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PREFACE 

The System and Decision Sciences group at IIASA has a long 

tradition of research in the theory and practice of mathematical 

optimization. Necessary conditions play a very important role 

in optimization theory: they provide a means of checking the 

optimality of a given point and in many cases enable a direction 

of descent to be found. 

In this paper the author studies the necessary conditions 

for an extremum when either the function to be optimized or the 

function describing the set on which optimization must be carried 

out is nondifferentiable. The author's main concern is with 

quasidifferentiable functions but smooth and convex cases are 

also discussed. 

Andrzej Wierzbicki 

Chairman 

System and Decision Sciences 



QUASIDIFFERENTIABLE FUNCTIONS: 

NECESSARY CONDITIONS AND DESCENT DIRECTIONS 

V.F. Demyanov 

1. INTRODUCTION 

To solve optimization problems in practice it is necessary 

to be able to check whether a given point is an extreme point or 

not, and if it is not, to find a point which is in some sense 

"better". This is generally achieved through the specification 

of conditions necessary for optimality. This paper is concerned 

with extremal problems involving a new class of nondifferentiable 

functions - the so-called quasidifferentiable functions. Only 

minimization problems are discussed, without loss of generality. 

Different forms of necessary conditions yield different 

descent directions which can be used to develop a variety of 

numerical algorithms. Subsections 1.1 and 1.2 provide a brief 

summary of related problems in mathematical programming and convex 

analysis. 

1.1 Mathematical programming problems 

Let RCEn, x ~ c l R  where clR denotes the closure of n. Set 



I t  i s  c l e a r  t h a t  r ( x )  i s  a  c l o s e d  cone. r ( x )  i s  c a l l e d  t h e  

se t  of f e a s i b l e  ( i n  a  broad s ense )  d i r e c t i o n s  of  t h e  se t  R a t  t h e  

p o i n t  x. 

Now c o n s i d e r  t h e  problem of minimizing a  con t inuous ly  d i f f e r -  * 
e n t i a b l e  f u n c t i o n  f  on t h e  se t  R .  L e t  f  = i n f  f ( x ) .  

XER 

* 
Theorem I. For a point x  ~ c l R  to be an infimum of f  on R 

it is necessary that 

where ( a , b )  denotes the scalar product of a  and b, and f '  ( x )  re- 

presents the gradient of f  at x. 

Unfo r tuna t e ly  it i s  d i f f i c u l t  t o  use  t h i s  t r i v i a l  c o n d i t i o n  

i n  p r a c t i c e .  

L e t  A c T ( x )  be  a  convex cone and l e t  A(x) be  a  f ami ly  of  

convex cones  such t h a t  

I n  [ I ]  cones  of  t h i s  t ype  a r e  c a l l e d  " t e n t s " .  I t  i s  always 

p o s s i b l e  t o  f i n d  a  f ami ly  A(x) de f ined  a s  above ( t a k e ,  f o r  example, 
+ A ( x )  = {!Ll!L={v=Av0lA>0l ,  v o ~ I ' ( x ) l ) .  W e  deno te  b y A  t h e  cone 

con juga t e  t o  A: A+ =  WEE^/ (v,w) 2 0  Y V E A ~ .  

Theorem 2. Condition (1.2) is equivalent to 

* 
A point x  ~ c l R  which satisfies (1.4) (or, equivalently, (1.2)) 

is called a stationary point of f  on R .  

I n  what f o l l ows  w e  s h a l l  suppose t h a t  R i s  a  c l o s e d  se t .  

Assume t h a t  x  E R  i s  n o t  a  s t a t i o n a r y  p o i n t  of  f  on R .  Then 

t h e r e  e x i s t s  A E  A(x) such t h a t  



Le t  u s  f i n d  

I t  i s  n o t  d i f f i c u l t  t o  see t h a t  

and t h a t  v (A)  i s  a  d e s c e n t  d i r e c t i o n  of  f  on R a t  x ,  i . e . ,  

v  
O , where II vO1l = I t  i s  a l s o  c l e a r  t h a t  t h e  d i r e c t i o n  go = - 

I I  voll 
max I ~ v ( A ) I I  , i s  a  d i r e c t i o n  of s t e e p e s t  d e s c e n t  of t h e  f u n c t i o n  f  

AEA ( x )  

on t h e  set  R a t  x ,  i . e . ,  

Here 

a f  ( X I  = l i m  f  (x+ag)  - f ( x )  sl = I ~ E E ~ ~ I I ~ I I  = 1 a g  ~1 
a++ 0 

