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ABSTRACT 

We consider solution strategies for stochastic programs whose deter- 
ministic equivalent programs take on the form: Find z E R ~ ,  x E Rm such 
that z r 0 ,Az  = b , Tz = x and z = cz + \k(x) is minimized. 

We suggest algorithms based upon (i) extensions of the revised sim- 
plex method, (ii) inner approximations (generalized programming tech- 
nique s), (iii) outer approximations (min-max strategies). We briefly dis- 
cuss implementation and associated software considerations. 



ALGORITHMS FOR STOCHASTIC PROGRAMS: 
THE CASE OF NONSTOCHASTIC TENDERS 
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1. INTRODUCTION 

We report on some approaches to solving certain classes of stochas- 

tic programming problems. The main purpose is to provide a basis for 

discussion with a view to identifying promising algorithms that could 

eventually be realized as software. 

The subclass of stochastic programs (with recourse) that we have in 

mind, and to which we refer as having nonstochastic tenders, arise as 

models for the following decision process. An (optimal) decision vector x 

must be selected when some of the parameters of the problem are only 

known in probability, i.e. only in a statistical sense, the actual cost 

depending in part on how well a transformation of x, x = Tz matches a 

random demand or recourse vector p. 



We think of x as a t ender ,  nonstochast ic  if the transformation T does 

not depend on the (unknown) values of the random parameters. For 

example, stochastic programs with simple recourse and fixed technology 

matrix are of t h s  type. As we shall see in Section 2, for stochastic 

(linear) programs, the equivalent deterministic program can then be 

expressed as: 

(1.1) Find Z E R ~ ,  xcRm such that 

A Z = ~  , T Z  = x , z ~ o ,  

and z = cz + 'k(x) is minimized 

rhe algorithms that we analyze could be viewed as procedures for 

convex programs of the type (1.1) that seek to take advantage of the spe- 

cial structure, and to some extent that view is certainly correct. In fact 

we e ~ p e c t  that the suggested techniques will also be efficient whenever 

nonlinear optimization problems can be cast in the form (1.1). However, 

because stochastic programming problems present computational chal- 

lenges of their own, it is their specific properties that are always in the 

background of our solution strategies. For example, our title is intended 

to s ~ g e s t  that the major task of the solution procedure is the finding of 

optimal or nearly optimal tenders. 

In Section 2, we review briefly the properties of stochastic programs 

that will be used in the design of algorithmic procedures. In Section 3, we 

examine the issue of what information can be made available and its cost, 

and we also exhbit some important special cases when the objective and 

the underlying distribution functions are such, that the equivalent deter- 

ministic programs can be conveniently and inexpensively specified. We 



then turn to the three main methods that we consider here. They are 

based upon 

(i) extensions of the revised simplex method, 

(ii) inner approximations (generalized programming techniques), 

(iii) outer approximations (min-max strategies). 

In order to give the essence of each solution strategy, we consider first, in 

Section 4, a very simple case, viz,, equivalent linear programming formu- 

lations for finding the minimum of a convex piecewise linear function of 

one variable. In Sections 5,  6 and 7 we go into each approach as it applies 

to our class of stochastic programming problems. Each section is organ- 

ized along similar lines as follows: the case of simple recourse is con- 

sidered in detail, extensions to problems with complete recourse are 

briefly outlined and finally some comments are made related to software 

choices and implementation. 

2. STOCXASHC PROGRAMS WITH RECOUEE: NONSTOCHASTIC TENDERS 

We consider stochastic (linear) programs of the type 

(2.1) find z E Rnl such that 

A z = b  , 2 2 0  

and z = E i c  (w)z + Q(z ,w){ is minimized , 

where Q is calculated by finding for given decision z and event zu,  an 

optimal recourse y E Rn2, viz. 



Here ~ ( m ~ x n ~ ) ,  T(rnzxnl), w(rnzxn2) and b (ml)  are given (fixed) 

n matrices, c ( . ) (nl)  and p (,)(m2) are random vectors, y ++ q (Y ;):R 2e R 

is a random finite-valued convex function and C is a convex polyhedral 

n 
subset of Rn2, usually C = R + ~ .  Because W is nonstochastic one refers to 

(2.1) as having fixed recourse. Tenders are nonstochastic because T is 

fixed. (Strictly speaking nonstochastic tenders allow for the possibility of 

having W random. However because of the computational intractability of 

that case, it will not be considered here.) With 

c = E ~ C ( W ) ]  and B(z) = E ! Q ( ~ , W ) ]  

we obtain the equivalent deterministic form of (2.1) 

(2.3) find Z E R ~ '  such that 

 AX=^ , 2 2 0  

and z = cz + Q (z )  is minimized 

We assume that the random elements of the problem are such that all 

quantities introduced are well-defined, with Q(z) finite, unless 

Prob.fw ) ( p ( w )  - Tz) E W(C)J > 0 

where W(C) = f t  = W y  (y E Cj, i.e. there is no feasible recourse with posi- 

tive probability, in whch case Q(z)  = +=. Detailed conditions have been 

made explicit in [I];  extensions to the multistage case have been pro- 

vided by P. Olsen [2], consult also [3] for some results in the nonconvex 

case. 

As background to the algorithmic development, we review the basic 

properties of (2.3), proofs and further details can be found in [I]; see also 

[4] for a compact treatment for stochastic programs with complete 



recourse ,  i.e. when W ( C )  = Rm2 and thus Q is everywhere finite 

2 .4 .  PROPERTIES. The f u n c t i o n  Q .Is l ower  s e m i c o n t i n u o u s  a n d  convez .  

I t  is Lipsch i t z  i f  f o r  (a lmos t )  al l  w  , y w q  ( y  , w )  is L ipsch i t z .  Also t h e  se t  

is a c o n v e z  po lyhedron  t h a t  c a n  be  ezpressed  a s  

K2= fz IDz 1 d l  

for s o m e  m a t r i x  D a n d  vec tor  d .  Moreover i f  t h e  d i s t r ibu t ion  of t h e  r a n -  

d o m  e l e m e n t s  of t h e  p r o b l e m  is abso lu t e l y  c o n t i n u o u s  t h e n  Q is d i f f e ren -  

t i ab le  r e la t i ve  t o  K2. 

Because q ( . , w )  is Lipschitz rather than linear, the assertion about Q 

being Lipschitz does not follow directly from Theorem 7.7 of [ I ]  but can 

be gathered from its proof, or see [ 5 ] ,  for example. 

