
NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

DATABASE INFWENCING FOR DECISION SUPPORI'

Ronald M. Lee

April 1983

WP-83-47

W o ~ k i n g Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
lirmted review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

The use of databases for management decision support requires flex-

ible ~nferencing mechanisms. The use of logic programming for these

purposes is explored. To be flexible, however, this requires the logical

decomposition of the database into elementary predicates.

CONTENTS

A. INTRODUCTION

B. DATABASE MANAGEMENT

C. THE RELATIONAL DATA MODEL

D. INFERENCING ON DATABASES

E. PREDICATE CALCULUS AND LOGIC PROGRAMMING

1. Predicate ~ a l c u l u s

2. Logic P r o g r a m m i n g

F. THE ENTITY-RELATIONSHIP INTERPRETATION

G. PREDICATE LOGIC INTERPRETATION

H. RELATIONAL DATABASES AND LOGIC PROGRAMMING

I. CONCLUDING REMARKS

REFERENCES

DATABASE INFERENCING FOR DECISION SUPPOm

Ronald M. Lee

Database management applications have become common in nearly

all types of private and public organizations. Yet, their use for lugher

level managgement dicision making has been limited. One reason for this

is the lack of inferencing mechanisms to provide the &her levels of

abstraction needed in various decision contexts.

Ths paper explores the use of logic programming for these purposes.

It concludes with the observation that database inferencmg, to be flexi-

ble, requires a (conceptual, logical) decomposition of the database into

elementary predicates.

B. DATABASE ~ A G ~ E N T

Database management (DM) arose onginally from a need for a spe-

cialization of labor in data processing. Applications programmers had the

dual function of satisfy~ng user requirements as well as efficiently main-

taining the data on various storage devices.

As long as applications tended to be relatively independent, this was

not a great problem. However, as more and more data files came to be

shared among various applications, coordination problems arose. Dif-

ferent applications favored different types of data organization.

Database Management Systems (DBMSs) offered a separation of these

concerns. Essentially, a DBMS translates between an abstracted view of

data, accessed by application programs, and its actual physical represen-

tation.* What the appropriate abstracted view should be, so-called 'data

models', became an interesting research question and has been the sub-

ject of prolonged debate for nearly a decade. The basic camps, eventu-

ally, centered around a graphical view called the Network Model as

opposed to a tabular view, the Relational Model. (Date, 1977, gives a good

comparison.) f i l e the two views are closely compatible, the Network

Model seems to have certain advantages from the user engineering stand-

point, and has been more widely implemented. The Relational Model, on

the other hand, is mathematically simpler, and for that reason has been

the more favored view in research dmcussions. The Relational Model is

also adopted here as representing the database management paradigm.

* The abstractiun process may actually go a step further as recommended by the
ANSI/X3/SPARC report (Tsichritsis and Klug, 1077). Following that report, programs would
accesl an 'external view' of the data, which is a subset of a master view called the 'conceptu-
al schema'. This in turn is mapped to the 'internal schema' indicating actual phy&cd
storage.

C. THE RELATIONAL DATA MODEL

The Relational Model was originally proposed by Codd (1970). In tlvs

view, data items are regarded as arranged in rectangular tables consist-

ing of columns and rows. Columns are called attributes, rows are called

tuples, while the entire table is called a relation. An example relation,

containing data on employees, is the following:

EMPLOYEE (ID#, NAME, RANK, SALARY)

12 JONES CLERK 10000
51 SMITH CLERK 10000
27 DOE MANAGER 25000
05 ELIOT PRESIDENT 50000

Note that rows correspond to individual employees whereas the columns

indicate the various recorded features of the employee. This is the gen-

eral convention, i.e. that rows comespond to individuals in the environ-

ment ('instances') while columns indicate their attributes. In the

EMPLOYEE relation, the attribute ID# (identification number) is a 'key

attribute', that is, a unique identifier (of the individual in the environment

corresponding to the tuple). Such keys serve as cross references to

other relations, such as in the following relation, s h o w

superior/subordinate relationships.

WORKS-FOR (SUPERIOR#, SUBORDINATE#)

In this case, both SUPERIOR# and SUBORDINATE# refer to ID# data items

in the EMPLOYEE relationship. The identify~ng key for the WORKS-FOR

relation is however the conjunct of the SUPERIOR# and SUBORDINATE#

attributes.

In the theory behind the Relational Model, database relations are

regarded as mathematical relations over various domains of data items.

An important concept in t h s theory is the so-called 'functional depen-

dency' that may arise between attribute domains. That is, if one attri-

bute, A, is functionally' dependent on another, B, then an update to B

requires a corresponding update to A.

