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PREFACE

The development of optimization techniques for solving complex decision
problems under uncertainty is currently a major topic of research in the Sys-
tem and Decision SciencesArea at IIASA, and in the Adaptation and Optimiza-
tion group in particular.This paper deals with a new approach to optimization
under uncertainty which tackles the problems caused by incomplete informa-
tion about the probabilistic behavior of random variables. In contrast to the
usual approach, which is to assume that probability distributions are known,
the authors consider the more common case which arises when the informa-
tion available is sufficient only to single out a set of possible distributions. The
resulting optimization algorithms can be used in reliability analysis,
mathematical statistics and many other fields.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences
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ABSTRACT

The main purpose of this paper is to discuse numerical optimization pro-
cedures, based on dualily theory, for problems in which the distribution func-
tion is only partially known. The dual problem is formulated as a minimax-
type problem in which the "inner" problem of maximization is not concave.
Numerical procedures that avoid the difficulties associated with solving the
"inner" problem are proposed.
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1. INTRODUCTIOK

A conventional stochastic programming problem may be formulated with

some generality as minimization of the function

T(z) = Eyv(z.y) = fv(z.y)dH(y) (1)
subject to
z e XCR" (2)

where y € Y C R™ is a vector of random parameters, H(y) is a given distribu-
tion function and v(z , -) is a random function possessing all the properties

necessary for expression (1) to be meaningful [1].

In practice, we often do not have full information on H(y); we sometimes
only have some of its characteristics, in particular bounds for the mean value
or other moments. Such information can often be written in terms of con-

straints
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Q% (H) = E,q* (y) =4qk(y)dff(y)é0= k=1 (3)

édH(w =1, (4)

where the ¢g*¥(y), k = 1,1, are known functions. We could, for example, have

the following constraints on joint moments:

T T
< ) m
CT]-TZ ..... Tm ~— 1 Ym™ = CTI-TZ ..... Tm (5)
where C c are given constants.

TI'TZ.....Tm' ‘rl,'ra_m.‘rm

Consider the following problem: find a vector z which minimizes
T{z)=max [v(z,y)dH(1 , 6
(z) = max [v{z.y)dA () (6)

subject to constraints (2), where K is the set of functions H satisfying con-

straints (3) and (4).

Special cases of this problem have been studied in [2], [3]. Under certain
assumptions concerning the family X and the function v{:), the solution of the
"inner"” problem has a simple analytical form and hence (6) is reduced to a
conventional nonlinear programming problem. The main purpose of this
paper is to discuss numerical methods for the solution of problem (6) in the
more general case. Sections 2, 3, and 4 deal with the reduction of this prob-
lern to minimax-type problems without randomized strategies and describe
numerical methods based on some of the same ideas as generalized linear pro-
gramming. A quite general method for solving the resulting minimax-type
problems, in which the inner problem of maximization is not concave, is con-

sidered in Section 5.
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2. OPTIMIZATION VITH RESPECT TO DISTRIBUTION FURCTIOKS

The possible methods of minimizing T{z) depend on solution procedures
for the following "inner” maximization problem: find a distribution function H

that maximizes

Q%(H) = Eq%%y) = [q%y)dH(y) (7)
subject to
Q*(H) = Fg*(y) = fq*(y)dH(y) < 0.k =11 (8)
JaH@y) =1 , )
Y

where q¥ ,v = 0,l, are given functions F™ - Rl. This is a generalization of
the known moments problem'(see, for instance, [4-8]). It can also be

regarded as a generalization of the nonlinear programming problem

max {g%y):q*(y) =0,y € ¥,k =TI}
to an optimization problem involving randomized strategies [7—9].

It appears possible to solve problem (7)—(9) by means of a modification of
the revised simplex method [8,10]. This modification is based on Krein's

"geometrical approach” to the theory of moments [1,5,6]. Consider the set

Z=tz:z = (q%y), ¢*(¥)....q' (¥)) .y € 13

and suppose that Z is compact. This will be true, for instance, if ¥ is compact

and functions q¥ , v = 0,1, are continuous. Consider also the convex hull of Z:

N N _
co Z=}{z:z = E'ptzt,ztEZ, Yo, =1,p,=0,t =1LN} ,
t=1 t=1

where N is an arbitrary finite number. Then general results from convex

analysis lead to

co Z = {Q = (Q%H) . @ (H)....@ (M) |H=0, fdH =1} . (10)
Y
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Therefore problem (7)—(9) is equivalent to maximizing z g subject to

z =(zg2y...2;)€c0Z, 2, <0,k =11
According to the Caratheodory theorem, each point on the boundary of co Z

can be represented as a convex combination of at most I + 1 points from Z:

L+1 . _ L1 _
coZ=1{z:z, = 3,9%(y')p; v =01,p; =20, },p; =1,y €]
j=1 i=1

Thus problem (7)—(2) is equivalent to the following generalized linear pro-

gramming problem [11]: find points yj €eY,j=14t,t<l +1 and real

numbers p; ,j = 1,f, such that

4 .
Y 9%y7)p; = max (11)
j=r
subject to
t .
Y 9F)p; =0k =11, (12)
i=
¢ o
Lpi=1,p;=20,j=1t . (13)
i=1

