
NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

BUREAUCRACIES, BUREAUCRATS AND INFORMATION
TECHNOLOGY

Ronald M . Lee

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

CONTENTS

A. INTRODUCTION

B. BUREAUCRATIC ORGANIZATIONS

C. THE BUREAUCRATIC PERSONALITY

D. INFORMATION TECHNOLOGY IN BUREAUCRACIES

E . DIFFICULTIES IN SOFTWARE ADAPTATION

F. T H E PROBLEM WITH PROGRAMS:
PROCEDURAL LANGUAGES VS. PRODUCTION SYSTEMS

G. T H E PROBLEM WITH DATA:
DATA FILES VS PREDICATE CALCULUS

H. COMBINING T H E APPROACHES: LOGIC PROGRAMMING

I . THE SEMANTIC PROBLEM

J. CONCLUDING REMARKS: T H E THIRD WAVE SCENARIO

R E F E R E N C E S

BUREAUCRACIES, BUREAUCRATS AND INFDFUATION
TECHNOLOGY

Ronald M. Lee

k INTRODUCTION
Bureaucracy. The term is laden with negative connotations. One

thinks of large, rigidified organizations with baroque, ritualized pro-
cedures incapable of adapting to changing needs and conditions in the
environment. In mentioning the term bureaucracy one usually also
speaks of its means of perpetuation: the professional bureaucrat. These
are usually cast as unimaginative, plodding individuals socialized into the
rule system of the bureaucracy to the point where the rules themselves,
and not the purposes behind the rules, become the reason and guides pf
their employ. In recent years, another force has appeared which
threatens to spread the phenomenon of bureaucracy even further,
namely, the implementation of these bureaucratic rules and procedures
in the form of computer-based administrative systems.

The purpose of this paper is to review in somewhat more depth the
nature and interaction of these three forces: the bureaucratic organiza-
tion itself; the bureaucrats that populate such organizations; and the spe-
cial irnpac t of information technology on their operation.

B. J3UREAUCRATIC ORGANIZATIONS
The term "bureaucracy," as both a popular and scientific term, has

come to have a variety of often overlapping definitions. The definition
used here is due to Weber (1956/19?8). To Weber, the process of bureau-
cratization is a s h f t from organizational management based on the
interests and personalities of specific individuals, to one based on explicit
d e s and procedures. These rules and procedures are identified with
roles in the organization rather than individual people. Bureaucratic
organizations thus take on an impersonal, mechanical character. To
Weber, t h s is a positive development leading to greater effectiveness and
efficiency:

Bureaucracy develops the more perfectly, the more it is "dehu-
manized," the more completely it succeeds in eliminating from
official business love, hatred, and all purely personal, irrational,
and emotional elements which escape calculation (Weber
1956/19?8:9?5).

Bureaucracies are sometimes characterized as having a 'mechanis-
tic,' form of administration based on fixed rules and procedures as
opposed to 'organic' organizations which rely more on individual discre-
tion (Burns and Stalker 1961).

Bureaucracies in t h s sense are becoming of increasing importance
in both planned and free market economies though the roles are some-
what different.

In a planned economy, the rationalization of management is central
to the ideology. However, to Marx, bureaucracy was a major evil to be
abolished:

Bureaucracy becomes an autonomous and oppressive force
which is felt by the majority of the people as a mysterious and
distant entity - as something which, although regulating their
lives, is beyond their control and comprehension, a sort of divin-
ity in the face of which one feels helpless and bewildered
(quoted in Abrahamssonl9?7:38).

Here the term 'bureaucracy' is used in a slightly different sense from
Weber, denoting government bureaucracies in particular. The relevance
for Marx was that these are an important concentration of social power.

In market economies, bureaucracy seems to be regarded more as a
concession to inadequacies in market mechanisms. Here we need to dis-
tinguish bureaucracy from herarchy. Williamson (1973) discusses 'mark-
ets vs hierarchies' as a problem of economic organization. In certain
cases resources are allocated via market mechanisms, in other cases
they are allocated within an organizational hierarcy, which may be under
either public or private control. Hierarches become bureaucracies (in
the sense used here) when their administration becomes rationalized,
embodied in explicit rules. In the case of herarchical organizations in
the private sector, this rationalization process tends to evolve gradually,
as the organization discovers regularity in its environment.

Governmental hierarches, by contrast, are typically created by
legislation and so become bureaucracies from the outset. Downs
(1967:32,34) cites a number of factors for the creation of governmental
hierarcies. One is the case of consumer goods with large 'external' costs
or benefits. An external cost or benefit is one not reflected in the good's
free market price - for instance, the smog created by automobile exhaust,
or non-biodegradable detergents whch pollute rivers. The point is that
market mechanisms do not take these external costs into account in
selecting an equilibrium consumption level. To compensate for these
inadequacies, a bureaucracy is often created.

Another case where a free market mechanism does not operate well
is with so-called 'collective goods.' These are goods with indivisible bene-
fits; once the good exists, everyone benefits whether or not they have
paid their share. An example is national defense. In a free market, each
person is motivated to avoid paying his/her part; since everyone makes
this assumption, the collective good is not acquired. Again, to avoid this
pathology of the market system, control of such goods is given over to a
bureaucracy.

A somewhat related situation arises in certain industries such as oil
production or telephone services where economies of scale or patent con-
trols create strong monopolistic tendencies. In order to protect the con-
sumer from unfair pricing, two options have been employed, both bureau-
cratic. One, is to nationalize the entire industry into a governmental
agency. Examples are PEMEX, Mexico's national oil company and the
various P'IT's in European countries. The other alternative, effectively
only slightly different, is to create a governmental regulatory agency to
control the monopoly's behavior, e.g., the FTC and FCC in the U.S.

The rationalization of organizations, in itself, would seem to be
inherently positive and equitable. Indeed, this is the implicit goal behnd
most of management science and operational research.

However, there seems to be an undesirable side effect that accounts
for much of the negative connotations we attach to the term bureau-
cracy, namely, that highly rationalized organizations apparently become
inflexible and unresponsive to changes in the environment. Weber com-
ments:

Once fully established, bureaucracy is among those social struc-
ture which are hardest to destroy. Bureaucracy is the means of
transforming social action into rationally organized action.. . the
ruled, for their part, cannot dispense with or replace the
bureaucratic apparatus once it exists, for it rests upon expert
training, a functional specialization of work, and an attitude set
on habitual virtuosity in the mastery of single yet methodically
integrated functions.. .

Such an apparatus makes "revolution," in the sense of forceful
creation of entirely new formations of authority, more and more
impossible--technically, because of its control over the modern
means of communication (telegraph, etc.), and also because of
its increasingly rationalized inner structure (Weber
1956/ 1978: 987-989).

One aspect - at least in market economies -for the unresponsive-
ness of bureaucracies is that they typically have achieved a monopolistic
or protected position where they are not forced to change by competitive
pressures. Nonetheless, newly elected politicians and corporate
presidents often recognize and attempt to relieve the problem, though
typically with little success.

Jay Galbraith (1973, 1977) offers a useful framework for analyzing
the problem. A currently popular theory of organizations is the informa-
tion processing view, due principally to Simon (e.g., Simon 1955, March
and Simon 1958). The key concern is how the organization copes with the
complezity of its environment, given the bounded rationality (cognitive
limitations) of its managers. Galbraith extends the information process-
ing view of organizations, to a 'contingency theory' approach. He regards
the complexity of the organizations task as only one dimension of its
information processing difficulties.

