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FOREWORD

The principal aim of the former Health Care Task at IIASA
was to develop a family of submodels of national health care
systems for use by health service planners. This paper, written
as a part of that research activity, applies 1978 acute general
hospital discharge data for Massachusetts, USA, to the Resource
Allocation Model Over Space (RAMOS). Its publication was delayed,
and it is therefore being issued a few months after the dissolu-
tion of the Task and the Human Settlements and Services Area.
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THE SPATIAL ALLCCATION OF MEDICAL
CARE RESOURCES IN MASSACHUSETTS:
AN APPLICATION OF RAMOS

1. INTRODUCTION

This paper describes the use of the model RAMOS (Resource
Allocation Model Over Space) with data from the United States,
specifically the 1978 acute general hospital discharge data
from the State of Massachusetts. The RAMOS model was developed
in England and at the International Institute for Applied Sys-
tems Analysis (IIASA), as one of a family of models describing
the delivery of in-patient medical care. The first versions
of this model were designed for medical care systems that are
either centrally or regionally planned such as in East European
countries and England. Later these models were applied to
countries whose systems are based on national insurance schemes
(e.g., Italy and Canada), but have less strict planning proce-
dures. Until now, this model has not been used with data from
the USA, whose medical care system is regarded as being much

more market oriented than any of the previous countries examined.

RAMOS is a type of gravity model related to the Newtonian
principle in which the attractive force of two bodies is equated
to the product of two masses, multiplied by a deterrence factor

(equal to the inverse of the square of the distance between



them), and by a coefficient of proportionality. In RAMOS the
attraction of patients from one area to another is hypothesized
to be proportional to the product of the ability of an origin
area to generate patients and caseload capacity of a destination

area, and inversely proportional to the cost of access.

The RAMOS model, and others in the IIASA family of models,
as well as several applications, are described in a number of
papers.* The mathematical statement presented by Mayhew and
Taket (1980) for RAMOS only is as follows:

(]
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where

= the number of patients from origin area i who
receive care in destination area j, in a par-
ticular specialty or group of specialties

T. .
1]

D. = the caseload capacity of destination j in the
same specialties

W. = the propensity of origin i to generate patients
in these specialties (called the patient gen-
erating factor)

= the accessibility cost of treatment for a patient

from origin i receiving treatment in destina-
tion j

B, = [Z wi('BCij)]'1 (2)
1

c..
13

which is a constraint assuring that

*These are predominately IIASA working papers or research
reports that have been produced by several "generations" of
investigators: Gibbs 1978a,b; Rousseau and Gibbs 1980;
Aspden and Rusnak 1980; Hughes 1978; Hughes and Wierzbicki
1980; Mayhew and Taket 1980, 1981; Mayhew and Leonardi 1981.



Gravity models of this type are described as "attraction con-
strained”", or in this case "destination constrained" because
the destination capacity must be utilized, but all patients

will not necessarily be seen.

As one would expect, the diagonal of the Tij matrix is
"strong", that is, most people receive care in the same area
in which they live. The patient generating factor Wi and the
caseload capacity Dj are the primary independent variables.
Their product is analogous to the product of the two masses in
the Newtonian model, and they are determined from hospital
discharges and local population data.

The deterrence function, e(_Bcij), is related to the ten-
dency of a patient living in i to be treated in j. This func-
tion contains the parameter, 8, which is evaluated during cali-
bration, and cij’ a measure of the accessibility costs (e.g.,
distance or travel time). As one might expect, the diagonal of
the accessibility cost matrix, and therefore of the deterrence
factor, is usually "weak": that is, it is more convenient to

obtain care in the area where one lives.

The proportionality term Bj is designed so that caseload
capacities are fully utilized, yet not exceeded. This seems
realistic in situations where there may be a queue of patients
waiting for (elective) care, but it would appear to disqualify
the model for applications in many communities in the United
States, for example, when unused capacity occurs. However,
this is not necessarily the case. This constraint simply
requires that the model be used with a client population and
set of resources that match. In fact, under some circumstances
this property of the model can be used advantageously; once
calibrated this model can be used to determine the gquantity of
facilities of various types that are needed for particular

populations.

RAMOS was designed, and has been used, to solve problems
of evaluating facilities location and predicting patient flows

within the framework of a single algorithm. It is unique in



that previous models have generally focused on single facilities
or problems at the local scale of enquiry rather than over large
areas, such as an entire state or nation. In addition, earlier
models failed to take into account variations in morbidity or
the disaggregation of the population by age and sex, medical
specialty, or method of payment. These characteristics permit
the RAMOS model to be used for planning for various services,

for specific locations, and for particular populations.

RAMOS was originally intended for use in medical systems
with at least some measure of central control. The model is
now used in several countries to produce scenarios based on
future population and resource availability in assisting the
process of allocating hospital operating funds by region and

by area.

In the United States the medical system is neither centrally
planned nor centrally funded. This difference has a profound
effect on the way the model might (or might not) be used. &
brief description of the United States medical system is there-
fore helpful. There are three issues central to the use of the
model that must be touched upon: the methods by which a patient
chooses a hospital, the system of payment for hospitalization,

and the so-called Certificate of Need Law.