In the above example, for instance, it may be the case that salary

depends on rank. That is, each rank has a fixed salary. Hence, knowing

an employee's rank, we can determine his or her salary. In t h s case, the

database would be redundant, since the salaries of clerks are recorded

twice. To avoid potential inconsistencies (e.g. having one clerk's salary

different than another's) the database should be normalized so that each

such fact is recorded only once. In this example, the EMPLOYEE relation

would be divided into two relations, EMPLOYEE and PAY-SCALE, as shown

below. (For further discussion on normalization, see Codd, 1972, Fagin,

1977.) Note that in the PAY-SCALE relation, the attribute RANK serves as

the identifying key.

EMPLOYEE (ID#, NAME, RANK)

12 JONES CLERK
51 SMITH CLERK
27 DOE MANAGER
05 ELIOT PRESIDENT

PAY-SCALE (RANK, SALARY>

CLERK 10000
MANAGER 25000
PRESIDENT 50000

However, this decomposition is appropriate only if the organization's

personnel policy makes s a k y a unique function of rank. The equal

salaries of the two clerks may only have been an accidental coincidence,

not due to a functional dependency. This is a fundamental point: Punc-

tional dependencies cannot be detected from patterns in the actual data

alone. They reflect relationships between possible values of attributes.

This is due to the fact that organizational databases are dynamic,

that is, they are continually being updated reflecting the effect of organi-

zational transactions such as sales, inter-departmental transfers, produc-

tion runs, etc. If the database were completely static, functional depen-

dencies could be detected from the actual data, but then they would not

be of interest; since there are no updates, no accidental inconsistencies

could arise.

D. INFERENCING ON DATABASES

The major use of DM databases to date has been in data processing

applications; hence mainly for structured, operational level activities

such as sales order processing, billing and inventory control. These appli-

cations are characterized by high volumes of routine transactions. P e r

formance criteria are mainly speed and efficiency. Databases might also

be useful in less structured, longer range activities, though the require-

ments in t h s case are somewhat different:

a. information is usually required in more summarized form

b. access is less routine - information must be retrievable in a

variety of forms and combinations

c. the information is often used in combination with other informa-

tional and computational resources.

These are criteria for using DM databases in decision suppart appli-

cations. The principle point is that the data needs in these cases, though

contained in the database, will often not be at the detail level nor in the

structural arrangement in which the database was designed. It is for

these uses that a mechanism providing inferencing on the database is

needed.

One obvious way of summarizing data is simple arithmetic calcula-

tions - e.g. counts of inventory. Lac- however is a correspondmg

framework of qualitative inferencing. For instance, if you have an inven-

tory of three apples and two oranges and count them up, you have five

'thugs', but what descriptive label should be attached to t b s broader

class? In this case a system of qualitahve inference is needed. More

realistic examples abound, e.g. in accounting data if you have $500 in

cash and $700 in accounts receivable, then you have $1,200, but of what?

Conversely, one might wish to make a query about the quick assets of the

company when the database only contained data on cash and accounts

receivable.

E PRE3ICATE CALCULUS AND LOGIC P R D G W I N G

Further discussion of database inferenclng for decision support

applications requires a brief background on predicate logic and its com-

putational counterpart, logic programming.

1. Predicate Calculus

It is assumed that the reader is at least generally familiar with the

first order predicate calculus (FOPC) and its syntax. The following is thus

only a review.

The description of a logical system begins by declaring its universe

o j discourse. In a propositional (zero order) logic, t h s amounts to a set

of statements (propositions) asserted to be true. In a first order logic, a

separation is made between individual entities (or just individuals), and

the properties and relationshps to other individuals. The latter are indi-

cated, respectively, by one and n-place ped ica t e s . For a first order logic

the domain of discourse is called the donrain o j individuals. (For the

moment, the individuals described by the logic can be imagined as

discrete physical objects at a point in time.) In summary form, the basic

constructs of a first order predicate calculus are as follows:

1. Repositions.

These are complete logical statements having a truth value.

These are indicated symbolically by capital letters -e.g. P,Q,R.

2. Logical cmmct ives .

These combine one or more propositions to form new logical

statements, also havlng a truth value. The logical connectives

- 9 -

used here are as follows:

- equivalence

implication

& conjunction

V disjunction (inclusive)

W disjunction (exclusive)

" negation

3. Individud cons tan t s and var iab les .

These stand for objects in the domain of discourse -e.g. indivi-

dual trucks or employees.

Individual constants are denoted as one or more upper case

letters, possibly containing non-leading digits or hyphens; e.g. A,

GEORGE, TRUCK-?.

Individual variables are denoted as either lower case letters, e.g.

x, y, z, or as a "?" followed by one or more capital letters or

Q i t s , e.g. ?ID, ?SALARY. (The dual notation here is a comprom-

ise between the logical convention of variables as lower case

letters, and the database management convention of capitaliz-

ing names of attributes that are recognized as variables in a log-

ical interpretation.)