Another dimension is added to the organizational design problem,
what Galbraith calls uncertain,ty. Ths refers to the degree of unpredicta-
bility of the tasks performed in the organization:

Uncertainty is defined as the difference between the amount of
information required to perform the task and the amount of
information already possessed by the organization (1973:5).

The importance of this relates to the organization's ability to plan or
pre-program its activities:

The greater the task uncertainty, the greater the amount of
information that must be processed among decision makers
during task execution in order to achieve a given level of perfor-
mance (1973:4).

Galbraith classifies the nature of the organization's overall cognitive
task (as well as any of its subtasks) on a two dimensional framework of
complexity and uncertainty. This may be viewed as a matrix (Figure 1)
characterizing the different types of cognitive tasks which organizations
face. In situations of h g h complexity but low uncertainty, the organiza-
tion is able to plan and routinize its activities. These are the conditions

when bureaucracy is most effective. In situations of low complexity and
high uncertainty, by contrast, the organization is constantly being
surprised by changes in the environment. Here, the most effective form
of administration seems to be one that relies heavily on the discretion of
its employees. Burns and Stalker (196:) use the terms 'mechanical' and
'organic' to describe these contrasting forms of administration.

uncertainty

mechanical
(bureaucratic)

f igure 1 .

The problem, of course, is what form of administration is appropriate
when the environmental demands are both highly complex and highly
uncertain.

As observed, rationalization is the typical response to complexity.
An apparent difficulty with rationalization, however, is that when a once
stable environment becomes more uncertain, the organization seems to
have difficulties de-rationalizing, that is, removing rules and procedures
and relying more on individual discretion in order to become more adap-
tive. One factor is likely to be that it has reached a level of internal com-
plexity that cannot be maintained in a less rationalized type of organiza-
tion.

The desired response would be to move quickly to another highly
rationalized configuration. However the complex of bureaucratic pro-
cedures represents a large scale intellectual effort of many people over
time. Bureaucracies are not built in a day. The time required to con-
struct a new configuration may be too long compared to the rate of
environmental change.

Implicit here is the observation that the rationalization of adminis-
tration and organizational adap tabilitjr s e e m to be conflicting principles.
In the next sections we examine possible reasons why.

C. THE BUREAUCRATIC PERSONALITY
Seldom are bureaucracies discussed without considering the role

played by the people who staff them. Weber for instance remarks:

the professional bureaucrat is chained to his activity in his
entire economic and ideological existence. In the great majority
of cases he is only a small cog in a ceaselessly moving mechan-
ism whch prescribes to him an essentially fixed routine of
march (Weber 1956/1978:988).

A bureaucrat, unlike many other vocations, is heavily socialized and
hence psychologically dependent on his/her active role in the organiza-
tion. Bureaucracies such as have been described generally only arise in
large organizations and then usually only after a fairly long period of
adjustment and stabilization. Thus the activities of a bureaucrat are not
only explicitly prescribed, but their full extent and interplay with other
parts of the organization is also complex and difficult to learn. The
bureaucrat therefore becomes an expert in h s / h e r role in the par t i cu lar
organization. 'lhs is for instance quite different from professionals or
trade workers whose specialities are generally transferable to other
organizations.

A bureaucrat's training is thus peculiar to h s /her organization. This
makes it unsurprising that these people cling tenaciously to their posi-
tions, building defenses and guarding informational resources to make
their positions more secure.

Ths , I t hnk , is one of the primary reasons why bureaucracies are so
persistent. Indeed, they survive even national revolutions. For instance,
speahng about the post-revolutionary period in Russia, Lenin complained:

[During the revolutionary upheavals, the bureaucrats from the
Tsaristic time had been shaken up and placed in new posts. But
they did not remain there. They tried to regain their old posi-
tions.] The Tsarist bureaucrats began to enter the Soviet insti-
tutions and practice their bureaucratic methods, they began to
assume the coloring of communists and, for greater success in
their careers, to procure membership cards of the Russian Com-
munist Party. And so, having been thrown out of the door, they
fly in through the window! (Lenin, Selected Works, Vol VIII:353,
quoted in Abrahamsson 1977:41-42).

These remarks relate to the complexity and specialization of the
bureaucrat's training. But the socialization process of the bureaucrat is
not merely cognitive, it is also epistemic. The bureaucrat does not
merely understand and obey the organizations rules and procedures,
(s)he also comes to believe in them with an almost patriotic or religious
faith. This leads to a concept of 'organizational myth.' Michael (1977)
notes that as regards the social/economic world, there are no scientific

truths. Yet we need some coherent set of beliefs in order to plan and act.
We need to have 'both feet planted firmly in mid-air.' An important
aspect of a successful organization is to provide a certain pblosophy or
set of 'myths' which provide social unity and focus.

Deal and Kennedy (1982) propose a similar concept in what they call
'corporate culture,' which they regard as a major factor in the success of
such giants as Westinghouse, General Electric, IBM, and 'Japan, Inc.' The
concept of corporate culture is an enthusiastic one. It has something of
the flavor of a large scale football rally, complete with mottos such as
'progress is our most important product' (General Electric), 'bet ter
things for better living through chemistry' (Du Pont), and so on. The
image is on of growth, innovation, aggressive and spirited competition.
Peters (1980) arrives a t a similar view in h s remarks about building
'organizational character.'

Bureaucracies, by contrast, have typically reached a stage where
further growth and innovation are limited. The emphasis is rather on sta-
bility, correctness, and control. Bureaucratic commandments are
intoned, "Thou shalt not" Aspiration and inspiration are tempered by
the guilt of transgression. Tbs results in what Thompson (1961) calls the
'bureaupatkc reaction' where,

strict control from above encourages employees to 'go by the
book,' to avoid innovations and chances of errors whch put
black marks on the record. It encourages the accumulation of
records to prove compliance ... It encourages decision by pre-
cedent, and unwillingness to exercise initiative or take a chance.
I t encourages employees to wait for orders and do only what
they are told (Hampton 1978:365).

However, egocentric drives are not always so much suppressed as
diverted. Trotsky, for instance, observed:

Bureaucracy owns neither shares nor state bonds. It is
recruited, replenished, and renewed as an administrative he r a r -
chy, independently of property relationships. The individual
bureaucrat cannot transfer the right to exploit the state
apparatus to his heirs. Bureaucracy enjoys its privileges in the
form of power abuse (Trotsky, The R e v o l u t i o n Betrayed, pp.
179-180; quoted in Abrahamsson, 1977:46).

Tks last observation is interesting in light of the remarks by Weber
earlier. Weber views the process of bureaucratization as tending towards
operations based on impartial rules and procedures rather than personal-
ities and personal motives.

But, as the Trotsky quote suggests, one of the pathologies of mature
bureaucracies is practically the reverse. Because bureaucrats become so
wedded to their roles, they not only depend on them psychologically but
also may tend to re-interpret them to satisfy their own personal ends. It
is perhaps in reaction to the inflexibility of the bureaucratic structure
that certain aged bureaucracies tend to develop a side market of graft
and favoritism.

D. INFORMATION TECHNOLOGY IN BUREAUCRACIES
Bureaucrats are no longer the only active force in bureaucracies.

Whereas a bureaucrat is trained and socialized to follow prescribed pro-
cedures, a computer can likewise be programmed to follow many of these
same procedures.