A s t e e p e s t  d e s c e n t  d i r e c t i o n  may n o t  be unique.  Note t h a t  

where 

Remark 1 .  Condi t ion  ( 1 . 4 )  i s  e q u i v a l e n t  t o  

where 

L(x)  = n A +  
A E A ( X )  



* 
If L(x ) = {O) then we obtain the well-known condition 

Example 1. Let - 

R = R 1 U R 2 U R 3  

where 

k ,  = {x= (arO) (a>O1 - , 

It is clear that I'(x0) = R and A(xo) = { e 1 r e 2 r e 3 1 r  i0e.t A(xo) = 

{A1,A ,A 1, where Al = El, A2 = k2, A3 = e3. Now we have 
2 3 

It can be seen from Figure 1 that L (xo) = n A: = (0 1 and 
iE1 : 3 

therefore fl(x ) = 0 is a necessary condition at xo. 0 



Remark 2. If x E R is not a stationary point then 

min llv-fl(x)ll = Iv(x)-fl(x)ll > 0 . 
vEL (xo) 

However, note that the direction 

has nothing to do with descent directions (it may not even be 

feasible). Thus, the necessary condition (1.7) provides no in- 

formation about descent directions if xo is not a stationary 

point. In contrast, condition (1.4) is more workable because 

it allows us to construct descent and even steepest descent 

directions. 

For a continuously differentiable function f 

Thus the problem of finding steepest descent directions of f on R 

at x is reduced to that of solving (1.6) (a quadratic programming 

problem which however becomes linear if the m-norm is used instead 

of the Euclidean norm) for all AEA(x). For this reason we are 

interested in constructing a family A(x) containing as few cones 

as possible. If R is a convex set the cone r(x) is convex and 

therefore A(x) consists of only one set. 

Let R be described by inequalities 

where the hits are from C1, I = 1:N. 

If X E R  and 

where 



then ( s e e ,  e . g . ,  [ 2 1 )  

+ 1 

I' ( x )  = cone {-hi ( x )  1 i € Q ( x )  } . 

Here cone B i s  t h e  con ic  h u l l  of B.  

I t  i s  an easy  e x e r c i s e  t o  show t h a t  i f  a  convex cone A con- 

t a i n s  an i n t e r i o r  p o i n t  then t h e  cond i t i on  ( s e e  ( 1 - 4 )  ) 

i s  equ iva l en t  t o  t h e  cond i t i on  

1 * 
OEco  I f  (x  ) U T  ( A ) )  Y q >  0 

rl 

where 

+ 
T, , (A)  = { v € E n l v €  [-A I fllvll = Q I  . 

Assume t h a t  X E Q  i s  n o t  a  s t a t i o n a r y  p o i n t  of f  on Q and 

suppose t h a t  i n t  A f jl. Then t h e r e  e x i s t s  A E A ( X )  such t h a t  

Then, from t h e  above c o n d i t i o n ,  

Le t  us f i n d  - 

min I I  vll = l l  vrl ( A )  I I  . 
V€Lq ( A )  

From ( 1 . l o )  we deduce t h a t  

I t  i s  easy t o  s ee  t h a t  t h e  d i r e c t i o n  

vrl ( A )  
grl ( A )  = - 

IlV rl ( A )  11 



is such that 

I 
(f (x) ,g,, (A) ) < 0 t g (A) int A 

71 

Hence, g (A) is a descent direction leading strictly inside the 
rl 

cone A. The fact that g (A) is an interior direction is important 
rl 

-- the direction g(A) (see (1.6)) may be tangential even though 
it is the steepest descent direction of f on A (see (1.6)). This 

feature may be crucial if R is described by (1.8) and condition 

(1.9) holds, since in this case r(x) is a convex cone and there- 

fore A(x) consists of only one set (namely r(x)). Thus, on the 

one hand it is possible to find the steepest descent direction 

g(A) (see (1.7) ) but this direction may not be feasible if the 

hits are not linear; on the other hand the descent direction 

gn (T (x) ) is feasible for any TI > 0, where 

and 

1 1 

I I  v I I  = min I l  vll , 
Lrl 

= co {f (x);l?hi(x)i€~(x)} . 
VEL,, 

The foregoing analysis reveals the importance of having 

several (possibly equivalent) necessary conditions, in that this 

enables us to develop different numerical methods. 

Remark 3 .  It is not difficult to show that, in (1.11), 

g,, (A) + g (A) I where g(A) is the steepest descent direction of f 
q++w 

1.2 Convex programming problems 

Similar considerations can be applied to constrained non- 

differentiable convex programming problems of the form 

where 



and func t ions  f  and h  a r e  f i n i t e  and convex ( b u t  n o t  n e c e s s a r i l y  

d i f f e r e n t i a b l e )  on En .  