4. Fbnct ions .

These map one or more individuals to another - e.g. SUPERVI-

SOR (JONES) refers to another individual who is Jones'

supervisor. Functions may take zero or more arguments and

always result in a reference to a single individual. Functions

may thus appear wherever an individual constant is allowed.

Indeed, a zero-place function is the same as an individual con-

stant. Functions are therefore denoted in the same way as indi-

vidual constants, but followed by an argument list, e.g, F(A),

BOSS (SMITH)

5. Predicates.

These indicate features, properties, attributes, etc., applied to

zero or more individuals. Predicates will be denoted by upper

case letters or words, e.g. P(x), RED(?X), OWN(x,y). When a

predicate is applied to individual constants or to quantified indi-

vidual variables (see below), or to functions of these, it has a

truth value and may be combined to form other logical state-

ments using the logical connectives above. A zero-place predi-

cate is equivalent to a proposition.

6. Logical quantifiers.

These indicate the range of individual variables. The principal

ones are:

Vx universal quantifier

(for all x, for each x, -
ranging over all individuals

in the universe)

3 x existential quantifier

(for some x -ranging over

at least one indmidual)

Parentheses are used in the usual fashion.

2. Logic Programming

Mechanical theorem proving in the predicate calculus has been a

central area of AI research since its outset. As with logic generally, the

original goal was to reproduce mathematical reasoning. Thus, an early

success was the Logical Theorist program by Newell, Shaw and Simon

(1 963), which reproduced the proofs of Russell and Whitehead's Aincipia

Mathsmatica. Indeed, the program found several original proofs of cer-

tain theorems. A more recent success is the AM* program of Lenat

(Davis and Lenat, 1982). The goal in AM is not only to prove specified

theorems from a given set of axioms, but also to decide for itself whch

axioms are intereskng to prove. I t thus is a model of mathematical

discovery.

Just as modern logic is now used to formalize reasoning in non-

mathematical subjects, A1 theorem-proving systems have also been

applied to model reasoning in other areas. Basic axioms about the world

are asserted and the system deduces further statements (theorems)

based on these axioms.

Whereas mechanical theorem-prow for the propositional calculus

is relatively easy, theorem-prow in the (first order) predicate calculus

Lenat: "the original meaning of this mnemonic has been abandoned. As Exodus states, 'I
Allwhat I M." (Davis and Lenat, 1882, p. 3).

is computationally much more difficult. One problem is that there are

typically a number of inference rules available, corresponding for exam-

ple to different arrangements of leading quantifiers or different combina-

tions of logical connectives. While these are a convenience to human logi-

cians, they lead to excessive branching and an extremely large search

space for mechanical proofs.

The so-called 'resolution method' of Robinson (1965) offers consider-

able computational simplification by reducing logical assertions to an ele-

mentary 'clausal' ('Horn clause') form. In t h s form, only one inference

rule, resolution, is needed. (Resolution essentially combines the infer-

ence rules of modus ponens and substitution.) Assertions in clausal form

have the followmg general pattern:

where the Pi are predicates of the form P(xl, x2, ..., xk). Tlvs can be read:

"to prove Po i t is sufficient to prove PI, P2, ..., and P,. All variables are

assumed to be universally quantified. It can be shown* that any first

order assertion can be reduced to this form. The resolution method pro-

vides the basis for a family of theorem-proving languages that together

have come to be known as 'logic programming'. The best known among

these is the language PROLOG (abbreviating PROgrammlng in LoG~c), ori-

ginally invented by Alain Colrnerauer about 1970. Useful texts are Kowal-

ski (1979a), Coelho, e t al. (1980), and Clocksin and MeUish (1981). The

discussion here is based mainly on PROLOG, with slght syntactic variants

* Thie reduction requires the inclusion of so-called Skolem functions, which take the role of
existential quantification. These are not discussed here. Further discussion of chusd form
is given in N ' i i n , 1880, and Clocksin and Hellish, 1081.

to make it consistent with the preceding logical notation.

In logic programming, one typically dstmguishes between facts and

rules . A fact is a clause containing only the left hand side and no vari-

ables. For example,

M.ALE(DICK).

SIBLING(DICK, JANE).

are facts. Rules are clauses with expressions on both sides of the implica-

tion and containing variables. For example,

BROTHER(x, y) - SIBLING(x, y) & MALE(x)

Disjunction is expressed using multiple rules. For example,

BROTHER(x, y) can be proven in two ways, namely:

BROTHER(x, y) - SIBLING(x, y) & W (x) .