In the case of nonstochastic tenders it is useful to consider another 

representation of the deterministic equivalent program. Let 

and 

Problem (2.3) is then cast in the form (1 .1 ) :  

(2 .5 )  find z E R ~ '  , x E Rm2 such that 

A z = b ,  T z = x , z S O  

and z = cz + +(x) is minimized. 



This program, more exactly the function +, exhibits the same properties 

as those listed for Q under Properties 2.4. In particular it is finite for all x 
such that x = Tz and z E K 2 .  Including these constraints explicitly in the 

formulation of the problem, we get 

(2.6) find z E Rn' , x E  Rm2 such that 

z = cz + +(x) is minimized, and 

Ax = b ,  

Dz S d  0 

B - x  = o ,  

z 2 0, 

i.e. a convex program with + finite on the feasible region. In what follows 

we shall assume that the constraints Dz 2 d have been incorporated in 

the constraints Az = b , z 2 0, SO that they will no longer appear expli- 

citly, and that + is finite on . 

Stochastic programs of this type are said to have relatively complete 

recourse [ I ,  Section 61, a situation which is always obtained if the 

(induced) constraints, determining K2, are incorporated in the original 

constraints. 

When W = I and C = RnZ, there is really no need to solve an optimi- 

zation problem to know the optimal recourse and its associated cost. It is 

uniquely determined by the relation 

and 



The stochastic program is then said to be with s imple  recourse,  which 

clearly implies complete recourse: Kz = Rnl. Determining the value of \k 

a t  x depends then on our capability of performing the multidimensional 

integration. Usually, the cost-function will be separable. However, if 

there is dependence between some of the components of the p (.)-vector 

and the cost depends on the joint realizations, then one must necessarily 

resort to this more general form. Assuming that the integral is well- 

defined, we have that the subdifferential of \k is given by 

where a,q ( . , w )  denotes the subdifferential with respect to  the first vari- 

able. It is easy to see that if the convex function y c ~ q  ( y  ,w) is differenti- 

able, then so is \k. The function .k is also differentiable if the measure is 

absolutely continuous. If the random variables are independent, then the 

multidimensional integration to obtain the value of \k or its gradient is 

reduced to  a number of simple integrals on R1. This also occurs when 

there is separability. 

If in addition to simple recourse, the recourse costs are separable , 

i.e, for all w 

then 



Thus ( 2 . 5 )  becomes a convex separable program: 

( 2 . 7 )  find z E R ~ '  , x E R~~ such that 

me 
and c z  + C '4ji ( x i )  is minimized . 

C = l  

This latter optimization problem possesses many properties. Those that 

are directly relevant to our further development are summarized here 

below. 

2.8 PROPERTIES. For i = 1, ..., m2, t h e  funct ions  \ki are  convez ,  f ini te-  

va lued  and  thus cont inuous .  If the  r a n d o m  e lements  have  a discrete dis- 

t T i b u t h ,  the  \ki are piecewise l inear  w h e n  the  q i ( . , w )  are piecewise 

l inear .  On  t h e  other h a n d ,  i f  t h e  m a r g i n a k  of 

{ (ai ( . , w )  , pi ( w ) )  , i = 1 ,... ,m2j are absolute ly  cont inuous  t h e n  the  \ki 

are  dif ferentiable.  Moreover, i f  problem ( 2 . 7 )  is solvable it a d m i t s  a n  

opt imal  solution with n o  more t h a n  ml + m2 posit ive entr ies  in t h e  z- 

vector.  

These properties are derived in [ 6 ] ,  (see also [ ? I ) ,  except the last 

assertion which was obtained by Murty [a] in a somewhat modified con- 

text; a very simple proof appears in [ 9 ] .  



A version of (2.7) whch has received a lot of attention, because of its 

direct amenability to efficient computational schemes and the many 

applications that can be cast in this form, is when qi is itself independent 

of w and piecewise linear with respect to y .  More precisely qi(.) is given 

by 

with qi = qi+ + qi- 2 0, yielding the convexity of yi I+ qi ( 7 ~ ~  ,w ). In this 

case the function \ki takes on a form particularly easy to describe. This is 

done in the next section. 

3. AVAlLABILlTY OF INFORMATION ABOUT THE OI3JECM 

The exact evaluation of Q or its gradient for general probability dis- 

tribution p, function q and recourse matrix W ,  might be prohibitively 

expensive, if at all possible. The difficulties come from two directions: 

(i) for each w , having to evaluate Q(z ,w ) which involves solving a 

minimization problem, and 

(ii) having to perform the multidimensional integration 

For simple recourse, the evaluation of Q (z ,w ), or equivalently +(x,w), 

because T is fixed, is easy since the recourse is uniquely determined. 

When the recourse costs are also separable, the multidimensional 

integration is reduced to m2 separate 1-&mensional integrals. With T 

fixed, it takes the form: 



where Fi is the marginal distribution function of the random elements 

appearing in this expression, and the integral f is a Lebesque-Stieltjes 

integral. The subgra&ents of the convex function 4? are then the (Carte- 

sian) product of the subgradients of the 41i which are themselves 

a t  least when the problem satisfies the regularity conditions suggested at  

the beginning of Section 2. In general a U q  (pi(w) - xi , w) is multivalued, 

in fact closed convex valued, and the integral is then also a closed convex 

set, In particular if q is piecewise linear as in (2.9), we get the following 

expression: 

where qi = qi+ + qi-, 

Fi-(z) = Prob. [pi (w ) < z ] , 

and 

We just note in passing that t h s  implies that +i is differentiable whenever 

the distribution function Fi is continuous. In general, we have the two fol- 

lowing representations for .ki 
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where pi = ~b~ (.)I. If the distribution of p i ( . )  is discrete, say with possi- 

ble values 

withpd < p i , r+ l ,  and with associated probabilities 

-1  

the function \ki is piecewise linear. With = 0, we have 
1 =O 

r'- 1 
pi-(Xi) = C f u  where 7' = rnin [ki  , inf(t 1 pit xi )I 

1 =1 

and 

r-1 
pi (Xi )  = C f i r  where T = min [ki  , inf ( t  lpit > x i ) ] .  

1 =1 

Also 

and 

Note that T' = T unless xi = pit for some t = 1, ..., ki and then T' = 7 - 1. 