Except for emergencies, most patients receiving inpatient
care in hospitals are referred by their local doctor, who is
either on the staff of that hospital or has staff privileges.
This physician will usually be responsible for the in-hospital
care himself, or consult with a specialist. In general, the
local physician is the dominant factor in hospital choice, but
except in certain cases* there is no compulsion or financial
advantage for the patient to go to the hospital selected by his

physician.

*Exceptions would be such groups as veterans, members of the
armed services and their dependents, and members of a growing
number of health maintenance organizations.



In an emergency, however, a patient goes (or is taken) to
the hospital that is closest at the time. If admission is
required for recuperation or treatment the patient may remain
there or be transferred nearer home, depending on his or her

wishes.

Patients requiring highly specialized care are referred
to the most appropriate hospital that caters to the particular

illness, often at a considerable distance from home.

Another exception would occur if the patient had a strong
opinion for (or against) a hospital because of something (real
or imagined) that may have happened to someone he or she knows.
The patient might then ask the doctor for referral somewhere
else. This is usually not a problem with physicians who have
privileges at several hospitals. 1In other cases, the patient
is perfectly free to consult another doctor for an evaluation
for referral, with the idea that this physician will choose a

hospital more to the liking of the patient.

With few exceptions, patients receiving care in the United
States are responsible for their own hospital costs. They are
billed for this, and the money is retained by the hospital as
income, although the hospital may also receive supplementary
income from endowments, grants, etc. Most patients, however,
do not pay bills directly because they carry insurance covering
all (or most of) the costs. Persons who fall below certain
income criteria and those over 65 years of age are eligible
for medicaid or medicare, a governmentally funded system of
medical insurance (whose eligibility and benefits vary from

state to state).

Most hospitals are non-profit organizations, and although
they compete with each other, they do not compete in a free
market. The patient-customer of the hospital generally does
not know what facilities various hospitals have, or even what
facilities are required for the treatment of his or her case.
Consequently, the patient must rely on the advice of his or

her physician (who is also a supplier of services to the



patient-customer). Thus, hospitals compete with each other by
attracting a large and outstanding staff of physicians. An

important element in attracting this staff is the provision, by
the hospital, of the facilities these physicians need (or want)

to treat their patients.

The cost of providing the facilities that physicians find
attractive is sometimes partially subsidized by government
grants, but is mostly paid for by the hospital. The hospital
then passes the costs on to the patients on a fee-for-service
basis. Until recently the only constraints on the acquisition
of facilities and equipment was the availability of capital and
the reluctance of Boards of Trustees to approve expansions they
felt unjustified. A consequence was that costs of hospitaliza-
tion increased so rapidly that there was mounting public con-
cern, eventually requiring legislation to control this growth.
This resulted in the current "Certificate of Need" legislation,
which requires providers of health and medical care to secure
a Certificate of Need before any substantial increase is made
in facilities, capital equipment, or the services that they
offer. The State of Massachusetts was one of the earliest
states to enact such legislation, and similar legislation was
later passed by Congress. Although under pressure for repeal
and/or reduced funding from the current administration, it is

still in force.

An individual hospital in Massachusetts that wishes to
expand or secure substantial new equipment needs to prepare an
application describing and justifying the desired addition.

This application is then reviewed twice before the Certificate

of Need is issued by the State Department of Public Health.

The first review is held at the local level by the staff and
advisory board of the local health planning agency; the second

is held at the state level by the staff and advisory board of

the Department of Public Health, with public hearings in both
cases. If the decision is negative, the hospital may seek remedy

in the courts or with the state legislature.



Given this operating environment, it is obvious that the
opportunity for direct control of the delivery of hospital
care in the United States is limited as compared with other,
more centrally planned and funded, medical systems. However,
a strong influence on the future behavior of the system can be
exerted by control at the "margin of growth" through enlightened

management of the issuing of Certificates of Need.

Many issues that are subject to approval under the Certi-
ficate of Need Law are those that can be investigated within
the RAMOS framework. In particular, we have found that despite
the many complexities involved in the way patients seek and
obtain medical treatment, the structure of the RAMOS model
permits us to describe and predict the origins and destinations
of patients. Investigations can then be carried out for broad
categories of facilities, such as medical-surgical beds in
Massachusetts, or for specific facilities such as "burn units"”
or intensive care units. Investigations can encompass broad pop-
ulations (e.g., all Massachusetts residents), or sub-populations
stratified by method of payment, age, sex, ethnic origin, etc.

(provided the data are available).

The results of these analyses can be provided as another
input to the political process. The results could be placed
on record at public hearings through the testimonies of inde-
pendent analysts, or these results could be used directly by
various groups within the system. A hospital could, for example,
use the results of this sort of analysis as evidence of a need
for expansion, the staff of local health system agencies could
use these results to compare submissions from different hos-
pitals, or the State Department of Public Health could use
the results from these models to examine the implications of

various changes in public policy.

