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Preface 

The System and Decision Sciences Area at IIASA has long 
been involved in the investigation of decomposition procedures 
for solving structured LP problems. In this paper, the author 
studies the application of the Dantzig-Wolfe procedure to alter- 
native representations of the structured linear program and 
develops a new family of methods for solving multistage, stair- 
case structured problems. These methods are also relevant to the 
development of stochastic programming algorithms currently under 
way in the Adaptation and Optimization Project of SDS. 
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Chairman 
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Abstract 

The initial representation of an LP problem to which the 
Dantzig-Wolfe decomposition procedure is applied, is of the 
essence. We study this here, and, in particular, we consider 
two transformations of the problem, by introducing suitable link- 
ing rows and variables. We study the application of the Dantzig- 
Wolfe procedure to these new representations of the original 
problem and the relationship to previously proposed algorithms. 
Advantages and disadvantages from a computational viewpoint are 
discussed. Finally we develop a decomposition algorithm based 
upon these ideas for solving multistage staircase-structured 
LP problems. 



VARIANTS ON DANTZIG-WOLFE DECOMPOSITION 
WITd APPLICATIONS TO MULTISTAGE PROBLBMS 

L. Nazareth 

1. INTRODUCTION 

Obtaining the solution to a large LP problem by solving a 

coordinated sequence of smaller LP problems - the Decomposition 
Principle of dantzig & Wolfe, 1960 - is certainly a key concept 
of Linear Programming. In addition to the Decomposition Principle, 

a particular decomposition procedure was proposed by Dantzig & 

Wolfe, but as a computational technique this has enjoyed a more 

mixed success. Since the original paper, there have been numerous 

applications, variants and generalizations of the basic idea, 

for instance, Benders, 1962, Van Slyke & Wets, 1969, Glassey, 

1971, Ho & Manne, 1974, Kallio & Porteus, see Kallio, 1975, 

Dantzig & Abrahamson, see Abrahamson, 1981, Nurminski, 1982, to 

name only a few. 

The initial representation of the problem, to which the 

Dantzig-Wolfe procedure is applied, is clearly of the essence. 

We study this here, and, in particular, we consider two trans- 

formations of the problem, by introducing suitable linking rows 

and variables. We study the application of the Dantzig-Wolfe 

procedure to these new representations of the problem and the 

relationship to previously proposed algorithms, in Section 2. 

In Section 3 we discuss advantages and disadvantages from a 



computational viewpoint.  The reader  may s k i p  t h i s  s e c t i o n  i f  

he wishes,  and proceed d i r e c t l y  t o  Sec t ion  4 ,  where w e  develop a  

decomposition a lgor i thm based upon e a r l i e r  i d e a s ,  f o r  so lv ing  

mul t i s t age  s t a i r c a s e  LP problems. We a l s o  reexamine t n i s  a l -  

gorithm i n  Sec t ion  5 from the p o i n t  of view of dynamic programm- 

ing .  1 4 0  computational experience i s  repor t ed  h e r e ,  b u t  we hope 

t o  provide tnis a t  a  l a t e r  da t e .  

I n  t h e  t e x t ,  equa t ions  a r e  occas iona l ly  grouped using 

le t ters  e.g.  ( 2 . l a )  and ( 2 . l b ) .  I f  w e  subsequent ly  r e f e r  t o  

(2.1) w e  mean both ( 2 . l a )  and ( 2 . l b ) .  

2. APPLYING THE DECOMPOSITION PRINCIPLE TO 
TRANSFORMED PROBLEMS 

W e  begin by cons ide r ing  t h e  problem: 

minimize c x  + c x  1 1  2 2 

( 2 .  l a )  

where A1 and A2 a r e  ( m  x  n l )  and (m x  n2)  ma t r i ces  r e s p e c t i v e l y ,  

and t h e  o t h e r  q u a n t i t i e s  a r e  v e c t o r s  of appropr i a t e  dimension. 