Consider arbitrary points g7j .7 =1,1+1 (setting £ =1 + 1) , and for the fixed
set 2371@2, . ,'_17“1} find a solution p = (J—)l,ﬁz, .. ..By 41) of problem (11)—(13)
with respect to p. Assume that p exists and that (uw,u,, ..., u;,) are the

corresponding dual variables, i.e., solve the problem

min u; ;4 (14)
subject to
omiv o i _
go(F7) — Ly q (W) —upy < 0,5 = L1+1 (15)
k=1
ukEO,k::T.—l . (16)

Now let y be an arbitrary point of Y. Consider the following augmented
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problem of maximization with respect to (p],pz ..... Py 4+1.p ) Maximize

LS R 0
29y p; + 9%(y)p (17)
i=1
subject to
el . —
e @p; +qfylp =0k =11 (18)
i=1
L +1
p; +p =1 . (19)
i=1

It is clear that if there exists a point ¢’ such that

0, %) _ SN k(Y o
gy - Yy g®y") —y >0
k=1

then the solution p could be improved by dropping one of the columns
@@y, ¢ @5 .. ... qt(g?), 1), j = 1,l+1 , from the basis and replacing it by
the column (g% *).q¥y *).....q* (¥ *),1). j = 1,I +1 , following the revised sim-

plex method. Point ¥ * could be defined as
. _ 0 E k
y  =arg max[q%(y) - P g g®(y)] . (20)
yeY k=1

Then a new solution p * of (11)—(13) with fixed ¥y = ¥ * can be determined in the
same way as p, together with the dual variables = °. This method gives us a
conceptual framework for solving not only (6) but also some more general

classes of problems.

If y(z) =@ z) y3=z).y** U z)) . plz) = (ps(z) . pa(z)sppaa(z)) is @
solution of the inner optimization problem for fixed z, then the function (8)

may be nondifferentiable with subgradient

T(z) = 3o, (2.4 (2)py(z) .
7=
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where v, is a subgradient of function v{-, ¥). Nondifferentiable optimizetion
techniques could therefore be used to minimize T{(z). The main difficulty of
such an approach would be to obtain a solution of {(20) and exact values of
y{(z), p(z) at each current point z% for iterations s = 0,1,... This last difficulty
can sometimes be avoided by dealing with approximate solutions rather than
precise values y{z), p(z), and using ¢-subgradient methods (see [12],[13]).
Generalized linear programming methods which do not require exact solu-

tions of subproblem {20) are studied in Section 4.

3. DUALITY RELATIONS

The duality relations for problem (7)—(9) enable us to find a more general

approach to the solution of problem (6). Consider the following problem:

!
min max [¢%y) - Y w. 0% ()] . (21)
uel* yel k=1
where
Ut = fuu =(upug ... ) =20,14 =1,m]

This problem can be regarded as dual to {7)—(9) or (11)—(13), but to explain
this we must introduce some more definitions.

In what follows we shall use the same letter, say H, for both the distribu-
tion function and the underlying probabilistic measure, where this will not
cause confusion. We shall denote by Y*(H) the collection of all subsets of ¥

which have positive measure H, and by dom H the support set of distribution
H  ie.,
domH= 1 A

AeYH(H)

Set

¥(w) = max [1%) = 3 upq* )]
yey k=1
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Ul =tu’:u’c U, ¢u’) = min y(u)]
uel*

l
Y{u)={y:ye?, ¥u)=q% )~ Y upg®{y)
k=1

Then the following generalization of the results given in [14] holds.

Theorem 1. Assume that

1. Yis caompact and g¥(y ), v = 0,0 , are continuous.
2 intcoZ # ¢
Then

1. Solutions to both problem (7)—(9) and problem (21) exist, and the optimal

values of the objeclive functions of both problems are equal,

2. For any solution H" of problem (7)—(9) there exists au” € U" such that

. ¢ . v
dom H' ¢ ¥{(u')

In other words, the duality gap vanishes in nonlinear programs with random-
ized strategies. A proof of this theorem can be derived from general duality
results [12,15] and the theory of moments [5]. The proof given below is close
to the ideas expressed in [12] and illustrates certain connections with results

from conventional nonlinear programming.
Proof. From {(10), problem (7)—(9) is equivalent to
max {zg:z = (2,.25...2;) €EcoZ , 2, <0,k =11} (22)

where Z ={z:z2 = (¢%y).qNy).....q" (¥)) .y € ¥Y}. From assumption 1 of
Theorem 1, co Z is a convex compact set and therefore a solution
z°=(zg.zy,...,2") to problem (22) exists. Let L{u.z) be a Lagrange func-

tion for (22):

4
Lu,z) =25~ ) uz
k=1



From assumption 2,

] . .
zg = max_min L{w,z) = min max [L(u.,z)
z€co JyelU* uwel/+t z€co Z

According to (10), there exists for any z € co Z a distribution 4 such that

2, = [q¥(y)dH(y) . fdH(y)=1,v =0l
Y ‘ Y
We therefore have

Mmd=EwJﬂ=4bWw—§h%#@HMﬂw
=1
and

max L{u,z) = max {L(u,H)|H>0, de(y) =13
Y

z€co Z

Obviously

l

max { fTg%y) = Y weg*(¥)1dH(y)|H =0, [dH(y) = 1
Y k=1 _ Y

= max[°0) - Lua* @)l
which proves the first part of the theorem.
Under the assumptions of the theorern we know that for any solution
(zg.....2;) there exists au € U’ such that
w0 = oy, hu’e)