2. OBJECTIVE

The eventual objective of this line of research is the

development of models describing the delivery of health care



that are consistent with the current system in the United States,
and are based to the extent possible on the existing family of
IIASA health care models. This development process will follow

the classical procedures of model development:
a) construction (or adaptation) of the model
b) calibration
c) validation

d) application

The purpose of the following sections is to provide a
detailed record of the first step in this process—the adapta-
tion and calibration of the RAMOS model—and to suggest lines
of future research. The various methods of calibrating RAMOS
are described elsewhere (Mayhew and Taket 1980); for convenience,
however, they are presented briefly below. This description is
followed by a discussion of the variables used by the model and
how the data were obtained in Massachusetts. The results of

the calibrations are then given.

3. METHODOLOGY

The two methods used for calibration are those described
by Mayhew and Taket (1980). Each uses a different criterion
for the selection of the "best" value for B, the model param-
eter. The first is by slope calibration, and the second uses

maximum likelihood.

The criterion for the best solution using the slope cali-
bration method is obtained from a regression of the predicted
against the observed values of Tij; when the value of the slope
of this regression equals one and the intercept is zero, it
is clear that predicted and observed flows are (on the average)
the same, and the model is calibrated. The method uses an
iterative procedure based on systematically incrementing 8 and

estimating the regression coefficients until the results come



as close as possible to the prescribed conditions. A measure
of goodness-of-fit may be obtained by correlating the predicted
and observed patient flow elements. However, it is the square
of the correlation coefficient, the "proportion of explained
variance" (by the regression) and symbolized by R2, that is
usually reported. Incidentally, an examination of the actual
plot of these pairs of values is useful because points close to

the regression line, as well as the outliers, can be identified.

From this result it is but a short step to consider a
calibration procedure based on maximizing R? itself. This
approach is theoretically attractive and a suitable technique
was developed and tested by Mayhew and Taket (1980). They found,
however, that R2 was relatively insensitive to the parameter B
when very close to 1.0, its theoretical maximum, thus making it

unsuitable.

The maximum likelihood calibration method has a different
basis and requires another procedure. Mayhew and Taket (1980),
using the work of Batty and Mackie (1972), noted that, if the
deterrence function is based on the negative exponential (see
equation 1), predicted flows are most likely to be correct when
the predicted mean travel cost equals the observed mean travel
cost. 1In this case, the observed mean travel cost is first
calculated from the travel distance matrix and the observed
patient flows. An iteration procedure is then used, which
systematically varies the value of B until the travel cost
averages to the desired value. The best value of B is the one
that produces a match between the criterion value of the observed
average and the predicted average (to within the desired toler-

ance) .

Although modifications can be made to accommodate other
forms of deterrence functions, Mayhew and Taket (1980) found
this unnecessary in the case they examined. It was found,
however, that the maximum likelihood method of determining 8
was sensitive both to the number of zones over which the cali-
bration took place and to how and where the centroids of these

zones were located, which 1s a disadvantage. On the other hand,
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they noted that this method was capable of very rapid conver-
gence. They concluded therefore, that the maximum likelihood
method is very useful for producing initial estimates for R in
the early stages of development, after which they recommend the

use of the slope calibration procedure to obtain a final estimate.

Although both calibration methods use different criteria
and procedures, they are similar with respect to their data
requirements. Both require that consistent observations be
made on the dependent and independent variables in order to

determine the parameter, R.

The data needed for calibration can be described in terms

of the model as follows:

1. the observed patient flow Tij’ which is the number
of patients from origin i, who actually obtain care
in destination j. (Note that this becomes the depen-
dent variable in prediction runs; for calibration
it is an independent variable, therefore, a bar is
added to distinguish the observational data from

the predictions when it is the dependent variable.)

2. the patient generating factor Wi' which is the pro-
pensity of each origin area to generate patients
who receive care. This is calculated using age- and
sex-specific data on morbidity and population. The
state-wide average numbers of patients in various
specialties (taken from hospital discharge data)
are used to produce a weighted average demand for
each origin zone based on local population charac-
teristics. The more detailed the morbidity data
(i.e., disaggregated by age, sex, and location),

the more accurate the result.
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3. the caseload capacity Dj' which is the number of
patients treated in each destination area in a par-
ticular set of clinical specialties. Since the
structure of the model does not permit unused or
excessive capacity, careful interpretation of this
variable is necessary, particularly for disaggrega-
tion purposes (see also the subsequent, disaggregated
models, DRAMOS (Mayhew 1981)}).

4. the accessibility cost of treatment Ciqr which repre-
sents the relative cost to patients living in area
i and receiving care in area j. For current pur-
poses, no account was taken of possible differences
in treatment costs between destinations, only travel
costs. (Mileage, time, and opportunity costs were
considered.) 1If data on differences in costs for
similar treatment in different locations are avail-
able, they can be included if desired, although more
prior data analysis would be required. The section
on results will show that the calibration of the
model is very sensitive to the accessibility cost,
for this reason it will be discussed later in more

detail.