The d u a l  of (2 .  l a )  is:  

maximize b -rr 

L e t  us f i r s t  review some s tandard  ways of decomposing ( 2 . l a )  

o r  ( 2 . l b ) .  For example, i f  w e  w r i t e  ( 2 . l a )  a s  

min { c  x  + min [c2x2 1 A ~ X ~  = (b  - A1 x1 ) 1 1 1 ! 
Xl€R x2>0 - 



where 

we are led to BendersJ decomposition procedure. This is 

conceptually, though of course not computationally equivalent 

to applying the Dantzig-Wolfe procedure to the dual (2.lb), with 
'I' the constraints A IT < c defining tne s-&problem and tne remain- 2 - 2 

ing constraints defining the master. Both decompositions are so 

standard that we do not give further details here. We shall 

emphasize throughout the Dantzig-Wolfe procedure, since results 

aDo-dt the Benders! 2rocedure follow from tneir dual equivalence. 

Let us now consider two different sets of transformations of 

the problem (2.1). The first introduces new variables x1 and x2 
and a linking r o w ,  and leads to the following reformulation: 

minimize Cl Xl 
+ C2X2 

Its dual transfornation introduces variables n  and n 2  1 
and the original variable IT is treated as a linking variable, 

leading to: 

maximize bl~ 



If we apply the Dantzig-Wolfe procedure to (2.2b) with two 
rn 

subproblems defined by the constraint sets PI = inl :~'n < C1 1 
T 

1 1 -  
P an& P2 = {n2:A n < c 1 and if nij , j = 1,2, ... ,n are 

2 2 -  2 r i~ 
the extreme points of Pi , i = 1,2 and n , j = 1,2,... 

i j rnir 
the extreme rays of Pi, then the corresponding master program is: 

maximize 

Senoiing by x and x2 the prices corresponding to the first 1 
two constraints (these are, of course, realizations of the 

variables of the primal (2.2a) ) then the corresponding s~bprobler~~s 

are 

T maximize x.n. 
1 1  

It is easily verified that this is equivalent to the s y m m e t r i c  

Dantz ig-WoZfe  d e c o m p o s i t i o n  given in Nazareth, 1978, where details 

of the dual procedure, s y m m e t r i c  Benders  d e c o m p o s i t i o n ,  can also 

be found. Also for an example of the use of the transformation 

(2.2a) in a somewhat different algorithmic setting, see 

Schecntman and Granville, 1982. 



The second transformation of (2.la) tnat we consider intro- 

duces just a linking variable x leading to the following equi- 
valent problem: 

minimize c1 x1 + C-x 2 2 

Note that tnis can be obtained from (2.2a) by summing the 

last two equations and thus eliminating x2. Its dual introduces 

a l i n k i n g  row in variables nl and n as follows: 2 

maximize bn2 

If we let the constraints corresponding to 

P = { ( x ~ ~ x ~ ) ( ~  + A2x2 = b x2 - > 0 )  define the subproblem in 

the Dantzig-Wolfe procedure applied to (2.5a), the corresponding 

master problem is: 



P r minimize clxl + 1 (c2x2 ) h + 1 (c2x2 ) pj 
j j 

r r  where (Xp,xP ) and ( ~ ~ , x ~ ~  
I 21 

) represent extreme..points and extreme 

rays of P. 

~f IT is the vector of dual multipliers corresponding to 

the first constraint of (2.6), then the associated subproblem is: 

minimize TX + c2x2 

For an LP model that useslinking variables, see, for example, 

Nazareth, 1980. Within the context of the stochastic (linear) 

programming problem, linking variables are used for example by 

Wets, 1974b, 1983, to induce separability in the objective func- 

tion, and by Nazareth & Wets, 1983 in an algorithmic approach 

utilizing generalized programming, which is obviously related to 

the above use of the Dantzig-Wolfe procedure. Linking variables 

are also used by Nurminski, 1982, who solves a more general non- 

linear programming problem (LP is a special case, of course). 