Thus, for any optimal distribution H® we have

* l *
[ 9%)aH" (y) =max { f[q%y) - 3 v q* @)dH(y) | H=0, [dH(y) =1 §=
Y Y k=1 Y
[9%) ~ ¥ uls* )]
max - u
vey gy K= d \Y
which proves the second part of the theorem.
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Femark 1. From the duality theorem above w e have

4

o733

w, 7% (y)]

max | v{z,y)dH(y) = min max |v( z, -
HEKf( y)dH(y) uewyey[( y) 1

k

[}

for each fixed z € X, where v(z,) is a contitquous function. Problem (8) can

then be reduced to a minimax-type problem as follows: minimize the function
< k
Yz, u)=max[viz,y) — ) uq*(y)]
yEY k=1

with respect tor € X, u = 0.

Remark 2 Theorem 1 can be used to charac terize optimal distributions for a
variety of nonlinear optimization problems with distribution functions. The
approach is, first, to state necessary optimal.ity conditions through lineariza-

tion and then to apply Theorem 1. This is illusitrated in the following example.

Consider the optimization prcblem

maxgo(H) (7a)
g*(H)<0 , i=1Tm - (8a)
4 dH(y) =1 (9a)

where g(H) , i = 1,m , are nonlinear funct:ionals depending on distribution

functions H with support set Y.
Theorem la. Assume that the following stoter nents are frue;
1. Set Y is a compuact subset of Fuclidean spac:e R™.

2. For any distributions H, = Hy such that dom H;CY, , dom Hy C Y, we

have

g (H; + a(Hy— H))) = g*(H)) + a_{: g (y..H)A(H, ~ H)) + (. H, . Hy)

_ (o, Hqy, Hy)
wherei =1,m , a<[0,1] and le-»()asa*&
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3. Functions q*(y,H) are continuous in y for every H such thet dom HC Y ;

for any H, , Hy such that dom H, ¢ Y, dom H, C Y we have

lqi(y.H,) - q"(y,Hz)lslfY>\i(y,H],Hz)d(H1 - Hp)|
where | Ny .Hy.Hp) l< K < w for some K which does not depend on H,, H,.

4. Punctions gi(H) , i = 1,m, are convez, i.e.,

gi(‘lel + agHy) < o9 (Hy) + agg (Hp)

20, 020, a;+a3=1

5. There exists an H such that dom H C ¥ and gi(.F_I) <O fori=1m .
Then :
1. A solution of problem (70)—(9a) exists.

2. For any such solution H' we have

[ 9%y .H")dH" = min p(u,H") |
Y uel
where
. 0 » m i .
p(u.H") =max [ q%(y.H") - Y u;q*(y.H")]
VEY i=1
8 If H' is a solution of (7a)-(%) then for some u' we have

dom H' c Y'(u',H") . where

¢(uw*,H") = min o(u,H")

uel*

Y'w.H)={y:yeY,puH) =q%y.H) - ﬁuiq"‘(y.H)I

i=1

Thus, the main assumptions of this theorem are the existence, continuity
(in some sense) and boundedness of the directional derivatives of functions

gi(H).
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The following theorem is analogous to known results in linear program-
ming and provides a useful stopping rule for methods of the type described in

Section 2 (see also Section 4).

Theorem 2. (Optimality condition) Let the assumptions of Theorem 1 hold and
let p be a solution of problem (11)—(13) for fized
y=(g' ¥ . ... gt) . ¥ € R**™. Then the pair y,p is an optimal solution of
problem (11)-(13) if aend only if for given ¥y there ezists a solution
(W1 2g, . . ., Uy 4q) of problem (14)—(16) such that
g%y) -kZlI L q*(y) ~ %, <0 forall y €Y
=1

Proof

1. Suppose that ¥,p is an optimal solution of problem (11)—(13), that
(wf.eg....styy, ) is a solution of problem (14)—(186) for given ¥, and that
— . 0 L k | 0 b k
4y = min max [¢%(y) - Y e q*(y)] = max [¢%(y) - Y & 9" (¥)]
uel* yeY k=1 y€Y k=1

We shall show that &, Uy, . . ., U4 is a solution of problem (14)—(186). Consider

the two functions:

L
Y(u) =max [q%y) — ¥ wq®¥(y)] .
yEY k=1

Ld _
¥i(u) = max [g%7) - ¥ e g* ()]
According to Theorem 1
£ or—ine )
Y 7%%? )p; = miny(u)
i=1 uelU*

Since problem (11)—(13) is dual to problem (14)—(16) for given ¥, then

£
Jj=1

q%y7 )p; = miny,(u)
uelU+ 7
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Therefore
Y(@) = miny(u) = miny,(u) =9 (u”) =uy; (23)
uel* uel*
where
w’ = (uyug..y)

Since gf €Y.,j=1t, then w,{(u)<y{u) for w €U" In particular,

¥,(#) < ¥(w). But (23) implies
Yy(u) = miny,(uw) = y(u)
uel*
and this gives ¥,(%) = y(u) = ¥,{(u *). Hence (Zy,25, .. ..U 4,) is a solution of
problem (14)~(186).