Suppose t h a t  t h e r e  e x i s t s  a  p o i n t  x such t h a t  

(This  i s  c a l l e d  t h e  S l a t e r  cond i t i on . )  I t  fo l lows  from convex 

a n a l y s i s  ( s e e  [31)  t h a t  

where a h ( x )  i s  t h e  s u b d i f f e r e n t i a l  of h  a t  x ,  i . e . ,  

I 

a h ( x )  = { v E E n l f ( z )  - f  ( x )  2 (v.2-X) YZ €En} . (1.13) 

+ r ( X I  = 

* 
Theorem 3 (see [41). For x  E R  t o  be a minimum point of f  

o n  R it is necessary and sufficient that 

{ O } ,  i f  h ( x )  < 0 I 

cone Cah(x) } ,  i f  h ( x )  = 0 

* 
Theorem 4 (see [SI). Let h ( x  ) = 0. Condition (1.14) is 

\ 

equivalent to the condition 

where 

+ 
T n  ( x )  = i v  E [-r ( x )  1 1 l l  vll = r,} . 

I f  X E R  i s  n o t  a  minimum p o i n t  of f  on R then  t h e  d i r e c t i o n  

g ( x )  = - j v ( x )  - w(x) 
I 1  v  (:<I - w ( x )  I 1  1 



where 

Il  v  ( x )  - w ( x )  /I = min I1 v-w I I  , 
~ E a f  ( X I  

 WE^+ ( X I  

i s  t h e  s t e e p e s t  descen t  d i r e c t i o n  of f  on f2 a t  x.  

Let  us  f i n d  

where 

IIvq(x)II = min I I  vll . 
vEL,., ( x )  

The d i r e c t i o n  g  ( x )  g iven  by ( 1 . 1 6 )  i s  a  descen t  d i r e c t i o n  ,., 
and it can be shown t h a t  

g,., ( X I  E i n t  r ( x )  . 

Thus cond i t i on  (1 .15)  enab le s  u s  t o  f i n d  a  " f e a s i b l e "  d i r e c t i o n  

( i . e . ,  a  d i r e c t i o n  l ead ing  s t r i c t l y  i n s i d e  R ) ,  and t h i s  can be 

u s e f u l  i n  c o n s t r u c t i n g  numerical  methods. Some of t h e  methods 

based on (1.15) a r e  desc r ibed  i n  Chapter  I V  of [ 5 ] .  

Note t h a t  i f  x  i s  n o t  a  s t a t i o n a r y  p o i n t  then  

where g ( x )  i s  t h e  s t e e p e s t  descen t  d i r e c t i o n  of f  on R a t  x.  

* 
Theorem 4 '  ( s e e  [ 5 1 ) .  L e t  h ( x  ) = 0. C o n d i t i o n  ( 1 . 1 4 )  i s  

e q u i v a l e n t  t o  t h e  c o n d i t i o n  

P r o o f .  Consider a  f u n c t i o n  

* 
! L  ( x )  

1 ,., 

* @,, ( x )  = max {f ( x )  - f  , q  h ( x )  } 



where 

* * 
Since 4 (XI > 0 Yx E En, and m y ,  (x ) = 0, x is a minimum point 

rl - 
of m y ,  on En. However, m y ,  is a convex function and so 

Applying a necessary and sufficient condition for an unconstrained 

minimum of a convex function, we immediately obtain (1.15'). 

Assume that x E R  is not a minimum point of f on R, and find 

the direction 

where 

Ilv (x)II = 
1 r) 

min I I  vll . 
VEL1 rl (XI 

It can be shown that the direction g (x) defined by (1.16' ) is 
1 rl 

a descent direction and 

gl n (x) E int r (x) . 

Note also that g (x) -g(x), where g(x) is the steepest 
1 rl y, -++a 

descent direction of f on R. 

Remark 4. Condition (1.15') is applicable even if R is an 

arbitrary convex compact set (not necessarily described explicitly 

by a convex function). 



2. QUASIDIFFERENTIABLE FUNCTIONS 

2.1 Definitions a n d  some properties 

A function f is called quasidifferentiable (q.d.) at a point 

x E E n  if it is directionally differentiable at x and if there 

exist convex compact sets - af (x) cEn and Tf (x) c En such that 

af(x) lim f (x+ag) - f  (x) - - max (v,g) + min (w,g) . 
ag a++O a v€af (x) - WET£ (x) 

The pair of sets Df (x) = [a£ - (x) ,Tf (x) ] is called the quasi- 
differential of f at x. 