The first is the rule just discussed;- the second allows for the reverse

matcbmg of arguments (because SIBLING is symmetric while BROTHER is

not). Though t h s is the typical way of indcating disjunction in logic pro-

gramming, for notational simplicity the connective, V, will sometimes be

used. This is assumed to have lower priority than &. For instance,

BROTHER(x, y) + SIBLING(x,y) & MALE(x) V SIBLING(y,x) & MALE(y).

is equivalent to:

Goal theorems (i.e, thngs to be proved) are denoted with a question

mark, e.g.t ,

BROTHER(DICK, JANE) ?

asks whether DICK is the brother of JANE. In t h s example the system

would respond YES. Variables can also occur in goal theorems. In these

cases the system's response is similar to that of database queries,

namely, it returns all combinations of variable bindings that result in a

provable theorem. For instance, the logic program:

would respond:

x = DICK

x = TOM

x = HARRY

A shghtly more complicated example is the following:

SIBLING(D1CK. SALLY).

SIBLING(TOM, DICK).

SIBLING(HARRY, TOM).

SIBLING(x, z) * SIBLING(x, y) & SIBLING(y, 2) .

The last rule indicates that the SIBLING relationshp is transitive. Thus,

the query,

SIBLING(x, SALLY) ?

results in the response:

x = DICK

x = TOM

x = HARRY

Note that three levels of mferencing are involved here. The first is simply

a match to the fact, SIBLING(DICK, SALLY). The second requires the infer-

ence that TOM is a SIBLING to DICK and that DICK is a SIBLING to SALLY so

TOM and SALLY must be SIBLINGS. The t k d is similar but with the addi-

tional inference that HARRY is SIBLING to TOM so that HARRY must be a

SIBLING to DICK, hence also SIBLING to SALLY.

An important aspect of logic programming as compared with other

types of computer languages is that it is non-procedural, or 'declarative'.

In purely declarative languages, the order in which statements are

evaluated is not controlled by the programmer*. Thus the order of the

statements in a logic program doesn't matter as regards the system's

inferencing capability. (It may however make a difference from an effi-

ciency standpoint.) Logic programs are therefore an extreme form of

modularity in computer program design.

However, there is one aspect of this non-procedurality that has to be

compromised in order to address practical applications; t b s is for

numeric computations. To do calculations in a strictly logical way would

involve inferenc~ng on the basic axioms of arithmetic. This would be

Thia is true of 'pure' logic programming. In PROLOG, a certain amount of execution control
can be specified by using the so-called 'cut' operator.

impossibly inefficient for any but trivial numeric computations. Logic

programs theref ore make calls to special subroutines when arithrne tic is

done. This is denoted here using a functional notation plus the usual

arithmetic operators (+, -, *, /) for addition, subtraction, multiplication

and division. For example, consider the following logic program:

HEIGHT-IN-METERS(DICK, 1.5).

HEIGHT-IN-FEET(x, z) + HEIGHT-IN-METERS(x, y) & z = y 3.28.

HEIGHT-IN-FEET(DICK, z) ?

z = 4.92.

Note that in logic programming, numeric constants are regarded as logi-

cal individuals. The subroutine invoked in computmg z is logically

regarded as a huge collection of facts giving all possible sums, products,

-etc.

What has just been described is the basic kernal of logic program-

ming. Implementations include a variety of other aspects includmg in

particular 'evaluable predicates' that have certain side effects permitting

input /output, modification of assertions, etc. Also, more complex data

structures (e.g. character strmgs, lists) are typically involved. These

extensions enable logic programming to be used for a variety of applica-

tions beyond the usual conception of theorem-proving, e.g. natural

language parsing, graph searches, user interfaces.

The motivation for introducing logic programming here is to examine

the possibilities of database inferencing. This subject is considered next.

F. THE E3UTITY-RELATIONSHIP INTERPFtETATION

In the past decade, the Relational Model of Codd (1970) has clearly

established the parad~gm for database research. However, a criticism of

the relational model is that it avoids commitment as to the semantics of

the database, i.e. how the database structures signify or denote

phenomena in the environment. A step in t h s direction is provided by

the Entity-Relationship interpretation of Chen (1976). (This is normally

called the ~ n t i t ~ - ~ e l a t i o n s h ~ Model, or ERM. It is, however, more an

interpretation applied to the Relational Model.) The import of this

approach is to draw attention to the role of relational keys. These are

generally identifying labels for entities in the environment, e.g. part

numbers, social security numbers. With t h s observation, certain rela-

tions serve to describe individual entities (entity relations), while others

indicate relationsbps between entities (relationship relations).

The ERM hghlights the ezistential assllnptions of a database. Each

tuple in a database is assumed to correspond to a particular entity in the

environment or a relationshp between entities.

