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The use of databases for management decision support requires flex- 

ible ~nferencing mechanisms. The use of logic programming for these 

purposes is explored. To be flexible, however, this requires the logical 

decomposition of the database into elementary predicates. 
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DATABASE INFERENCING FOR DECISION SUPPOm 

Ronald M. Lee 

Database management applications have become common in nearly 

all types of private and public organizations. Yet, their use for lugher 

level managgement dicision making has been limited. One reason for this 

is the lack of inferencing mechanisms to provide the &her levels of 

abstraction needed in various decision contexts. 

Ths  paper explores the use of logic programming for these purposes. 

It concludes with the observation that database inferencmg, to be flexi- 

ble, requires a (conceptual, logical) decomposition of the database into 

elementary predicates. 



B. DATABASE ~ A G ~ E N T  

Database management (DM) arose onginally from a need for a spe- 

cialization of labor in data processing. Applications programmers had the 

dual function of satisfy~ng user requirements as well as efficiently main- 

taining the data on various storage devices. 

As long as applications tended to be relatively independent, this was 

not a great problem. However, as more and more data files came to be 

shared among various applications, coordination problems arose. Dif- 

ferent applications favored different types of data organization. 

Database Management Systems (DBMSs) offered a separation of these 

concerns. Essentially, a DBMS translates between an abstracted view of 

data, accessed by application programs, and its actual physical represen- 

tation.* What the appropriate abstracted view should be, so-called 'data 

models', became an interesting research question and has been the sub- 

ject of prolonged debate for nearly a decade. The basic camps, eventu- 

ally, centered around a graphical view called the Network Model as 

opposed to a tabular view, the Relational Model. (Date, 1977, gives a good 

comparison.) f i l e  the two views are closely compatible, the Network 

Model seems to have certain advantages from the user engineering stand- 

point, and has been more widely implemented. The Relational Model, on 

the other hand, is mathematically simpler, and for that reason has been 

the more favored view in research dmcussions. The Relational Model is 

also adopted here as representing the database management paradigm. 

* The abstractiun process may actually go a step further as recommended by the 
ANSI/X3/SPARC report (Tsichritsis and Klug, 1077). Following that report, programs would 
accesl an 'external view' of the data, which is a subset of a master view called the 'conceptu- 
al schema'. This in turn is mapped to the 'internal schema' indicating actual phy&cd 
storage. 



C. THE RELATIONAL DATA MODEL 

The Relational Model was originally proposed by Codd (1970). In tlvs 

view, data items are regarded as arranged in rectangular tables consist- 

ing of columns and rows. Columns are called attributes, rows are called 

tuples, while the entire table is called a relation. An example relation, 

containing data on employees, is the following: 

EMPLOYEE (ID#, NAME, RANK, SALARY) 

12 JONES CLERK 10000 
51 SMITH CLERK 10000 
27 DOE MANAGER 25000 
05 ELIOT PRESIDENT 50000 

Note that rows correspond to individual employees whereas the columns 

indicate the various recorded features of the employee. This is the gen- 

eral convention, i.e. that rows comespond to individuals in the environ- 

ment ('instances') while columns indicate their attributes. In the 

EMPLOYEE relation, the attribute ID# (identification number) is a 'key 

attribute', that is, a unique identifier (of the individual in the environment 

corresponding to the tuple). Such keys serve as cross references to 

other relations, such as  in the following relation, s h o w  

superior/subordinate relationships. 



WORKS-FOR (SUPERIOR#, SUBORDINATE#) 

In this case, both SUPERIOR# and SUBORDINATE# refer to ID# data items 

in the EMPLOYEE relationship. The identify~ng key for the WORKS-FOR 

relation is however the conjunct of the SUPERIOR# and SUBORDINATE# 

attributes. 

In the theory behind the Relational Model, database relations are 

regarded as mathematical relations over various domains of data items. 

An important concept in t h s  theory is the so-called 'functional depen- 

dency' that may arise between attribute domains. That is, if one attri- 

bute, A, is functionally' dependent on another, B, then an update to B 

requires a corresponding update to A. 