For I = 0, ...,k, we set 

and 

1 
eii = q i + ~ i  - qi ( C Pit f i t  ) 

t = 1  



We thus get 

Observe that for any value of xi the supremum is attained by at  most 2 

linear forms. As we shall see in the subsequent sections, both (3.3) and 

(3.4) yield useful representations for qi when developing algorithmic pro- 

cedures for problems involving functions of this type. Still another 

representation of \ki can be exploited in an algorithmic context. Here the 

value of \ki is obtained as the solution of an optimization problem 

parametrized by x i .  Let 

Q = p i t i + ,  -p i l  , for L = 1 ,... ,ki-l 

and 

Then 

4 
subject to C yd = xi  , 

1 =o 

To verify (3.5) it suffices to use the fact that the coefficients 

sil , L = O,.. . ,ki  are strictly increasing and that consequently yil > 0 only if 



yio = dio and for 0 < t < 1 ,  all y& are at  their upper bounds. Details are 

worked out in [ lo ,  Proposition 11. 

These expressions derived for qi taken in conjunction with the 

methods of Section 4 contain the germ of different algorithmic pro- 

cedures embedded in them. 

Before we turn to t h s ,  and in order not to lose sight of the fact that 

we are also interested in a more general class of problems, not simply 

stochastic programs with simple recourse with piecewise linear separable 

cost structure, we also describe a more general case. Suppose 

and x is such that +(x,w) is finite for all possible p (w) ,  i.e. the linear pro- 

gram defining +(x,w) is feasible and bounded with probability 1. Then 

parametric analysis, in particular the Basis Decomposition Theorem [I] ,  

shows that there is a (simplicial) decomposition of the sample space of 

p (.) (= the activity space), 

such that  if p (w ) E Sh then 

and with co denoting the convex hull, 

where W ( h )  is an  invertible submatrix of W and q (h)  the subvector of q 

corresponding to the columns of W ( h ) .  Let S' be any partition generated 

by S. Then 



and 

adding to the second term the normal cone to Kz at x if x is on the boun- 

dary of K2. (We really only need the above, the rest being taken care of 

through the constraints.) The potential use of the preceding formulas 

depends very much on how accurate one needs to be. Multidimensional 

integration over convex polyhedral cones can really only be approached 

through sampling methods, cf. [I 1],[12] and the references given therein. 

If p (,) is discretely distributed by which we mean here that it takes 

on a finite number of possible values, with 

then the above formulas become simply sums, viz. 

R-' (pk - ~ ) f k  (3.8) * ( x ) = C  C q(h) (h) 
h Ib I P ~  E Sh'l 

and a similar expression for a+. To actually compute the above we can 

proceed via a sort of parametric analysis that we now describe. We refer 

to it as a bunching procedure. Let 

Clc=prc - x , k  = I ,  ..., N , 

and suppose we have solved the linear program 

(3.9) find y r 0 such that W y  = and q y  is minimized, 



with optimal basis W ( l )  and associated subvector g ( l )  of g .  s ; ,  bunch 1. 

is defined by 

s; = b k  1 w(;j Ck  ' O1 

While constructing this set, identify those C k g S ;  such that the vector 

W C ; ~  ck has the fewest number (and smallest) negative elements. Let Cke 

be such a vector, We find the optimal solution and a corresponding basis 

W ( z )  of the linear program (3.9) with C k B  replacing C 1 ,  by dual simplex 

pivoting, starting with the old basis W(l) .  The second bunch S; is given 

by 

S ,  = (pk L S ;  ( ~ @ j  Ck 2 Oj . 

We continue in this fashion until all pk have been bunched. Alternative 

procedures can be devised taking further advantage of the combinatorial 

structure of decompositions, how to do this so as to minimize the work 

involved needs further investigation. In any case with the above we obtain 

the value of 4j at X, as well as a subgradient of 4j at X, viz. 

z ( Y  (h)  ~ & \ ) f k  a4j(x) . 
Ik I P ~  E $1 

Observe that qh w&\. the vector of simplex multipliers, remains constant 

on s;. With 

the above becomes 

z Y ( h )  w(%\ ph E' a*(x) 
h 

This formula for a subgradient of \k is, in fact, independent of the form of 



the distribution of p (.), the problem being always the evaluations of Ph 

for a partitioning scheme constructed in the manner described above. 

4. AN ILLUSTRATION OF EACH ALGORITHMIC APPROACH 

We consider the very simple problem of finding the unconstrained 

minimum of a 1-dimensional finite piecewise linear convex function p 

defined on [zO, z H ]  by reformulating the problem as an equivalent linear 

program. (This function p could of course be minimized by some 1- 

dimensional search procedure or simply by a sort of the slopes to find 

where they change sign, but this is not our real concern here.) There are 

a t  least three ways of formulating t h s  equivalent linear program. Each 

contains the germ of a more general solution strategy considered in later 

sections. 

4.1 Flgure: The function p 
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The coordinates of the breakpoints of p are denoted by 

( z h , ~ ( z h ) )  , h = 0,. . . ,H 

and with slopes 

sh for z€[zh-]  , zh] , h = I ,  ..., H . 

The convexity of p implies that 

(4 .2)  s l  C s 2  S * * . S SH , 

With 

ah = zh - z h - ~  and eh = p( zh )  - shzh , 

the line segment on [ z ~ - ~  , zh] takes the form 

(4 .3)  p h ( z ) : =  s h z  + eh 

The bounded var iable  method 

If we introduce a new variable yh for each interval [zhml , zh] for any 

given value of z it is easily verified that on [zO , z H ] ,  

H 
(4 .4)  p ( z )  = p ( z o )  + min [ C shyh lz = z0  + C y h  , o yh ah , h = l , . . . , ~ ]  

h=1 h 

The assumption of convexity and hence (4 .2 )  is of course crucial, since 

this means that y l  is preferred to y 2 ,  and y 2  to y 3  and so on in the 

minimization of (4 .4 ) .  Hence at the optimum point in (4 .3 ) ,  yh > 0 implies 



Minimizing p on [ z O ,  zH] is equivalent to solving the following linear 

program: 

(4.5) find yh€[O , ah] , for h = 1 ,..., H , 

H 
such that z = x shyh is minimized. 

h=l 

The optimal z*  is determined by 

w h e ~  (Yi , h = l , . . . , H )  is the optimal solution of (4.5). 

