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EVALUATION OF DANGER OR HOW 
KNOWLEDGE TRANSFOWIIS HAZARD RATES 

rnODUCrION 

Decision making under conditions of uncertainty is based on the analysis 

of risk. The primary objective of t h s  analysis is to increase the manager's abil- 

ity to respond effectively and appropriately to the problems facing him. 

The particular problems that are identified will depend on the manager's 

knowledge of the subject, the discrepancies between his wishes and reality, and 

his own perception of the real risks. The priority ranking of the problems will 

depend on the position of the manager in the herarchy and on his responsibili- 

ties. 

The perception of real or potential risks by individuals in the social 

environment shapes the social response to real problems. Ths response also 

plays an important role in determining the preference structure of the 

manager, through external pressures. 



However, the social perception of risk sometimes bears little relation to 

the real danger. The various social principles that guide behavior affect the 

judgement of what danger or problem should be most feared and what risk is 

worth taking. These social and behavioral aspects of the decision making pro- 

cess may introduce additional restrictions into the control strategies. 

The continued use of tobacco, alcohol and other drugs provides a good 

example. Everybody knows that smoking increases the risk of lung cancer, 

that alcohol and drug abuse can lead to alcohol and drug addiction, make 

accidents more likely, and so on. However, in spite of the success of causal 

analysis and quantitative calculation in identifying these and many other 

potentially dangerous activities, many people still continue to ignore the warn- 

ings. This means that health and social authorities have to resort to various 

indirect methods of decreasing the hazard rates associated with problems of 

this type by trying to change the social perception of the real dangers. 

Differences in social principles and traditions are not the only causes of 

differences in individual perceptions of danger. Differences in knowledge about 

a particular situation and the related factors are also important in evaluating 

risk. Often people have different perceptions of the risk of a given course of 

action simply because they have different information about it. In actual fact, 

most of the people tend to be unaware of most of the dangers most of the time. 

Thus, more exact knowledge creates a better background for the accurate 

perception of risk. Dissemination of this knowledge can change human prefer- 

ences in the evaluation of risk and make people more aware of the real dangers 

that they face. 

The study of risk requires two different stages of analysis. The first 

involves the quantitative determination of the real risk, calculated from 

specific information on the technological or environmental hazards. The 



second phase involves social and individual decisions about whether the risks 

are acceptable and how best to manage them. 

An important intermediate stage is concerned with the analysis and corn- 

parison of formal risk assessments made on the basis of different information 

about the dangers. In other words, it is necessary to know how changes .in the 

information about the risks associated with possible future events formally 

transftrrm the chances of these events occurring. The subsequent evaluation of 

risk perception in different social groups with different cultural and other trad- 

itions should then be based on the results of this formal analysis of differences 

in information. 

This paper is an  attempt to provide an analytical tool for the probabilistic 

analysis of hazard rates under various assumptions concerning the available 

information. 

PROBABILISTIC DESCRIPTION OF RISK 

The formal analysis of hazardous situations is based on probability theory. 

To deal with the dynamic aspects of risk evaluation requires the use of hazard 

rates, whlch are employed quite widely in the applied sciences and are often 

used in the description of mechanisms generating unexpected changes or 

unpredictable events, such as death or disaster, famine or failure [I ,2]. 

Random hazard rates are used to characterize changes with a h g h  degree 

of uncertainty, such as mortality in heterogeneous populations and transition 

rates in multistate demography [3,4]. These rates can also help to describe 

discontinuous changes in particular components of multidimensional (e.g., 

industrial) processes or failures of technical equipment [5,6,7,8,9], and are 

useful in analyzing causal changes in the social or medical status of individuals 

[4,10,11,12]. 



The most convenient probabilistic models of the dynamics of rapid unex- 

pected changes or unpredictable events are random point processes or ran- 

dom jumping processes [13,14,15,16]. The combination of rapid jumps with the 

relatively slow evolution of systems variables observed in many real situations 

may be described by a general random process model with piecewise- 

continuous sampling paths. Several such models have been developed in the 

framework of the "martingale approach [17,18,19]. 