The ERM is sometimes criticized that it fails to prescribe what count

as entities, e.g. only physical objects? Should abstract objects also be

admitted? The reply, of course, is that t h s depends on the organization's

phenomenology. There is no absolute answer; what the organization

recognizes as entities depends on its technology and view of the world.

For instance, the popular example database

STUDENT (S# , ...)

COURSE (C#, ...)

ENROLLMENT (S#, C#, .,.)

recognizes students and courses as entities, and enrollment as a relation-

ship between them. This is a convenient view for university administra-

tors, even though the concept of a 'course' is an abstraction that might

be rather troublesome to pinpoint ontologically.

G. PREDICA'X LOGIC INTEWRETATIOK

Ignoring, for the moment, the deeper semantic issues, the ERM has a

straightforward interpretation in predicate logic:

a. entity relations = one-place predicates

b. relationship relations = multi-place predicates.

While this is a satisfactory interpretation of the definition of relations, the

data in the relations are still unexplained. Generally, these seem to be of

three types:

a. data items functioning as identifiers of entities (in the role of

logical names)

b. data items corresponding to predicates.

c. data items representing numsric measurements.

For example, consider the relation:

EMPLOYEE (NAME, SEX, SALARY)

SMITH MALE 35000

JONES F E M U 42000

corresponding logical assertions would be:

EMPLOYEE(SMITH) & MALE(SMITH) & SALAKY(SMITH, 35000).

EMPLOYEE(J0NES) & FEMALE(J0NES) & SALARY(JONES, 42000).

Here the values of the first attribute, NAME, translate as individual names

in logic. The values of the second attribute, S M , translate as predicate

names, i.e. MALE(x), FEMALE(x). The values of the third attribute

translate as numbers, which in logic programming are taken to be

another type of individual. To relate the human individual to the numeric

individual, a two place predicate, SALARY(x, n), is introduced. Since the

use of numbers in databases typically indicates a functional mapping

from the real world entity to a numeric domain, a functional notation is

often used, e.g.

SALAKY(SM1TH) = 35000.

SALARY(JONES) = 42000.

Database management models typically distinguish between the

s t n r c t w e and contents of the database. In the logical form this distinc-

tion is not made. In database management, the structure/content dis-

tinction gives rise to the view of databases as repositories, somewhat akin

to physical inventories. A database query specifies retrieval conditions,

and the database contents that match these conditions are delivered to

the user. In logical form queries are processed not simply by matchmg

character strings, but rather by logical inference (tlus point is elaborated

below).

This reflects a fundamental difference in the two perspectives. Data-

base management regards data as character strings that the system

stores and delivers to the user upon request. The i n t e r p r e t a t i o n of these

character strings lies outside the theoretical concern. (Recall: GIGO =

garbage-in-garbage-out; there is little in database management systems

that requires that the data be meaningful.)

Representing data as logical assertions, however, one is more

inclined to regard these as statements about the environment. Tbs leads

to a consideration of the epistemological eyidence behind these asser-

tions, and the extrapolations and deductions that can be made from

them.

A fundamental difference between logic programming and the more

usual concept of theorem-proving is in the basic ontology. Theorem prov-

ing, followq the usual pattern of logic, presumes some basic universe of

discourse, e.g. numbers, blocks on a table. Logic programming, on the

other hand, is much less restricted in this regard. In particular, much of

logic programming is oriented towards objects that are data or syntactic

structures. So, in addition to the more typical applications of predicate

logic, logic programming may be used for example in sorting a list, or

parsing natural language sentences. Thus, logic programming seems to

blur the distinction between processing data structures and inferencing

on logical assertions. For our purposes here, this ambiguity in logic pro-

gramming serves as a useful bridge between the database management

and logical views of databases.

H. RELATIONAL DATAEASES hVD LOGIC PROGRAEILING

Logic programming makes use of mechanical theorem-proving tech-

niques as the basis for a general purpose programming language. The

focus here is the use of logic 2rogramming for database inferencmg.

The link between relational databases and logic programming is

made by recognizing that, logically, a relation is the extension of a predi-

cate. That is, a relation P(xl, ..., s) consists of all the n-tuples,

<xl, ..., xn>, that satisfy the predicate, P. Thus, for example, the data-

base:

EMPLOYEE (NAME, SEX, SALARY)

SMITH, MALE, 35000

JONES, FEMALE, 42000

would be stated in a logic program as:

EMPLOYEE(SMITH, MALE, 35000).

EMPLOYEE(JONES, FEMALE, 42000).

Note that while the structure of the original relation is preserved,

the attribute names are no longer used. Here the relation name,

EMPLOYEE, is re-interpreted as a three place predicate and the attribute

values in each tuple are its constant arguments. To refer to the entire

relation, rather than individual tuples, attribute names might be

translated as variables, e.g.,

EMPLOYEE (?NAME, ?SEX, ?SALARY).