In the above example, for instance, it may be the case that salary 

depends on rank. That is, each rank has a fixed salary. Hence, knowing 

an employee's rank, we can determine his or her salary. In t h s  case, the 

database would be redundant, since the salaries of clerks are recorded 

twice. To avoid potential inconsistencies (e.g. having one clerk's salary 

different than another's) the database should be normalized so that each 

such fact is recorded only once. In this example, the EMPLOYEE relation 

would be divided into two relations, EMPLOYEE and PAY-SCALE, as shown 

below. (For further discussion on normalization, see Codd, 1972, Fagin, 

1977.) Note that in the PAY-SCALE relation, the attribute RANK serves as 



the identifying key. 

EMPLOYEE (ID#, NAME, RANK) 

12 JONES CLERK 
51 SMITH CLERK 
27 DOE MANAGER 
05 ELIOT PRESIDENT 

PAY-SCALE (RANK, SALARY> 

CLERK 10000 
MANAGER 25000 
PRESIDENT 50000 

However, this decomposition is appropriate only if the organization's 

personnel policy makes s a k y  a unique function of rank. The equal 

salaries of the two clerks may only have been an accidental coincidence, 

not due to a functional dependency. This is a fundamental point: Punc- 

tional dependencies cannot be detected from patterns in the actual data 

alone. They reflect relationships between possible values of attributes. 

This is due to the fact that organizational databases are dynamic, 

that is, they are continually being updated reflecting the effect of organi- 

zational transactions such as sales, inter-departmental transfers, produc- 

tion runs, etc. If the database were completely static, functional depen- 

dencies could be detected from the actual data, but then they would not 

be of interest; since there are no updates, no accidental inconsistencies 

could arise. 



D. INFERENCING ON DATABASES 

The major use of DM databases to date has been in data processing 

applications; hence mainly for structured, operational level activities 

such as sales order processing, billing and inventory control. These appli- 

cations are characterized by high volumes of routine transactions. P e r  

formance criteria are mainly speed and efficiency. Databases might also 

be useful in less structured, longer range activities, though the require- 

ments in t h s  case are somewhat different: 

a. information is usually required in more summarized form 

b. access is less routine - information must be retrievable in a 

variety of forms and combinations 

c. the information is often used in combination with other informa- 

tional and computational resources. 

These are criteria for using DM databases in decision suppart appli- 

cations. The principle point is that the data needs in these cases, though 

contained in the database, will often not be at the detail level nor in the 

structural arrangement in which the database was designed. It is for 

these uses that a mechanism providing inferencing on the database is 

needed. 

One obvious way of summarizing data is simple arithmetic calcula- 

tions - e.g. counts of inventory. Lac- however is a correspondmg 

framework of qualitative inferencing. For instance, if you have an inven- 

tory of three apples and two oranges and count them up, you have five 

'thugs', but what descriptive label should be attached to t b s  broader 

class? In this case a system of qualitahve inference is needed. More 



realistic examples abound, e.g. in accounting data if you have $500 in 

cash and $700 in accounts receivable, then you have $1,200, but of what? 

Conversely, one might wish to make a query about the quick assets of the 

company when the database only contained data on cash and accounts 

receivable. 



E PRE3ICATE CALCULUS AND LOGIC P R D G W I N G  

Further discussion of database inferenclng for decision support 

applications requires a brief background on predicate logic and its com- 

putational counterpart, logic programming. 

1. Predicate Calculus 

It is assumed that the reader is at least generally familiar with the 

first order predicate calculus (FOPC) and its syntax. The following is thus 

only a review. 

The description of a logical system begins by declaring its universe 

o j  discourse. In a propositional (zero order) logic, t h s  amounts to a set 

of statements (propositions) asserted to be true. In a first order logic, a 

separation is made between individual entities (or just individuals),  and 

the properties and relationshps to other individuals. The latter are indi- 

cated, respectively, by one and n-place ped ica t e s .  For a first order logic 

the domain of discourse is called the donrain o j  individuals.  (For the 

moment, the individuals described by the logic can be imagined as 

discrete physical objects at a point in time.) In summary form, the basic 

constructs of a first order predicate calculus are as follows: 

1. Repositions. 

These are complete logical statements having a truth value. 