2. Suppose now that for given ¥ there exists a solution (u;u,, .. ., i ,,) of

problem (14)—(18) such that

g%y) - Y g q*(y) -4, <0,y €Y

4
k=1

From the duality between problems (11)—(13) and (14)—(16) we have

3 4T = @)
i=1

where p = (p;.Pa . . . .J;) is a solution of problem (11)—(13) for given y. On

the other hand, the duality between problems (21) and (11)—(13) leads to the

inequality
t o _
Y g%y)p; = p(a) .
i=1
for any {y1ly2 ... .y!].p satisfying (12)—(13). In other words,

¢ . ¢ .
Y 9%’ )P; = ) g%y’ )P;
i=1 =
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and this completes the proof.

The next theorem provides a means of deriving a solution to the initial
problem (7)—(9) from a solution of problem (21), and is complementary to

Theorem 1.

Theorem 3. Assume thal the assumptions of Theorem 1 are satisfied and that
Y(i2) =min {P(u)|u € UY. Let ¥ =(y %% ... .4*), where § € Rt*™ and
gt € Y(i£), and let © be a solution of problem (11)-(13) for given §. Suppose
also that there is a solution p° to the inequalities (12)—(13) for yi =57 such

that

o

<
1t
-

qk(gj)pj's 0,k €1l (24)

e

¢ (@ )p =0, ke, (25)
1

where [+=ikli]c >0; N 10-_—5]6'17’: :0;_

<
n

Then the pair y,p is an optimal solution of problem (11)—(13).
Proof. The vectors

9(7) = (' @) . —¢¥F)..—q* (@) . j = 1k
are subgradients of the convex function
% weg* ()]

_ O(=3y _
Yi(u) = 1r;l;:ﬂsxt[q (¥?) )

at a point 2. Therefore condition (25) is necessary and sufficient for point @
to be an optimal solution, i.e., so that

¥,(&) = minfy,(u)|u € U
Then, from (24),

min {¢,(u)|u € UY} = ¢(&) = min{y(u)|u € U¥] . (28)
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The minimization of y,(u).u € U*, is equivalent to problem (14)—(16).
Hence uw = (U, 4y, . .., %) together with ;. ; = ¢,(2) give a solution of prob-
lem (14)—(16). Since problem (14)—(18) is dual to problem (11)—(13), then
problem (11)—(13) has a solution, say p = (p;.05 . .. .P;). and

ju— t 0 — —
%1 = gAY D)
j=i
This together with (26) yields
£ or—in— _ .
Y 9%(y?)p; = min{y(u)|u € UY
i=1

and this completes the proof.

4. ALGORITHMS

Theorems 2 and 3 justify a dual approach to problem (7)—(9) which may
involve simultaneous approximation of both primal and dual variables subject
to (24)—(25). In this section we consider several versions of generalized-
linear-programming-based method discussed briefly in Section 2. In all cases
the current estimate of optimal solution satisfies (24)—(25) at each iteration.
The convergence of such algorithms has been investigated in a number of
papers [18], [11], under the assumption that the initial column entries for all
previous iterations of subproblem (24) and the exact solutions at each itera-
tion are stored in the memory. There are various ways of avoiding this expan-
sion of the memory, mainly through selective deletion of these columns
[17—19]. The aim of this section is to discuss a way of avoiding not only the
expansion of the memory, but also the need to have a precise solution of (20).
The last is important in connection with initial problem (6) as mentioned in

Section 2.
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Description of Algorithm 1

0,1.,02

Fix points y91,9402, . 40+1

and solve problem (11)—(13) with respect to p

for y/ =y% ,j =11+1. Suppose that a solution p® =(p%p2, .. .p5%,) to
this problem exists. Let 490 = (ulo,ug,...,uﬂ_l) be a solution of the dual prob-
lem (14)—(16) with respect to u. The vector 10 satisfies the following con-

straints for y € §y%1,40%, .. y0t .

i
¢%y) - Y ufek(y) —yu <0, uf=0 | (27)
k=1

If u0 satisfies condition (27) for all ¥ € Y, then the pair {y%1,y02, . . 40+ 20
is a solution of the original problem (11)—(13). If this is not the case, consider

a new point ¥% such that
i
My%u®) = ¢°W°) - 3 vl¢* (%) -5, >0
k=1
and

i i
g°w%) - Y v 2% (y%) = max[q%y) - ¥ vlq*(y)] - 2
k=1 yEY k=1

for some gy > 0.

Denote by p1 =(p11,p21....,p11+1) a solution of the augmented problem

(17)—(19) with respect to p for fixed 77 =y% ,y =% We shall use

1,1,,1,2

Yoy ,....yl'“'1 to denote those points 'yo'l....,yo'“'1

.'yo that correspond to the

basic variables of solution pl.