However here, the former attribute names are merely arbitrary variable

names. An equivalent designation would be:

EMPLOYEE(x, y, z).

Note how this example differs from its counterpart in the last section.

Here EMPLOYEE is regarded as a s~ngle predicate, whereas before i t was

translated as a conjunct of three predicates. In conventional predicate

logic the arguments of a predicate are normally regarded as names for

individuals (in the universe of discourse). Here, on the other hand -and

this is typical of most databases - not only do the arguments contain

names for individuals, but other predicate names (e.g. MALE, F E U) , as

well as numbers (measurements).

As noted earlier, the ontology adopted by an organization (i.e., what

basic individuals i t recognizes) is a relative matter, depending on how it

choses to view the world. (However, external reporting requirements may

press it towards a more standardized ontology.)

In most databases, however, there is apparent recognition of an

underlying ontology. Ths , again, is because data is generally retrieved in

the same form that it is stored, without intermediate inferencing. For

example, it is doubtful that any organization would regard FENALE as

naming a unique individual in the same sense that JONES does. But for

database applicatrons where logical inferencing is included, it becomes

important to make this ontology explicit.

One of the simplest and perhaps most useful types of inferences for

databases is for hierarchies of classification, so-called

'generalization hierarchies'. These were first proposed in the database

management literature by Smith and Smith (1977), though they were dis-

cussed in Artificial Intelligence some years earlier, e.g. Quillian (1968).

An alternative notation, based on the Entity-Relationship interpretation,

is given in Lee and Gerritsen (1978).

A generalization hierarchy is a graphical representation of a

sequence of subset relationshps between categories. An example of the

Smiths' (1977:109) is reproduced in Figure [I.].

vehicle

water vehicle

-=/coastal\ rirm
plane helicopter -c]e =hide -sel -1 crdt

passenger air

d b d b liner rubmarine kayak sailboat

d d b

Figure [I]. A generic hierarchy over vehicles

The arcs in such generalization hierarchies are often read 'is a' . Thus an

air vehicle 'is a' vehicle; a plane 'is a(n)' air vehcle; a passenger aircraft

'is a' plane; etc. Assuming that the primative predicates stored in the

database are at the bottom of the tree, the generalization hierarchy

translates into logic programming rules as follows:

PLANE(x) + PASSENGER-MRCRAFT(x) .

PLANE (x) c- AIR-FREI GHmR (x)

AIR-VEHICLE(x) c- PLANE [x).

AIR-VEHICLE(x) c- HELICOPTER(x).

and so on. But now the ontological issues begin to emerge. Such infer-

ences can only be made on relational attributes that are themselves

predicates, and not, for instance, on attributes that are individual names

or identifiers. In the terminology of the relational model, generalization

herarchies reflect the ambiguity that predicates may appear either as

relation names or attribute values. These inferences are perfectly vahd.

However, they can only be recognized in the context of particular rela-

tions. Consider the following very simple example. Assume a relation:

where ?ID is the employee's identification code and ?MARITAL-STATUS can

have the values SINGLE, MARRIED or DIVORCED. (Note that the above

expression is not a complete logic programming statement, as it is nei-

ther a fact or a rule. This expression could however be entered as a

query, with a "?" following. which would then return all the tuples of the

relation.) To plan office parties, we would like to specify:

ELIGIBLE(x) - SINGLE(x) V DIVORCED(x).

However, having marital status as an argument of the employee relation,

we are led to define it as follows:

EMPLOYEE2(?ID, ELIGIBLE) c- EMPLOYEE(?ID, SINGLE) V

EMPLOYEE(?ID, DIVORCED).

The important thmg to note is that we are forced to create a new relation

name, EMPLOYEEZ. The dfference between EMPLOYEE and EMPLOYEE2 is

that the latter has a different interpretation of its second argument.

The difficulty is that in typical relational form, with features (predi-

cates) appearing as arguments, the governing predicate name carries the

sense of these features implicitly. In the above example, the term

EMPLOYEE carried not only the sense of employment, but also assertions

about marital status.

Further deductive rules would entail the invention of further variants

of the employee relation, e.g. EMPLOYEE3, EMPLOYEE4, each having its

own peculiar interpretation of arguments. Hence, as the deductive rules

become more complex, it becomes advantageous from the standpoint of

conceptual clarity to promote these embedded features to the status of

explicit predicates. Continuing the previous example, we would have:

(Note: like-named predicates with different numbers of arguments are

regarded as different prehcates.)

SINGLE(x) c- EMPLOYEE(x, SINGLE).

MARRIED(x) c- EMPLOYEE(x, MARRIED).

DNORCED(x) c- EMPLOYEE (x, DWORCED) .