These are indicated symbolically by capital letters -e.g. P,Q,R. 

2. Logical cmmct ives .  

These combine one or more propositions to form new logical 

statements, also havlng a truth value. The logical connectives 
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used here are as follows: 

- equivalence 

implication 

& conjunction 

V disjunction (inclusive) 

W disjunction (exclusive) 

" negation 

3. Individud cons tan t s  and  var iab les .  

These stand for objects in the domain of discourse -e.g. indivi- 

dual trucks or employees. 

Individual constants are denoted as one or more upper case 

letters, possibly containing non-leading digits or hyphens; e.g. A, 

GEORGE, TRUCK-?. 

Individual variables are denoted as either lower case letters, e.g. 

x, y, z, or as a "?" followed by one or more capital letters or 

Q i t s ,  e.g. ?ID, ?SALARY. (The dual notation here is a comprom- 

ise between the logical convention of variables as lower case 

letters, and the database management convention of capitaliz- 

ing names of attributes that  are recognized as variables in a log- 

ical interpretation.) 

4.  Fbnct ions .  

These map one or more individuals to another - e.g. SUPERVI- 

SOR (JONES) refers to another individual who is Jones' 



supervisor. Functions may take zero or more arguments and 

always result in a reference to a single individual. Functions 

may thus appear wherever an individual constant is allowed. 

Indeed, a zero-place function is the same as an individual con- 

stant. Functions are therefore denoted in the same way as indi- 

vidual constants, but followed by an argument list, e.g, F(A), 

BOSS ( SMITH) 

5. Predicates. 

These indicate features, properties, attributes, etc., applied to 

zero or more individuals. Predicates will be denoted by upper 

case letters or words, e.g. P(x), RED(?X), OWN(x,y). When a 

predicate is applied to individual constants or to quantified indi- 

vidual variables (see below), or to functions of these, it has a 

truth value and may be combined to form other logical state- 

ments using the logical connectives above. A zero-place predi- 

cate is equivalent to a proposition. 

6. Logical quantifiers. 

These indicate the range of individual variables. The principal 

ones are: 

Vx universal quantifier 

(for all x, for each x, - 
ranging over all individuals 

in the universe) 

3 x existential quantifier 



(for some x -ranging over 

at least one indmidual) 

Parentheses are used in the usual fashion. 

2. Logic Programming 

Mechanical theorem proving in the predicate calculus has been a 

central area of AI research since its outset. As with logic generally, the 

original goal was to reproduce mathematical reasoning. Thus, an early 

success was the Logical Theorist program by Newell, Shaw and Simon 

(1 963), which reproduced the proofs of Russell and Whitehead's Aincipia 

Mathsmatica. Indeed, the program found several original proofs of cer- 

tain theorems. A more recent success is the AM* program of Lenat 

(Davis and Lenat, 1982). The goal in AM is not only to prove specified 

theorems from a given set of axioms, but also to decide for itself whch 

axioms are intereskng to prove. I t  thus is a model of mathematical 

discovery. 

Just as modern logic is now used to formalize reasoning in non- 

mathematical subjects, A1 theorem-proving systems have also been 

applied to model reasoning in other areas. Basic axioms about the world 

are asserted and the system deduces further statements (theorems) 

based on these axioms. 

Whereas mechanical theorem-prow for the propositional calculus 

is relatively easy, theorem-prow in the (first order) predicate calculus 

Lenat: "the original meaning of this mnemonic has been abandoned. As Exodus states, 'I 
Allwhat I M." (Davis and Lenat, 1882, p. 3). 



is computationally much more difficult. One problem is that there are 

typically a number of inference rules available, corresponding for exam- 

ple to different arrangements of leading quantifiers or different combina- 

tions of logical connectives. While these are a convenience to human logi- 

cians, they lead to excessive branching and an extremely large search 

space for mechanical proofs. 