Inner approximation 

Referring to Flgure 4.1,  any point (z , a)  in the shaded region C, i.e. 

with a 2 p(z ) ,  can be written as a convex combination of the extreme 

points 

For any given z it follows that 

and 1hus.minimizing p on [zO , zH] is equivalent to  solving the following 

linear program 

H 
such that z = x hhp(zh) is minimized. 

h =O 



The optimal z * is determined by 

where (A; , h = O,. . . ,H)  is the solution of (4 .7 ) .  For an arbitrary finite 

convex function p with p ( z h )  = p ( z h ) ,  the function p can be viewed as an 

inner linearization of p .  

Outer approzimation 

Since p is piecewise linear, we have that 

where the functions ph are defined by (4 .3) .  When p is expressed in this 

form, finding its minimum consists in solving the minimax problem: 

min max ph (z )  
I E [ z ~ . z ~ ~  h=l ,  .... H 

This is equivalent to solving the following linear program 

(4 .9)  ~ E R ,  a n d z  E [ zO,  z ~ ]  suchthat 

I9Sshz + e h  

and z = I9 is minimized. 

The methods of inner and outer approximation rely on dual representa- 

tions of the epigraph of p ,  but one should note that the linear programs 

(4.7)  and (4 .9)  are not dual linear programs. 

Each of the above three problem manipulations delineates an 

approach to solving problems of the type ( 1 . 1 ) .  We consider each one in 

this more general setting in the next three sections. 



5. EXTENSIONS OF THE REVISED SIMPLEX MmHOD 

An algorithm for solving stochastic programs with simple recourse 

with separable piecewise linear recourse costs and discrete random vari- 

ables has been proposed in [lo], a write-up and computer code has been 

provided by Kallberg and Kusy [13], and computational experience is 

reported in [14], [15]; cf. also [16]. From (3.4) we know that  

with each qi polyhedral with the slopes sib and sio < s i l  < . . < s ~ , ~ .  We 

can clearly apply the bounded variable method of Section 4 to the m2- 

functions +i .  Using (3.5) we obtain the following linear program, the ana- 

log of (4.5): 

(5.1) find OSzj, j = 1 ,..., n l ,  

and for i = l , . . . ,mz, 

o s yil s dir , I = 0 ,..., ki-l , and yieq 2 0; 

such that 

and z = c z  + 2 2 silyil is minimized. 
i = 1  l=O 

where A, and Ti are  the i-th rows of A and T,  and for i = 1, ... ,m2, 

with pi, E )-m , pi l (  chosen so that for the optimal solution z *  , T i z  > pio 



is guaranteed 

In seeking the solution of (5.1) using the revised simplex method for 

linear programs with simple upper bounds, let us assume that  we have in 

hand a nondegenerate basic feasible solution say 

&$a ,i = 1, ..., m2,1 = 0, ..., k i )  which yields the values of the functions 

+, , i = 1 ,..., m2 a t  a point X = E? as follows: for e a c h i  = 1 ,..., m2, 

i.e. the & actually solve the program (3.5) for xi = y i .  It follows that if 

then 

gih = dh f o r h  < L , 

In [lo] such a solution is called a perfect basic solution. The fact that  the 

optimal solution is of that  type and that  one can pass from a perfect basic 

solution to another can be argued as follows: Let ( a , ~ )  E x be 

the simplex multipliers associated with the solution a t  hand. To find the 

variable to be entered into the basis a t  the next iteration, we compute 

Sib, the reduced cost ( the component of the reduced gradient 

corresponding to the current  basis) associated with the variable y*, viz. 

The ISih , h = O,.. . ,kij  are  increasing, thus for each i among all variables 

at their lower bound ( h  > I ) ,  the variable y i , l + l  is the one that  yields 



potentially the greatest (marginal) improvement. Similarly, among all 

variables at their upper bound (h < 1 )  the best candidate for decrease is 

y i , l - l .  It is also readily established that when either yi ,r+l or yi,l-l is 

introduced into the basis then yd will move to its appropriate bound and 

leave the basis. Thus the new basis will also be perfect. This property is 

not affected by exchanges between z-variables and yih-variables, unless 

degenerate cases are mishandled. A potential difficulty is that the algo- 

rithm could go through a great number of steps and associated basis 

changes if \ki has many pieces. Thls can partially be overcome by an 

acceleration procedure that in one sweep makes a number of basis 

changes involving variables [yih , h = 0,. ..,ki j for a given i ,  see [lo]. This 

algorithm can thus be regarded as an application of the bounded variable 

revised simplex method with an acceleration step; in 1101 it is also shown 

how to exploit the structure of the problem to obtain a good starting 

basis. 

An extension of the above approach that seeks to avoid the difficul- 

ties associated with introducing bounded variables, and has also the 

advantage of greater generality permitting the distribution Fi to be arbi- 

trary and qi(- ,w) to be nonlinear, is to handle the. variable xi explicitly 

rather than implicitly in terms of a basic variable yd. Ths  method, dis- 

cussed in [9], can be viewed as an extension of the convex simplex 

method to problems with nonlinear nonsmooth objective functions. Let us 

briefly review the convex simplex method as it applies to the problem: 

(5 .2)  find z r 0 such that Az = b ,  and f (2) is minimized 

Here f :Rn + R is a smooth (continually differentiab1.e) function and A is 



m x n.  In contrast to the case when f is linear, we cannot work only with 

basic solutions Az = b ,  i.e, with no more than rn-elements of z larger 

than 0.  At the start of a cycle of the convex simplex method, assume that 

z is a feasible solution with zg the m-variables associated with a basis B.  

The remaining variables 2% define the non-basic variables with associated 

matrix N .  For convenience let us assume that the basic variables are the 

first m variables, i.e. z = (zB , z N )  , A = [B IN], and 

We use t h s  relation to eliminate z g  from ( 5 . 2 ) .  The reduced gradient of 

f is thengiven by 

where 

Schematically the convex s implex  method proceeds as follows: 

S t e p  0. Find 2 a basic feasible solution of Az = b , z r 0. 

S t e p  1 .  Select as basic variables the rn components of z  ̂ largest in 

magnitude such that the associated matrix B is a basis. 

Compute Z (2) using (5.3). 

S t e p  2 .  With dj denoting a change in variable z j  that does not violate 

feasibility, identify the improving variables as follows: 

Ej < Oandbj > 0 ,  or 



Choose a "best" candidate, say j = s ,  with associated column A S .  If 

none exists, the problem is solved. 

Step 3. Changing ẑ , by 6, corresponds to a step to a new point Z 

given by 

EB = 2B - 6, ( B - ~ A ~ )  

3j = Sj , for j # s and nonbasic. 