Tais problem is defined, a priori, in terms of linking variables, 

and they provide the basis for an algorithmic approach that 

utilizes methods of nonsmooth nonlinear optimization. For LP, 

his algorithm, suitably extended to handle unboundedness, can 

in fact be interpreted in the above terms, viz. (2.6) and (2.7) . 
There is an alternative view of the decomposition leading to 

(2.6) and ( 2 . 7 )  which is similar to that taken in Nazareth & Wets, 

1983, and yields considerable insight. Here write (2.5a) as: 



minimizes clxl + $(XI 

wnere 
$(x) = min {c x I A  x = b - 

x > O  2 2  2 2  
2- 

and +(x) = +m if A2x2 = b - x , > o is infeasible. 
X2 - 

Y(X) is a convex poZy.hedraZ func t ion .  There is no need to prove 

this here since it follows from the results in Wets, 1974a, for 

the particular case when the resource vector b has discrete 

distribution with probability 1 (i.e. is deterministic). 

If we apply the generalized programming method i.e. inner 

linearization of $(x) combined with a column generation procedure 

to (2.8) , (see, for example, Shapiro, 1979) , then we obtain the 
following master program: 

minimize 
i i 

where X p  are points where + (x) is inner linearized, and + ( ~ 5 )  
3 

are lines of recession of +(x). 

Lf IT is again the vector of dual multipliers corresponding 

to the first constraint of (2.9), then the corresponding sub- 

problem is: 

(2.10) minimize [ q  (x) + ITX] 
X 

and this is equivalent to: 



minimize [c2x2 + ~ x I A ~ ~ ~  = b - X I  
x.. > 0 

P  With t h e  a p p r o p r i a t e  i d e n t i f i c a t i o n ,  namely, $ ( X  . ) = c2xEj , 
r r 1 @ ( x j )  = C 2 X 2 j t  we see t h e  equivalence of ( 2 . 6 )  and ( 2 . 9 )  . 

F i n a l l y ,  t h e  fol lowing observa t ion  w i l l  t u r n  o u t  t o  be 

u s e f u l  i n  t h e  dynamic programming i n t e r p r e t a t i o n  given l a t e r .  * 
I f  X i s  a  s t a t i o n a r y  p o i n t  of ( 2 . 1 0 ) ,  t hen  

where a denotes  t n e  (Clark)  s u b d i f f e r e n t i a l .  Thus 

( 2 . 1  O C )  - n  E a [ + ( x * ) l  

* 
and so  - d e f i n e s  a  suppor t ing  hyperplane t o  $ ( x )  a t  x . 

3 .  DISCUSSION 

The r e v i s e d  simplex method a p p l i e s  n a t u r a l l y  t o  ( 2 . l a )  when 

m < <  n = (n, + n2) , s i n c e  it would r e q u i r e  an (m x m) b a s i s  

matr ix .  When app l i ed  t o  ( 2 .  l b )  where, f o r  t h e  moment, we d i s -  

regard  p a r t i t i o n i n g  of t h e  c o n s t r a i n t s ,  it would appear ,  at f i rs t  

s i g h t ,  t h a t  an ( n  x  n) b a s i s  mat r ix  i s  needed. However, t h e  c o s t  

of maintaining t h e  i n v e r s e  of  such a  ma t r ix  is  nowhere a s  prohib- 

i t i v e  a s  it would f i r s t  s e e m ,  f o r  t h e  simple reason t h a t  much of 

it must c o n s i s t  of columns of t h e  n  x  n  i d e n t i t y  matr ix .  I n  

gene ra l ,  t h e  b a s i s  ma t r ix ,  when s u i t a b l y  permuted, i s  of t h e  

form B = [~-'-c] when I is an (A - rn) x (n  - mi i u c n t i t y  
3 :B 

~ n a r r i x ,  C i s  (n - m) B is  in x m.  Assuming t h a t  B i s  
d - q  = [; -:i.:czEq i n v e r t i b l e ,  and only B need be i n v e r t e d  ( o r  