The so-called 'resolution method' of Robinson (1965) offers consider- 

able computational simplification by reducing logical assertions to an ele- 

mentary 'clausal' ('Horn clause') form. In t h s  form, only one inference 

rule, resolution, is needed. (Resolution essentially combines the infer- 

ence rules of modus ponens and substitution.) Assertions in clausal form 

have the followmg general pattern: 

where the Pi are predicates of the form P(xl, x2, ..., xk). Tlvs can be read: 

"to prove Po i t  is sufficient to prove PI, P2, ..., and P,. All variables are 

assumed to be universally quantified. It can be shown* that any first 

order assertion can be reduced to this form. The resolution method pro- 

vides the basis for a family of theorem-proving languages that together 

have come to be known as 'logic programming'. The best known among 

these is the language PROLOG (abbreviating PROgrammlng in LoG~c), ori- 

ginally invented by Alain Colrnerauer about 1970. Useful texts are Kowal- 

ski (1979a), Coelho, e t  al. (1980), and Clocksin and MeUish (1981). The 

discussion here is based mainly on PROLOG, with slght syntactic variants 

* Thie reduction requires the inclusion of so-called Skolem functions, which take the role of 
existential quantification. These are not discussed here. Further discussion of chusd form 
is given in N ' i i n ,  1880, and Clocksin and Hellish, 1081. 



to make it consistent with the preceding logical notation. 

In logic programming, one typically dstmguishes between facts and 

rules .  A fact is a clause containing only the left hand side and no vari- 

ables. For example, 

M.ALE(DICK). 

SIBLING(DICK, JANE). 

are facts. Rules are  clauses with expressions on both sides of the implica- 

tion and containing variables. For example, 

BROTHER(x, y) - SIBLING(x, y) & MALE(x) 

Disjunction is expressed using multiple rules. For example, 

BROTHER(x, y) can be proven in two ways, namely: 

BROTHER(x, y) - SIBLING(x, y) & W ( x ) .  

The first is the rule just discussed;- the second allows for the reverse 

matcbmg of arguments (because SIBLING is symmetric while BROTHER is 

not). Though t h s  is the typical way of indcating disjunction in logic pro- 

gramming, for notational simplicity the connective, V, will sometimes be 

used. This is assumed to  have lower priority than &. For instance, 

BROTHER(x, y) + SIBLING(x,y) & MALE(x) V SIBLING(y,x) & MALE(y). 

is equivalent to: 



Goal theorems (i.e, thngs to be proved) are denoted with a question 

mark, e.g.t ,  

BROTHER(DICK, JANE) ? 

asks whether DICK is the brother of JANE. In t h s  example the system 

would respond YES. Variables can also occur in goal theorems. In these 

cases the system's response is similar to that of database queries, 

namely, it returns all combinations of variable bindings that result in a 

provable theorem. For instance, the logic program: 

would respond: 

x = DICK 

x = TOM 

x = HARRY 

A shghtly more complicated example is the following: 

SIBLING(D1CK. SALLY). 

SIBLING(TOM, DICK). 

SIBLING(HARRY, TOM). 

SIBLING(x, z) * SIBLING(x, y) & SIBLING(y, 2) .  

The last rule indicates that the SIBLING relationshp is transitive. Thus, 

the query, 



SIBLING(x, SALLY) ? 

results in the response: 

x = DICK 

x = TOM 

x = HARRY 

Note that three levels of mferencing are involved here. The first is simply 

a match to the fact, SIBLING(DICK, SALLY). The second requires the infer- 

ence that TOM is a SIBLING to DICK and that DICK is a SIBLING to SALLY so 

TOM and SALLY must be SIBLINGS. The t k d  is similar but with the addi- 

tional inference that HARRY is SIBLING to TOM so that HARRY must be a 

SIBLING to DICK, hence also SIBLING to SALLY. 

An important aspect of logic programming as compared with other 

types of computer languages is that it is non-procedural, or 'declarative'. 

In purely declarative languages, the order in which statements are 

evaluated is not controlled by the programmer*. Thus the order of the 

statements in a logic program doesn't matter as regards the system's 

inferencing capability. (It may however make a difference from an effi- 

ciency standpoint.) Logic programs are therefore an extreme form of 

modularity in computer program design. 