Stochastic intensities or compensators or, more generally, dual predict- 

able projections of integer-valued random measures may be taken as stochas- 

tic models of hazard rates and can be used in conjunction with martingale 

theory to formulate many interesting results. Among these are: conditions for 

the absolute continuity and singularity of probabilistic measures correspond- 

ing to piecewise-continuous processes [20], formulas for filters [16], con- 

sistency conditions for Bayesian parameter estimation [21], and weak conver- 

gence properties [22,23]. Note that to obtain such results it is only necessary 

to know that random intensities exist, not to know their internal structure. 

To apply these results in practice requires the detailed structuring of the 

random intensities. It is usually most convenient to represent intensities in 

terms of probability distributions, or more exactly, in terms of conditional pro- 

bability distributions. 

Some results have already been obtained using this type of representatlon 

[24,25,26]. The more general of these use Jacod's formula for the dual predict- 

able projection of integer-valued random measures [15]. However, such results 

cannot be used in some situations where the observer (statistician) has to deal 

with an increasing volume of information, as is usually the case for recursive 

estimation and control in a situation with incomplete information. 



In t h s  paper we will give a representation of random intensity processes 

in this more general situation. In a certain sense t h s  may be seen as an 

attempt to formalize the relations between the abstract results of martingale 

theory and the classical approach to  the analysis of random phenomena. We 

will also compare the hazard rates perceived by two observers, one of whom 

has some information about the environmental factors and processes influenc- 

ing the chance of the random events occurring, whle the other knows only 

about past events of the same kind. 

The algorithms used to estimate the hazard rates depend on the dynamics 

(stable, continuously evolving, or jumping) of the factors influencing the 

environment. However, all of these algorithms are similar in that they are gen- 

erated by the nonlinear filter approach using random observations. This 

approach is gradually becoming popular in technical fields such as reliability 

analysis [8,7] and communication theory 1131 as well as being used for social 

and medical. research in areas such as event history analysis [27,28]. 

In order to gain a better understanding of the role of martingale theory in 

the analysis of random intensities, we shall consider the following situation. 

Assume that somebody is affected by a sequence of unfavorable (favor- 

able) events occurring a t  random times. Ths  person may have observations or 

measurements of environmental parameters at  various times between succes- 

sive events; these observations or measurements give h m  additional informa- 

tion about the possible timing of the events and scale of the damage (benefits). 

Denote by Ht the information available to the person up to time t . At any time 

the person can either save some money "for a rainy day" or else spend it. The 

question is how much money he should save (spend) at time t if he wants to 



compensate exactly for the damage (benefits) expected at some time in the 

future . 

If we denote by Yt the cumulative total of the random damage (benefits) 

experienced at random times up to time t and by Ct the total sum of money 

that the person has saved (spent) up to this time, then the process 

should have the property 

for any t ;+ u ,  and if M o  = 0, then 

These equalities mean that process Ct ,  t r 0 ,  may be considered as a com- 

pensator of the discontinuous changes caused by process 5 ,  t r 0. It turns 

out that processes like C t ,  t 2 0 , may be compared to cumulative intensities, 

and processes such as Mt, t 2 0, have the martingale property with respect to 

information flow Ht , t 2 0  . 

Notice that the process Ct satisfying the above conditions is not unique. 

However, it is possible to find a unique process corresponding in some sense to 

the information available up to the current time t . A formal way of construct- 

ing such a process is given below. 

DIRERMINISTIC HAZARD RILTES 

We will start with the conventional definition of a hazard rate for a continu- 

ously distributed random time of occurrence of the events under considera- 

tion. If F ( 1 )  is the time-of-occurrence distribution function, then the local 

hazard rate A ( t )  is equal to minus the logarithmic derivative of the function 



t 

The cumulative intensity function A(t) = Jh(u)du is then 
0 

This means that the distribution function may be represented in the following 

form: 

Discontinuities in the time-of-occurrence distribution function modify the 

definition of the intensity function only slightly: 

However, they cause complications in equation (2), which represents the distri- 

bution function ~ ( t )  as a function of the cumulative intensity function A(t). It 

can be shown that in t h s  case the analog of formula ( 2 ) is as follows: 

whch reverts to formula (2) if A ( t )  is not discontinuous. 

Discontinuous hazard rates are often produced by the estimation pro- 

cedure: the Kaplan-Meier estimator is one well-known culprit [29,30]. . 