E-1 
factored) ana updatea.  Using a  compact b a s i s  method, t n e  b a s i s  

3 3 r ' a c to r i za t ion  r e q u i r e s  O ( m  ) o p e r a t i o n s ,  b a s i s  updat ing O ( m  ) ,  

and computing updated columns, p r i c e s ,  and reduced c o s t s  a r e  O(mn) 

ope ra t ions .  Fu r the r  sav ing  can be e f f e c t e d  over  t h e s e  rudimentary 

e s t i m a t e s ,  and indeed t h i s  i s  p r e c i s e l y  what i s  achieved by t h e  

dua l  r e v i s e d  simplex method app l i ed  t o  ( 2 . l a )  - conceptua l ly  t h e  

equ iva len t  of t h e  r ev i sed  simplex method a p p l i e d  t o  ( 2 . l b ) .  



Let us consider next the standard decompositions. With the 

partitioning of (2. I a) , Benders' decomposition applies quite 
naturally. This is c o n c e p t u a l l y  equivalent to applying the 

Dantzig-Wolfe procedure to (2.lb). If the first set of constraints 

define the master, and nl is reasonably small, all is fine. 

nowever if n, >> m are n2 >> m then the benefits of a compact 

basis technique are muck less easy to realize than in the case 

discussed in the srevious paragraph. Since  he number of 

extreme points of the subproblem are 0 (n2Cm) , the master 
problem will have many more columns than AT and there will 

certainly be nl x n submatrices of the master which do not in- 1 
clude any unit columns i.e. columns of the nl x nl identity 

matrix that corresponds to the slack variables of the master. 

If the intermediate solutions on the path to the optimal solution 

of the master, and the optimal solution itself are such that 

many master constraints are slack, then every basis will contain 

many unit columns and compact basis techniques of the sort dis- 

cussed earlier will achieve significant savings. However, the 

potential for difficulty remains. These sorts of considerations 

are precisely those that could occur when ~enders' decomposition 
is applied to (2.la) and nI,n2 > >  m, the concern being that 

a large number of added constraints could be active at some 

point. In the subproblem in either decomposition, the dimen- 

sions are those of A2, and as we have seen, the relative size of 

n2 and m does not present a difficulty. However, because many 

new columns are added in the Dantzig-Wolfe master (or corres- 

pondingly constraints in the Benders' master) it is advisable 

to keep nl as small as possible relative to the other problem 

dimensions. Dantzig-Wolfe (or Benders) decomposition is most 

appropriately applied when there is a natural hierarchy in the 

problem with relatively few rows (or variables) defining the master. 

The form of the partition i.e. the relative size ofnl and n2 is 

important. Other points to note about Dantzig-Wolfe (or Benders) 

decomposition are that s t r u c t u r e  is l o s t  in the original rows 

(columns) defining the master problem, and that the density of 

the LP matrices in the master often considerably exceeds that 
T of A, . 



Turning now to the relative merits of symmetric decomposi- 

tions, we see that they may be more useful when there is a need 

to simultaneously coordinate different models, but wnere there 

is no clearcut hierarchical structure. The standard and the 

symmetric decomposition are complementary in that one might be 

appropriate for a problem for which the other can be expected to 

encounter difficulty. Thus, in contrast to the standard de- 

compositions, when n1 ,a2 > >  m, the symmetric D-W master wjll 

have 2m + 2 rows, its size being determined by the number of 
variables in (2.2b). Note that the form of the partition i.e. 

the relative size of nl and n2 is immaterial. Structure in the 

rows defining the subproblems is retained, and their sparsity 

pattern is unaltered. Similar comments apply to tne symmetric 

Benders' Decomposition. 

The symmetric decompositions have some disadvantages of 

their own. Suppose we consider a problem of the form (2.la), 

with Al and A2 sparse. If we applied the simplex method to 

(2. la) we would employ an (m x m) sparse basis matrix, say B1. 