Quasidifferentiable functions were introduced in [6] and 

have been studied in more detail in [7,8]. A survey of results 

concerning this class of functions is presented in [91. It turns 

out that q.d. functions form a linear space closed with respect 

to all algebraic operations and, more importantly, to the opera- 

tions of taking pointwise maximum and minimum. A new form of 

calculus (quasidifferential calculus) has been developed to handle 

these functions, and both a chain rule for composite functions 

and an inverse function theorem have been established [5,91. In 

what follows we shall use only two results from quasidifferential 

calculus (see below). 

If Dl = [A1 ,B1 ] , D2 = [A2,B2] are pairs of convex sets (i.e., 

A. CEn, Bi CEn are convex sets) we put 
1 

and if D = [A,B] then 

The following is then true: 

[XA , XB] , if X > 0 , 
AD = 

- 

[XB, XA], if X < 0 . 



1. If functions fi (i E I = 1 :N) are q.d. at x and Dfi(x) = 

[afi(x),~f.(x)] - is a quasidifferential of fi at x then a function 
1 I 

f = 1 hifi (where the his are real numbers) is q.d. at x and 
i ~ 1  

2. If functions fi (i EI - 1 :N) are q.d. at x then 

f = max f 
iE1 i 

is a q.d. function and 

where 

L.N. Polyakova [ 7 ]  has discovered necessary conditions for 

an unconstrained optimum of f on En: 

* 
Theorem 5. For x €En to be a minimum point of a q . d .  func- 

tion f on E it is necessary that n 

**  
For x cEn to be a maximum point of a q , d .  function on En 

it is necessary that 

Conditions (2.2) and (2.3) represent generalizations of the 

classical necessary conditions for an extreme point of a smooth 
1 

function f on En (in this case Tf (x) = 0 - af (x) = {f (x) 1 and 



' * 
from (2.2) it follows that f (x ) = 0. From (2.3) it also follows 

' * *  
that f (x ) = O f  i.e., the necessary conditions for a maximum 

and for a minimum coincide.) 

If f is convex on En then xf (x) = 0 - af(x) = af (x), where 

af(x) is the subdifferential of f at x (see (1.13)), and (2.2) 

becomes the well-known condition [3,4] 

2.2 Quasidifferentiable sets. Necessary conditions for con- 

strained optimality 

A set R is called quasidifferentiable if it can be repre- 

sented in the form 

where h is quasidifferentiable on En. 

The properties of q.d. sets and the necessary conditions 

for optimality of a q.d. function on a q.d. set are discussed 

in [8] (see also [5, Chap. 111). 

Take X E R  and introduce cones 

Let h(x) = 0. We say that the nondegeneracy condition is 

satisfied at x if 

where clA denotes the closure of A. 



Lemma I ( s e e  [5,81 1 .  I f  h ( x )  < 0 t h e n  T ( x )  = E n .  I f  h ( x )  = 0 

and t h e  nondegeneracy  c o n d i t i o n  ( 2 . 4 )  i s  s a t i s f i e d  a t  x  and h ( x )  

i s  L i p s c h i t z i a n  i n  some ne ighborhood  o f  x  t h e n  

where r ( x )  i s  t h e  s e t  o f  f e a s i b l e  ( i n  a  broad s e n s e )  d i r e c t i o n s  

o f  R a t  x  ( s e e  ( I . I I I ,  

The fo l lowing  two theorems and lemma a r e  proved i n  [ 8 ]  . 
Theorem 6 .  L e t  a  f u n c t i o n  f be L i p s c h i t z i a n  and q u a s i d i f f e r -  * * 

e n t i a b l e  i n  some ne ighborhood  o f  a  p o i n t  x  E R .  I f  h ( x  ) = 0 t h e n  * 
l e t  h  be L i p s c h i t z i a n  and q . d .  i n  some ne ighborhood  o f  x  and t h e  * 
nondegeneracy  c o n d i t i o n  ( 2 . 4 )  be s a t i s f i e d  a t  x  , For t h e  f unc -  

* 
t i o n  f t o  a t t a i n  i t s  s m a l l e s t  v a l u e  on R a t  x  i t  i s  n e c e s s a r y  

t h a t  

and 

* * 1 * 
( a f ( x  - ) + w )  n [ - c l ( c o n e ( & h ( x  ) + w  ) ) ]  # i f  h ( x  ) = 0 (2 .7)  

* 
f o r  e v e r y  w ~ 7 f  ( x  ) , W ' E  T ~ ( x * ) .  