Withd = z  - 2 ,  find 

' 5 ] ~ a r g m i n [ f ( f + v d ) l f + v d 2 0 ]  . 

Assume T j  exists. Otherwise the original problem (5.2) could be 

unbounded or one needs to work with &-approximates of T j .  

Define f (,,I = 5(old) + 7jd and return to Step 1. 

In [g] this overall scheme is used to design a method for solving (2.7), 

i.e. (convex) programs of the type 

m, 
find z €Rnl , x€Rm that minimize cz + \ki (xi 

i = 1  

such that Az = b , Tz = x and z 2 0 , 

with the \ki not necessarily differentiable. Let 

-4 a\ki (xi) = IV 1 ci s zi j 

Let B be a basis, i.e. a rn x rn- submatrix of 



m = m l  + m2, and (0,n) the associated multipliers defined by 

(5.4) (u,n) = c ~ B - '  

where 

( c ~ ) ~  = cj if the k-th basic variable is zj, 

( c ~ ) ~  = Cli if the k-th basic variable is xi 

Reduced subgrachents are computed for the nonbasic variables as follows: 

- cj = cj - U A ~  - n ~ j  i f j  C n l  

and for the other nonbasic xi-variables 

In Step 2 of the algorithm, the "best" candidate is chosen by 

- 
(5.5) s = arg min [ E ~  , j = 1 ,... nl ; ci . i = 1 ...., m 2 ;  -ci , i = 1 ,..., m21. 

j *i 

The remaining operations remain the same, but note that finding 7 in 

Step 3 is greatly simplified because of the separability of the objective 

function. 

The next logical step is to consider algorithmic procedures for a 

class of problems whose nonlinear features can still be relegated to the 

unconstrained optimization of some nonlinear function on a subspace, but 

this time with nonseparable objective possibly also nonsmooth, such as 

for problems of type (2.6). 

Let us first examine the problems raised by nondifferentiability and 

suppose that M(x) is given in terms of a finite number of vectors, say 

g l , . . . , g k ,  i.e. N ( x )  is a polytope. A vector g that can play the role of the 



gradient in this case is the solution of the following quadratic program 

[17 ,  10, 191: 

(5.6) find A E R$ such that I 1 v ( 1 is minimized. 

k k 
and x Ai = 1 , v  = x \gi 

i = 1  i = 1  

We shall refer to the solution of ( 5 . 6 )  as the gradient of 4? at  X .  A variant 

of the convex simplex method with this definition of gradient would natur- 

ally lead to a corresponding notion of reduced gradient. When I 1 .  I ( 

denotes Euclidean norm, 4? is sepzrable and a4?,(xi) = [ E i  . ei], (5 .6 )  gives: 

For i = 1, ..., m2, 

(5 .7 )  find vi E [Zi , G ]  such that 1 vi I is minimized. 

Let us again denote the solution by g = (g  ] , .  ..,g,,). The components of 

the reduced gradient corresponding to the variables xi are thus 

- 
ci = gi + ni for i = 1,  ..., m2 , 

where ( u  , n) are  as in (5 .4) ,  the simplex multipliers associated with the 

basis B. For the components corresponding to  the zj variables we have 

as  before 

- cj = c j  -uA' - n T J f o r j I n l  . 

The selection rule for the incoming variable is similar to (5 .5 )  used in 

the convex simplex method implementation, viz., 



and p r o d u c e s  the  s a m e  i n c o m i n g  v a r i a b l e ,  as can easily be verified, pro- 

vided naturally that the vector n is unambiguously defined. In both 

cases, we recognize optimality through the condition?, 2 0. 

When +(x) is not separable we can continue to  define the reduced 

gradient through (5.6) and use (5.8). A further development is to minim- 

ize in a subspace of non-basic variables leading to a reduced gradient 

method for nondifferentiable optimization. 

Again, let us briefly review the reduced gradient method for prob- 

lems of the type (5.2), i.e. 

find z 2 0 such that Ax = b and f ( z )  is minimized. 

for any basic feasible solution say z ' ,  the constraints Az = b are always 

active. Suppose in addition that  a number of the constraints 

z, 2 0 , j = 1, ... ,n are  also active: 

zi = 0 for j E J c [ l  ..... nj 

whereas for j E J they are  inactive, zj > 0. We thus have partitioned the 

constraints as follows: 

zj=O f o r j ~ J  

active 

A z = b  

The normals to  the active constraints are the columns of 

N = [ A ~ , I ( ~ ) ]  , 

where consists of the columns I j  of the (n x n)-identity matrix with 



j E J. Let us denote by Z  a matrix with linearly independent columns 

such that 

N T z  = 0  , lin. span Z  u lin, span NT = Rn 

If we consider as inactive all zj r 0  corresponding to a given basis B as 

well as all other nonzero variables, we have that ( J  I = n - ( m  + s ) .  Now 

assuming N  to be of full rank, we have 

Under the usual nondegeneracy assumptions, if we ignore the inactive 

constraints in the neighbourhood of z '  problem (5.2) becomes 

find x  E Rn such that NTx = ( t )  and f  ( x )  is minimized 

Let us make a transformation of variables 

Z = z l +  z y  

where y E RS. If f  ( z )  transforms to y ( y )  the preceding program 

becomes 

(5 .9)  find y E RS such that y ( y )  is minimized. 

There are no constraints since they become 

N T z '  + N T z y  = (k) 
Also 

(5.10) v y ( y )  = g" = zTg where g  = Vf ( z )  

and 



v2Y(y) =ii! = Z ~ H Z  where H = v2f ( z ) .  

An unconstrained optimization algorithm utilizing g" and (or suit- 

able approximations to these quantities) combined with an active (index) 

set strategy for revising Z ,  gives the usual reduced gradient method, see 

for example [20]. The above discussion is, of course, clearly related to 

the one given earlier for the convex simplex method. In particular com- 

pare (5.10) with (5.3). Note that if we ignore the zero components of Z ( z )  

in (5.3), namely, those corresponding to the basic variables, and when 

I J ( = n - rn then (5.10) and (5.3) are alternative expressions for the 

same quantity. The matrix Z plays a crucial role in the implementation 

of the reduced gradient method, and it has a special structure. If we par- 

tition A as follows: 

and 

then 

This particular form of Z is exploited in MINOS which to date is the most 

effective implementation 01 nonlinear techniques for solving large prob- 

lems of type (5.21, see [21]. The method is particularly effective on prob- 

lems that are linear with respect to a large number of variables and non- 

linear only with respect to a few variables. Then the dimensionality s of 

the unconstrained minimum can be kept relatively small. Ths is based 



on the following observation [21]. 