When the symmetric Dantzig-Wolfe decomposition is applied to 

(2. lb) (or equivalently the symmetric Benders ' to (2.1 a) ) then 

we have a master of the form (2.3) with 2m + 2 rows and 

m + li n + li nir columns, of which the last rn can be expected 
ip 

-LO bs in a master basis matrix, say B2. The additional 

m columns of B2 are dense, and B2 will thus be much more ex- 

pensive to work with than B1, even when compact basis techniques 

are employed. This is a serious disadvantage when compared to 

the usual simplex method for those cases when it is possible to 

apply the latter method directly i.e. when we do not have a 
situation where two models must be linked through some co- 

ordination procedure. There are however some ameliorating 

features of models, and modifications of symmetric decomposition 

that help matters: 

a) There are generally only a few linking rows and columns. 

Suppose, for example, in the symmetric Dantzig-Wolfe scheme there 

are only m2 linking columns. Then the master basis will be ex- 

pected to require only m2 additional columns to those taken from 

its sparse portion, and the resulting algorithm may thus be 

reasonably efficient for this class of problems. 



b) Techniques for block-angular systems could be applied to the 

master problem. 

c) It is possible to use symmetric decomposition in combination 

with a relaxation of constraints. We noted earlier that compact 

basis techniques can be effectively used within algorithms based 

on the standard decomposition because, in situations when the 

basis is potentially large, many columns correspond to those of 

an identity matrix. We can induce a similar situation by modi- 

fying (2.3) as follows: 

maximize b~ 

6 is a non-negative homotopy-like parameter which can be pro- 

gressively reduced to zero and D is a diagonal matrix of row 

scales. In effect, we are solving a series of perturbed problems 

which tend to the original, and we do this by relaxing the in- 

fluence of A2 and c2 on the p r i c e s  in (2.la), or equivalently the 

influence of the second set of c o n s t r a i n t s  in (2.lb). Note that 

we do n o t  thus violate primal feasibility. When 6 is relatively 

large it is likely that only the optimal solution of s/pl 

associated with (3.1) will influence its optimal solution; with 

other basis columns being columns of the matrix D. For compu- 

tational purposes it may be preferable to work with the dual of 

(3.1). 



Finally, let us consider the decomposition applied to (2.5a), 

namely (2.6) and (2.7) , which we call d e c o m p o s i t i o n  by t e n d e r s ,  

in keeping with the terminology of Nazareth & Wets, 1983. The 

method although price directive, has some of the features of 

resource directive methods (see Shapiro, 1979), since 
P r x = lj Ajxj + lj ujxj at any iteration gives the allocation 

of resources to the set of activities associated with A,, and 

(b - X) gives the allocation to the set of activities associated 
r 

with A2. xp or xj are t e n d e r s  and we seek, in effect a single 

tender associated with the optimal allocation to the two sets of 

activities. Decomposition by tenders applies naturally to the 

primal system (2.la) wnen m <<  n, sknce m determines the size 

of the basis. (However a related scheme in which the 

Dantzig-Wolfe procedure is applied to the dual problem could 

be wor~ed out,which utilizes compact basis techniques more 

effectively than synunetric de'composition.) We can observe also 

that structure in A1 and A2 is not lost, and that the method 

fits within the framework of a time-staged sequence of subproblems 

rather than a h i e r a r c h y  of control as in the usual Dantzig-Wolfe 

procedure, or a c o o r d i n a t e d  s e t  of subproblems as in symmetric 
r decomposition. The vectors XP or xj may be fairly dense vectors, 

j 
but we can also expect relatively few of them in an optimal 

basis. Indeed all that is needed is one  tender corresponding 
to the o p t i m a l  p a r t i t i o n i n g  of the resource. Overall, 

decomposition by tenders looks very promising, and we explore 

its potential for solving multistage (staircase) LP problems 

in tne next section. 

To avoid the difficulties of notation associated with work- 

ing witn a t-stage problem, when t is arbitrary, we confine 

our description to a 3-stage problem. This is quite adequate 

for giving the basic ideas, and results for the general multi- 

stage problem can easily be inferred. 