Theorem 7 .  C o n d i t i o n  ( 2 . 7 )  i s  e q u i v a l e n t  t o  t h e  c o n d i t i o n  

where 

L ( X )  = n [a f  ( x )  + c l  (cone ( ah  - ( x )  + W )  ) ] . (2 .9)  
wETh ( x  ) 

* * 
A p o i n t  x  E 52 which s a t i s f i e s  (2 .7)  when h ( x  ) = 0 and ( 2 . 6 )  * 

when h ( x  ) < 0 i s  c a l l e d  a  s t a t i o n a r y  p o i n t  of f  on R .  

Note t h a t  L(x)  i s  a  convex s e t  (and nonempty, s i n c e  a f ( x )  C L ( x ) ) .  - 



CoroZZary. If f and h are convex functions it foZZows from 

(2.8) that 

where af(x) is the subdifferentiaz of f at x (see (1.13)) and 

r(x) is the cone of feasibZe directions of R at x. 

* 
This condition is both necessary and sufficient for x E R  to 

* 
be a minimum point of f on R (in the case where h (x ) = 0 it is 

also assumed that the Slater condition (1 .12) holds) . 
Necessary conditions for a maximum of a q.d. function on a 

q.d. set can be derived in an analogous fashion [ 8 , 5 ] .  

2.3 Descent and steepest descent directions 

Take X E R  and suppose that x is not a stationary point of 

f on R. We shall now consider in more detail the case where 

h(x) = 0 and condition (2.7) is not satisfied. For every w €Tf(x) 
I 

and w E Fh(x) we calculate 

1 1 I I I 

min I l  z+z I I  = I l  z  (w,w ) + z  (w,w )ll = d(w,w 

Then we find 

P(X) = max d(w,w ) = d(wo,wo) 
WE%£ ( x ) 

Since (2.7) does not hold, p(x) > 0. 

Let 



Lemma 2 .  I f  h ( x )  = 0 and t h e  nondegeneracy  c o n d i t i o n  (2 .41  

i s  s a t i s f i e d  t h e n  t h e  d i r e c t i o n  go ( s e e  (2 .1311  i s  a  s t e e p e s t  

d e s c e n t  d i r e c t i o n  o f  f  on  R a t  x  and d ( x )  = llvO + w(vo)ll i s  t h e  

r a t e  o f  s t e e p e s t  d e s c e n t ,  i . e . ,  

a f ( x )  = min a f ( x )  = - d  (2 .14)  
ag o gEr ( X I  nsl a g  

I 

Remark 5 .  S ince  t h e r e  may e x i s t  s e v e r a l  w o ,  wo s a t i s f y i n g  

( 2 . 1 2 ) ,  t h e r e  may e x i s t  s e v e r a l  ( o r  i n f i n i t e l y  many) d i r e c t i o n s  

of  s t e e p e s t  d e s c e n t .  (Th i s  i s  imposs ib le  f o r  convex sets  and 

convex o r  con t inuous ly  d i f f e r e n t i a b l e  f u n c t i o n s . )  

I * I 

Remark 6 .  L e t  K ( w  ) = c l  ( c o n e ( a h ( x  ) + w  ) ) .  - 
I f  i n t  K+ ( w l  ) # Jilt then  c o n d i t i o n  (2 .7 )  i s  e q u i v a l e n t  t o  

where 
I 

T , (w)  = { V E K ( W  )I lv l l  = , I  I ~ ' 0  . 
I 

I f  f o r  some x E R  and w E F f ( x ) ,  w € T h ( x )  w e  have h ( x )  = 0  and 
I 

O $ L , ( w , w  ) ,  t h e n  

I Z,, ( W ' W  ' ) 
g,(w.w = - 

I 1  z,, ( w , w l ) l l  

where 

I 

I l  z,, ( W ' W  / I  = min I I  z l l  
ZEL ( w , w l )  n 

i s  a  d e s c e n t  d i r e c t i o n  of f  on R a t  x  and,  above a l l ,  i s  f e a s i b l e ,  

i . e .  , 



Remark 7. If X E R  is not a stationary point of f on con- 

ditions (2.6) and (2.7) allow us to find steepest descent direc- 

tions (see Lemma 2), but in the case where h(x) = 0 the directions 

thus obtained may not necessarily be feasible. 

Condition (2.8) is similar to (2.2) and if x is not a sta- 

tionary point we have 

Let us find 

max p (v) = p (v(x) 
( x 

where 

It follows from (2.15) that p (v(x) ) > 0 but it is not clear 

whether 

is a descent direction. 