The detail available on the origins and destinations of
the patients, plus the fact that the model does not require
that the boundaries of the origin and destination zones be the
same, has made it possible to consider several alternatives for
zonal definition. It was decided to use health service area
(HSA) sub-areas, although other categorizations (e.g., towns,
countries, etc.) will be used for sensitivity studies in the
future. HSA sub-areas seemed an appropriate place to start
since they were already used for health planning.
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4. DATA

There are six HSAs in Massachusetts broken down into 23
sub-areas. These are shown on a map of Massachusetts in Figure 1,
and information about these sub-areas is presented in Table 1.
Each HSA contains between 8 and 50 hospitals, and each sub-area
contains from 2 to 25 hospitals. The populations of the HSAs
range from about 490 thousand to 2.1 million, and the popula-
tions of the sub-areas range from about 110,000 to just over
700,000. In the densely populated eastern portion of the state
the population is made up of sub-areas containing as few as 3 or
4 towns; in the western portion one sub-area needed as many as

43 towns to reach this population level.

The hospitalization data used for this calibration were
taken from the records of patients who were discharged in the
calendar year 1978 from 122 licensed, short-stay hospitals in
Massachusetts. The hospitals in Massachusetts not included were
33 chronic care and rehabilitation hospitals, 31 psychiatric
hospitals, 2 hospitals for the mentally retarded, 3 "long stay"
specialty hospitals (burns, orthopedic, etc.), 1 army hospital,
1 US public health hospital, and 1 acute general hospital in

HSA 6 (sub-region 3) for which data were not available.

The 1978 patient discharge data from Massachusetts are
highly regarded by the medical and health professionals for
consistency and accuracy. The published data from the year
1979 are not internally consistent for technical reasons, and
therefore could not be used. The 1980 data, which have just
been put in final form, are highly regarded but were unavail-

able at the time this paper was written.

The patient discharge data were disaggregated in the fol-

lowing ways:
1. by the hospital of discharge
2. by the home address (town) of the patient

3. by the category of the primary mode of care received

by the patient. Such categories were defined as:
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Table 1. Description of health service areas and sub-areas.
Health service Number of

area and sub- hospitals- in Population
areas Number of towns calibration* (1978 est)
REGION I

1.1 Berkshire 33 16 145,674
1.2 Northern Valley 43 175,257
1.3 Southern Valley 26 482,586
REGION II 17

2.1 North Worcester 25 214,380
2.2 Central Worcester 8 237,751
2.3 South Worcester 29 228,390
REGION III 8

3.1 Lowell-Tewksbury 8 226,991
3.2 Lawrence~Andover 4 146,375
3.3 Greater Newbury 11 114,518
REGION 1V 50

4.1 Central Metro 4 705,204
4.2 Northwest Metro 21 456,914
4.3 West Metro 20 478,314
4.4 Southwest Metro 11 164,082
4.5 South Metro 10 305,625
REGION V 16

5.1 Attleboro 14 191,634
5.2 Brockton-Plymouth 20 343,718
5.3 Fall River 12 307,373
5.4 Cape Cod 23 180, 349
REGION VI 15

6.1 Cape Ann 9 107,914
6.2 Danvers-Salern 5 132,557
6.3 Greater Lynn 5 132,268
6.4 Eastern Middlesex 5 110,507
6.5 Tri-Cities 3 148,657
OUT-QF-STATE (0S)

0S-1 New Hampshire (NH) 887,000
0S-2 Rhode Island (RI) 929,000
0S-3 Connecticut (CT) 3,115,000
0S-4 Vermont (VT) 493,000
0S-5 New York (NY) 17,648,000

*
Three hospitals have closed since this origin study was made and

several have merged.
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a) all patients {(a total of the following categories)

b) medical-surgical patients

c) obstetrical patients (in-patient abortions and
gynaecological patients were counted as medical-
surgical patients)

d) pediatric patients

e) psychiatric patients discharged from acute general

hospitals

These categories are arbitrary and are an artifact of available
data. Further aggregation or disaggregation is possible as
interest warrants and data becomes available. This issue of
categorization also arises in the discussion of the RAMOS model

in the section of this paper on future research.

Two values were used for the accessibility cost in the
calibration: first, the actual road mileage, and second, an
"adjusted" mileage, which attempts to take into account driving
time and difficulty. The adjusted mileages were obtained by
increasing the actual road mileage values in the urban areas
to account for the fact that one mile of driving is more diffi-

cult and time consuming in the city than in rural areas.

A mileage chart used by trucking companies provided
estimates of the actual road mileages between the towns that
are the centroids of population and centroids of in-patient
care. Where these centroids are in the same town, the travel
distance is less than would otherwise be the case, but it is
not zero; i.e., even if the centroids are exactly coincident,
one person traveling 5 miles north would not be "cancelled" by
another patient traveling 5 miles south. Therefore, mileages
for the accessibility cost in this case were calculated somewhat
differently: the area of the town was divided by the number of
hospitals, producing an "average area served" by each hospital.
This area was then assumed to be round, and its radius was
calculated. Two-thirds of this radius was taken as the average

for the "actual road mileage" traveled by these patients.
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The immediately adjacent 5 states are the origin of approx-
imately 50,000 out-of-state patients who are treated annually
in Massachusetts hospitals. Road mileage estimates for these
patients were based on their actual numbers and residence of

record at the time of discharge.