Indeed, the computerization of a bureaucratic process is the ulti-
mate form of organizational rationalization. The computer is the arche-
type of Weber's dictum to eliminate "love, hatred and all purely personal,
irrational and emotional elements" from the orga.nization's procedures.

Yet while computers presumably help remove the undesirable
caprice of bureaucrats themselves, they nonetheless have become sym-
bols of pathological bureaucratic rigidity. We are all acquainted with the
agonies of trying to rectify a computer based billing error, etc.

But is t h s really because the computerization of such process actu-
ally makes them less adaptive, or is it rather that computers provide a
convenient scapegoat for organizational incompetence? Systems analysts
will often argue that the latter is the case. While t h s may be partially
true, it is also true that computerization, a t least in its most prevalent
forms, does add to inflexibility. Ths stems from two interrelated prob-
le ms.

The first is one of organizational responsibility: The people that use
the computer programs are very seldom the ones that write them. Thus
the people that are close to the problem and able to recognize needed
modifications as they arise, must request the assistance of a program-
mer, who typically resides in a different (data processing) department.
This problem has been widely recognized and is oft cited as a motivation
for localized (microprocessor) computing and associated high level
languages that the functional departments themselves can control; see
e.g. Fick (1980). However, t h s is likely to be only a partial solution,
applicable only to those procedures that are modular and separable to
individual departments. The problem still would remain as to the
management of procedures that pervade large segments of the organiza-
tion, especially where these are complex and interdependent.

E. DIFFZCULTIES IN s o m m ADAPTATION
A second source of inflexibility arising from computerization arises,

from the character of the computer languages used to describe these
procedures (Lee 1980a).

Anyone who has written even small programs will know that it is
much easier to incorporate a given feature in the program logic in its ori-
ginal writing rather than t ry to add this feature afterwards. This diffi-
culty rises exponentially with the complexity of the original program or
system. (By 'system,' is meant a collection of programs and data files
with interdependent functions .) Indeed, the cost and effort of modifying
such systems often exceeds that of their original development. For
instance, Wulf (1977) refers to:

the extreme difficulty encountered in attempting to modify an
existing program. Even though we frequently believe that we
know what we will want a piece of software to do and will be able
to specify it precisely, it seems to be invariably true that after
we have it we know better and would like to change it. Examina-
tion of the history of almost every major software system shows
that so long as it is used it is being modified! Evolution stops
only when the system is dead. The cost of such evolution is
almost never measured, but, in at least one case, it exceeded
the original development cost by a factor of 100.

Altering existing computer systems is not only expensive, it is also risky.
DeMillo et al. (1979) noted:

Every programmer knows that altering a line or sometimes even
a bit can utterly destroy a program or mutilate it in ways we do
not understand and cannot predict ...

Indeed, beyond expense and risk, there seems to be an eventual limit to
the number of modifications these systems can undergo. Winograd
(19?9:392) remarks

Using current programming techniques, systems often reach a
point a t which the accretion of changes makes their structure
so baroque and opaque that further changes are impossible, and
the performance of the system is irreversibly degraded.

To summarize, the basic problem with current application systems is
that they are 'brittle;' i.e., they cannot easily be reformed to adapt to
changing circumstances. This brittleness has profoundly disturbing
consequences as more and more organizations, ranging from small and
medium size companies to immense governmental agencies, convert
their information processing to computer software. The immediate gains
of increased efficiency, speed of processing, rapid access to centralized
data files, etc., are clear (or the investment would not be justified).

However, there may be a long term, possibly devastating htdden cost
as the organization finds its ability to adapt and respond to new environ-
mental conditions hampered by its inability to modify its information sys-
tems accordingly.

F. THE PROBLEM WlTH PROGRAMS:
PROCEDURAL LANGUAGES YS. PRODUCTION SYSTEMS
Statements in a programming language are in the form of com-

m a n d s to the machine -i.e., add t h s , move this data from here to there,
print this on the terminal, etc.

A computer program is thus a sequence of such statements, e.g.,

10 LETX = 2
20 LETY = 3
30 LETZ = X + Y
40 PRINT Z

Here, the statements have been numbered for identification pur-
poses. Importantly, the ordering of the statements in this program indi-
cates the sequence in which the commands are to be performed by the
machine .

This otherwise linear sequence of execution can be modified by what
are called 'control statements'. Consider, for instance, the program:

10 LETX = 0
20 ADD 1 TO X
30 PRINT X
40 IFX = 100 GO TO 60
50 GO TO 20
60 STOP

When executed, this program prints the numbers from 1 to 100.
Here, statements 40 and 50 are control statements. In statement 40, if X
has reached 100, program control jumps to statement 60 where it stops.
Otherwise, statement 50 directs the program control back to statement
20 where X is again incremented, printed, etc.

Thus, the execution sequence in such computer programs normally
follows the top to bottom ordering of the statements, except when super-
ceded by the effects of control statements. Computer languages of this
type are called procedural. These are basically the only type used in
commercial practice, and include all the well known languages for data
processing and scientific applications - e.g., COBOL, FORTRAN, PL/I,
BASIC, ALGOL, etc.

In these cases, the 'knowledge' embodied in the computer program
is expressed as the specific steps for doing it. A key thing to recognize is
that this procedurality makes the statements of the program inter-
dependent. Generally (though not always) changing the order of any two
statements makes a serious change to the program's operation. While it
may not be patently obvious from the two tiny examples above, it is this
inter-dependence that makes computer programs so difficult to modify.

As a result of an interesting blend of computer science and formal
linguistics, an alternative approach has emerged over the last decade or
so. l h s approach is based on so-called 'production systems' (PS's) which
permit the knowledge of the program to be expressed in a form that is
independent of its execution sequence.

The concept of production systems was first proposed by the linguist
Post in 1943 to aid in the formal specification of natural language gram-
mars. The basic idea is extremely simple. A single production is a rule of
the form:

IF <pattern> THEN <action>

or, in the more usual notation,

A production system consists of a 'data base' and a collection of such
production rules. (This is a database in a fairly restricted sense, not to
be confused with those maintained by database management systems.)

The pattern in each rule is some condition to be matctad by the
database and the action is typically some modification to the database.
In the 'purest' form of a production system, the rules are arranged in a
linear order. Starting from the beginning the patterns are compared to
the database until a successful match is found. The corresponding action
is then performed and the process is then repeated, starting once again
from the beginning comparing the patterns to the database.

Consider for instance the following example for recognizing a certain
type of English declarative sentence.

1 THE - DET 8 N NP
2 ON 4 PREP 9 ADJNP 4 NP
3 HUNGRY 4 ADJ 10 DETNP r, NP
4 BIT 4 VT 11 PREP NP PP
5 DOG 4 N 12 VTNP 4 VP
6 CAT 4 N 13 VPPP 4 VP
7 NECK 4 N 14 NP VP 4 S

The production rules on the left represent a 'lexicon' indicating the
grammatical categories of various words. The rules on the right indicate
the grammar proper. When the terminal symbol "S" is reached, the sen-
tence is accepted as grammatical. Thus, suppose we have the following
sentence:

"The hungry dog bit the cat on the neck."

