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FOREWORD

This paper has been written as a background paper to the
Tuscany case study which is a collaborative effort between
the Regional and Urban Development Group at IIASA and the
Regional Institute for Economic Planning of Tuscany (IRPET).
The core of this joint study is the development of such
applied models and methods which can be integrated into a
decision supporting system for regional analysis, planning
and decision-making.

The framework presented in this paper is designed to bring
together the capacity formation process, which has a medium-
term character, and short-term adjustment processes. The latter
include, in this case, adjustments of interregional trade flows,
international imports and so-called economic stabilization
policies. From a more general point of view the suggested
approach represents an attempt to formulate a dynamic multi-
sectoral process of annual changes, with explicit recognition
of the sequential change of capacity levels, investments and
trade patterns.

B8rje Johansson
Acting Leader
Regional and Urban
Development Group

January 1983
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1. INTRODUCTION: A Nested Dynamics Approach

This paper presents an attempt to formulate a dynamic
input-output model which is given a biregional formulation as
an application. The structure of the framework suggested is

designed for numerical computations.

For closed input-output models it has been possible to
provide solutions to systems in which production requirements
are given by current use of commodities together with growth
of production capacities [recent results are found in Johansen
(1978), Aberg and Persson (1981)]. With regard to open multi-
sectoral growth model the general approach has been to solve the
model for a terminal date given a specified starting point; as
such these medium- or long-term models are static in nature. 2
widely applied class of such models are the so-called MSG-models,
founded on the work of Johansen (1960, 1974) [compare e.g. Bergman
and Por (1980)]. In these models capital formation is introduced
exogenously. Usually they contain no explicit analysis of the
sequential time-dependency between production levels, capacity

levels, and investments.

Attempts to capture the problem of consistency between pro-
duction and capacity levels have resulted in "accelerator" type

models, also constrained to a medium- or long-term perspective
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[see e.g. Lahiri (1976, 1977) and Persson (1980, 1981)]1. The
present paper may be viewed as a continuation of this latter
approach, now with the objective of formulating a dynamic
process of annual changes, with explicit recognition of the

sequential change of capacity levels.

The dynamics are obtained by interlinking a medium- and
a short-term perspective in the same model. The framework is
a quantity model (without prices considered) which should be
possible to extend to a price-quantity model, for example, of
the kind described in Persson and Johansson (1982). The frame-
work includes sector specific compositions of investment

deliveries, gestation lags and biregional trade.

In section 2 the change process is outlined. The process
is nested in the sense that first a medium-term problem is
solved, then this solution is used to determine a short-term
outcome of the model. Together these two types of solutions

define the dynamic process.

In section 3 we analyze the existence of solutions and
describe the properties of the algorithm for the nonlinear
medium-term formulation of the model. We also explain and
illustrate why the problem of capital formation cannot be

solved with a short-term model version.

In section 4 the biregional formulation is introduced.
Self-regulation is illustrated by modeling adjustments of

interregional and international trade.

The appendix contains empirical illustrations of the

approach, based on the biregional model version.

2. TIME ASPECTS OF CAPACITY CONSISTENCIES
2.1 Capital Formation and Capacity Adjustments

Investment is both a source of demand for current output
and a determinant of the change of production capacity. This
double role of capital formation brings about a two-sided con-
sistency constraint in a multisectoral growth model in which
new capacity in each sector is created with the help of

deliveries of investment goods from different sectors in the



economy. The consistency requirement means that (i) current
output cannot exceed the existing capacity, and (ii) the increase
of capacity can only be obtained with the help of the goods made

available by different sectors, including imports.