The adjusted mileages were obtained from the actual road
mileages. The values for actual mileages in and around Boston,
Worcester, and Springfield were increased from one (Springfield)
to nine (Central Boston) units. The adjustment was based on a
judgment of the relative increased driving time and the general
physical inaccessibility of these locations; rivers (and bridges),

and interstate highways (and their access).

Twelve of the 322 origin-destination pairs in the accessi-
bility cost matrix were adjusted, and the average distance
traveled by in-state patients was thereby increased from 7.583
actual miles to 9.581 adjusted miles. Although the adjustment
was applied to only 4 percent of the origin-destination pairs,
it increased the average distance the patients traveled by
almost 21 percent. This percentage increase is large because
of the very large number of urban patients who had their access

distance adjusted upward.

5. DISCUSSION OF RESULTS

Three sets of results are presented and discussed in this
section; the first set, and by far the most important, is the
calibration results for the RAMOS model. They show both the
slope calibration and maximum likelihood methods using actual
road mileages and adjusted mileages. Since Boston is a nationally
known referral center, it is also useful to compare the calibra-
tion obtained for all patients who receive care in Massachusetts
to a calibration that is limited to Massachusetts residents

only.

A substantial difference was obtained between the first

and second set of results, i.e., the calibration using the
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actual road mileages and the calibration using adjusted mileages.
This difference was one of the most interesting results obtained

and is discussed further in the section on accessibility costs.

The third set of results are unrelated to the calibration
of RAMOS. They are based on RAMOS™ | (RAMOS inverse), a model
variant developed with the strategic planning of health care

services in mind (Mayhew 1980).

5.1 RAMOS Calibration

The results of the calibration of RAMOS using 1978 Massa-
chusetts hospital discharge data are shown in Tables 2 and 3.
Table 2 presents information for all patients treated in Massa-
chusetts, and Table 3 is limited to patients whose home address
is in Massachusetts at the time of discharge. The data base for
these two tables differ by about 50,000 discharges. Each of
these tables presents data separately for four categories of
care: medical-surgical, obstetric, pediatric, psychiatric,

and the total of all patients in these categories.

These tables show first, the numbers of discharges avail-
able for the data base for each category; second, the value
obtained for the parameter B from the calibration; and finally,
a measure of the goodness-of-fit, R2. Since the maximum likeli-
hood calibration uses average mileage (or adjusted mileage)
traveled by patients as the criterion for the calibration, these

values are also included in the tables.

A comparison of the results using actual road mileage to
those using adjusted mileage is shown in both tables. They show
that relatively small changes in mileages (an adjustment of
only 12 of 322 pairs of mileage values) has a significant effect
on the goodness-of-fit statistic, R2. Figures 2 and 3 display
this result graphically for one example (slope calibration for
medical-surgical, in-state patients). A comparison of Figures

2 as a difference

2 and 3 shows the difference in values of R
in the grouping of the points around the "ideal" regression

line. Particular attention is called to the point for "Central



Table 2. Calibration of RAMOS using 1978 in-patient discharge data from Massachusetts
for all patients treated in that state.

SLOPE CALIBRATION MAXIMUM LIKELIHOOD CALIBRATION
Actual miles Adjusted miles . Actual miles Adjusted miles
Number of Averade mileage Propor- Propor- Propor- Propor-
patient traveled by tion of tion of tion of" tion of
Category discharges patient Calibra- explained Calibra-~ explained Calibra- explained Calibra- explained
of patient ip data Actual Adjusted tion coef wvariance tion coef varignce tion coef variance tion coef varisnce
care base miles wmiles 8 R2 8 R ' B R 8 R
Total 851760 10.024 11.984 .1600 .8407 .2300 L9531 .11749 .8577 .13900 .8585
(all
patients)
Medical~ 658942 10.151 12.150 .1600 .8395 .2300 .9510 .11505 .7998 .13613 .8510
surgical
Obstetric~ 88192 8.484 10.297 .1900 .8920 .2700 .9489 .14082 .8588 .16368 .8956
maternity
Pediatric 84391 10.868 12.695 .1500 .7678 .2100 .9190 .11116 .7245 .13309 .8138

Psychiatric 20182 9.035 10.906 .1900 .8635 .2500 .9578 .13924 .8664 .16412 .8851

_8L.—




Table 3.

for in-state patients only.a

Calibration of RAMOS using 1978 in-patient discharge

data from Massachusetts

SLOPE CALIBRATION

MAXIMUM LIKELIHOOD CALIBRATION

Actual miles

Adjusted miles

Actual miles

Adjusted miles

Number of Average mileage Propor- Propor- Propor- Propor-
patient traveled by tion of tion of tion of tion of
Category discharges patient Céllbra- explained Calibra- explained cCalibra- explained Calibra- explained
of patient {p data Actual Adjusted tion coef Varignce tion coef variance tion coef variance tion coef variﬁnce
care base miles miles B R B R f R B R
Total 817892 7.553 9.581 .1600 .8524 .2300 .9559 .13316 .83R5 .17450 .9202
(all
patients)
Medical- 632183 7.490 9.561 .1600 .8503 .2300 .9539 .13321 .8386 .17583 .9186
surgical
Obstetric- 85249 7.343 9,202 .1900 .8988 .2700 .9501 .14337 .8769 .17577 .9130
maternity
Pediatric 80757 8.256 10.152 .1500 .7856 .2100 .9245 .12432 .7689 .16478 .8868
Psychiatric 19650 7.544 9.458 .1900 .8757 .2500 .9609 .13380 .8427 .17145 .9170

a : . . . . . .
In-state patients are patients who are treated in Massachusetts having an address in Massachusetts at the time of discharge.
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Figure 2. Comparison of predicted and actual patient flow
matrix.