This is analyzed as follows:

DET ADJ N VT DET N PREP DET N Rules 1-7
DET ADJ NP VT DET NP PREP DET NP 3 x rule 8

DETNPVTDETNPPREPDETNP 1 x rule 9
NP VT NP PREP NP 3 x'rule 10

NP VT NP PP 1 x rule 11
N P W P P 1 x rule 13

S 1 x rule 14

The initial application of production systems in computer science
were in the area of compiler theory, i.e., in specifying the syntax and
interpretation of programming languages (as opposed to natural
languages). Subsequently, it has been recognized that PS's have a poten-
tial much broader range of usefulness. For instance, one classic applica-
tion was the Logical Theorist of Newell, Shaw and Simon (1963). Beginning
with the initial axioms and rules of inference of Russell and Whitehead's
Principu Mathematics, the Logical Theorist successfully proved all the
theorems of t h s massive text. Indeed, in several cases it found original
proofs, simpler than the original.

Another famous example of the use of production systems was
Shortliffe's MYCIN system (1976). The purpose of MYCIN is to perform
medical diagnosis. In this case, the database is the patient's symptoms,
as revealed by various laboratory tests, etc. The production rules are
thus the sort of medical deductions a doctor might make based on these
symptoms. Within the area of Artificial Intelligence (AI) numerous other
applications of production systems have been explored.

Davis and King (1975), an excellent survey article on production sys-
tems, comment on the types of applications where PS's are best suited:

[These are] where the emphasis of a task is on recognition of
large numbers of distinct states, PS's provide a n advantage. In
a procedurally-oriented approach, it is both difficult to organize
and troublesome to update the repeated checking of large
numbers of state variables and the corresponding transfers of
control. .. .
[PS's are] characterized by the principle that 'any rule can fire
a t any time,' which emphasizes the fact that at any point in the
computation, any rule could possibly be the next to be selected,
depending only on the state of the database at the end of the
current cycle. Compare this to the normal situation in a pro-
cedurally oriented language, where such a principal is mani-
festly untrue: it is simply not the case that, depending on the
contents of the database, any procedure in the entire program
could potentially be the next to be invoked.

PS's therefore appear to be useful where it is important to
detect and deal with a large number of independent states, in a
system which requires a broad scope of attention and the capa-
bility of reacting to small changes.

With regard to the ease of modification of PS's, they continue (p.20):

We can regard the modular i ty of a program as the degree of
separation of its functional units into isolatable pieces. A pro-
gram is highly r n o d u l a ~ if any functional unit can be changed
(added, deleted, or replaced) with no unanticipated change to
other functional units. Thus program modularity is inversely
related to the strength of coupling between its functional units.

The modularity of programs written as pure production systems
arises from the important fact that the next rule to be invoked

is determined solely by the contents of the database, and no
rule is ever called directly. Thus the addition (or deletion) of a
rule does not require the modification of any other rule to pro-
vide for (delete) a call to it. We might demonstrate this by
repeatedly removing rules from a PS: many systems will con-
tinue to display some sort of 'reasonable' behavior, up to a
point. By contrast, adding a procedure to an ALGOL-like pro-
gram requires modification of other parts of the code to insure
that i t is invoked, while removing an arbitrary procedure from
such a program will generally cripple it.. .

Thus where the ALGOL programmer carefully chooses the order
of procedure calls to create a selected sequence of environ-
ments, in a production system it is the environment which
chooses the next rule for execution. And since a rule can only
be chosen if its criteria of relevance have been met, the choice
will continue to be a plausible one, and system behavior remain
'reasonable,' even as rules are successively deleted.

As described so far, pat tern matching proceeds from the beginning
of the rule set each time until a match is found, in which case that
corresponding action is taken and the process is repeated. However, in
the notion of a 'pure' PS, each rule supposedly has an equal chance of fir-
ing - i.e., its position in the rule set should not affect its chances of fir-
ing. This only causes difficulty when the patterns of more than one rule
match the database, in which case a choice must be made which action to
take. A variety of approaches have been used to resolve such rule con-
tention, for instance:

rule order - use the first matching rule.

data order - data elements are assigned priority: pick the
rule whose match gives the highest priority.

generality order - use the most specific rule

recency order - use the most recently executed rule

Recall that each rule is matched against the entire database and
that two simultaneously activated rules may have matches on completely
separate parts of the database. Clearly, rule contention is only prob-
lematic when the firing of one rule would disable the database match of
the other candidate rule(s).

Thus, in the 'pure' form of a FS, all of the rules should be tested
against the database on each cycle, the subset of matching rules
selected, and a choice made (by some criterion) whch of those should be
allowed to fire. However, as the database and/or number of rules gets
large, the system degrades for lack of efficiency.

In face of t h s , a number of production system implementations have
allowed some degree of control structure to creep back in. Thus, various
strategies or 'heuristics' have been employed to increase the likelihood
that, for certain contexts, the applicable rules will be found quickly and

that the entire rule set need not be examined without danger of ignoring
an applicable rule.

Thus, a number of PS implementations exhibit a greater or lesser
degree of 'partial procedurality' as production systems augmented with a
control structure mechanism. The design of such control structures, pro-
viding efficient search without nullifying the advantages of flexibility
offered by the basic PS orientation, has become a matter of intense
interest end debate within computer science (see, e.g., Winograd 1975;
Kowalski 1979b).

G. THE PROBLEM WITH DATA:
DATA FILES VS PREDICATE CALCULUS
Most application software used in organization centers around the

processing of large amounts of data (as opposed to, for instance, optimi-
zation routines whch are much more computation intensive on relatively
small amounts of data). Hence, inflexibilities introduced by the way data
is organized in data files and databases are equally (if not more) impor-
tant than those introduced in the design of procedural programs. At any
rate, as will be seen shortly, the problems are highly inter-related.

A note on terminology. In the last section, the term database was
used to designate the data repository of a production system. In t h s sec-
tion, the term database will be used more in the sense associated with
database management (DM). Somewhat later we return to compare the
two views at whch point they will be distinguished as PS databases and
DM databases.

For the moment, however, we focus on a genera l view of data main-
tained in data processing applications, whether this data is accessed
through a database management system or not. The term 'data file' is
therefore used to indicate a conventional data processing file or a logical
segment of a database (e.g., the tuples of a single relation in a relational
database; the instances of a single record type in a CODASYL database).
The term 'database' will then be used to refer to a collection of such data
files with inter-related subject matter (e.g., sales file, inventory file,
back-order file), whether or not the access to these is coordinated by a
DBMS.

Data files are usually organized as a rectangular table with labeled
columns called 'fields.' For instance, a file on employees might have
fields for the employee's name, address, age, salary, etc.

EMPLOYEE FILE

Sometimes data files have more complicated organizations - e.g.,
some columns may have multiple entries for a given data item. This tabu-
lar view is sufficient for the purposes here, however. As Kent (1978)
observes, this is essentially the view taken by the more popular database
management models (i.e., Network, Relational).

Note that each data file has three levels of description: the data file
name (erg., EMPLOYEE), the field names (e.g., NAME, AGE), and the data
values (e.g., Smith, 37). It is important to note also that a data file
represents a model of some aspect of the organization, in t h s case, what
are considered to be the important features of employees.

The structure of the data file often carries certain implicit informa-
tion as well. Often, as in t h s example, each row of the data file implies
the existence of some entity in the environment, in this case a n employee
associated with the company. The converse assumption is also some-
times made, e.g., if a person's name does not appear in the file, then
he/she is not an employee.