RANDOM INTENSITY FUNCTIONS 

The dependence of the random time of occurrence on various other ran- 

dom factors representing the state of the environment should also be included 

somehow in the formula for the hazard rate. The conventional way of doing 

this is to put the randomness into the intensity function. If t h s  randomness is 

generated by a random variable Z which can be interpreted as an external 

environmental factor, we can represent the random intensity as a function of 

the conditional distribution function as follows: 

where P ( T > u I Z) is the conditional probability of the event tT > u ]  given 

random variable Z. 

Let I ( T s t  ) be the indicator of event tT s t  ] and HfZ be the past hs tory  of 

process Xt = I( Tc t  ) ,  t  2 0 , and random variable Z up to time t  . It turns out 

that the process M ( t )  defined by the equality 

is martingale with respect to the family of hstories Ht, t  s 0 and conse- 

quently 

for any t  su. 



COMPENSATOR FOR POINT PROCESSES 

For a sequence of random times of occurrence ( a  random point process) 

with random variable Z influencing the flow of random times, the probabilistic 

representation of the random intensity is as follows: 

where H{ is the hstory of the counting process Nt defined by the equality 

N, = I (Tn s t )  
n =O 

up to random time Tp. It turns out that the process 

is martingale with respect to the family of hstories H , ~ ,  t 2 0 , generated 

by the values of the random process Nt and random variable Z. The process 

A ( t  , Z )  , t 2 0, is called the compensator of the random point process 

(Tn)n r 0. 

JACOD'S FORHULA 

A more general form of the random intensity function can be derived for a 

process involving a sequence of random times of occurrence and random vari- 

ables (T,, q ) ,  , o. If Y is some known random variable whch influences the 

sequence ( T , ) , then the formula for the random intensity 

vw ((0, t  ] , ) , t 2 0, of the process 



where r is some subset of the space of values of the random variables 

( q ) n  , O, is as follows: 

where Hf is the history of the process (Tn , G),  , up to random time Tp 
P 

[ 151. 

HAZARD RATES IN A STABLE ENVIRONMENT 

The most interesting results are obtained from an analysis of the intensity 

processes that correspond to different levels of knowledge about the random 

factors influencing the sequence of random times of occurrence and random 

variables. If, for instance, one observer knows the value of the random variable 

Z influencing the sequence of random times Tn , n 1 0, while another does not, 

they will construct different representations of the intensity functions. Denot- 

ing by h ( t ,  Z )  and ) \ ( t )  the intensities perceived by the two observers, we 

consider the natural question: what is the relation between A(t ,Z) and A ( t ) ?  It 

turns out that  t h s  relation is as follows: 

where H? is the hs tory  of the counting process Nt corresponding to the 

sequence of random times of occurrence Tn , n r 0, up to time t .  



FILTERING F'ORMULA 

Equation (7) shows that when the observable process is discontinuous it is 

necessary to use some sort of estimation algorithm to calculate i t ) .  Various 

estimation procedures of t h s  kind based on [13] and [14] have been developed. 

The general formula for the a posteriori mathematical expectation of some 

arbitrary integrable function f (Z) of random variable Z when the observations 

are taken from the sequence (point process) T,, n 1 0, of random occurrence 

times or, equivalently, from the counting process N t ,  t r 0, is as follows: 

t 
qu ) - 1) 1 HZ) (dN, - h ( u )  du)  E ( f  (Z) 1 HtN) = E ( f  (Z) I H!) + j ~ ( f  (Z) ( x(~) 

0 

where 

- 
h ( t ) = E ( h ( t , Z )  1 H ~ ~ )  . 

If Z is the finite state random variable Z = ( Z1, G, ..., ZK) with a priori 

probabilities pi, i = 1,2,. ..,K, and the observations are taken from the count- 

ing process Nt with intensity h(t , Z), the formula for the intensity function 
- 
h( t )  will be as follows: 

where the sri ( t )  , i = 1,2, ... ,K, are given by the filtering formula: 

In the simplest case, in whch there is only one random time of occurrence 

(e.g., time of death or failwe), t h s  relation can be transformed to the equality: 

If Z = y2 where Y is a Gaussian random variable with mean a and variance 

u2, and h ( t ,  Z) = Z h( t ) ,  then one can write 



where k ( t  ) is given by the formula 

- 
z ( t )  = m2( t )  + y( t )  (9) 

and m ( t )  and y( t )  are the solutions of the ordinary differential equations 

These equations show that even when h(t)  is a constant and the environmental 

factors do not change over time (the hazard rate perceived by one observer is 

constant), the hazard rate perceived by another observer may still be time- 

dependent. 