Let h(x) = 0. The problem of finding a steepest descent 

direction is equivalent to the following problem: 

min 9 

subject to 



Since f and h are quasidifferentiable functions, problem (2.16) - 
(2.19) can be rewritten as 

min 19 19 E E~ .g E En, [8,gl E Q1 1 (2.16') 

where Ql CEn+l is described by inequalities 

1 1 

max (v ,g) + min (w ,g) 5 0 I (2.18') 
vl~ah (x) W' E T ~  (x) - 

1 1 I 1 

Let 8 (w,w ) = 8 (w,w ,x) , g (w,w g(w,w ,x) be a solution 

to the problem 

1 

min 1818 €El tgEEnt [8,gl Efil (wtw 1 1  (2.20) 

1 1 

where w ~ 7 f  (x) , w €Th(x), and fil (wlw ) is described by 

inequalities 

max (v,g) + (wtg) 8 1 

v ~ a f  (XI - 

* * 
Let [8 (x),g (x)] denote a solution to problem (2.16')-(2.19'). 

It is clear that 

where 

* I *  I 1 
[W ,W 1 = arg min {@(w,w ) Iw€Tf(x),w €Th(x)} . (2.24) 
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where 

I 1 

[wn,wn] = arg min {en(w,w )IWEB~(X),W'EB~(X)I . (2.33) 

Direction g (x) is feasible for any TI > 0. n 

Remark 8. When solving problem (2.24) (as well as (2.33)) 

it is sufficient to consider only boundary points of the sets 
- 
af (x) and Th (x) . Furthermore, if each of these sets is a convex 

hull of a finite number of points, it is sufficient to solve only 

a finite number of problems of the form (2.20) - (2.23) (or, for 
problem (2.33), of the form (2.29)-(2.32)); These become linear 

programming problems if the Euclidean norm in (2.23) (or (2.32)) 

is replaced by the m-norm: 

l:gllm = max g i l  1icl:nI 

where 

Remark 9. Let nk -a. Without loss of generality we 
k +- a* * 

can assume that g (x) -g . It is possible to show that g 
QL n * 

is a steepest descent direction of f on R at x and that 8 (x) +- 8 (x) , 
* Qk 

where 8 (x) is the rate of steepest descent. 

Remark 10. Let x E R  and h(x) not necessarily equal zero. 

Consider the problem 

min {B18EE1,gEE,,[e,gl (2.34) 

where n > 0, and RZQ CEn+l is described by 

max (v,g) + min (wtg) 2 8 
v ~ a f  (XI - WET£ ( x 

1 1 

h(x) + max (v ,g) + min (w , g )  ne , (2.35) 
v1Eah (x) - w'~Th (x) 



The rep lacement  o f  (2 .31)  by (2.35)  e n a b l e s  u s  t o  d e a l  w i t h  

p o i n t s  i n  R c l o s e  t o  t h e  boundary. I t  i s  hoped t h a t ,  a s  i n  

ma themat ica l  programming ( s e e ,  e . g . ,  [ l o ] ) ,  it w i l l  e v e n t u a l l y  

be  p o s s i b l e  t o  d e v e l o p  s u p e r l i n e a r l y  ( o r  even q u a d r a t i c a l l y )  

c o n v e r g e n t  a l g o r i t h m s .  

A g e o m e t r i c  i n t e r p r e t a t i o n  o f  problem (2 .16)-  (2 .19)  i s  

g i v e n  by (2.12)  . For  a s i m i l a r  i n t e r p r e t a t i o n  o f  problem (2 .29)  - 
(2.32)  w e  u s e  t h e  f o l l o w i n g  r e s u l t  ( o b t a i n e d  by A. S h a p i r o  [ I l l ) :  

* * 
Theorem 8. Let x  E  R and h ( x  ) = 0. Functions f  and h  are 

* 
assumed to be quasidifferentiabbe on En. For x  to be a minimum 

point of f  on R it is necessary that 

Ll  ( x )  = - [Tf ( x )  + Th ( x )  1 , (2 .37)  

* * 
Proof. L e t  x  be  a  minimum p o i n t  o f  f  on R and l e t  h ( x  ) = 0. 

Cons ide r  a  f u n c t i o n  

* 
~ ( x )  = max I f ( x ) - f  , h ( x ) I  

where 

* 
I t  i s  c l e a r  t h a t  F ( x )  - > 0  Yx €En .  S i n c e  F ( x  ) = 0  it c a n  be * 
concluded t h a t  x  i s  a  minimum p o i n t  o f  F  on En .  But F  i s  a  

q.d.  f u n c t i o n  ( b e c a u s e  it i s  t h e  p o i n t w i s e  maximum of q.d.  func-  * 
t i o n s  f  ( x )  - f  and h  ( x )  ) . 