5.12 PROPOSITION. If p r o b l e m  (5.2) is so l vab l e  a n d  the re  is an o p t i m a l  

s o l u t i o n  invo l v ing  o n l y  t of the  non l inear  v a r i a b l e s ,  t h e n  t h e r e  e z i s t s  an 

o p t i m a l  s o l u t i o n  at w h i c h  t h e  n u m b e r  of i n a c t i v e  c o n s t r a i n t s  is l e s s  t h a n  

o r  equa l  t o  m + t . 

Turning now to the application of these ideas to stochastic programs 

with complete recourse, let us consider our original problem (2.1) with 

nonstochastic tenders, i.e. with the equivalent deterministic form, cf. 

(2.6): 

(5.13) find x r 0 such that Az = b , T z  = x 

and z = cz + +(x) is minimized. 

Note that Proposition 5.12 is precisely the counterpart of Murty's result 

[B,  91 which asserts that (5.13) admits an optimal solution (z* , x*) with no 

more than (ml  + a2)-positive entries in the z-vector. Thus there is an 

optimal solution to (5.13) with no more than mz nonbasic variables with 

positive value. I we have simple recourse with separable recourse costs 

and the marginals of the random variables l(qi ( w )  , pi (w)  , i = 1, ... ,mz] 

are absolutely continuous, then the qi are differentiable, see Properties 

2.8 and (3.2), and the reduced gradient method is directly applicable. In 

general however the functions qi are nonsmooth; for simple recourse and 

discretely distributed random variables, the subgradient at xi is given by 

as follows from (3. I), where f is the probability associated with event 

wl , l = l , . . . ,ki .  In this case the gradient could be computed using (5.6) 



and the reduced gradient g" by means of (5.10). This would then give a 

very natural extension of MINOS to handle this class of stochastic (linear) 

programs. (In practice one would extend the scheme so as to compute E -  

approximates, to ensure convergence .) 

For the more general case of nonseparable objective function (5.13) 

this approach would still apply provided the gradient can be computed 

using (5.6). Indeed the question of what information about the subdif- 

ferential of the function can be povided becomes even more pressing 

when we are outside the case of simple recourse. Very often it is neces- 

sary to  resort to an approximation scheme that would provide upper and 

lower bounds for the solutions [22, Section 31 or accept the fact that the 

gradient can only be estimated such as in the methods of stochastic 

quasi-gradient [23]. The approach that has been suggested above, based 

on adaptation and extension of MINOS, can also be pursued here with 

naturally some adjustments. We sketch out some of the possibilities in 

order to high-light the new obstacles that  need to be overcome but also to 

stress the fact that there is a natural continuation of t h ~ s  approach that  

provides solution procedures for more sophisticated stochastic program- 

ming problems. 

Recall that  +(x) = E ! $ ( X , W ) {  and 

in this more general case, see Section 2. We consider only the linear 

case, i.e. when 



For stochastic programs with complete recourse (that are bounded), 

$(.,w) is finite for all (possible) w and 

where 

If the random variables have a discrete distribution withp (.) and q (.) 

taking on the values 

i (pL,gL)  , 1 = 1 ,..., L j  

with probabilities f l  , 1 = 1, ..., L ,  then a "gradient" as defined by (5.6) is 

obtained by solving the program: 

find v E R~~ such that I 1 v 1 1 is minimized, 

L 
I I where v = f i n L  and nL W qL , d(pl - X) 2 $(x ,(q ,p 1). 

1 = 1  

To solve t h ~ s  program efficiently we need to take advantage of its special 

structure, use the fact that for most 1 there is only a unique nL that satis- 

fies the inequalities and that for many 1 , nL will be determined by the 

same basis of ( W , I ) ,  and so on. 

In general, when the random variables are not discretely distributed 

or when there are too many possible values for the discretely distributed 

random variables it may not be possible to obtain complete information 

about 'k(x) or a'k(x). We are then reduced to accepting approximates. 

There is at present no theory that allows us to deal directly with t h s  case. 

What is needed is to extend the subgradient techniques, such as 117, 18, 



191 and in particular [24], with appropriate reduced gradient calculations 

to handle t h s  case. The convergence proofs could be derived by relying 

on the framework provided by the study of nonlinear programming 

methods in the presence of noise [25]. 

The question of how approximate the calculation of 9(x) and a9(x) 

should be is still very much open to much deeper investigation. The 

method of stochastic quasi-gradients [23] advocates the use of a single 

sample point, say ( p S  , q S ) ,  to obtain 

M>c' 1 ( q S  8 p S ) )  

as an estimate to a+(>c'). However, this estimate is only used to slightly 

change xs, rather than as an adjusted cost function as in the extensions 

of the revised simplex method discussed here. 

We conclude this section by making some comments about imple- 

mentation. As mentioned already earlier, the most natural vehicle for 

implementing the algorithms described above is the MINOS Code of Mur- 

tagh and Saunders [21]. But even for the case of simple recourse with 

discretely distributed random variables several augmentations of the 

code are necessary, including 

1. Design and implementation of a standardized input format. A very 

natural situation is for a linear programming model specified in MPS for- 

mat to be later modified to permit some demands and costs to be sto- 

chastic. Thus a standardized input would be based on a combination of 

(a) MPS format for specifying c ,  the LP matrices A ,  T, the right-hand 

sides b and bounds. In particular, we could easily allow for bounds 

1 S z s u in place of z r 0, 



(b) a specification section, like SPECS in MINOS to describe the rows of A 

and T that correspond to  the technology matrix, the cost functions 

qi (linear or nonlinear), and the distribution functions Fi (piecewise 

constant, piecewise linear). 

2. Routines to compute the "gradient", e.g, as in (5.6) and (5.10) suitably 

extended to ensure convergence. 

3. Modification of the line search procedure to  the nonsmooth case, see 

[261. 

4. Design of a suitable output routine for interpreting ihe results in sta- 

tistical terms. 