Thus, the first step of the algorithm is terminated and we pass to the next
step: determination of ul.yl. etc. In general, after the s-th iteration we have

pOil’ltS ys .l'ys ,2'_"’ys A1

, a solution p% = (p§.p$.....p5;,) and the corresponding
solution u® = (uf§,u$,...,uf,,) to the dual problem (14)-(16). For an g > 0,

find y® such that
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1
MyS.u®) =q%y®) - 3 ufg*(ys) —ufy, >0
k=1

and

i
Z ulqu(y)] — &5

i
q%y°®) - Y uig*(y®) = max[gUy) -
vey k=1

k=1
If we do not obtain A(y®,z®) > 0 for decreasing values of g, we arrive at an

optimal solution; otherwise we have to solve the augmented problem (17)—(19)

forg? =y%9 .y =y°.

s+1,1,,s+1,2

Denote by Y LySHLLH those points from

Yy

2

fySLy®2 . ySt* Uy that correspond to the basic variables of the solution

s+1,1 ,,5s+1,2 .

] ys+l.l+1; ps+1

ps*l. The pair {y y is the new approximate solution

to the original problem, and so if A{y®,u%) < 0, then (according to Theorem 2)

2,...ySt*Y |, pS is the desired solution. Define

the pair {yS'1,yS
Iso =k = 0], L} =tk > 0}

and

A, =fee =(ejep....e;), |le|] =1,e, =0 for k € L® and

arbitrary e, for k € L}

A is actually a set of feasible directions for set U* at point uS. Let

l .
7s =max min Y g¥(ysJ)e,
ecA, Jpf>0k=1

Note that v, is always less than zero because
co g (y*9).g¥(y"9).ngt (y¥4)) . Wi :p§ > 03

is a set of subgradients of the function

d .
max {g%ys9) - 3w (yS )
jipf>0 k=1
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at point «%, and this function has a minimum at «*5.

In order to prove that this method is convergent we require, broadly
speaking, that 7, < 0 and tends to zero only as we approach the optimal solu-

tion.

Consider the functions

1 .
¥ (u) = max [g%0ys+7) = 3 u,q*(ysd)]
SJSl""l k=1

Theorem 4. Let the conditions of Theorem 1 be satisfied, and the following

additional conditions hold:

1. There exists a nondecreasing function 7(t) ,t € [0,%), 7(0) =0, 7(t) > O for

t >0, and

7s < —T(P(u®) =y (u)) . (28)

e g >0,e,+0 for s » e

Then any convergent subsequence of sequence {y®lyS2,.. y5t* K p5 con-

verges to a solution of problem (7)—(9).
Proof

1. First let us prove that the sequence {u®} is bounded. Suppose, arguing by
contradiction, that there exists a subsequence §u°7} such that ||u* || » = as
r -» =, Assumption 2 of Theorem 1 implies that 'w(us") -+ o« and therefore that

Y(u®) — ¢ (u’r) » = , since ¥*"(u*") < miny(u). Hence, there exist ¥ and
uel+
6 > O such that forr > 7,
7s,, < -6
Now let us fix an arbitrary point « € U* and estimate ¢(uz). We obtain

v(2) 2'¢s'(17) z'ws"(us") + sup (g .2 -u®r)
geGT
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where G* is a set of subgradients of function ¥°" at point 7. The definition

of ¥° implies that

G

Sr

G, 2co (=g (y™ ) -g% ™). gt yT) YipT > 0)
and therefore (28) leads to
y(w) =P u’) + sug (g .z —-u’)=
ge s,

L ,
>y (u) + || — 45| | min max -3 equ(ys""))
A’r i:p{'>0 k=1

i
=¢°(u®) — ||z - v’ | [mex min Y e,g*(y""")

€4, i:p T >0k =1

=Y (u’) + 6] | —u’ |

This last inequality yields %(%) = = if | |[u*"|| » =, and therefore sequence

fu%{ is bounded.
2. We shall now estimate the evolution of the quantity wg = ¢® (u®), where

uS = arg miny® (u)
uelt

Using the same argument as in part 1 of the proof we obtain:

Wy = ,¢S+1(us+l) = ¢s(us+1)
>9S(us) + sug(g LuSt —ys)
gEel,
i .
=95 (us) + | |us*! —u¥||min max (— ), equ(ys"'))
€4 ip!>0 k=1

i .
=y5(u®) - | |u®*! —u®||max min ) e, q%(y**)
€EA; i:pf>0 k=1

=P (u®) + T(P(u®) — S ()| lus* —us ||

i ,
Sequence {uS =g is bounded and so y(u¥) = su}}),(qo(y) - Y ufq*(y)) must also
VE i=1

be bounded; thus ¢°(u®) is bounded since ¥5(u®) < ¥(u®). This together with

the previous inequality immediately gives
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min {P(u®) = ¢S (u®), [|us*! —uS[|}j >0 . (29)

Now consider any convergent subsequence {u®"} of sequence {u®]. We can
assume from (29) that either | |u® —u5*1|| 50 or Y(®) - (u®) -0 . In

the latter case we get ¥~ (u®) » miny(u) =4° because Y(u™)=y" and
uel*

¥ (u*) < 9°. In the case | |u’ — w51 | 5 0we get the following:
P(n) 97 (@) = P -9 W) + 9T W)

_ws,+1(us,+1) +¢s,+](us,+]) _¢s,+1(us,)

SES Sr+1||

sup |lg]|]

+ | |u™ ~u
T ge s, +1

so that once again ¥{(u™) — ¢ (u") - 0 and we obtain ¥* (2*) > miny(u).
uel?