Other data files, however, might have different existence assump-
tions. Consider for instance a file for parts inventories.

PART FILE

This file indicates the identification number (ID#), color, weight (WT) and
quantity (QTY) on hand of various manufactured parts. In this case, each
row of the file does not imply the existence of a part, but only elaborates
the features of each generic part type. The existence of actual parts is
instead indicated by the QTY field.

These might be called the existential assumptions associated with a
file. Other assumptions refer to the possible data values that may appear
in a given field, e.g., that SALARY must be less than 50,000.

The basic point, however, is that the data file structure itself is not
sufficient to convey all these assumptions. Instead, these appear in the
logic of the programs that interpret these data files. Thus, the model of
the organization represented in the application system is found not only
in the data files but also in the code of the various application programs.
This is a problem that has been recognized for some time in database
management, and has led to a number of proposals for the separate
specification of so called 'data base constraints,' conditions that the data
in the database must always fulfill. Such constraints are maintained in a
separate table, and verified by each updating program. However, these

approaches do not go far enough. There is a basic problem that remains,
which has to do with the very notion of 'data' itself.

In all data processing files and database management systems,
there is a distinction between d a t a s t r u c t u r e and the data itself. What we
have called the data file names and field names are examples of data
structure elements. Thus, for instance, in the above data file for parts,
we have in the first row: COLOR = "RED" where the three character string
"RED" is the value ot the field COLOR. The point is that these data values
are regarded as s t r i n g s of charac t e r s r a t h e r t h a n as proper t i e s of objects
in t h e e n v i r o n m e n t . Viewed only as character strings, one is unable to
specify even very commonplace inter-relationshps between these proper-
ties; tor instance, that if a thing has a color, it must be a physical object,
hence, having weight, physical extension, geographical location, etc.

The basic problem is that the variables in data management models
range over sets of charac t e r s t r i n g s (so-called 'attribute domains' in the
relational model), rather than over objects in the environment. For
instance, a database constraint that all parts are either red, blue or white
would look somethng like:

PART.COLOR = "RED" OR "BLUE" OR "WHITE"

To recognize that these are properties of objects in the environment, a
predicate calculus notation might be used, introducing the variable x to
range over these objects:

1. Vx PART (x) 4 RED (x) OR BLUE (x) OR WHITE (x)

(the symbol "'d" is read "for all"). The point is that in this form, one can
begin to elaborate more general properties, i.e., not just of parts, but of
anything that has a color.

2. Vx RED (x) OR ORANGE (x) OR YELLOW (x) OR GREEN (x)
OR ... OR BLACK (x) - COLORED (x)

3. Vx COLORED (x) --r PHYSICAL-OBJECT (x)
4. Vx PHYSICAL-OBJECT (x) --r I n n > 0 & WEIGHT (x) = n .

(the symbol "3" is read "there exists").

Statement (2) is a disjunct of all color names used in the organiza-
tion, indicated that any of these implies the general feature of being
colored, and vice versa, that being colored implies one of these proper-
ties. Statement (3) says that anything that is colored is also a physical
object (though some physical objects - e.g., glass, mirrors -may not be
colored). Statement (4) says that for any physical object there exists
some positive number that is its weight (presuming some unit of weight
measure).

The direction intended by t h s example should begin to become
clear. Clearly there a re many commonplace connections between pro-
perties that any organization would agree upon - e.g., the simple physics
of colors, weights, physical extent, etc. These rules will hold for any phy-
sical object, from peanuts to box cars. Other classes of properties might
be restricted to a particular social system -e.g., the number of spouses
an employee might have, whether dual nationalities are recognized.

Other classes of properties pertain to specific industries within a given
social system - e.g., the accounting practices for banks vs, those for edu-
cational institutions. Lastly, there are clearly those properties that are
organization specific, such as the ranks of personnel or the parts it
manufactures.

Ideally, the inter-relationship of properties a t any one of these levels
should only have to be developed once -e.g., commonplace physics by a
national or world wide bureau of standards, accounting practices by a n
industry accounting board, etc. Then, the task of any particular organi-
zation in developing its application software would only be to specify the
d i f l e r e n c e s of its local practice from that of the standardized models.

The proposal here is, therefore, to offer a predicate calculus (PC)
notation as a replacement for the usual data structure view with the
claim that it provides a richer framework, capable of specifying the
inter-dependence of properties of objects, not just structured organiza-
tions of character strings. Related work on the relationshp between
databases and logic appears in the (Gallaire and Minker 1978, Gallaire e t
al. 1981).

I t should be mentioned that this is not necessarily a recommenda-
tion that facts about the environment actually be s to red in t h s form -
the underlying implementation might actually make use of a more con-
ventional data management model -but rather that the top-most level or
v i e w of the database have the PC form.

It should also be mentioned that a predicate calculus notation is not
the only candidate to meet the objectives of abstracting the relationships
of general properties. The various graphical representations called
'semantic' or 'associative' network also share this goal. However, the
predicate calculus has had a longer history of development and study
and, in our opinion a t least, is a more robust representation. The predi-
cate calculus is, however, only a f r a m e w o r k , a meta-theory in w h c h
more detailed theories can be described.

It can, for instance, be used to describe theories of mathematics, in
which case the variables would range over numbers, or theories in chem-
istry, where the variables would range over the physical elements. Thus,
the real work in pursuing this proposed direction would be to develop a
predicate calculus specialized to the problems of administration. This
involves, among other things, identifying a set of 'primitive' properties
and relationships (i.e., single, multi-place predicates) w h c h identify spe-
cial classes of entities like people, other physical objects, money, types of
contracts, etc.*

* An initial attempt in t h s direction was made in Lee (1980), which developed a predicate
calculus notation, called CANDID, for the description of financial contracts, e.g., loans,
leases, options, insurance policies, etc. A formal semantics of CANDID, leading to a contrac-
tual theory of the firm, is developed in Lee (1981a, b).

H. COMBINING THE APPROACHES: LOGIC PROGRAXNING
The point of the previous section was to recommend a predicate cal-

culus notation as a richer form of data representation. In section [F],
production systems were suggested as a more flexible framework for
specifying the potential deductions of an application system. An
approach whch combines these aspects is so-called 'logic programming'
of which the language PROLOG is an example (Clocksin and Mellish 1981,
Kowalski 1979a).

Actually, production systems acting upon predicate calculus data-
bases have been in experimental use for some time withn the computer
science area of artificial intelligence (AI). (See e.g. , Nilsson 1980,
Infotech 1981). Systems with t h s design are usually called 'theorem
provers,' in that the function of the production system is to prove some
'goal' theorem, based on a set of initial axioms in the database. The
term, 'theorem proving,' is not, however, confined to simply proving
mathematical theorems. As noted in the previous section, the predicate
calculus may be used to represent a wide variety of subject domains
beyond mathematics. Coelho e t al. (1980) includes examples of applica-
tions of logic programming in demography, university administration,
biblical family trees, car rallies, biology, electronics parts, travel plan-
ning, architectural design, and others.