(The actual number of patients from origin i who
are treated in destination j compared with the
predicted number [23 x 28]. Medical-surgical
discharges, Massachusetts, 1978 data, road mileage
used for accessibility cost.)
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Comparison of predicted and acutal patient flow
matrix.

(The actual number of patients from origin i who
are treated in destination j compared with the

predicted number [23 x 28 matrices]. Medical-

surgical discharges, Massachusetts, 1978 data,

road mileage adjusted for travel time used for

accessibility cost.)
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Metro", the sub-area encompassing central Boston (circled and
marked with an arrow on these two figures). As expected, this
sub-area has the largest value for both the predicted and the
observed values for patient flow. It is interesting to note
that this point falls far below the regression line when actual
mileages are used (i.e., much less hospitalization is observed
to occur in this sub-area than is predicted by the model);
however, when the adjusted values of mileage are used, the
point for Central Metro is close to the regression line (i.e.,
the predicted number of cases in the Central Metro sub-area
come close to the observed values).

The use of adjusted mileages instead of actual road mileages

is responsible for increasing the value of R2

in the slope cali-
bration, yielding values around 0.95. The same tendency is noted

in the maximum likelihood calibration, although not as large.

An examination of the changes in the wvalues of B for the
various calibrations is also interesting. Comparing results of
the calibration for all patients treated in Massachusetts to
the calibration of the model for just in-state patients (from
Tables 2 and 3) shows no difference between corresponding values
of B for slope calibration but does show differences between
about 0.003 and 0.03 for maximum likelihood.

The 5 out-of-state origins are not sufficiently different
from the 23 in-state origins in their yield of patients, rela-
tive to their distance from the treatment destinations, to affect
the slope calibration. However, the situation is somewhat dif-
ferent when using maximum likelihood, because it is based on
the average mileage traveled. The 5 out-of-state origins add
about two miles (a bit over 20 percent) to the average distance
calculated for in-state and all patients categories in this
method.

The differences in the values of 3 and R2 for each category
0f care are also of interest. Both Tables 2 and 3 show that
the values for medical-surgical patients and the values for

total of all patients are very similar (often identical). This



-23-

is because a broad definition was used for the medical-surgical
category, and thereby consists of about 75 percent of the total.
On the other hand, restricted definitions were used for obstetric,
pediatric, and psychiatric patients (who were discharged from
acute general hospitals); therefore, the number of patients in
these categories is much smaller. The model fits the pattern

of patient flow for pediatric patients with the lowest value of

8, while psychiatric and obstetric categories have higher values
that are approximately equal. Although the results from the
slope calibration are uniformly higher than the values obtained

from maximum likelihood, this same pattern persists.

Given the same accessibility cost matrix, a higher value
of B will produce a higher value for the deterrence factor.
Since the values for B are higher for psychiatric and obstetric
patients than for pediatric patients, this means that patients
are more likely to seek obstetric and psychiatric care at acute
hospitals sited close to home, and are willing to travel further
for pediatric care. The difference 1in B must be interpreted

cautiously because it is in the exponent of the deterrence factor.

5.2 Deterrence Factor, Accessibility Costs, and Error

The discussion of the deterrence factor has been based on
accessibility costs measured in terms of mileages—actual road
mileages in one case, and mileages adjusted for driving time
and difficulty in the other. The data in Tables 2 and 3 show
substantial differences between the results of using both
measures, which suggests that calibration is sensitive to these
choices, which is to be expected, since the accessibility cost

appears as an exponent in the model.

A more systematic study of driving time and difficulty
should further improve the calibration, but in view of the
sensitivity of the model, it would cause at least a small
modification in the result. This sensitivity is reason to
look closely not only at the measurement of distance, but also

at the mechanism of the deterrence itself.
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Geographic distance is often used in gravity models because
it is easy to measure and is an important variable in the
process of selecting a hospital (and in marketing in general).
When one goes beyond the idea of just geographically defined
distance concepts for accessibility costs, there is an oppor-
tunity to further refine the model. There is a rich literature
on the reasons why patients are treated in particular hospitals,
and important work based on factors such as patients' religion
or income exists (Morrill and Kelly 1970). These are used to
modify geographical distance into a new variable called "social
distance" to explain the use of individual hospitals by particular
populations. Besides the addition of such explanatory factors
as income and religion, investigators have experimented with
a range of different types of functions for the deterrence fac-
tors. Shannon (1969, 1975) examined four deterrence factors,
each based on an existing medical system with slightly different
characteristics, and he was able to identify the form of the
function for each different system. He also introduced a deter-
rence function that contained the product of two exponentials,
which he suggested would combine the characteristics of two
of the systems. Mayhew and Taket (1980) also investigated four
different functions for the deterrence factor using the Greater
London data, and Mayhew (1982) suggested the inclusion of a
"prestige" factor based on the added attractiveness of certain
facilities.

