P ( ~  ) ]  l 0 ( 2 1 ) ,  j i [ ~ ( t  ) ]  I 0 

(ZZ), a n d  ) ; [ ~ ( t ) ]  + P [ P ( ~ ) ]  < 0 (23), f o r  a l l  ~ ( t )  a n d  t .  

Then, the  stochastic automaton I3 with the MGAE reinforcement scheme 

is E-optimal under the nonstationary multi-teacher environment NMT satisfy- 

ing condition (5). 

Since the  proof of the  above theorem is rather lengthy, we will begin by 

deriving several important lemmas. 

LEMMA 1. & . p o s e  that a l l  o f  t h e  a s s u m p t i o n s  o f  t h e  a b o v e  t h e o r e m  

h o l d .  T h e n ,  t h e  MGAE r e i n f o r c e m e n t  s c h e m e  has t h e  f o l l o w i n g  l e a r n i n g  

p e r f o r m a n c e  u n d e r  t h e  NMT e n v i r o n m e n t  s a t i s f y i n g  c o n d i t i o n  (5): 

P r o o f .  For notational convenience, let us abbreviate time t and pro- 

bability vector P ( t )  as follows: 

Let Filt ( C )  be the  distribution function of 

Then, the  conditional expectation Elpa( t  + I ) /  P ( t ) j  can be calculated as 

follows: 

+ 2 pj f [Pa - [ ( p a )  + ( I - c ) $ ~ I  q , t  ( c )  
j # a  0 



Let 

Then, using the relations (16) and (17 ) ,  the above equality can be 

represented as: 

From the definition of the distribution function F k , l ( t ) ,  and from condi- 

tion (5), 

Let 

Then, from the  relations (19) (29), we can get 

ECpa( t+l )I /  P ( t ) I  S P , ( ~ )  + [ h + ~ I ( l - , ) p , [ ~ , ( t )  - Cg(t ) I  r p , ( t )  

[ ~ , ( t )  - Ce( t )  < 0  and h+p < 01 (30)  

Remark. (30)  is the Semi-Martingale Inequality (Doob 1953). From 

this inequality, we can get E[pa( t  + l ) ]  I E b , ( t ) ]  for all. t .  This means 

tha t  the mathematical expectation p,(t) increases monotonously with 

time t .  



LEMMA 2. ,%ppose that  all of the assumpt ions  of the theorem hold. 

Le t 

p , ' ( t )  = l - P , ( t )  (32)  

m e n ,  there exists  some  positive constant z which  satisf ies the  inequal i ty  

~ f h , , + [ P ~ ' ( t + l ) ] /  ~ ( t ) j  I hz, . IP[pa' ( t )]  for all t and P ( t )  

R o o f .  The conditional expectation ~{h,,+[P,'(t + l ) ] /  P ( t  ) j  can be 

calculated as follows: 

E t h z , ~ [ P a f ( t  + I ) ] /  P ( t ) j  = JC-1 (33)  

where 

Assume that 

IXt3I <01 (ol : positive cons tan t )  (34)  

Then, by using Taylor's expansion theorem, t h e  following two inequalities 

can be obtained: 



ezP [zp , (~h- ( l -O~)I  5 1 +zp,(th-(l-OF) 

+ 20, ( h t j i  x2pa[ezp ( z o , ~ ) ]  

From (33), (35), and (36), we can get 

where 

f I ( ~ . P )  = 4 z  Olp,'[ezp(2~1z)] 

From (28), 

6 In the  above equality (39), lim 4z01exp(201x) = 0, p a a '  (x+pI 1 0, and - 
z +O n 

is a positive constant. Hence, there exists some positive constant z 

which satisfies the inequality 

LEMMA 3. Sppose  that all of the assumptions of the theorem hold. 