Very briefly, the basic concept of logic programming is as follows.
The classical proof methods for (first order) predicate calculus include a
wide number of iderence rules (e.g., Suppes !957:34, 99) These make
computational theorem proving difficult because the space of possibilities
quickly branches into an exponentially large number of alternatives.
Robinson (1965) developed the so-called 'resolution method' whch
offered equivalent logical power but considerable computational simpli-
city. This advantage is gained by assuming a syntactic transformation of
the logical assertions into 'Horn clauses' of the form:

where Pi are predicates whose arguments are either logical constants or
universally quantified variables. (Nilsson, (1980: Ch.4) and Clocksin and
Mellish (lQ81:Ch. 10) show how arbitrary p redca te calculus expressions
can be converted to Horn clause form.) Once in this form, only one infer-
ence rule, resolution, is needed. This rule basically combines the rules of
modus ponens and universal instantiation (unification).

The control structure that is then employed is similar to that dis-
cussed for production systems above. However, whereas the PS method
was typically to proceed 'forward' from a starting database to the desired
conclusion, logic programming designs generally proceed 'backward'
from a goal statement to the basic assertions which support i t . Thus, the
Horn clauses are often read, "if you want to prove Po then prove PI and P2
and ... P,." The system then looks for other rules which have PI on the
left hand side (called the head of the clause), and attempts to prove PI.
This approach continues recursively until unconditional assertions of the
form:

are found. The proof procedure therefore takes the form of a tree struc-
ture, proceeding from the goal theorem through the various theorems
supporting this goal until lowest level fact assertions are found.

Disjunction ('OR') is indicated by having multiple Horn clauses with
the same head. Thus, if a proof is not found through the branch
represented by one Horn clause, the system 'backtracks' to try other
Horn clauses with the same head predicate until all alternatives have
been exhausted. (If no proof is found, then the system response is ' I don't
know.')

An advantage of this type of software architecture is that it allows
the specification of so-called 'heuristics,' i.e., a number of overlapping
rules for a given situation, which may be more or less effective depending
on situational variations. Thus, for instance, a computer program con-
fronted with a particular problem may try to resolve it using one set of
heuristic rules; if those do not work, other rules are tried, etc.

In such systems, there may in fact be multiple ways to solve a given
problem (or none a t all); and it is the job of the program to find a satis-
factory solution as quickly as possible. Because the program must search
through a number of potentially feasible alternatives for each problem,
rather than having a single solution technique pre-selected, these sys-
tems are considerably less efficient, though correspondingly more flexi-
ble in dealing with highly varied situations. For t h s reason, application
programs using these methods are often called 'expert systems.'

I. THE SEMANTIC PROBLEM
Aside from software adaptability considerations, another effect of

representing information systems as a formal logic is to clarify and focus
certain linguistic issues.

Regarded as a logical processor, the role of the information system
in the organization can be viewed as a linguistic mediator between
members of the organization separated geographically and temporally.

However, the information system has an important function not pro-
vided by other communications technologies such as memos, the tele-
phone or electronic mail. The information system not only conveys mes-
sages in the form they are entered, but it may also do inferences on the
facts in the database. Database queries are an elementary form of infer-
ence. More sophsticated inferences are provided by routines producing
summary data and other statistical or mathematical analyses.

In order to draw inferences, the facts must be structured or formal-
ized. This is a basic activity in database design. Viewed abstractly, this
amounts to expressing these facts in a formal Language. A formal
language is one controlled by fixed, explicit rules, typically including the
following (van Fraassen 1971):

I. Syntactic Rules

A. Vocabulary

B. Formation Rules (delimiting well-formed expressions)
C. Transformation Rules (providing inferences)

11. Semantic Rules.
A formal language contrasts with a natural language in that the

latter is controlled by the (evolving) consensus of its speaker population,
rather than by fixed rules. Note that by this definition, the difference
between formal and natural languages is one of authority rather than
complexity. Formal languages might someday be invented which are
more complex than natural languages, either syntactically or semanti-
cally. Note also that so-called 'natural language' interfaces to databases
are also formal languages by this definition.

In using the information system, individuals channel certain of their
communications through t h s formal language. Of particular importance
is the semantics of these communications, that is, how the formal expres-
sions correspond to the environmental reality.

The foundational work in formal semantics is by Tarski (i956), who
focused almost entirely on first-order predicate calculi of the type
described above. Tarski regarded semantics as a mapping from symbols,
expressions in the language to objects in the world. An immediate prob-
lem is that in describing the semantics of a language, we generally cannot
physically point to all the objects we wish to designate. Tarski's approach
was to make use of another, 'meta-language' for this purpose. The meta-
language he adopted was set theory, and nearly all the subsequent work
in formal semantics has followed this precedent.

The semantics of a first order language, L, begins by adopting some
universal set called the 'domain of individuals', D. A function F, called the
interpretation function, maps expressions in L to set theoretic expres-
sions based on D. Logical constants (names) in L map to individual ele-
ments of D; one-place predicates map to subsets of D; n-place predicates
map to relations on D, and so on.

Tarski called the combination <D,F> a mode l of L (not to be confused
with the operational research usage of 'model'; a more familiar term
might be an inte .rpretat ion of L). Clearly, a given language L can have any
number of models (interpretations). This led Tarski to the distinction
between synthetic truths, which are true only under certain models
(interpretations) vs analytic or logical truths whch are true for all possi-
ble models. For example,

a) Vx LEMON(x) -+ FRUIT(x)

b) Vx P(x) V "P(x)

Statement a) is true only for certain interpretations of LEMON and FRUIT
whereas b) is true for any interpretation of P.

In information system applications we are mainly concerned with
truths of the first (synthetic) type. The truth of these inferences thus
depends on the semantics we at tach to these terms. For instance if we
interpret FRUIT as the set of all fruit but LEMON as the set of all
elephants, then the above implication is false (in t h s model).

In formal languages, then, semantics is parametric. This is quite dif-
ferent from the way we understand our natural language (e.g., English).
In natural language we grow accustomed to a rather fixed, ongoing
interpretation to our words.

It is largely by association with natural language terms that the
expressions conveyed by the information system have a semantics to the
users in the organization. For instance, a database may use terms like
EMPLOYEE, SALARY, DEPARTMENT, etc. and we interpret them using their
natural language correspondents.

But here we confront a basic problem raised by the distinction
between formal and natural languages. The semantics of natural
languages is not entirely fixed. The sorts of thngs we call 'automobile,'
for example, are quite different today than fifty years ago. And the
interpretation continues to change as each year new automobile designs
come into the market. Indeed, it is in the area of social artifacts -
economic goods and services -where linguistic change is most rapid.
(Tbs contrasts with terms for natural phenomena, e.g., horses, moun-
tains, water, which change more slowly. Social/economic evolution is
more rapid than biological or geological evolution.)

On the other hand, the inferences drawn by an information system
depend on a fixed, static semantics for their validity. The potential con-
trib utions of logic programming and other artificial intelligence innova-
tions will not alter this situation.

The linguist Whorf (1956) is often cited for h s observations about the
inter-dependence of language and culture. For example, Eskimos have
more than a dozen words for snow each of which reflects an important
technological distinction in their culture (e.g., good for igloo building, bad
for dog sleds, etc.). The Hopi Indians do not have a word corresponding to
the English 'time,' nor do their verb tenses make the temporal distinc-
tions between past, present, and future. Thls is a reflection of their reli-
gious and metaphysical beliefs.

Less fascinating but equally important examples abound on the
inter-dependence between organizational language and organizational
culture (e.g., Kent 1978, Peters 1980). Obvious examples are the names
assigned to product lines and specialized, in-house technology. Countless
more subtle examples are found in the administrative terminology found
in managerial accounting reports, memos, 'shop talk,' office gossip, etc.
Thus an organization, to adapt to environmental changes, must also adapt
its language, either by introducing ne-w terms or by changing the
interpretation of existing terms.