Consider therefore the problem: 

minimize CIX1 + C23 + C3X3 

In the n e s t e d  d e c o m p o s i t i o n  algorithm (see Ho E Manne, 1974 

and Glassey, 1971 ) , the constraints Alxl = bl , x1 > 0 define - 
the first subproblem and the remaining constraints the master, 

say M/1. M/1 is in turn decomposed so that the constraints of 

M/1 generated by original constraints B x + A2x2 = b2, 1 1  
> 0 and a convexity row, define a new subproblem and the X1'X2 - 

remaining constraints lead to a level-2 master, say M/2. M/2 is 

in turn decomposed and so on. R e c o n s t r u c t i o n  of the optimal 

solution is necessary (see Ho, 1974) and is often a numerically 

taxing procedure. Dantzig E .Abrahamson, see Abrahamson, 1981, 

have proposed working with the dual of (4.1), along with special 
startup procedures. 



Let us now consider an approach based upon transformations 

of (4.1) analogous to those leading to (2.5a) and (2.5b) . (4.1 ) 

then becomes 

minimize c x 1 1  + C2X2 

Now let us apply nested decomposition to (4.2), in an ana- 

logous manner to the decomposition of (2.5) leading to (2.6). 

We call this multistage decomposition by tenders. Let the con- 

straints x2 + A3x3 = b3 , x3 - > 0 define the first subproblem, 

the corresponding master, say M/1, is 

minimize CIX1 



wnere p and 6 are given by 
21 2 j 

(4.4b) 62j =]I if ( x ~ , x ~ )  is an extreme point 

10 if (Xi ,xi) is an extreme ray 

Now if we again decompose (4.3) where the constraints (4.3b) 

define the subproblem, with extreme points or rays denoted by 
j j j ( X ~ , X ~ , X ~ )  then the corresponding master, say M/Z is: 

minimize 
'lxl + 5 PI j$ j 

3 

wnere p and 6 are defined by: 
I j I j 



is an extreme point 

is an extreme ray 

If (ul,nl,pl) are the dual multipliers associated with (4.5) 

then pricing out the variables X requires.us to 
1 j 

minimize (p + IT = minimize (c x j j 
j 1 j 1 1  j 

2 2 + ~ 2 ~ 2 ~  + '1x1) 

This is equivalent to solving the subproblem: 

minimize nlxl + c2x2 + 1 p2jh2j 
j 

Similarly, if (u2,n2,p2) are the prices associated with 

tne constraints of (4.6), then pricing out the X variables 
21 

requires us to solve 

j minimize p + = minimize (c xJ + r2x2) 
j 2 j j 

3 3 

this requires us to solve the subproblem 

minimize T2X2 + C X 
3 3 



The three LP problems (4.5), (4.6) and (4.7) above 

define the decomposition scheme. We can summarize it by: 

minimize .rr i-1Xi-1 + cixi + 1 p A 
j 

ij ij 

+ Aixi - Xi- 1 - bi 

with 4 - > i - > 1 and the end conditions X, ' 0 r B4 - 0 r P4j E 0 t 

I x4 = 0 and the convexity row omitted when i = 3. 

Also we have the recurrence relation defining pij as: 

with 4 > i > 1 and end condition c4 I 0 , - - p4 = 0. 
Note that here prices are passed forward ( i n  t i m e  if the 

staircase structure reflects a time-staged model) and proposals 

backward. An anaLogous scheme can be worked o u t  by s t a r t i n g  a t  

t h e  o t h e r  end o f  t h e  s t a i r c a s e  i.e. defining the first subproblem 

by the constraints A1xl = bl , B1xl - x1 = 0 , > 0. X1 - 
I n  t h i s  c a s e  p r i c e s  wouLd be passed backward f i n  t i m e )  and 

proposaLs forward. See also the comments of Section 6. 