The expression used hitherto for the deterrence factor,
f.., is as follows:
1]

-3 (c..)
f.. = e 1]

1]

If calibration errors are attributable to the accessibility cost,
an error term, €ij’ can be added to the exponent so that the

observed and predicted flows match exactly
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) e—B(cij+£ij)

£..
1]

With the error stated explicitly it can be calculated and
analyzed; however, before this can be done any additional
information available should also be included in the accessi-
bility cost; for example, prestige can be thought of as a factor
that enhances the attractiveness of certain destinations. From
the point of view of the model, this prestige effect would tend
to reduce the importance patients attached to the distance they
travel to some destinations; if we call this factor pj, then

the deterrence factor could be rewritten as:

c _ -B(cij-pj+€ij)

i3 T ¢

Further refinement is obtained by adding a term q; for any
known effects related to origins (e.g., socio-economic factors)
and a term sij that is selective between origins and destina-
tions. Positive values for these terms would indicate that the
effective distances are increased, as in the case above of

adjusted mileages with cy and negative values would decrease

jI
the effective distance as when prestige factors are active.
In its most elaborate form the deterrence function could be

written as:

-B(c..tp.t¢t ts. .te, .
£ = o PleiytRyRay s yey )
i]
where fij’ B, cij are defined as before, and
pj = effects known, by destination
q; = effects known, by origin
j4 < effects known, selectively by origin and destina-
] tion pair
£.. = residual error

1]
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The complete expression for the deterrence factor is use-
ful to help visualize all the ways that it can be effected, but
when this complete expression is substituted into the model one
term will drop out. In this destination-constrained model it
is the term pj; it drops out because the deterrence factor
appears in the model twice, once directly in the model, and
once in the expression for Bj’ which is calculated by a single
summation over i. (In the origin-constrained case the q; term
would drop out, and the pj would be retained, by the same

reasoning.)

If the estimate of B is presumed to be reliable, the dis-
tribution of the residual error term, Eij’ can be obtained for
Dj’ Wi’ cij {and any other terms
being used in the accessibility cost) are known values. The

any calibration since Tij'

model can then be solved iteratively for the values of Eij
although the process is complicated by the fact that fij appears
twice in the model. Indirect methods are available for this

solution (see Mayhew and Taket 1981).

5.3 RAMOS™|

RAMOS—1 is a set of non-linear optimizing models with
linear constraints, whereas RAMOS estimates Tij_?iven different
configurations of supply and demand. The RAMOS finds Dj’
the caseload capacity, for each destination consistent with
the residence pattern of the total availability of resources

and the ease of travel on the region.

A number of different criteria for selecting Pj have been
extensively tested (Mayhew and Leonardi 1981) and are currently
available. One of these, the equity criterion, uses an objec-
tive function that allocates resources such that the relative
needs in each area of residence are satisfied. 1If this criterion
were unconstrained a majority of patients would be treated
locally, perhaps calling for an unrealistic level of construc-

tion of new facilities in some areas, and excessive elimination
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or reduction in size of facilities in others. Therefore, the
model has the capability of constraining the solution so as to
hold the amount of change in any area, addition or elimination,
to any range the analyst may feel is desirable or feasible.

The ability to use variable upper and lower bounds on the amount
of change also permits an investigation of the implications of
what can be accomplished in various planning periods. Control
over the rate of change allows time for conflict between the
objective used by the model and any other objectives of the

health care system, to become reconciled as the system evolves.

The results of two runs with the RAMOS.1 model are shown
in Table 4. The same 1978 Massachusetts in-patient discharge
and population data are used as before. The accessibility costs
are based on actual rocad mileages, and the value of the param-
eter B for this data set as 0.16. (See Table 2 for the RAMOS
calibration for this data set.) Both runs use no constraints
on the amount of increase permitted in the facilities in any
area so that areas having particular short falls can be iden-
tified; the first run, however, constrains the reduction in
resources allocated to any one area to an arbitrary value of

10 percent, and the second run constrains it to 25 percent.

The results produced from these two runs, shown in Table 4,
are intuitively reasonable; they show reduced caseloads in
areas that appear to be oversupplied and increased caseloads
in those that are undersupplied. The first run, which constrains
the solution to the elimination of not more than 10 percent of
the caseload capacity in any area, showed that 13 of the 23
HSA sub-regions were decreased by the full 10 percent permitted,
3 more areas had their caseload capacities decreased by less
than 10 percent, and the caseload capacity of 7 areas were
increased. The second run, constrained to a maximum decrease
of 25 percent in any area, showed that 9 areas should have their
caseloads decreased by the full 25 percent, 2 should be decreased
by less than 25 percent, and 11 zones should be increased by
some amount. Interestingly enough, 5 of the zones that in the

first run indicated they should lose resources, have their
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allocations increased in the second run. This is an artifact

of the constraints on change, and the ripple effect caused by
trading off allocations between different areas. When large
changes are permitted, the areas that are badly out of line

will have large changes, and those areas that are at very nearly
the right level will have little or no change. However, when
constraints are tightened and the amount of changes permitted

is limited to small values, those areas that are badly out of
line can only be changed by small values, and the remaining

change must be made up by re-shuffling allocations elsewhere.