men,  the MGAE reinforcement scheme has the following convergence p r o -  

perty under the nonstationary multi-teacher environment (NMT) satisfy- 

ing condition (5): p,(t) converges with probability 1. f i r t he r ,  let 

lim p,(t ) = p: with probability 1. men, pz = 1 o r  0 with probability 1. 
t +m 



Proof .  I pa ( t )  1 I 1 for all t .  Then, from Lemma 1, p a ( t )  converges 

with probability 1 (Doob 1953). Now we will prove tha t  pz  = I o r  0 with 

probability 1. Assume tha t  there is a region D such tha t  p(D)$O and 

O<pz <1 in D. I t  follows from (30) tha t  

Since p,(t ) converges with probability 1 to p f  and (p,(t  ) 1 I 1 for all t ,  

lim E[p,(t)] = Ekf] 
t - -  

(42) 

Hence, 

lim f ~ [ p . ( t  +I)]  - E[p,(t)]j = l im.E'ka(t+l)]  - lim.E'[pa(t)I = 0 (43) 
t +- 1 -- t -= 

Let 

h t u  < -G (G>O) 

Then, from (28), 

I t  is clear from (41) t h a t  (43) is incompatible with (44). Therefore 

p: = 1 o r  0 

with probability 1. 

Taking advantage of t h e  above three lemmas, the  Theorem can  easily be 

proved. 

Proof.  From Lernma 2, 

hZsba1(D)1 2 j h z , + b a s ( l ) l  du 2 . . 
n 

Consequently, 



Since 1 h z , + b a ' ( t ) ]  ( is bounded above ( < I ) ,  

lim / h,,g[pa'(t ) ]  d u  = / lim h, , J p a 1 ( t ) ]  du 
t +- n t +- 

Let 

p f  = 1 7 :  

Then, from lemma 3, 

p,B = O W  1 

with probability 1. Since hz ,+(p)  is a continuous function of p ,  we obtain 

the  following equality: 

with probability 1. Furthermore,  

O < h , , * ( p ) < l  whenO<p<l (51)  

hz,,,(0)=O2 h , , + ( l ) = l  

I t  follows from (49 )  and  (50)  tha t  

lim t +m h Z , + b a 1 ( t ) l  = P! 

with probability 1. Therefore, from (46 ) ,  (47) ,  and (52) ,  

q,+b.'(o)I 2 J p t  du 
n 

I t  is  clear t ha t  

I z (7-1)  1 
.I9 

1-1 
h m  h,,d[pa'(0)] = lim = o 
d+o d +o e z p [ z l - l  z 

Hence, from (53) =and (54) ,  

l im lim ~ b ~ ( t ) l  = 1 
d + 0  t +- 



APPLICATION TO NOISE-CORRUPTED, LWLTI-OBJECTn'E PROBLEM 

In this section, me consider a parameter self-optimization problem with 

noise-corrupted, multi-objective functions as an application of learning 

behaviors of stochastic automata operating in an unknown nonstationary 

multi-teacher environment. 

Suppose the Jl(a) ,..., and J,(a) are unknown objective functins of a 

parameter a € [ a l ,  . . . ,a,] except that  they are  bounded 

(-M<Jl(a), ..., J , ( a ) s ~ ) .  I t  is assumed tha t  measurements of ~ ~ ( a )  ( i = l ,  ..., n )  

can be obtained only from the  noise-corrupted observations. 

Here, 4 (a) is assumed to have unique maximum 4 (aa(): 

Ji(aBi) = max [ 4 ( a l )  ,..., Ji(a,)] (56) 

Each objective function Ji(cx) has the  claim to be maximized ( i=l .  ..., n) .  

However, generally, the  relation aB1 = aaz = . . .  - - "8, does not hold This is 

one of the  most difficult points of multi-objective optimization problems. 

The learning behaviors of stochastic automata operating in the last sec- 

tion can be used to find an  appropriate parameter in this problem. Let us  t ry  

to  identify the  i t h  action yi of stochastic automaton B with the i t h  parameter 

value ( i = 1 ,  ..., 7 ) .  Choosing the  i t h  parameter ai at  time t  corresponds to B 

producing the output yi a t  time t .  For simplicity, we consider the stochastic 

automaton B under P-rnodel environment. 