We shall study the process of capacity change in a bi-
regional model. However, in order to illuminate the fundamental
aspects of the change process we shall not introduce any regional
specifications in this section. The model may be described as

follows in quantity terms:

X =Ax + h + v (2.1)
where A= {aij}, X = {xi},h = {hi}, v = {Vi},
and where
X, = production output from sector i
hi = 1investment deliveries from sector i
v, = remaining final demand for the output from

sector 1

The investment delivery hi consists of a sum

J
where hij denotes the investment deliveries from sector i to
sector j. Between two single years t and t+1 with the capacity
x(t) and x(t+1), respectively, one may observe AX (£+1) = % (t+1)
-x(t) and Aij(t+1) = Aij(t+1) + pjij(t) for each j, where
AR = {Aii} denotes the net increase of capacity
AX = {Aii} denotes the gross increase of capacity (2.3)
p = {pi} denotes the rate of capacity removal
Using (2.1) - (2.3) one may formulate the first type of

constraints on the investment and capacity change processes

h(t) < x(t) - Ax(t) - v(t)
(2.4)

¥y (BH1) 2 35 (841) = X(8) (1-py) + A% (t+1), all j



Our next objective is to relate the investment sequence
h(t),h(t+1),... to the associated sequence A;(t+1),A§(t+2),...
Having described this relation, we have also specified our

second constraint on the capacity change process.
2.2 Medium-Term Projections and Short-Term Solutions

The desired future capacity in every sector is determined
by expected demand. Let x* be the projection of the desired
future capacity and let x° be the current capacity vector. 1In
order to reach x*, it is necessary to fill the gap x*-xC-r = Ai,
where r represents capacity removed during the period. The gap
AxX is filled by means of investment deliveries, h(Ai) from the

different sectors of the economy.

Suppose now that the expected future net output is v*, and
that we want to calculate the value of x* which equals the sum-
marized demand Ax* + h(AX) + v*. A model X = Ax + h(AX) + v*
obviously satisfies our requirement of consistency between
future capacity x* and investment deliveries h(Ai) which make it
possible to reach the level x*. However, empirically observed
. are usually so high that the solution set of the

J
model is empty for an expanding economy. By reformulating the

ratios hij/Ax

model in a certain medium-term setting it has been possible,
as described in section 3, to bypass this problem. However,
this approach has also hampered the short-term analysis of the

economic process as a whole [see Persson (1980), (1981)].

The strategy we are suggesting as a means to solve the
problem indicated above interlinks a medium- and short-term
perspective sequentially. 1In this way a dynamic one-year
process may be obtained such that ¢t(§(t)) = x(t+1).

In the model outlined in the sequel, the gestation lag is
one year. This is sufficient to illustrate how lags can be
introduced. Naturally, when the model is used to analyze cycles
it becomes essential to have an accurate specification of the

lag structure.

Consider now a medium-term period consisting of T years.
Let x* be the desired capacity T years ahead, based on the

expected development of demand. 1In year t the existing



capacity x(t) is known. Suppose that we know how the investors
behave in order to fill the medium-term gap x* - x(t). Then

it is possible to determine the gross capacity change in year
t+],A§j(t+1), on the basis of information about the rate of

removal and the pair (x*,§(t)). Therefore, we can write
Aij (£+1) = ¥y (x*,i(t))xj (t) , (2.5)

where wj may reflect that capacity grows linearly or geometric-

~ally. In the latter case wj can be written as

- L J—-
by (xH R (E)) =[x /%, ()1 4o, -1
if x; > ij(t) and where wj(x*,i(t)) = 0 otherwise. This implies

that the investments also will follow a geometric growth path.

Since we have assumed a one-period gestation lag, the
investments, h(t), will be determined by Ai(t+1) so that
h(t) = h(Ai(t+1). We shall assume that hij(t) is obtained as

the product kiinj(t+1), where ki is a non-negative, fixed

]
element of the investment coefficient matrix K. This yields

h(t) = h(Ax(t+1))
_ _ (2.6)
h(AX (t+1)) = RAX(t+1) > 0

At time t, x(t) is given and h(t) is determined by (2.6).
Therefore, the requirement in (2.4) will imply that in each
single period t, the net output, v(t), has to adjust so that
x(t) < x(t).

Given the assumptions made we may at each time t make a
forecast, x*, with regard to expected production T years ahead,
i.e., for the terminal year of a moving medium-term period.
With this approach we are able to solve for capacity, produc-
tion, investment and net output in each year for a continuing

sequence of years.