However, according to Theorem 1 min4(u) is the optimal solution of the ini-
uel?t

tial problem; min¥®(u) is the optimal solution of problem (11)—(13). There-
uel+

fore the solution of (11)-(13) tends to the solution of the initial problem, and
any convergent subsequence of sequence {y5:1,y5%, ... ySt*1} pS . where

s = 0,1,... converges to the optimal solution of the initial problem.

This method can be viewed as the duél of a cutting-plane method applied
to problem (7)—(9) [12,18,20]. It drops all points % which do not correspond
to basic variables. Theorem 4 shows that in some (rare) cases this method
does not converge; however, this is not surprising because in certain cases the
simplex method does not converge either. It may be possible to modify the

algorithm in different ways to ensure convergence.
If we keep all previous points yo'l.yo'z, C .yo'“l,yo,y 1,... and solve prob-
lem (14)—(18) with an increasing number of corresponding columns, then the

method appears to be a form of Kelley's method for minimizing function ¥(u),
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which converges under the assumptions of Theorem 1. However, it is impossi-
ble to allow the set of points to increase ad infinifum in practical computa-

tions.

In the following modification of the algorithm presented above some non-

basic columns are dropped when an additional inequality is satisfied.
Description of Algorithm 2

1. We first choose a sequence of positive real numbers {u . . take rq = 0 and
select initial points §y%1,y%%,...,y % *1} such that problem (11)—(13) has a solu-
tion with respect to p for yj = yo'j ,j =1,1+1. Let po be a solution of this
problem and u? be the corresponding dual variables. We then have to find y©°
such that

g%y% - ¥ udg*(¥®) = Y(u® -5 .

l
k=1

where g is a positive number. If for any g3 and the corresponding y% we have
l
Ay°u®) = ¢°0W%) - ¥ we*F (¥®) -uk, <0
k=1

then the pair §y%1,492,...,y%*1} , p0is an optimal solution of problem (7)—(9).
Otherwise it is necessary to select g, y9 such that A(y?, 2% > 0 and take

Ao = A(yo s 'u,o).

Suppose that after the s-th iteration we have points ys'j .Jj = 1.1, a solu-

tion p¥ = (p§.p%....p ) of problem (11)—(13) for yl =ysJ =11
corresponding solution u¥ = (uf,uj....uf;,) of the dual problem (14)—(16), a

positive integer number r¢ and a positive number Ag.

2. Find an approximate solution yg such that

l
(¢%%y®) - kz_luzqu» > P(u’) — g
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and

l
g%y®) - 2 uge*(y®) = My®.u®) >0

k=1

If this is not ;;ossible then we have arrived at a solution. Otherwise consider

the following two cases:
(a) A(ys'us) = (1 - /-‘"r.) A.s

In this case take Ag,q = Ay®.wu®),l;,y=1+1,75, =7,+1 and denote by

s+1,1 .. 5+1,2

y y LySTUE+L those points from  {ySlySE..ySttY UuyS  that

correspond to the basic variables of the solution p$*+1.
(b) A('ys-us) > (1 —/J'r')As

In this case take

As+1 = As : ls+1 = ls+1 ' Ts+1 =T

< - ,ys+1,j =ys.j , ] = 1'ls Y g41 =ys

Find a solution of problem (11)—(13) for t =l ,,,y? =y5*J ,j =11, and

s+1

the corresponding dual variables u , and proceed to the next iteration.

Theorem 5. Suppose that the condilions of Theorem 1 are satisfied and the fol-

lowing additional conditians hold:

1. gg>0,8, 20, 3 pg =0, e =0

s=0

2. gg/ g » 0

l .
Then 3 pqo(y°"*) = ug tends to the aptimal value of problem (7)—(9).
=1

1=
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Proof

1. Suppose that the inequality Aly®,u®) < (1 —,uT.s)As is satisfied only a finite
number of tires. This implies the existence of a number s, such that for
§ =5, the method turns into Kelley’'s cutting-plane algorithm for minimiza-

tion of the convex function ¥(u), where the values of 3/{u) are calculated with

an error that tends to zero. From assumption 2 of Theorem 1, ¥(u) has a

bounded set of minimum points and the initial approximating function '¢'s°(u)
has a minimum. Thus such a method would converge to the minimum of func-
tion Y(u) and A(y®,v%) < Y(u®) - ¥5(vS) » 0, which contradicts the assump-

tion that for s > s, the inequality A(y®.u®) < (1 - /,LTS)AS is not satisfied.
2. There exists a subsequence s, such that
Aly™ u™) = (1 = )b, = (1 — )by ™ u ™)
From the definition of the algorithm we have
Pu™) —PHu™*) -5, < Ay u™) s Ppu™) -y (u™)

’and therefore

P*) —PF (™) — gy, = (1 = ) (W) — g ()
Making the substitution ¥(u®) — ¢ (u%) = wS we obtain

w < (1 — i w4 Es,

This inequality together with the assumption &5,/ My 0 gives w™ » 0 and

therefore ¥°¢(w*) » min¥(u) because ¥**(u") < ¥(u) Yu € U*. But for any
uel*

s we have ¥S*¥1{(u5+1) > ¢5(u%), which together with ¥** (%) - min ¥(u ) leads
uel*

I .
to ¥*(u%) » miny(u). However, ¥°(u®) = ) pfq%y®*) and miny(u) is an
uwel? i=1 uel?

optimal value of problem(7)—(9) due to Theorem 1. This completes the proof.
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Various ways of dropping the culs in cutting-plane methods have been
suggested in [11,20]. The following method, which keeps only I +1 points at

each iteration, was put forward in [20].