If the information system is to keep pace with this change, infer-
ences which depend on the evolving terminology will have to be
correspondingly modified. Tbs presents another important trade-off for
the use of information technology in dynamic organizations.

However, strong arguments can be made that these systems will
neuer be able to adapt themselves.

Putnam (1970, 1978) gives a very persuasive account in what might
be regarded as a sociological theory of semantics. Consider my
knowledge of the concept 'lemon.' I am not much of a cook, so my under-
standing is fairly rudimentary. I cannot, for instance, distinguish lemons
from yellow limes (if such thngs exist). But, on the other hand, I do hav-
ing a working concept that suffices for my needs. I go to the super-
market. Since I know that lemons are a subset of fruit, I go to the fruit
section. There, typically, are bins one of which is labeled 'lemons,' and I
pick from that. (If they are not labeled, 1 use the heuristic of picking the
yellow, oval-shaped objects somewhat smaller than my fist. But then I
may end up with yellow limes of course.)

But how does the supermarket know what to label 'lemons'? They
place an order to the fruit distributor indicating they want to buy
'lemons.' How does the distributor know? They buy from the farmers
who grow lemons. How does the farmer know? He buys lemon seeds to
grow lemon trees from an agricultural supplier. If we continue following
this chain, we eventually arrive at the advice of botanical science, whch
we take to be authoritative.

The point is that many of our concepts are not understood by each of
us individually, but rather through a complex social network. As Putnam
remarks, we tend to think of words as tools, but many are not like hand
tools that we use individually, but rather are more like an ocean liner
that requires a crew of hundreds for its operation.

In the example of 'lemon,' the social network led to a certain scien-
tific authority, the botanist, who is assumed to know all there is to know
about lemons. We seem to regard science as the base authority for most
of the terms used for physical and biological phenomena.

This is not the case for psychological and social phenomena. Many of
us are skeptical that 'intelligence' is what an IQ test measures. Nor do we
easily accept the psychophysics definition of 'anxiety' as Galvanic Skin
Response.

More relevant to the activities of commercial organizations are
terms for mundane, social artifacts. For instance, consider the concept
'chair.' What definitions are available? Consider examples like office
chairs, an over-stuffed easy chair, beach chairs, bean-bag chairs, etc.
Perhaps the only common characteristic is that we sit on them. But then
consider what you sit on during a picnic or while visiting a house in Japan.

What counts as a chair, it seems, depends much more on social con-
text than on any physical characteristics of chairs. It is closely tied to
the sociology of sitting, which we each learned through a long accultura-
tion process. Further, the concept of chair is only partially known to
each of us, and probably has a larger and different concept for each
social aggregate we examine, (e.g., the concept chair in New York vs
Tokyo vs Europe, etc.) Further, the concept is constantly changing.
Indeed, the marketing strategy of certain furniture design companies
depends on extending and altering our conception of 'chair.'

If we are persuaded by t h s view of semantics, then we are forced to
admit to an eventual limitation to the technological promises of produc-
tion systems, logical databases, and logic programming.

We tend to underestimate the magnitude of the semantic problem,
particularly as regards terms describing objects and phenomena in the
social sphere. (And it is these aspects that are of primary concern to
most organirstions.)

Organizations, as sub-cultures, represent an intermediate case
between the individual's understanding of these terms, and the under-
standing of the society at large. However, it is based on a dual member-
ship of individuals, in the organization and in the society, that the organi-
zation itself maintains an effective relationshp with its social environ-
ment. Computer systems are not likely to duplicate the mechanisms by
which we adapt our language unless they too attain a similar social
membership. Only then can they learn why, for instance, "ring around
the collar" implies embarrassment at cocktail parties).

J. CONCLUDING RE116ARKIi: THE THIRD WAVE SCENARIO
Referring to the two dimensional taxonomy (complexity vs uncer-

tainty) discussed earlier, Jay Galbraith (1973, 1977) observes that
hierarchcal management structures tend to be oriented towards aspects
of the organization's activities which present the greatest uncertainty.
Thus a manufacturing company, where technology is dynamic, will tend to
have a functional organization, whereas an insurance company will prob-
ably have divisions based on customer type (reflecting dynamic insurance
needs). Organizations which face hlgh uncertainty in multiple aspects
may find it useful to adapt a matrix type of organization with dual hierar-
chies. For example, a computer manufacturer might have management
hierarchies based on technological aspects and another herarchy based
on customer differentiation.

In these cases, the lower level operating departments have two sets
of superiors in the authority structure and often are in an arbitrating role
rather than a strictly subordinate one.

In The Third Wave, Toffler (1960) creates a fascinating scenario
which carries t h s trend to the level of economic organization. The first
wave ' economic' structure of primitive societies is mainly agrarian, with
largely manual and animal technology. Population is limited to small vil-
lages that are economically self-dependent. Production and consumption
are closely associated.

The 'second wave' is characterized by heavy industrialization.
Economies of scale lead to the formation of large, centralized organiza-
tions, and, as a consequence, population concentrations in large cities.
Statistical, mass marketing becomes the link between producer and con-
sumer.

We are now, says Toffler, entering into the transition from industrial
society to a new, 'third wave.' As material demands become satiated with
cheap manufactured goods, other social and environmental factors take
on increased importance. We become concerned about pollution and

destructive alterations to the environment. Product safety and the qual-
ity of food and drugs become issues. We begin to resent living in noisy,
crowded cities and working in large, impersonal work environments. Spe-
cial interest groups form around each of these themes and each exerts
its own political/economic pressures. To respond to the wide, dynamic
variations in demand, organizations 'un-bundle' their products and opera-
tions and become de-centralized, loosely-connected systems.

This permits demographc shifts back to smaller, more human-sized
villages. But these are not the isolated villages of the first wave, but
rather are inter-connected in a large social network.

Interestingly, the key factor that Toffler sees to enable this transi-
tion is information technology. Small-scale, custom manufacturing
becomes possible through flexible automation. Geographical de-
centralization is supported by tele-work and electronic networks. Educa-
tion and research advance through electronic libraries, computer-aided
instruction and expert systems. The Japanese seem to have a similar
scenario in mind in their development plans for '5th generation' comput-
ing technology (Moto-oka 1981).

The world of the t h r d wave is an attractive one. I t portrays the relief
of numerous social tensions and anxieties not only for technologically
advanced countries but for developing countries as well. It does however
place a tremendous import and responsibility on issues raised in this
paper, particularly on the semantic problems discussed in the last sec-
tion.

An organization may define (hence fix) its terms to suit its special
interests, and construct complex information systems based on that
vocabulary. As discussed, the continued use of the information system
relies on the permanence and stability of these definitions, so that the
use of the technology results, ultimately, in a trade-off much like that of
bureaucratic rationalization. By fixing its language, the technology aids
in coping with complexity (including foreseeable variations) but loses its
usefulness as the organization is confronted by unexpected and surpris-
ing phenomena.

The problem is all the worse in the inter-connected society predicted
by the t h r d wave scenario. Here the request is for technologies that not
only aid in the management of complexity, and are adaptable but must
also be compatible with a number of over-lapping organizational/societal
hierarches.