Convergence of the above multistage decomposition procedure 

follows from the usual arguments. I t  i s  i m p o r t a n t  t o  n o t e  t h a t  

t h e  r e c o n s t r u c t i o n  o f  t h e  s o L u t i o n  i s  no Longer n e c e s s a r y ,  

in contrast to earlier decompositions. 

Finally, although our discussion was confined to a 3-stage 

model, results for a general t-stage model can easily be inferred. 



5. INTERPRETATION IN TERMS OF DYNAMIC PROGRAMMING 

In nested decomposition the number of columns in 

successive (unrestricted) subproblems grows exponentially, yet 

on the basis of experimental evidence, at least with the Ho- 

Manne algorithm (see, for example, Ho, 1974) nested decomposition 

works reasonably well. To the author, this has always been some- 

what of a mystery. 

There is however an alternative interpretation of nested 

decomposition algorithms, in particular, decomposition by tenders, 

that fits into the framework of dynamic programming. This inter- 

pretation gives some insight into the efficiency of such methods 

via Bellman's Principle of Optimality. (See also Birge, 1980 

who gives a similar interpretation for other algorithms for solv- 

ing multistage (stochastic) ..linear programs based upon nested 

Benders' algorithm and Rosen's partitioning method). 

Thus, let us consider the following reformation of the multi- 

stage LP problem (4.2). 

(5. la) 

where Q1 (xl) = min c 2 x 2 + Q2 (x2) 

(5. lb) 



where q2 (x2) = min c x 3 3 

(5. lc) 

Again, from more general results in the theory of stochastic 

programs with recourse, specialized to the deterministic problem 

(see Wets, 1974) the functions qi (xi) are convex and poLyhedra2. 
We can view (5.1) as a backward dynamic programming recursion. 

For example, if we quantize the vectors xi to have values 
{Xi , j = 1 , 2 . .  , 1 , then the backward recursion can be 
expressed as : 

k - where i = 3,2,1 and we assume the end conditions xO = 0 and 

$3 (Xi) = 0. Finiteness of this procedure follows from 

Bellman's Principle of Optimality and the finiteness of the 

simplex method (under the usual non-degeneracy assumptions). 

However, rather than using an arbitrary quantization, we 

can go much further by taking account of the convexity of qi(xi) 
- 

and its polyhedral structure. Thus if Xi now represents either 

a corner point or a line of recession of $$xi) and i f  6ij = 1 if 
j xi is a corner point and 0 otherwise, then we can write (5.2) as 
a single minimization given by: 



Aixi - - bi - k 
Xi- 1 

We see that (5.3) is related to multistage decomposition by 

tenders, in particular compare with (5.8). To see this relation- 

ship more precisely, let us utilize the observation made at the 
k 

end of Section 2, and show how the particular quantization xi-, 
is made using ni - Thus we write (4.8) as: 

(5.4) minimize [$i-l + ni-l I 

with qi- (xi- ) = min cixi + I P A ij ij 
j 

AiXi - - bi - Xi- 1 

such that Solving (5.4) is equivalent to finding 

In other words, if we solve (5.5) and seek a solution which 

is optimal and whose associated dual multipliers, say ( u ~ ~ ~ ~ , P ~ )  

satisfy 



(or if the optimal solution is not unique,  IT^-^ E {ai} where 

where { u  denotes the set of such multipliers), then this 

is the solution to (4.8) or equivalently ('5.4) with xi - 
k was used in the component given by NOW if xi - 

quantization for (5.3) , then we see the equivalence of (5.3) and 
(5.4) when we work with unrestricted subproblems and identify 

k k j q i 1  ( x i  ) with $ ( x i  ) and pi with $i (xi). Note also the 

relationship of (4.9) to the objective function of (5.3) . 
We see that in the dynamic programming interpretation, if we use 

a price-directive method for dynamically choosing the quantiza- 

tion, we obtain a procedure that is conceptually quite close to 

multistage decomposition by tenders. We however emphasize this 

correspondence only at a conceptual level, because in practical 

terms the two schemes differ;:substantially. In practice, to 

do a backward recursion in the standard way would be extremely 

expensive. Instead we work with restricted subproblems and 

develop a sequence of approximations qi{x.) which are 
1 

refined in a cycle through the subproblems, with prices n 
1' 