Instead of problem (14)—(18), solve the following problem at each itera-

tion:

min (w4 + &l [uS —u|]®)

. ] » _
°F7) - Y e @) =y, <0 L5 =T0+1
k=1

u, =0

where 48 = arg miny®(w). That this modified version converges can be proved
ueU*

in a similar way to Theorem 5.

5. STOCHASTIC PROCEDURE

By a corollary of Theorem 1, problem (8) is reduced to a minimax problem
with a nonconcave inner problem of maximization and a convex final problem
of minimization. A vast amount of work has been done on minimax problems
but virtually all of the existing numerical methods fail if the inner problem is
nonconcave. To overcome this difficulty we adopt an approach based on sto-

chastic optimization techniques.

Consider the fairly general minimax problem

min max f (z, . 30
min yE},f( y) (30)

where f(z,y) is a continuous function of {(z,y) and a convex function of z for

eachy € Y, XCR™,Y C ™. Although

F(z) = r;lg;;f (z.y) (31)
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is a convex function, to compute a subgradient

Fo(z) = F2(z )y = ()

y(z) = arg max f(z,y) (32)
yeY

fzy)ed, fzy)=lglfzy)-flzy)=2<g.z —2>,Vz € X}

requires a solution y(z) of nonconcave problem (32). In order to avoid the dif-
ficulties involved in computing y(z) one could try to approximate Y by an e-

set Y, and consider
y5(z) = arg max f (z,y)
yEeY,

instead of y(z). But, in general, this would require a set ¥, containing a very
large number of elements. An alternative is to use the following ideas. Con-

sider a sequence of sets ¥; , s = 0,1,... and the sequence of functions
FS{z) = max f(z,y)
VEYs

It can be proved (see, for instance, [21]) that, under certain assumptions con-
cerning the behavior of sequence F®, the sequence of points generated by the

rule

z5t =25 — p FS(z%),s =0,1,... (33)

FS(zS) € 0F5(z5) = {g | FS(z) - FS(z%) 2 <g .z — 2> , Wz}

(where the step size pg satisfies assumptions such as p >0,

ps » 0, Y p, =) tends, in some sense, to follow the time-path of optimal
5=0

solutions: fors -» =
lim [F¥(z®) —min FS(z)] =0

We will show below how Y (which depends on z°%) can be chosen so that we
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obtain the convergence
min F${z) » min F{z) , ‘
where ¥, contains only a finite number Ng = 2 of random elements.

The principal peculiarity of procedure (33) is its nonmonotonicity. Even

s+1

for differentiable functions F®{z), there is no guarantee that z will belong

to the domain
x| F{z) < F(zS)), t>s +1

of smaller values of functions F$*1, F$*2 (see Figure 1).

Figure 1

Various devices can be used to prevent the sequence {z®{>_ from leaving

the feasible set X.
The procedure adopted here is the following (see [22]).

We start by choosing initial points zo,yo, a probabilistic measure P on set

Y and an integer Ny > 1. Suppose that after the s-th iteration we have arrived
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at points z%,y°. The next approximations z$+1,4yS*! are then constructed in
the following way. Choose Ny = 1 points

ys.l , ys,2l o lyers

according to measure P, and determine the set

Y, =ty lys? Lyt oy,

where y50 =y® . Take

yS*! = arg max f (z5,y)
yEeY,

and compute
254 = plzS —pg fo (25, yS*D)] . s =0,1,...
where p¢ is the step size and 7 is the result of a projection operation on X.

Before studying the convergence of this algorithm, we should first clarify

the notation used:
P(A) is a probabilistic measure of set A 2 7,

X* = arg r:1€1§1( F(z),
Yo(z)=tyly €Y, f(z.y)=F(z) —¢ , >0,
p(ezx) = P{Y (z)3,

7(e) = infp(e.z).

k=1
T(k.g) =max {T| ) ps<c,T=<k]
s=k-T

i.e., 7(k,z) is the largest number of steps preceding step k for which the sum

of step sizes does not exceed &.
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Theorem §. Assume thet
1. X is a convex compact selin R™ and Y is a compact set in F™.

2. f(z.,y) is o continuous function of (z,y) and a convez funclion of z for

any y € Y,

iggl | fz(zy)|| =C <o
yeY

3. Measure P is such that y(g) > 0 for ¢ > 0.

4. pg >+ 0, ) pg ==

s=0
Then fors —» =

E min ||z —z]|[ -0
zeX’

If. in addition, there ezists an £, > 0 such that forall e < ggand each 0< g <1

i q‘r(s.!:) < oo , (34_)
s=0

then, as s - o=,
min §{| |z° —z|| |z eX*} 0
with probability 1.
Proof
1. First of all let us prove that
F(z®) - f(z5y°) » 0
in the mean. To simplify the notation we shall assume that N, = N=>1.