THE GENERAL M)RM OF HAZARD RATES IN A DYNAMIC ENVIRONMENT 

In many cases the environmental factors that influence the hazard rate 

can change over time. Ths section is concerned with results based on the 

assumption of a randomly changing environment. Let Xt , t 1 0 ,  be the ran- 

dom process available for observation and suppose that it includes the 

sequence of times and events as well as the additional environmental factors. 

Introduce the auxiliary process Xnlt which coincides with the process Xt up 

to time Tn and does not contain the random occurrence times Tg and ran- 

dom variables 5 after time Tn . Denoting by $" the hstory of the auxili- 

ary process up to time t and introducing some additional conditions it is pos- 

sible to prove the following formula for the random intensity vZ ((0,t 1, F) of the 

process p((O,t], i?) introduced earlier: 



In the case of a point process ( a  sequence of random times of occurrence 

T,, n 2 0) the formula for the random intensity A ( t  , x i )  corresponding to 

observable process Xt , t 1 0, will be: 

Assuming that the distribution of random times is continuous and compar- 

ing the intensities corresponding to different levels of knowledge leads to the 

following formula for the intensity ( t  ): 

Assume that A(~,x; )  = f (Xt) and that  Xf is the solution of the following 

stochastic differential equation: 

The formula fo rh( t )  will then be as follows: 

However, if instead of a sequence of random times and variables one has only a 

single random occurrence time T the formula for the random intensity A(t .x;) 



corresponding to the information given by observation Xt will be 

and the formula f o r ( t  ) will be 

If A(t ,x;) = A(Xt) then the formula for h ( t )  will be as follows: 

These general formulas can be made more specific if a more detailed descrip- 

tion of the processes is available 

HAZARD RATES IN A CONTINUOUSLY EVOLVING ENVIRONMENT 

Environmental factors that are changing continuously may be treated in 

the following way. 

Let ~ ( t )  , t  r 0 ,  be some process that satisfies the linear stochastic dif- 

ferential equation 

dY ( t )  = a o ( t )  + a l ( t ) Y ( t )  dt + b ( t )  dW(t) ,  Y ( 0 )  = Yo 

where Yo is a Gaussian random variable with mean mo and variance yo. 

Assume that random time of occurrence T is related to the process Y ( t )  by the 

equality 

where H t  is the history of the process Y ( t )  up to time t . It turns out that the 



conditional distribution of Y(t ) given IT r t j is Gaussian. The mean rn ( t )  and 

variance y ( t )  of this distribution are given by the following equations: 

The relation between ( t )  and X(t) is as follows: 

- 
h( t )  = ( m2(t )  + Y(t) A(t) 

This example shows that two observers may have quite different values for 

hazard rates. It should therefore come as no surprise that their perceptions of 

risk are different and that the decisions based on these perceptions may also 

be different. 

HAZARD RATES IN A DISCONTINUOUSLY CHANGING ENVIRONWT 

Environmental factors can sometimes change discontinuously, i.e., their 

values jump about at  random. T h s  can happen, for instance, when there are 

several correlated sequences of random occurrence times and variables. 

Examples of such correlated sequences are: changes in the place of residence 

or work of some particular individual and changes in his health; rapid changes 

in the weather and the survival chances of living organisms; discontinuous 

changes in the price or demand structure and structural change in organiza- 

tions or firms. 

Assume that Zt , t 2 0, is a finite-state continuous-time jumping process 

- 
with transition intensity matrix ri ( t  ), i , j  E (1  ,K) , and h ( t , Zt ) = A(t) Zf 

The relation betweenh(t) and X(t) is then as follows: 



where Z, is the i - th  state of process & ,  and processes ni ( t )  are solutions of 

the following equations: 

where 

If instead of a sequence of random occurrence times we have only one random 

time of occurrence T, the formula for h(t)  remains the same but the equation 

for the ni ( t  ) is simplified: 

d7ii ( t )  K K - 
= z n k ( t )  ~ k , i ( ~ ) +  ~ ~ i ( t )  ( - z n k ( t ) Z k )  h ( t ) ,  i E (1 ,K) .  (17) 

dt k = ]  k = l  

These equations are useful in the analysis of population heterogeneity. 
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