Let ki be a measurement of g j ( a . t )  at  time t .  Further, let 

q ( t  =0.1, ...; j = 1 ,..., n )  be defined as  



Using these values, we define reward and penalty as follomrs: 

Suppose ihat  a ( t )  = ai (i=l, ..., r ) .  If k j 2 i j - l ,  then the stochastic automa- 

ton 3 receives reward response ,$ = 0 from the j t h e  teacher Rj ( j = l .  ..., n). 

(This means that the j t h  noise-corrupted, objective function J j ( a )  gives an 

affirmative answer to the parameter a,.) 

On the contrary, if kj<F/-], then the stochastic automaton B receives 

penalty response ,!$ = 1 from Lhe j t h  teacher R, ( j  =l,  ..., n). 

The stochastic automaton chages the state vector ~ ( t )  to ~ ( t  + I )  by the 

n responses (q ,..., s:) which it has received from the n teachers R1, . . . , and 

R,. 

Now let us consider the learning behavior of 3. If the parameter ai is 

selected a t  time t ,  B receives penalty from the j t h  teacher Rj with the  proba- 

bility 

From (55), 

( p 6 ( ' )  is the distribution function of t j  (j=l. .... n).) 

Since Ji (a)  is assumed to have unique maximum $(a  ), Pj 

for  all Rl and all a (aPj#a) G=13- - .1n)  

(See Figure 3.) 

Let 

The reason why we use  the notation q ( t , w )  is to  represent the probability that  

stochastic automaton B receives penalty response from the j t h  teacher when 

i t  selects the i t h  parameter ai at  time t .  (Here, UER, R being the supporting 

set  of the probability measure space ( R,E,u) .  



Figure 3. The value of (1-p[b(t ) < - Jl(ap,)]]. 



- 
(~[P(o)  ,..., k?] is the smallest Borel field of w-sets with respect to which 

P(0) ,..., and @ are all measurable.) is the smallest Borel field which con- 
m 

tains u 4. 7~ is the probabi1i.t~ measure which satisfies u ( R )  = 1.) 
t =O 

Therefore, it follows from (56), (58), (59), and (60), that 

for dL t ,  dL i (i=l, ..., r ;  i#,f?.), all w E R, andsome positive number 6, b=l ,..., n )  
I 

If the  strict condition 

holds, then i t  can be easily derived from (61) tha t  

for all t , all i (i= 1, ..., r ;  if.@*), aLL WER, and the positive number 6 

Therefore, using the theoretical results obtained in the last section, we 

can prove that 

lim lim E[pgc(t ) I  = 1 
d+O t +- 

is ensured by the  MGAF, reinforcement scheme. 

Even if the strict condition (62) does not hold, the MGAE reinforcement 

scheme finds the  parameter a which satisfies the relation (5). (The result 

obtained so far is a generalization of the work done by Baba (1978).) 

Remark: Although we have used P-model, all of the studies done in the 

last section can be applied to this case. 



CONCLUSION 

We have discussed the learning behavior of stochastic automata under 

the  nonstationary multi-teacher environment (NMT) in which penalty 

strengths a re  functions of t and o, where t represents t ime and o is a point of 

the  basic w-space R. I t  has been proved tha t  the  MGAE reinforcement scheme, 

which is an extended form of the GAE reinforcement scheme, ensures E -  

optimality under the nonstationary multi-teacher environment (NMT) which 

satisfies condition (5). We have also considered the parameter  self- 

optimization problem with noise-corrupted, multi-objective functions by sto- 

chastic automata and showed tha t  this problem can be reduced to the  learn- 

ing behaviors of stochastic automata operating in the nonstationary multi- 

teacher  environment (NMT) satisfying condition (5). 
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