MINOS is also a natural vehcle for incorporating techniques for solv- 

ing more general problems as discussed above. An alternative starting 

point is the code of Nguyen and Bihain, see [24], whch already handles 

nonsmooth objective functions but does not have all the linear program- 

ming features of MINOS that are bound to  play an important role in the 

efficiency and stability of the method used to  solve problems of type 

( l . l ) ,  

6. INNER APPROXIMATION 

The algorithms we consider next use inner approximation of the type 

discussed in Section 4, see (4.7). After a general discussion of the algo- 

rithm, we consider first how it applies to  problems with simple recourse 

and, as  in Section 5, see how to extend the approach to  more general 

classes of stochastic programs (with nonstochastic tenders). 



The resulting algorithm is in effect the generalized programming 

technique, attributed by Dantzig [27, Chapter 241 to P. Wolfe. Here we 

apply it to  problems of type (1.1) taking advantage of the special struc- 

ture and of the form of +(,y). As a means to obtain error bounds, Williams 

[28] already suggested an approach of this nature, but apparently it has 

not been exploited as a general solution technique. 

The algorithm as it applies to (1.1) or equivalently (2.5) can be sum- 

marized as  follows: 

Step 0. Find a feasible solution of AZO = b , z0  2 0 

Set X0 = T X O .  

Choose ,yl, , . . , ,yv (a selection of tenders, v 2 0). 

Step 1. Solve the linear program: 

Y 

(6.1) Minimize c z  + h1\k(,yL) = z 
1 =o 

subject to Az = b 

Let (uV , rv , gV) be the (optimal) multipliers associated with the 

solution of (6.1). 

Step 2 .  Find xu+' E arg min [\k(x) + rVx] 

If \k(,yV+') + ~ r " ~ " + '  2 gV, stop: optimal. 

Otherwise return to Step 1 with v = v + 1 



We have assumed here that for all nv generated in Step 1, the func- 

tion X H  (+(x) - rrVx) attains its minimum. There are naturally regularity 

conditions for stochastic programs that will guarantee this [ I ,  281, but 

mostly we have done so to simplify the presentation and interpretation of 

the algorithm. Note that both upper and lower bounds for the infimum 

are available. Let z v  denote the optimal value of z , and (hy , 1 = 0, .. . , v) 

the optimal values of the h variables in (6 .1) .  Then 

where z *  is the optimal value of the original program. The second ine- 

quality follows from the fact that (6.1) is an  inner approximation, whereas 

the first one follows from Step 2 whch implies that 

Adding c z  and taking inf on both sides with respect to ( z , ~ )  on the set 

(z 2 0 1 Az = b , Tz = xj yields the desired inequality, it suffices to 

observe that the first one of these two minimization problems admits for 

optimal solution the pair (zv . h h i )  with ( z V  A ,  1 = 0 . )  the 
1 =o 

optimal solution of (6 .1) .  Thus 

v 
O c z v  - Z * S  Max [(+(xV+') + rrV~"") - x h r ( + ( g )  + n V 2 ) ]  

k=O. .... v 1 =o 

We interpret the algorithm as the search for a particular (optimal) 

tender x*. It is easy to see that if X* is part of the collection x0, . . . ,xu, 
then solving (6.1) will yield the optimal z*. One reason for believing that 

this approach holds promise is that in practice, one should be able to ini- 

tialize the algorithm with a good choice of tenders xO, . . . ,xu. The 



subsequent iterations can then be viewed as refinements of the original 

guesses. A line of further research is to find effective strategies for 

choosing initial tenders. 

The convergence of the algorithm, with the following assumptions 

(6.3) all tenders are  retained, as part of (6.1), 

(6.4) complete information is available about the function values 

of + so that Step 2 can be carried out exactly, 

has been proved by Dantzig [27 ,  Chapter 241. Further, the algorithm 

applied to the convex program (1.1) is equivalent to a cutting plane algo- 

rithm applied to  its dual. We can thus translate the results about reten- 

tion of cuts [29, 301 into retention of tenders. In particular in our case, 

they imply that all tenders not associated with a basic variable hl can be 

dropped at  the next iteration, without affecting the convergence proof of 

the algorithm. 

A large number of tenders could be generated, although this is very 

unlikely in practice, especially if  a good set of initial tenders is used. 

From a theoretical standpoint however and for reasons of sound imple- 

mentation, it is worth examining the question of whch tenders should be 

retained to enhance convergence. A t  iteration v with the multipliers 

(uV, srV , Ip") we have for all tenders X' , 1 = 0 ,..., v, 

At the next iteration, a tender is developed (several tenders could 

equally well be formed) and we need to resolve (6.1) with respect to  

. Suppose prior to the commencement of the next iteration 



v + 1, a subset of tenders 

{x' , L E LJ  c lX0, . . . , X V + l J  

must be found such that the optimal solution of (6.1) is unaffected. Since 

the (optimal) multipliers 

(gv+l , 1 *v+l 
I 1 

are unknown a t  t h s  stage, we formulate this problem as 

(6.6) given any (u , IF , d)  and a fixed index k 

find L c [0, ..., v + l j  such that 

+(x') + nXL 2 d forall L E L 

implies + ( p )  +  IF^ 2 d .  

Let us write 

with D = [Do, ..., DV+l]. 

6.7 PROPOSITION. A sufficient condition that 

(6.8) +($) + n$ 2 d for all L E L 

implies 

is that 



i . e .  t h a t  b be longs  to  t h e  pos i t i ve  hul l  of or  e g u i v a l e n t l y  the  conuez  cone ,  

g e n e r a t e d  b y  the c o l u m n s  of D  corresponding  t o  L a n d  1'. 

Proof. To say that b E pos [I'  ; Di , L E L ]  is to say that the linear system 

is solvable. Thus the system 

(h,rr,rr)~' r 0 ,  L E L ; h r  0 and ( A ,  T ,  7 9 ) .  b < 0 

is not solvable, as follows from Farkas Lemma. Using now the definitions 

of D L  and b ,  we see that thls implies that for a choice of variables 

(A = 1 , rr , 29) satisfying (6 .8 ) ,  we necessarily must satisfy ( 6 . 9 ) .  

The question raised in (6 .6)  can thus be translated into finding a 

minimum number of generators, i.e. a f r a m e ,  for the convex poyhedral 

cone 

An algorithm for doing t h s  is described by Wets and Witzgall [31]. Note 

also that it may be worthwhile to also eliminate tenders that have not 

been utilized in the solution of (6.1) on several prior iterations. 