Applying (2.1 ) w e  have 



where 
* * *  * *  

~ F ( X  ) = co { a f ( ~   a ah(^ ) ,  ah(^ - a f ( ~  ) I  , - - - 

* 
Since x  i s  a  minimum p o i n t  of F  on E n ,  ( 2 . 2 )  l e a d s  immedi- 

a t e l y  t o  (2 .36 ) .  Q.E.D. 

Remark 1 1 .  Condi t ion (2.36) i s  e q u i v a l e n t  t o  ( 2 . 7 )  and i s  

a p p l i c a b l e  even i n  t h e  ca se  where t h e  nondegeneracy cond i t i on  ( 2 . 4 )  

does n o t  hold .  However, it seems t h a t  cond i t i on  ( 2 . 6 )  i s  always 

s a t i s f i e d  a t  a  degenera te  p o i n t .  

Now l e t  u s  cons ide r  t h e  ca se  where x E R ,  h ( x )  = 0 and con- 

d i t i o n  (2.36) does n o t  hold .  We f i r s t  f i n d  

d  (x )  = max p ( v )  = p ( v ( x )  
vEL, ( x )  

where 

P ( v )  = min I l  v-wll = I I  v-w ( v )  ll . 
WEL2 (x)  

I t  i s  c l e a r  t h a t  p ( v ( x ) )  > 0 .  

S ince  s e t s  L ( x )  and L 2 ( x )  a r e  convex t h e r e  e x i s t s  f o r  every 1 
v  E L l  ( x )  a  unique w ( v )  which s a t i s f i e s  ( 2 . 4 0 )  , b u t  t h e r e  i s  n o t  

n e c e s s a r i l y  a  unique v(w) which s a t i s f i e s  (2.39) . 
Consider a  d i r e c t i o n  

Lemma 3 .  T h e  d i r e c t i o n  go d e f i n e d  b y  1 2 . 4 1 1  i s  a  d e s c e n t  

d i r e c t i o n  o f  f  o n  R a t  x. 

P r o o f .  By d e f i n i t i o n  ( s e e  (2.39) - ( 2 . 4 1 ) )  

max ( v , g o )  > max (w,go) 
vEL1 (x)  vEL2 (x )  



I n  p a r t i c u l a r ,  it fo l lows  from ( 2 . 4 2 )  t h a t  

max ( v t g 0 )  > max (wtgo) r (2 .43)  
 EL^ ( X I  *af - ( x )  -7h ( X I  

max ( v , g o )  > max (wtgo)  ( 2 . 4 4 )  
VELl ( x )  wEah - ( x )  -Tf ( x )  

From (2.43) 

max ( v t g 0 )  + max (v ,go )  > max (wtgo) + max (wtg0) r 

V E [ - T ~  ( X I  I  VET^ ( X I  w ~ a f  - ( X I  WE [-Th ( X I  I 

- min (v ,go )  > max (wtgo)  . (2.45) 

VET£ ( x )  ( X I  

But (2.45) imp l i e s  t h a t  

a m 1  - - max (v ,go )  + min (w,go) < 0 .  (2 .46)  

39-0 v ~ a f  ( X I  - WE%£ ( x )  

Analogously, it fo l lows  from ( 2 . 4 4 )  t h a t  

a h ( x )  = max (v ,go )  + min (wtgo) < 0 .  (2.47) 

ago v ~ a h  ( x )  - w€Th ( x  ) 

I n e q u a l i t y  (2.47) imp l i e s  t h a t  go i s  f e a s i b l e ;  i n e q u a l i t y  

(2.46) shows t h a t  it i s  a  descen t  d i r e c t i o n .  Q.E.D.  

Remark 12. The d i r e c t i o n  go de f ined  by (2 .39) - (2 .41)  may 

n o t  be unique. 

Observe t h a t  s i n c e  R can be desc r ibed  by 

where h  (x )  = q h ( x ) ,  Q > 0 ,  we can o b t a i n  t h e  fo l lowing  necessary  
rl 

cond i t i on  



where 

For a  n o n s t a t i o n a r y  p o i n t  x  (when h ( x )  = 0)  it i s  p o s s i b l e  

t o  o b t a i n  a  d e s c e n t  d i r e c t i o n  g  d i f f e r e n t  from go .  
ori 

I t  i s  a l s o  u s e f u l  t o  n o t e  t h a t  i f  X i s  a  q u a s i d i f f e r e n t i a b l e  

f u n c t i o n  s t r i c t l y  p o s i t i v e  on R t hen  R can be g iven  i n  t h e  

form 

T h i s  r e p r e s e n t a t i o n  p rov ides  a  v a r i e t y  of neces sa ry  condi-  

t i o n s  and,  consequen t ly ,  a  v a r i e t y  of d e s c e n t  d i r e c t i o n s  a t  a  non- 

s t a t i o n a r y  p o i n t .  