2.3 Capacity Constraints and Short-Term Adjustments

We have described the demand for fixed capital (capacity)
as a medium-term concept. In the short-run the capacity is
given and the one-year solutions must contain adjustments such
that (i) final demand adapts in case of capacity shortage, and

(ii) idle capacity obtains when the demand is too low.

The short-term system is given by (2.4) -~ (2.6) and can be
formulated as x(t) = Ax(t) + h(t) + v(t), where x(t) < ;(t) and
h(t) = h(Ax(t+1)) constrains the solution. Since v(t) is the only
variable we can adjust in the short-run,we shall consider the

following specification of v(t):

v(t) = g(t) + c(t) + e(t) - m(t)

g(t) = vector of public consumption

c(t) = vector of private consumption (2.7)
e(t) = vector of exports

m(t) = vector of imports

The short-term solution is obtained by determining v(t)
which is levelled by means of variations in any of the compon-
ents specified in (2.7). The government may influence g(t)
directly and c(t) indirectly through alterations of the taxa-
tion/subsidy policy. If excess demand remains after such
controls, the system may be self-regulated by a reduction of
the different e(t) - m(t), i.e., reduced exports and increased
imports. In the interregional model specified in section 4,
interregional trade patterns are also changed in a self-regulated

manner.

3. MEDIUM TERM CAPACITY PROJECTIONS
3.1 Balanced and Unbalanced Capacity Projections

We have described in section 2 how the model operates and
can be solved for any single year, given a projection x* of the
expected capacity level T years ahead. Having done this, our

major concern now is how to generate the projections x*.



We shall distinguish between two alternatives. The first
approach determines x* without any explicit consideration of
the balance between the capacity, investments and net output
T years ahead. Therefore, we may say that this method generates
unbalanced projections. The second approach generates a pro-
jection, v*, of net output T years ahead. Given this projec-
tion we determine x* from the balance x* = Ax* + h(Ax*) + v*.
In this case we may say that the capacity projection x¥ is

balanced with regard to AX* and v*.

We may think about an unbalanced projection in the follow-
ing way. For each sector i we make a forecast ai; abouE the
capacity change between year t and t+T, so that Xy = aixi(t).
Then we may form the diagonal matrix o = <oy > with the coeffi-

cients o; as elements so that
x* = ax(t)

The matrix o may reflect the past growth in the different
sectors while at the same time having its level scaled in such
a way that the economy grows at the same rate as the labor force
(including adjustments for productivity changes). This kind of
projection is all we need to generate annual solutions of the

kind described in section 2.

Consider now the second approach to generating a medium-
term projection. In this case we introduce a diagonal matrix
O, such that v* = avv(t—J). Observe that due to the time-lag
of the investment process, the value of x(t) is given one year

earlier than that of v(t).

Having established v*, we observe that the constraints in
(2.4) must apply also for year t+T. This means that x* < X (t+T) .
Moreover, if x; > Ej(t)(1—pj)T, there is a need for investment
(capacity creation) in this sector. Therefore, we make use of
(2.5) to formulate the balance problem in year t+T, based on

the projection of v* = a,vV(t=1). This yields

]
*
|

Ax* + h(AX*) + o_v(t-1) (3.1)

>
»
"

D% (£4T+1) = wj(x*,i(t)Jx;(t+T)



which in all essence is the same balance as that formulated in
(2.1).

3.2 Solution Method for a Balanced Projection

Consider the system in (3.1). It may be compressed to the

following form:

X =F(x) + v (3.2)
where v = v*, and F(x) = Ax*¥ + k(x*) with k(x*) = h(A;*) and
A?* defined in (3.1). From the latter formula it should be

obvious that, with x(t) given, AX* is determined by x* by means
of the functions wj.

Formula (3.2) defines a nonlinear system which can be
solved by means of an algorithm based on the following recur-
sive scheme:

X o r v v X% = v (3.3)

where n denotes the n'th iteration step. Under quite general
conditions applied to the form of wj in (2.5) and h in (2.6)
one may ascertain that F is a continuous and monotonous

operator such that

>0~= F(XJ) + v >F(x) +v

%
v
%
Vv

To indicate that each solution is determined conditional
to a given level of v in (3.1), we may denote the solution set
of (3.2) - (3.3) by

S, = {x >0 : x> F(x) + v} (3.4)

Given this set we may restate a proposition in Persson
(1980), based on the assumption that F is continuous and mono-

tonous.