However, there is one aspect of this non-procedurality that has to be 

compromised in order to address practical applications; t b s  is for 

numeric computations. To do calculations in a strictly logical way would 

involve inferenc~ng on the basic axioms of arithmetic. This would be 

Thia is true of 'pure' logic programming. In PROLOG, a certain amount of execution control 
can be specified by using the so-called 'cut' operator. 



impossibly inefficient for any but trivial numeric computations. Logic 

programs theref ore make calls to special subroutines when arithrne tic is 

done. This is denoted here using a functional notation plus the usual 

arithmetic operators (+, -, *, /) for addition, subtraction, multiplication 

and division. For example, consider the following logic program: 

HEIGHT-IN-METERS(DICK, 1.5). 

HEIGHT-IN-FEET(x, z) + HEIGHT-IN-METERS(x, y) & z = y 3.28. 

HEIGHT-IN-FEET(DICK, z) ? 

z = 4.92. 

Note that in logic programming, numeric constants are regarded as logi- 

cal individuals. The subroutine invoked in computmg z is logically 

regarded as a huge collection of facts giving all possible sums, products, 

-etc. 

What has just been described is the basic kernal of logic program- 

ming. Implementations include a variety of other aspects includmg in 

particular 'evaluable predicates' that have certain side effects permitting 

input /output, modification of assertions, etc. Also, more complex data 

structures (e.g. character strmgs, lists) are typically involved. These 

extensions enable logic programming to be used for a variety of applica- 

tions beyond the usual conception of theorem-proving, e.g. natural 

language parsing, graph searches, user interfaces. 

The motivation for introducing logic programming here is to examine 

the possibilities of database inferencing. This subject is considered next. 



F. THE E3UTITY-RELATIONSHIP INTERPFtETATION 

In the past decade, the Relational Model of Codd (1970) has clearly 

established the parad~gm for database research. However, a criticism of 

the relational model is that it avoids commitment as to the semantics of 

the database, i.e. how the database structures signify or denote 

phenomena in the environment. A step in t h s  direction is provided by 

the Entity-Relationship interpretation of Chen (1976). (This is normally 

called the ~ n t i t ~ - ~ e l a t i o n s h ~  Model, or ERM. It is, however, more an 

interpretation applied to the Relational Model.) The import of this 

approach is to draw attention to the role of relational keys. These are 

generally identifying labels for entities in the environment, e.g. part 

numbers, social security numbers. With t h s  observation, certain rela- 

tions serve to describe individual entities (entity relations), while others 

indicate relationsbps between entities (relationship relations). 

The ERM hghlights the ezistential assllnptions of a database. Each 

tuple in a database is assumed to correspond to a particular entity in the 

environment or a relationshp between entities. 

The ERM is sometimes criticized that it fails to prescribe what count 

as entities, e.g. only physical objects? Should abstract objects also be 

admitted? The reply, of course, is that t h s  depends on the organization's 

phenomenology. There is no absolute answer; what the organization 

recognizes as entities depends on its technology and view of the world. 

For instance, the popular example database 

STUDENT (S# ,  ...) 

COURSE (C#, ...) 



ENROLLMENT (S#, C#, .,.) 

recognizes students and courses as entities, and enrollment as a relation- 

ship between them. This is a convenient view for university administra- 

tors, even though the concept of a 'course' is an abstraction that might 

be rather troublesome to pinpoint ontologically. 



G. PREDICA'X LOGIC INTEWRETATIOK 

Ignoring, for the moment, the deeper semantic issues, the ERM has a 

straightforward interpretation in predicate logic: 

a. entity relations = one-place predicates 

b. relationship relations = multi-place predicates. 

While this is a satisfactory interpretation of the definition of relations, the 

data in the relations are still unexplained. Generally, these seem to be of 

three types: 

a. data items functioning as identifiers of entities (in the role of 

logical names) 

b. data items corresponding to predicates. 

c. data items representing numsric measurements. 

For example, consider the relation: 

EMPLOYEE (NAME, SEX, SALARY) 

SMITH MALE 35000 

JONES F E M U  42000 

corresponding logical assertions would be: 

EMPLOYEE(SMITH) & MALE(SMITH) & SALAKY(SMITH, 35000). 

EMPLOYEE(J0NES) & FEMALE(J0NES) & SALARY(JONES, 42000). 