2 . 4  Sufficient conditions for a ZocaZ minimum 

Necessary c o n d i t i o n s  ( 2 . 7 ) ,  (2 .8 )  , (2.36) can be modi f ied  

i n  such a  way t h a t  t h e y  become s u f f i c i e n t  c o n d i t i o n s  f o r  a  l o c a l  

minimum of f  on R .  

Reca l l  t h a t  

Func t ions  f  and h  a r e  assumed t o  be con t inuous  and quas i -  

d i f f e r e n t i a b l e  a t  x O € R ;  it i s  a l s o  assumed t h a t  

uni formly w i th  r e s p e c t  t o  g  € Sl i n  (2 .48)  and t h a t  i f  h ( x o )  = 0  

then  



uniformly wi th  r e s p e c t  t o  g ES ,  i n  ( 2 . 4 9 ) .  Reca l l  a l s o  t h a t  

Theorem 9 ( s e e  [5,81 1 .  I f  h ( x o )  < 0 and 

- - af (x,) c i n t  - af (x,) 

t h e n  xo  i s  a  Locat  minimum p o i n t  o f  f on R .  

I f  h ( x o )  = 0 and 

I 

r = min r ( w , w  > 0 

WET£ (x0 )  

w1€7h (x0 )  

where r ( w , w l )  i s  t h e  r a d i u s  o f  t h e  maz imat  s p h e r e  c e n t e r e d  a t  t h e  

o r i g i n  t h a t  can  be i n s c r i b e d  i n  t h e  s e t  

I 

L ( w , w l )  = - a f ( x o )  + w + c l  (cone ( a h ( x o )  + w  1 )  

t h e n  xo i s  a  s t r i c t  Locat  minimum p o i n t  o f  f on R and 

a f  ( x o )  
r = min 

gEr (x0 )  nsl  a4 

Theorem 1 0 .  I f  h ( x 0 )  = 0 and 

- - a f ( x 0 )  c i n t  L ( x ~ )  , . (2.52) 

where L ( x )  i s  d e f i n e d  by  ( 2 . 9 ) ,  t h e n  xo i s  a  s t r i c t  t o c a t  minimum 

p o i n t  o f  f on Q .  

The proof of t h i s  theorem i s  analogous t o  t h a t  of Theorem 9 

( s e e ,  e . g . ,  [5 ,§7,  Chap. 111). 



Theorem 1 1 .  I f  h ( x o )  = 0 and 

L1 ( x O )  c i n t  L 2  ( x O )  (2 .53)  

where  L l  (x  ) and L 2  ( x O )  a r e  d e f i n e d  b y  ( 2 . 3 7 )  and ( 2 . 3 8 ) ,  t h e n  0 
xO  i s  a  s t r i c t  ZocaZ minimum p o i n t  o f  f  on  R. 

P r o o f .  From (2 .53)  it fo l l ows  t h a t  t h e r e  e x i s t s  an r > 0 such 

t h a t  

max ( v l g )  f max (wig) - r VgES1 I 

vELl (x0  w€L2 (x0 

rnax < M -  r VgES1 ( v t g )  - (2.54) 

where 

M = max ( w t  9-1 

S ince  

then  from (2.43) 

max - ( ~ , g )  - rnax 

v ~ c o { A  U B) 

min (wig) < max max ( v l g ) -  min ( w t g ) ;  - min (wig) - - 
 WEB^ ( x0  v ~ a f ( x ~ )  -  WET^ (xo  WET£ (x0 

, 

, rnax ( v l g )  max ( v l g )  

v E A  v E B  I 

max ( v l g ) -  rain (w,g) - r v g E S 1  . (2 .55)  

vEah ( x o )  - WET£ ( x 0 )  

Two c a s e s  a r e  p o s s i b l e :  

1 .  M = max (wig) = max ( v l g )  - min (wig) 

w ~ a f  ( xo ) -Bh(x0 )  - v ~ a f  ( x o )  -  WEB^ (xo  1 

2 .  
- 

M = max (wig) - rnax ( v l g )  - min (wig) 

wEah ( x O )  -Bf ( x o )  - v€ah ( x o )  -  WET^ (xo  




