The suggestions here have been that the new technologies promised
by artificial intelligence research will indeed by an important factor. But
they will not be the only factor in the Brave New World of the Thrd Wave.
The limits to information technology are bounded by the limits of bureau-
cratic rationalization.

REFERENCES

Abrahamsson, B. 1977. Bureaucracy or Participation: The Logic of
Organization. London: Sage Publications.

Burns, T. and G.M. Stalker. 1961. The Management of Innovation. Lon-
don: Tavistock Publications.

Clocksin, W.F. and C.S. Mellish. 1981. Programming in Prolog. Berlin,
Heidelberg, New York: Springer-Verlag.

Coelho, E., J.C. Cotta and L.M. Pereira. 1980. How to Solve it with Prolog.
Lisbon: Laboratorio Nacional De Engenharia Civil.

Davis, R., and J. King. 1975. An Overview of Production Systems. Stan-
ford AI Lab Memo AIM-271, Stanford Computer Science Report.
STAN-CS-75-524. Stanford, California.

DeMillo, R.A., R.J. Lipton, and A.J. Perlis. 1979. Social Processes and
Proofs of Theorems and Programs. Communications of the ACM,
22(5):271-280.

Deal, T.E. and Kennedy A.A. 1982. Corporate Cultures. Reading, Mas-
sachusetts: Addison-Wesley.

Downs, A. 1987. Inside Bureaucracy. Boston: Little, Brown & Co.

Fick, G.P. 1980. Small Computers in Organizations: Issues and Argu-
ments - or - How to Fight With Computer-Enhanced Bureaucracy.
WP-80-146. Laxenburg, Austria: International Institute for Applied

Systems Analysis.

Galbraith, J. 1973. Designing Complex Organ i za t io r~s . Reading, Mas-
sachusetts: Addison-Wesley.

Galbraith, J. 1977. Organ i za t ion Design. Reading, Massachusetts:
Addison-Wesley.

Gallaire, H . , and J. Minker. eds. 1978. Logic a n d Data Bases . New York
and London: Plenum Press.

Gallaire, H., J. Minker and J.M. Nicolas. eds. 1981. Advances in Data B a s e
Theory Volume 1. New York and London: Plenum Press.

Hampton, D.R., C.E. Summer and R.a. Webber. 1978. Organiza t ional
Behav ior a n d t h e Pract ice of m a n a g e m e n t . Thrd Edition. Glenview,
Illinois: Scott, Foresman and Company.

Infotech. 1981. Machne Intelligence. Infotech State of the Art Report,

Kent, W. 1978. Data a n d R e a l i t y . Amsterdam: North-Holland.

Kowalski, R. 1979a. Logic for P r o b l e m So lv ing . New York and Oxford:
North Holland.

Kowalski, R. 1979b. Algorithm = Logic + Control. C o m m u n i c a t i o n s of t h e
ACM, 22(7):424-436.

Lee, R.M. 198Oa. Applications Software and Organizational Change: Issues
in the Representation of Knowledge. WP-80-182. Laxenburg, Austria:
International Institute for Applied Systems Analysis.

Lee, R.M. 198Ob. CANDID: A Logical Calculus for Describing Financial
Contracts. Ph.D. dissertation, available as WP-80-06-02, Phladelpha,
PA: Department of Decision Sciences, the Wharton School, University
of Pennsylvania.

Lee, R.M. 198la. A Formal Description of Contractual Commitment. WP-
8 1-156. Laxenburg, Austria: International Institute for Applied Sys-
tems Analysis.

Lee, R.M. 198lb. CANDID Description of Commercial and Financial Con-
cepts: A Formal Semantics Approach to Knowledge Representation.
WP-81-162. Laxenburg, Austria: International Institute for Applied
Systems Analysis.

March, J.G. and H.A. Simon. 1958. Organ i za t ions . New York: Wiley.

Michael, D.N. 1977. Planning's Challenge to the Systems Approach. In
H.A. hnstone an W.H.C. Simmonds, eds. m t u r e s Research . Reading,
Massachusetts: Addison-Wesley.

Newell, A., J. Shaw, and H. Simon. 1963. Empirical Explorations of the
Logical Theory Machne. In C o m p u t e r s a n d Though t , E. Feigenbaum
and J. Feldman, eds., New York: McGraw-Hill, pp.109-113.

Nilsson, N.J. 1980. Principles of Artificial Intel l igence. Palo Alto, CA:
Tiogo Publishing Co.

Moto-oka, T. ed. 2981. Fi f th Generation Computer S y s t e m , Proceedings
of the International Conference on Fifth Generation Computer Sys-
tems, Tokyo, Japan, October 19-22, 1981. Amsterdam: North-
Holland.

Peters, T.J. 1980. Management Systems: The Language of Organizational
Character and Competence. Organizational Dynamics . Summer.

Putnam, H. 1970. Is Semantics Possible? In: H.E. Keefer and M.K. Mun-
itz, eds, Language, Bel ie f , and Metaphysics. New York: State
University of New York Press. Also reprinted in: S.P. Schwartz, ed,
N a m i n g , Necess ty , and Natura l Kinds, 1977. London: Cornell
University.

Putnam, H. 1978, Meaning and the Moral Sciences. Boston: Routledge &
Kegan Paul.

Robinson, J.A. 1965. A Machine Oriented Logic Based on th Resolution
Principle. Journal of t h e ACM, 12(January):23-41.

Shortliffe, E.H. 1976. Computer- Based Medical Consultations: MYCIN.
New York: America Elsevier.

Simon, H.A. 1955. A Behavioral Model of Rational Choice. The Quarterly
Journal of Economics, Vol. LXCC.

Suppes, P. 1957, In troduct ion t o Logic. New York: D. van Nostrand Com-
pany a

Tarski, A. 1956. The Concept of Truth in Formalized Languages. In A.
Tarski, Logic, S e m a n t i c s , Metamathemat ics (translated by J.H.
Woodger. Originally presented to the Warsaw Scientific Society,
March 1931 in Polish. Oxford: Clarendon Press.

Thompson, V.A. 196 1. Bureaucracy and Bureaupathology. In: Hampton,
e t al. eds. Organizational Behavior and t h e Practice of Manage-
m e n t . Glenview, Illinois: Scott Foresman.

Toffler, A. 1980. The Third Wave. New York: Bantam Books.

van Fraassen, B.C. 1971. Formal S e m a n t i c s and Logic. New York: Mac-
millan.

Weber, M. 1956/ 1978. Economy and Society. Berkeley, California:
University of California Press, translated from Wirtschaft u n d
Ceseltschaft . 1958. Tuebingen: J.C.B. Mohr.

Whorl, B.L. 1956. Language, Thought a n d Real i ty: Selected Writings of
B e n j a m i n Lee Whorf, edited by J.B. Carroll. New York: Wiley.

Williamson, O.E. 1973. Markets and Hierarchies: Some Elementary Con-
siderations. Amer ican Economic Review, 63(2):3 16-325.

Winograd, T. 1975. Frame Representations and the
Declarative/Procedural Controversy. In D.G. Bobrow and A. Collins,
eds., Representation and Understanding, pp. 185-210. New York:
Academic Press,

Winograd, T. 1979. Beyond Programming Languages. Communications of
the ACM, 22(7):391-401.

Wulf, W.A. 1977. Some Thoughts on the Next Generation of Programming
Languages. In A.K. Jones, ed., Perspectives on Computer Science.
New York: Academic Press.