Here the values of the first attribute, NAME, translate as individual names 

in logic. The values of the second attribute, S M ,  translate as predicate 

names, i.e. MALE(x), FEMALE(x). The values of the third attribute 

translate as numbers, which in logic programming are taken to be 



another type of individual. To relate the human individual to the numeric 

individual, a two place predicate, SALARY(x, n), is introduced. Since the 

use of numbers in databases typically indicates a functional mapping 

from the real world entity to a numeric domain, a functional notation is 

often used, e.g. 

SALAKY(SM1TH) = 35000. 

SALARY(JONES) = 42000. 

Database management models typically distinguish between the 

s t n r c t w e  and contents of the database. In the logical form this distinc- 

tion is not made. In database management, the structure/content dis- 

tinction gives rise to the view of databases as repositories, somewhat akin 

to physical inventories. A database query  specifies retrieval conditions, 

and the database contents that match these conditions are delivered to 

the user. In logical form queries are processed not simply by matchmg 

character strings, but rather by logical inference (tlus point is elaborated 

below). 

This reflects a fundamental difference in the two perspectives. Data- 

base management regards data as character strings that the system 

stores and delivers to the user upon request. The i n t e r p r e t a t i o n  of these 

character strings lies outside the theoretical concern. (Recall: GIGO = 

garbage-in-garbage-out; there is little in database management systems 

that requires that the data be meaningful.) 

Representing data as logical assertions, however, one is more 

inclined to regard these as statements about the environment. Tbs leads 

to a consideration of the epistemological eyidence behind these asser- 



tions, and the extrapolations and deductions that can be made from 

them. 

A fundamental difference between logic programming and the more 

usual concept of theorem-proving is in the basic ontology. Theorem prov- 

ing, followq the usual pattern of logic, presumes some basic universe of 

discourse, e.g. numbers, blocks on a table. Logic programming, on the 

other hand, is much less restricted in this regard. In particular, much of 

logic programming is oriented towards objects that are data or syntactic 

structures. So, in addition to the more typical applications of predicate 

logic, logic programming may be used for example in sorting a list, or 

parsing natural language sentences. Thus, logic programming seems to 

blur the distinction between processing data structures and inferencing 

on logical assertions. For our purposes here, this ambiguity in logic pro- 

gramming serves as a useful bridge between the database management 

and logical views of databases. 



H. RELATIONAL DATAEASES hVD LOGIC PROGRAEILING 

Logic programming makes use of mechanical theorem-proving tech- 

niques as the basis for a general purpose programming language. The 

focus here is the use of logic 2rogramming for database inferencmg. 

The link between relational databases and logic programming is 

made by recognizing that, logically, a relation is the extension of a predi- 

cate. That is, a relation P(xl, ..., s) consists of all the n-tuples, 

<xl, ..., xn>, that satisfy the predicate, P. Thus, for example, the data- 

base: 

EMPLOYEE (NAME, SEX, SALARY) 

SMITH, MALE, 35000 

JONES, FEMALE, 42000 

would be stated in a logic program as: 

EMPLOYEE(SMITH, MALE, 35000). 

EMPLOYEE(JONES, FEMALE, 42000). 

Note that while the structure of the original relation is preserved, 

the attribute names are no longer used. Here the relation name, 

EMPLOYEE, is re-interpreted as a three place predicate and the attribute 

values in each tuple are its constant arguments. To refer to the entire 

relation, rather than individual tuples, attribute names might be 

translated as variables, e.g., 

EMPLOYEE (?NAME, ?SEX, ?SALARY). 



However here, the former attribute names are merely arbitrary variable 

names. An equivalent designation would be: 

EMPLOYEE(x, y, z). 

Note how this example differs from its counterpart in the last section. 

Here EMPLOYEE is regarded as a s~ngle predicate, whereas before i t  was 

translated as a conjunct of three predicates. In conventional predicate 

logic the arguments of a predicate are normally regarded as names for 

individuals (in the universe of discourse). Here, on the other hand -and 

this is typical of most databases - not only do the arguments contain 

names for individuals, but other predicate names (e.g. MALE, F E U ) ,  as 

well as numbers (measurements). 