obtained from the first subproblem seeking to match a2 and 
- 

producing an associated then rr2 from this solution seeking 

to match a and so on. 3 ' 
All of this can be brought a little more sharply into focus 

by looking at decomposition by tenders from yet another viewpoint, 

namely the application of Wolfe's generalized programming method 

(see, Dantzig, 1963, Chapter 24) iteratively to (5.1). The 

method produces successive inner linearizations of $.(x.) . If 
1 1  

we attach the symbol 'tilde' to denote approximations i.e. 

qi(xi) denotes an approximation to $.(xi), then inner lineariz- 
1 

ing tl (xl ) we obtain : 

minimize 
3 



where represents a corner point or line of recession of 1 
q l  (xl ) and 6 has the usual meaning. 

1 j 
If (ol,nllpl) are the dual multipliers for (5.8) at 

optimality, then an improving candidate is obtained by solving 

(5.9a) minimize IS1 (xl) + nlxl] 

From (5. lb) we see that (5.9a) is equivalent to solving 

minimize nlxl + C2X2 + $2 (x2) 

a2 (x2) is, in turn, inner linearized (5.9b) becomes 

j minimize nl x1 + c2x2 + $ q2 (x2) h2 
3 

and so on. A general iteration, with appropriate end conditions 

is therefore given as follows: 



minimize *rr i-1 Xi-1 
j 

+ CiXi + qi(xi)hij 
j 

+ Aixi - Xi- 1 - bi 

and we can immediately compare with (4.8). An effective im- 

plementation would require one to develop approximations 

that steer the overall process as quickly as possible to the 

neighborhood of an optimal solution. A pure backward iteration, 

which seeks to develop I/.J~(x~) rather than qi(xi) would be waste- 

ful as compared to a cyclic iteration. To make an analogy, 

suppose we were to consider the case of shortest path algorithms 

for directed networks whose nodes say Sij , j = 1,2, ..,ki 

are defined at discrete time intervals, say i = 0,1,2, ..., T; 
then the above comparison, provided all costs were non-negative 

would not be dissimilar to a comparison between pure backward 

iteration and Dijkstra's labelling algorithm. Indeed, this 

analogy is worth exploring as a means for investigating the 

efficiency of nested decomposition algorithms but we will not 

pursue this any further in this paper. 

The whole question of implementation requires much more 

extensive study, which we are currently undertaking. We make 

some further comments in the next section. 

6. CONCLUDING COMMENTS, IN PARTICULAR, CONCERNING 
IMPLEMENTATION 

Here we have sought to introduce a family of algorithms 

based upon applying Dantzig-Wolfe decomposition to transformed 

problems. In particular, decomposition by tenders looks quite 

promising for multistage problems. It can take advantage of a 

good set of initial allocations of the right-hand-side to stages 
defined by ( ;:) which the particular LP model may have 



available, and it circumvents the problem of having to reconstruct 

the solution, as required by the Ho-Manne algorithm. There are, 

of ccLrse, a number of different algorithms for multistage de- 

composition by tenders, determined in particular, by whether the 

primal or dual LP is solved, and whether this is done forward or 

backward (in time) . 
As far as implementation is concerned, an experimental ver- 

sion at level-1 could be based on MPL, a level-2 implementation 

could be developed using the subroutines described in Nazareth, 

1982 and a level-3 implementation could be developed by suitably 

modifying the code of Ament et al, 1980. (For terminology on 

hierarchical implementation at different levels see Nazareth, 

1982.) Also, as mentioned earlier, the algorithm of Nurminski, 

1982 can be shown to be an instance of decomposition by tenders, 

and the experimental evidence accrued by him using the MINOS 

code, also looks promising. 

Finally, we should mention another promising avenue of 

exploration, namely, the application to solving multistage 

stochastic programs. 
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