6. CONCLUSIONS

On the basis of this work three general conclusions seem

justified:

1. The 1978 Massachusetts data does fit the RAMOS model,
and calibrations can be obtained with good agreement
between actual and predicted patient flow provided
that the actual number of admissions that occur is

used as the caseload capacities (Dj).

2. The calibration of the RAMOS model shows that patients
tend to travel farther for pediatric care than for
general medical-surgical care, and further for general
medical-surgical care than for obstetric and maternity
care. This result is both intuitive and generally

compatible with earlier work with the model in England.

3. This initial success calibrating RAMOS with the Mas-
sachusetts data shows that it is possible to use this
model with the market-oriented health system in the
United States. However, there is still a long way
to go before RAMOS can be considered a valid tool for
planning health and medical care delivery in Massa-
chusetts. The more immediate steps in the process
of transforming this model into a usable tool are

described in the next section.
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7. FUTURE RESEARCH

There are many avenues along which research could proceed,
but the first priority must be an examination of the validity
of RAMOS for prediction using Massachusetts data. A second
possible extension of this work is to use DRAMOS (Disaggregated
Resource Allocations Model Over Space), a model that attempts
to incorporate disaggregation into the basic approach of RAMOS
by including the relative elasticities of various care special-
ties at different resource levels and the average standards of
treatment received (Mayhew 1981). These issues are briefly

examined below.

7.1 Validity of Prediction

The predictive power of the model cannot be tested until
data from more than just the calibration year become available
sO that predictions of the model can be compared with what
actually happens. Ordinarily, the time period for this valida-
tion would be greater than two years in order to provide an
adequate test of the model.* 1In the case of Massachusetts data,
the dependent variable Tij can be analyzed using a 28 x 33
matrix. The differences between the predicted values and actual
values obtained two years later will consist of 644 elements,

which can be analyzed as an error distribution.

For planning, any errors in prediction will be a function
both of the validity of the model itself and of the ability of
the analyst to make accurate projections of the caseload capacity
and the patient generating factors. These latter would be

derived from an analysis of bed availability.

Health planners sometimes prefer a greater degree of dis-

aggregation than has been discussed so far. Results might be

*If the time necessary to process the hospital discharge data
and prepare the data elements is considered, it is well to
realize that the information available at time t, may already
be close to one year old, so the span between the period
covered by the data and the period of prediction may be two
years or more.
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desired in terms of specialty groups, age and sex categories,
racial or religious characteristics, and so forth. This will
be up to the analyst and the types of problems being studied.
However, it is recognized that the greater the degree of disag-
gregation, the greater the possible imprecision of the predic-
tions. Therefore, sensitivity of the model to changes in the
basic data elements will also need to be closely checked before
the model can be considered a valid planning tool for routine

use.

7.2 Substitutability of Facilities

RAMOS is limited to a single category of patient. Here

it was run separately for medical-surgical, pediatric, obstetric,
psychiatric, and all categories together. Hospital facilities
for these types of patients are generally kept separate, but in
emergencies or during recorganization there is flexibility, and
patients in one category may use facilities formerly reserved
for another. DRAMOS was developed in order to take account of
interactions between different categories of patients and dif-

ferent standards of treatment (Mayhew 1981).

It incorporates the elasticities of categories of patients
relative to resource availability into the basic framework of
the RAMOS family of models. The main output is a predicted
patient flow matrix [Tijk] that adds the dimension of patient
category k to the former dimensions of origin and destination, 1
and j. It would be a simple extension to include different
modes of care m, such as out-patients, in the framework as well.
With DRAMOS it would then be possible to analyze the inter-
relationships between in-patient and out-patient care for
various populations defined by category of care (or perhaps

diagnosis), location, method of payment, and so forth.

The calibration and validation of the DRAMOS model is more
complex than that of RAMOS, and the data requirements more
exacting. If different modes of care are considered, research

will need to identify the relative differences in cost between
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them, for example, in the case of out-patient and in-patient
care. It is also important to examine whether or not accessi-
bility costs need to be redefined for each mode separately.

Also, if out-patient care is included in the model, more research
will be needed to check the suitability of the patient genera-
ting functions, W, . There is also the problem of the determining
stability of the basic variables (hospitalization rates and
lengths of stay) for each of the disaggregated categories of
patients in the model. This issue is easier to study with each
category individually before the categories are considered

interactively in DRAMOS.

For these reasons it is prudent to postpone work on DRAMOS
until each category of patient is calibrated and validated
individually. When this is complete, however, the insights
Obtainable should be very useful for planning because DRAMOS
allows for the examination of issues beyond the scope of RAMOS,
such as the implications both of the choice of mode and of the

flexibility in the use of facilities.
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