Another type of data typically appearing in databases is numeric

measurement. A similar rationale applies. As mferencing on the features

indicated by these measurements becomes more complex, it becomes

advantageous to separate out these features explicitly. For example,

consider the relation:

BUILDING(?ADDRESS, ?HEIGHT-IN-METERS).

To convert to feet, we would like to specify the rule:

HEIGHT-IN-FEET(x,n) c- HEIGHT-IN-METERs(x,m), & n = m 3.28.

However, as embedded in these relations, separate rules for the units

conversion would be needed for each length attribute of each relation,

e.g.,

BUILDING2(x,z) c- BUILDING(x,y) & z = y 3.28.

Again we are faced with the introduction of the confusing terminology

BUILDINGZ. Like before, the problem stems from the interpretation of the

predicate name BUILDING to include more than the elementary concept

of buildinghood, but also the measurement of that building's helght. To

dist~nguish these concepts explicitly, we would use the rules:

BUILDING(x) c- BUILDING(x,h).

HEIGHT-METERS (x, h) + BUILDING(x,h).

(*) HEIGHT-FEET(x, z) + HEIGHT-MmRS(x,y), z = y 3.28.

Havmg dist~nguished 'height' explicitly, we can now make use of t h s unit

of measure conversion for other entities having the feature of height. For

example, another relation might be:

PERSON(?ID, ?HEIGHT-IN-METERS)

To separate the concept 'person' from his or her helght measurement, we

add the rules:

PERSON(?ID) .-- PERSON(?ID, ?H).

HEIGHT-METERS (x, y) .-- BUILDING(x, y).

By using the rule (*) above, we may now infer the height in feet of any

building recorded in the database.

Likewise, with the concepts 'building' and 'person' separately drs-

tinguished, we may want to add additional deductive rules about them.

For instance,

PHYSICAL-OBJECT(x) .-- PERSON(x) V BUILDING(x).

i.e. persons and buildings are both physical objects. With this abstrac-

tion, general knowledge pertaining to physical objects can then be added,

e.g. that they have mass, height.

These examples reflect an important insight suggested by the graph-

ical notation of generalization herarchies. One would like to specify

deductive rules to apply as generally as possible. For instance, it is a

characteristic of vehcles of all types that they may change from one

location to another. I t is a characteristic of all water vehicles that their

location will always be in some body of water. In normal database

representations, one would have to specify these inferences repeatedly

for each of 'submarine', 'kayak', 'sailboat', etc.

I. CONCLUDING FEbWlS

As was shown, logic programming can be applied directly to rela-

tional databases (conceptually speaking, ignoring implementation con-

siderations) to transform one relational view into another. However, this

does not fully exploit the capabilities of logical inferencing. Greater flexi-

bility is achieved as relations are decomposed into more elementary

predicates. This requires a recognition of the basic ontology of the data-

base, i.e, the elementary types of individual entities in the environment

that are recognized. Predicates should ideally have only names for these

elementary entities as arguments.

However, to avoid the computational difficulties involved with logi-

cally deducing arithmetic operations, a compromise was suggested,

admitting numbers into the basic ontology. These are separated syntacti-

cally, as measurement functions mapping real world individuals to

numeric individuals.

Various implementation issues arise from the above proposal. For

instance, it is implicitly presumed that the organization maintains a con-

ventional relational database for data processing purposes, and that

these interencing structures are built 'on top'. The mechanisms for this

interface have been ignored in this discussion.

Beyond this, however, logical lnferencing on databases raises another

set of issues that are not s~ much computational as epistemological. The

ontological aspects have been touched on briefly. Other aspects include

cross-temporal relationships as well as the special problems involved with

non-factual contexts, e.g . predictions, plans and contractual commit-

ment. These aspects are further disussed in Lee (1980, 1981, 1983,

1983a).

Bonczek, R.H., C;W. Holsapple and A.B. Whinston. 1981. Foundations of
Decision SZLppo7t S y s t e m s . ' New York: ~ c a d e m i c Press.

Chen, P.P-S. 1976. The Entity-Relationship Model -Toward a Unified View
of Data. ACM Transactions on f i t a b a s e S y s t e m s l(March):9-36.

Clocksin, W.F. and Mellish, C.S. 1981. Programming in Prolog. New York:
S pringerverlag .

Codd, E.F. 1970. A Relational Model of Data for Large Shared Data Banks.
Communicatiuns of the ACM, 13(June): 377-387.

Codd, E.F. 1972. Further Normalization of the Data Base Relational
Model. In R. Rustin, ed., Data Base S y s t s m s Courant Computer Sci-
ence Symposia 8. Englewood Cliffs, New Jersey: Prentice-Hall., also
IBM Research Report RJ909.