As noted earlier, the ontology adopted by an organization (i.e., what 

basic individuals i t  recognizes) is a relative matter, depending on how it 

choses to view the world. (However, external reporting requirements may 

press it  towards a more standardized ontology.) 

In most databases, however, there is apparent recognition of an  

underlying ontology. Ths ,  again, is because data is generally retrieved in 

the same form that  it  is stored, without intermediate inferencing. For 

example, it  is doubtful that  any organization would regard FENALE as 

naming a unique individual in the same sense that  JONES does. But for 

database applicatrons where logical inferencing is included, it becomes 

important to make this ontology explicit. 

One of the simplest and perhaps most useful types of inferences for 

databases is for hierarchies of classification, so-called 

'generalization hierarchies'. These were first proposed in the database 



management literature by Smith and Smith (1977), though they were dis- 

cussed in Artificial Intelligence some years earlier, e.g. Quillian (1968). 

An alternative notation, based on the Entity-Relationship interpretation, 

is given in Lee and Gerritsen (1978). 

A generalization hierarchy is a graphical representation of a 

sequence of subset relationshps between categories. An example of the 

Smiths' (1977:109) is reproduced in Figure [I.]. 

vehicle 

water vehicle 

-=/coastal\ rirm 
plane helicopter -c]e =hide -sel -1 crdt 

passenger air 

d b d b liner rubmarine kayak sailboat 

d d b  

Figure [I]. A generic hierarchy over vehicles 

The arcs in such generalization hierarchies are often read 'is a' .  Thus an 

air vehicle 'is a' vehicle; a plane 'is a(n)' air vehcle; a passenger aircraft 

'is a' plane; etc. Assuming that the primative predicates stored in the 

database are at the bottom of the tree, the generalization hierarchy 

translates into logic programming rules as follows: 

PLANE(x) + PASSENGER-MRCRAFT(x) . 



PLANE (x) c- AIR-FREI GHmR (x) 

AIR-VEHICLE(x) c- PLANE [x). 

AIR-VEHICLE(x) c- HELICOPTER(x). 

and so on. But now the ontological issues begin to emerge. Such infer- 

ences can only be made on relational attributes that are themselves 

predicates, and not, for instance, on attributes that are individual names 

or identifiers. In the terminology of the relational model, generalization 

herarchies reflect the ambiguity that predicates may appear either as 

relation names or attribute values. These inferences are perfectly vahd. 

However, they can only be recognized in the context of particular rela- 

tions. Consider the following very simple example. Assume a relation: 

where ?ID is the employee's identification code and ?MARITAL-STATUS can 

have the values SINGLE, MARRIED or DIVORCED. (Note that the above 

expression is not a complete logic programming statement, as it is nei- 

ther a fact or a rule. This expression could however be entered as a 

query, with a "?" following. which would then return all the tuples of the 

relation.) To plan office parties, we would like to specify: 

ELIGIBLE(x) - SINGLE(x) V DIVORCED(x). 

However, having marital status as an argument of the employee relation, 

we are led to define it as follows: 

EMPLOYEE2(?ID, ELIGIBLE) c- EMPLOYEE(?ID, SINGLE) V 

EMPLOYEE(?ID, DIVORCED). 



The important thmg to note is that we are forced to create a new relation 

name, EMPLOYEEZ. The dfference between EMPLOYEE and EMPLOYEE2 is 

that the latter has a different interpretation of its second argument. 

The difficulty is that in typical relational form, with features (predi- 

cates) appearing as arguments, the governing predicate name carries the 

sense of these features implicitly. In the above example, the term 

EMPLOYEE carried not only the sense of employment, but also assertions 

about marital status. 

Further deductive rules would entail the invention of further variants 

of the employee relation, e.g. EMPLOYEE3, EMPLOYEE4, each having its 

own peculiar interpretation of arguments. Hence, as the deductive rules 

become more complex, it becomes advantageous from the standpoint of 

conceptual clarity to promote these embedded features to the status of 

explicit predicates. Continuing the previous example, we would have: 

(Note: like-named predicates with different numbers of arguments are 

regarded as different prehcates.) 

SINGLE(x) c- EMPLOYEE(x, SINGLE). 