The use of this algorithm in the context of stochastic programming 

makes assumption (6,4) nontrivial. Even in the case of simple recourse, 

situations can arise when +(x) cannot be calculated exactly or the cost of 

calculating it could be excessive. For example, if q  (y , w )  is nonlinear in y 

and the dependence on w is not simple (e.g, linear), the cost of evaluat- 

ing 

E t q ( p ( w )  - X  d l  



could be very large. A similar situation could arise even after approxi- 

mating the distribution functions by piecewise constant or piecewise 

linear distributions. In this case the generalized linear programming 

approach must be revised to include noisy functions and the question of 

convergence, theoretical and practical, still needs further investigation. 

In the case of simple recourse with separable cost the evaluation of 

the function \k presents no serious challenge since 

and each \ki defined on R is given by a 1-dimensional integral, viz. 

with the subgradient given by (3.1). Special forms of qi and Fi lead to 

even simpler representation for \E. such as (3.3). Even more explicit is the 

expression obtained in (3.4) and (3.5) in the case of piecewise linear 

recourse costs and piecewise constant distributions; for piecewise linear 

recourse costs and piecewise linear distributions see [32, $31, for even 

more detailed expressions for specific distributions consult [33], [34]. 

Note also that in this case Step 2 of the algorithm consists in finding for 

i = 1, ..., m2 , X;C' such that 

where the subgradient is given by (3.1). Again, in many cases it is possi- 

ble to use the special forms of qi and Fi to find efficient solutions pro- 

cedurs for the preceding relation. For example, in the situation covered 

by (3.3), the above becomes: find Xr+l such that 



It thus suffices to have a bracketing routine for finding the point at  whch 

the monotone function F, passes through the value (qi+ - .rr,V)/ qi. 

In the more general case, when it is not feasible to compute the 

value of 9 at  x exactly, see Section 3, there are basically two strategies 

available. The first one is to accept inaccurate evaluations of 9, view 

them as noisy observations of 9 and rely on a convergence in probability 

argument [25]. How to design an efficient and reliable algorithm that  

proceeds in this fashion has not been investigated yet. 

The second approach is to proceed by approximations. By this we 

mean replace the original problem (2.1) by an approximate one, solve the 

approximating problem, obtain if possible bounds using this approximat- 

ing solution and repeat the process with a refinement of the approxima- 

tion if the bounds are not sufficiently tight. The subject of approxima- 

tions, specially via discreteization of the random variables, is reviewed in 

[22, Section 31 and will not be taken up here. We only want to raised some 

of the questions that need to be resolved before such a scheme could be 

made operational: 

(i) How should the initial approximation be designed so as to  obtain 

with minimal computational effort a "good" approximate of the solu- 

tion? 

(ii) How to improve (refine) the approximation so as to "maximize" 

the resulting improvement? 



(iii) How to blend in, these successive approximations with the steps 

of the algorithm? 

A s  is clear from the preceding discusion the implementation of this 

algorithm requires different special versions for each step depending on 

the form of the objective and the distribution functions. We are currently 

utilizing the subroutines of Nazareth, described in [35], to  develop an 

experimental implementation. XMP [36] of Marsten and also MINOS [21] 

could provide suitable vehicles for implementation. 

7. OUTER LINEARIZATION 

The t h r d  class of algorithms that we consider is based upon the 

outer approximation approach described in Section 4, see (4.9). We deal 

with this technique somewhat more briefly because for problems with 

simple recourse it appears a t  t b s  time to be more limited in scope, 

whereas for more general classes of stochastic programs t b s  approach is 

very close t o  the L-shaped algorithm [3?] which has already been studied 

extensively in the stochastic programming setting [38], [22, Section 21, 

[3el. 

Consider first simple recourse with separable recourse cost, i.e. with 

the objective of the equivalent deterministic program of the  type 

and let us assume that  complete information is available about values and 

derivatives of \k i .  Consistent with (4.8), we assume that  we have the  fol- 

lowing representation for each +=: 



where each \kij is a convex differentiable function and Ji a finite set  of 

indices. For each xi ,  the value of max \kij(xi) is attained for a finite set 
J EJ{ 

A(xi) c Ji known as the active set ,  i.e. we are dealing with stochastic pro- 

grams whose equivalent deterministic forms have (possibly) nondifferent- 

able objectives with explicitly known subdifferentials. 

Problem (2.7) can thus be stated as 

(7.1) find z E R:' , x E Rm2 and v E Rm2 such that 

-q,..( . )  + vi r 0, f o r j  E Ji , i = l , . . . lmz v Xa 

and cz + x vi is minimized. 
i= l  

When A h i )  and a%, (xi) are known explicitly, the hnctions qij can be 

obtained systematically and as needed. 

In the method of succesive linear approximation, see [40] for exam- 

ple, with differentiable %i we solve a sequence of problems of the form 

(7.2) find z E R:' , x E Rm2 and v E Rm2 such that 

2 

and cz + x vi is minimized. 
i = 1  



The next approximation is obtained by linearization of the \ki at XY+l 

where is the optimal value for x in (7.2). (It is common to use an 

additional constraint that restricts the step size.) 

When second order differentiables (or good approximates thereof) 

can be computed such as when the recourse costs and marginal distribu- 

tion functions are piecewise linear [32] or other cases dealt with in the 

beginning of Section 3, one could proceed via quadratic approximations, 

as proposed for nonlinear programming by Wilson [41] and Han [42]. 

Good reviews of both approaches can be found in [20], [43] and [44], see 

also [47]. 

In the more general situation \k is not necessarily separable and 

subgradients can only be calculated approximately, one could consider a 

cutting plane algorithm. Ths  would involve solving a sequence of prob- 

lems of the form 

(7.3) find z E R:' , x E R~~ and v E R such that 

A z = b  

Tz - x = O  

-nix + u 2 (+(Xi) - n'?) , I = I ,  ..., v 

and c z  + v is minimized. 

Here rri E a+(,$) for L = l,.. .,v. The solution of (7.3) yields a new tender 

we then need to compute nu+' and ' I ' ( ~ ~ + ' ) ,  This defines a new con- 

straint to  be added to (7.3). More sophisticated strategies based upon 

utilizing Q h e r  order information are given by Wornersley [45]. 



When the equation Tx = x is used to delete x from the formulation of 

(7.3) then we are precisely in the L-shaped format [22, Section 21 for 

which we already have experimental codes [38]. The code [46] to solve 

nonlinear programming problems by successive approximations using 

quadratic programs should also be studied for implementation in this set- 

ting. Because of the second order information necessary to carry out the 

steps, it only appears possible to use it for a special class of stochastic 

programs with simple recourse. 
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