Codd, E.F. 1979. Extending the Database Relational Model to Capture
More Meaning. ACM Transactions a Database S y s t e m s ,
44(December):397-434.

Coelho, H., Cotta, J.C. and Pereira, L.M. 1980. Hovr to Solve It With Pro-
log. 2nd Edition. Lisbon: Laboratdrio Nacional de Engenharia Civil.

Date, C.J. 1977. An I n t ~ o d u c t i o n to Database S y s t e m s , 2nd edition.
Reading, Massachusetts: Addis on-Wesley.

Davis, R., and J. King. 1975. An Overview of Production Systems, Stanford

AI Lab Memo AIM-271, Stanford Computer Science Report. STAN-CS-
75-524, October.

Davis, R., and Lenat, D.B. 1982. Knowledge- Based Systems in Artificial
Intelligence. New York: McGraw-Hill International.

Fagin, R. 1977. Multivalued Dependencies and a New Normal Form for
Relational Databases. ACM Transactions on Database Systems,
2(3):262- 278.

F k k , G. and Sprague, R.H. JT., eds. 1980. Decision Support Systems:
Issues and Challenges. Oxford: Pergamon Press.

Gallaire, H., Minker, J. and Nicolas, J.M., eds. 1981. Advances in Data
Base Theory Volume 1. New York and London: Plenum Press.

Gallaire, H., and Minker, J., eds. 1978. Logic and Data Bases. New York
and London: Plenum Press.

Gorry, G.A. and Scott-Mortonm M.S.. 1971. A Framework for Management
Information Systems. Sloan Management Review, 13(1): 55-70.

Infotech. 1981. Machine Intelligence. Infotech State of the Art Report,

Keen, P.G.W. and Scott-Morton, M.S. 1978. Decision Support Systems.
Reading, Massachusetts: Addison-Wesley.

Kent, W. 1978. Data and Reality. Amsterdam: North-Holland.

Kent, W. 1979. Limitations of Record-Based Information Models. ACM
lhansactions on Database Systems, 4(1): 107-131.

Kowdski, R. 1979. Algorithm = Logic + Control. Communications o f the
ACM, 22(7):424-436.

Kowalski, R. 1979a. Logic for Problem Solving. New York and Oxford:
North Holland.

Lee, R.M.. and Gerritsen, R. 1978. Extended Semantics for Generalization
Hierarchies. Proceedings of the International Conference on
management of Data. Austin, Texas, June, 1978, pp. 16-25.

Lee, R.M. 1980. CANDID: A Logical Calculus for Describing Financial Con-
tracts. Ph.D. dissertation, abailable as WP-80-06-02. Philadelphia,
PA: Department of Decision Sciences, the Wharton School, University
of Pennsylvania.

Lee, R.M. 1981. CANDID Description of Commercial and Financial Con-
cepts: A Formal Semantics Approach to Knowledge Representation.
WP-81-162. Laxenburg, Austria: International Institute for Applied
Systems Analysis.

Lee, R.M. 1983. Epistemological Aspects of Knowledge-Based Decision
Support Systems. In H.G. Sol, ed., Processes and Tools fur &cision
Support, Amsterdam: North-Holland.

Lee, R.M. 19t33a. Data and Language in Organizations: Epistemological
Aspects of Management Support S y s t e m s . London: Academic Press,
to appear.

McDermott, D. 1980. The Prolog Phenomenon. SIGART Newsle t ter ,
72(July): 16-20.

Newell, A., J. Shaw, and H. Simon. 1963. Empirical Explorations of the
Logical Theory Machine. In Computers a n d Thought, E . Felg enb aum
and J. Feldman (eds.), New York: McGraw-Hill, pp. 109-1 13.

Nilsson, N.J. 1980. Principles of A r t i . Intel l igence, Palo Alto, CA:
Tioga Publishng Co.

Robinson, R.A. 1965. A Machme Oriented Logic Based on the Resolution
Principle. Journal of the ACM, 12(January):23-41.

Smith, J.M. and Smith, D.C.P. 1977. Database Abstractions: Aggregation
and Generalization. ACM P a n s a c t i o n s on Database S y s t e m s , (2)
June: 105-133.

Sol, H.G. 1983. Processes an Tools f w Decision Suppor t . Proceedmgs of
JFIP/IIASA Workmg Conference on Processes and Tools for Decision
Support, July 19-21, 1982, Laxenburg, Austria. Amsterdam: North-
Holland.

Stamper, R. 1973. I n f m m a t i t m in Business a n d AdministmCive S y s t e m s .
New York: Wiley.

Tsichritzis, D. and Klug, A. eds. 1977. The ANSI/X3/SPARC DBMS Frame-
work. Report of the Study Group on Data Base Management Systems.
Montvale, New Jersey: AFIPS Press.