MARRIED(x) c- EMPLOYEE(x, MARRIED). 

DNORCED(x) c- EMPLOYEE (x, DWORCED) . 

Another type of data typically appearing in databases is numeric 

measurement. A similar rationale applies. As mferencing on the features 

indicated by these measurements becomes more complex, it becomes 

advantageous to separate out these features explicitly. For example, 



consider the relation: 

BUILDING(?ADDRESS, ?HEIGHT-IN-METERS). 

To convert to feet, we would like to specify the rule: 

HEIGHT-IN-FEET(x,n) c- HEIGHT-IN-METERs(x,m), & n = m 3.28. 

However, as embedded in these relations, separate rules for the units 

conversion would be needed for each length attribute of each relation, 

e.g., 

BUILDING2(x,z) c- BUILDING(x,y) & z = y 3.28. 

Again we are faced with the introduction of the confusing terminology 

BUILDINGZ. Like before, the problem stems from the interpretation of the 

predicate name BUILDING to include more than the elementary concept 

of buildinghood, but also the measurement of that building's helght. To 

dist~nguish these concepts explicitly, we would use the rules: 

BUILDING(x) c- BUILDING(x,h). 

HEIGHT-METERS (x, h) + BUILDING(x,h). 

( *) HEIGHT-FEET(x, z) + HEIGHT-MmRS(x,y), z = y 3.28. 

Havmg dist~nguished 'height' explicitly, we can now make use of t h s  unit 

of measure conversion for other entities having the feature of height. For 

example, another relation might be: 

PERSON(?ID, ?HEIGHT-IN-METERS) 

To separate the concept 'person' from his or her helght measurement, we 

add the rules: 



PERSON(?ID) .-- PERSON(?ID, ?H). 

HEIGHT-METERS (x, y) .-- BUILDING(x, y). 

By using the rule (*) above, we may now infer the height in feet of any 

building recorded in the database. 

Likewise, with the concepts 'building' and 'person' separately drs- 

tinguished, we may want to add additional deductive rules about them. 

For instance, 

PHYSICAL-OBJECT(x) .-- PERSON(x) V BUILDING(x). 

i.e. persons and buildings are both physical objects. With this abstrac- 

tion, general knowledge pertaining to physical objects can then be added, 

e.g. that they have mass, height. 

These examples reflect an important insight suggested by the graph- 

ical notation of generalization herarchies. One would like to specify 

deductive rules to apply as generally as possible. For instance, it is a 

characteristic of vehcles of all types that they may change from one 

location to another. I t  is a characteristic of all water vehicles that their 

location will always be in some body of water. In normal database 

representations, one would have to  specify these inferences repeatedly 

for each of 'submarine', 'kayak', 'sailboat', etc. 



I. CONCLUDING FEbWlS 

As was shown, logic programming can be applied directly to rela- 

tional databases (conceptually speaking, ignoring implementation con- 

siderations) to transform one relational view into another. However, this 

does not fully exploit the capabilities of logical inferencing. Greater flexi- 

bility is achieved as relations are decomposed into more elementary 

predicates. This requires a recognition of the basic ontology of the data- 

base, i.e, the elementary types of individual entities in the environment 

that are recognized. Predicates should ideally have only names for these 

elementary entities as arguments. 

However, to avoid the computational difficulties involved with logi- 

cally deducing arithmetic operations, a compromise was suggested, 

admitting numbers into the basic ontology. These are separated syntacti- 

cally, as measurement functions mapping real world individuals to 

numeric individuals. 

Various implementation issues arise from the above proposal. For 

instance, it is implicitly presumed that the organization maintains a con- 

ventional relational database for data processing purposes, and that 

these interencing structures are built 'on top'. The mechanisms for this 

interface have been ignored in this discussion. 

Beyond this, however, logical lnferencing on databases raises another 

set of issues that are not s~ much computational as epistemological. The 

ontological aspects have been touched on briefly. Other aspects include 

cross-temporal relationships as well as the special problems involved with 

non-factual contexts, e.g . predictions, plans and contractual commit- 



ment. These aspects are further disussed in Lee (1980, 1981, 1983, 

1983a). 
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