According to the algorithm

F(@S vy = f(z°y°7Y) v =ON

and therefore

f (zs+1'ys+l) - f (z.s+].ys,v) > [f (zs +1'ys +1) _ f (z.s.ys-l-l)]
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+[f (z5y5%) = f =5y ¥)]
Since there is a constant K such that
| f(z5*hy) = F(z5.y)| < K[z — 25| | < K®pg
then
F(zSHySH) = £ (z5¥,y5v) — 2K2Ps
We also have
F =yt = f 2y ) Lu = 0N
or, in particular, forv =0

f (.’L‘s +1'ys+2) > f (.’Es +l,,ys +l)

Therefore

f(zs+1.ys+2) af(zs+1',yk,'u) _ 2K2ps ,k=ss+1,v=0N ,
and in the same way

f (252 y5%2) = f(z5+2,4*Y) —ZKz(ps +pgy1) -k =ss+1,v= 0.N

ete.
Continuing this chain of inequalities, we arrive at the following conclu-
sion:
k s—1
Fz5y%)=f(zyF7) K2} p
i =s—1(s,£)
k=s—-7(s,e),s —1,v =0,N
Thus, if
Yo o= fy*? ,v =O,N,k =5 —7(s,£), § — 1}
then

f(z5.y%) = yné%xf(z‘,y) - 2K%
,T
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It is easy to see from this that

P{F(z®) = f(z°.4°) > (1 + 2K®)el <

P{F(z®) - max f(z,y)>e} =1 - 7(8)]N‘r(s,z)
y€Y, r

Since pg - 0, then 7(s,e) » = as s » =. Hence
[1 = (eI 5 0
as § - =, and this proves the mean convergence of F(z%) — f (z%,y°) to 0.

2. We shall now show that, under assumption (34), F(z%) — f (z5.y®%) » 0 with

probability 1. It is sufficient to verify that
Pisup [F(z*) - f (z* y*)) > (1 + 2K%)e} - 0
25
We have

Ptsup [F(z*) - 1 (z%.y*)] > (1 + 2KP)e) <

Pisup [F(z*) — max f (z¥,y)] > &) <
k=s veYe,

S PiR(z*) - max Fzky) > el < Y1 —p(e)]¥k®) 50

k=s Y, k=s

since from assumption (34) the series

S [1 - &)V 4 0
k=s

as§ - o=,
3. Let us now prove that Fw(z®) » 0 as s - =, where

w(z) = min ||z - 2|2
TeX

We have
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w@t) = | 254 -2 P2 w(z®) = 2o, < fo(2° %) 25 —2> +pB| |1, (=) P

<w(zS) - 2p [f (z5,y5) — f (zgy")] + K%p?

=< w(z°) - 2p5[f (=z°.y°) - min F(z)] + K¢

= w(z®) - 2ps[F(z®) - min F(z)] + 2os[F(z°) - f (z°.y*)] + K%pk

Taking the mathematical expectation of both sides of this inequality leads to

B (2°) < Buw(z®) — 20, BLP(z") - mnig F()] + 2p0fs + K3 (39)

where 8, » 0 as s -+ = since it has already been proved that
E[F{(z®) - f(zS,yS)] »0 for s »
Now let us suppose, contrary to our original assumption, that
Fw(z®)>a>0,5 =5
It is easy to see that in this case we also have
E[F(z®) ~min F(z)] >6>0 ,
TeX
where 6 = 6(a) is a constant which depends on a. Then for sufficiently large
s=s;
Buw(z®*) < Pw(zS) — 2p,[6 - 2B, — K?pg] < Bw(zS) — épg (36)
since p, » 0, B, - 0 and therefore we can suppose that
6-28, — K% >6/2,s =5,
Summing the inequality (36) from s, to k, k » =, we obtain from assump-

tion (4) a contradiction to the non-negativeness of Fw(z®). Hence, a subse-

quence {z°*) exists such that

Pw(z%) -0
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as k » «. Therefore for a given o > 0 a number k (&) exists such that

E‘w(zs") <o,

where s, > Sk (a)- Let r be such that s, <7 <5, , and Ew(z") > a. Takel such

that

! = min {i:Fw(zd)>a for i<j=<r)
sp<isT

Since pg » 0 and Bg » 0, we may assume that 28, + K?pg < 8(a) for s > Sk ()"
This and (38) together imply that Fw(z™) < Fw(z'!) . Now from (35) and the

definition of Il we get

Bw(z') < Pw(z' ™) + 2p,8, + K?pF < a + 2p, 8, + K%}

Thus Fw(z®) » 0, because a was chosen arbitrarily and p; -» 0.

4. 1t can be proved that w(z®) converges to 0 with probability 1 in the same

way that we have already proved mean convergence. We have the inequality
w(zS*) < w(z®) - 2o [F(z5) — I’;IEI}I}F(I)] + 2ps s + szsz ,
where 7, - O with probability 1 because it has already been shown that under
assumption (34)
F(z®) - f(zS,y%) » 0 as § » o
with probability 1. If we now assume that
w(zs)>a,s =5,
for some element of probabilistic space we will also have

F(zS) —min F(z) >6 >0
zeX

etc.
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We shall now give a special case in which condition {34) is satisfied.

Ezample. Assume that p; =a/s®,a >0,0<b =<1 . Then Raab's test for

series convergence shows that condition (34) is satisfied.
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