Proposition 1. Given our assumptions about F we may
state (i) if Sy is non-empty for a given v, there exists

a solution x = F(x) + v,



(ii) if SV is bounded and contains at least two
different vectors, there are at least two solutions to
the system,

(iii) there is a solution to the model for a given v
if, and only if, the sequence in (3.3) converges,

(iv) the limit of the segquence in (3.3) is a solution
to the model and this solution is lowest in value in each
component among solutions,

(v) for solutions x and x' lowest in value associated

. ’ ’ ’
with vand v , v > v =x > Xx.

It can be shown that the character of Sy depends critically
on the length of the time horizon, i.e., on T. As indicated in
the subsequent section the crucial feature is the maximum eigen-
value of the Jacobian of F(x) in (3.2). This wvalue should not
exceed unity. In Figure 1 the nature of the problem is depicted.
In case (I) there is no solution, in case (II) there is one
solution and in case (III) there are two solutions.

F(x) + v (III)

(I) (I1)

(1) implies no solution,
(II) exactly one solution, and
(ITII) two solutions.

Figure 1. Solutions to the medium-term model.



As indicated in Figure 2 we have now arrived at a point

where our approach may be summarized.

Remark 1: The same model is used in two different
time perspectives which are interlinked in a consistent
way each single year. Letting (i) and (ii) denote the

short and medium term perspectives, respectively we have

(1) xi(t) = Zaijxj(t) + Zkijwj(x*,x(t))xj(t) + vi(t) ’
. * _ * - * *

(ii) X3 = Zaijxj + Zkijq)j(x*,x(t))xj Vs,

where the kij's are introduced in (2.6). In (i) the

investment deliveries emerge as exogenously given, since
xj(t) is fixed. 1In case (ii) we solve for x* contingent
on a fixed v*. Therefore, this second case constitutes

a fixed-point problem.

xX* = Ax* + h (AX*) + v*
v* = avv(t—l)
BX: = Ui (x*,X(E) % (£+T)
xj = wj xX*,x xj
A
l
a v (t) Ax (t+1)
ry l
X = Ax + h(t) + v(t)
h(t) = h(Ax (t+1))
Self-requlation:
Adjustments of v(t)

Figure 2. Illustration of how the short and medium term
perspectives are interlinked within the same
model.
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3.3 Different Forms of Capacity Change

In (2.5) a capacity change function, wj(x*,§(t)), was

introduced. It may be written as
by Gxx,x(£) = A§j (t+1) /% (£)

If the capacity is assumed to change with a geometric
growth rate, then wj has the following specification:
1/T

+ p. - 1 (3.5)

lbj (x*,x(t})) = [x*j/xj (t)] 3§

where pj is the rate of capacity removal in sector j.

Suppose that we want to approximate (3.5) with a linear
expression. Then we have to specify wj with respect to time

which yields

t

[x

Y (x*,%(t)) - ij(t)]/[T§j<t)1 + p.

J
(3.6)

ul u
I
o U %

Y (x*,x(t)) [x. - §j(t)1/[T§j(t+T)1 + p.

J

In order to illustrate the solution to (3.1) we may reform-

ulate the expressions by introducing kij(x*) = kijwj(x*,Q(t))

for (3.5) and kij(x*) = king(x*,i(t)) for (3.6). We may then

{kij(x*)}. Then K(x*)x* = KA?*, where

form the matrix K(x*)
K is the investment matrix introduced in (2.6). From the pro-

perties of wj or w? we have that kij(x*) > 0.

The linear version of capacity change provides an excellent

opportunity to illustrate the role played by the time horizon.

Remark 2. Consider the system in (3.71) formulated as

X = AX + K(x)x + v¥, where K(x) is determined by (3.6},
and where v* is given. Suppose that, for a certain value
of T, the maximum eigenvalue of the Jacobian of

[Ax + K(x)x], J(x), exceeds unity. Then this value can
always be reduced below unity by increasing the time

horizon, T, for which the projection of v* is made.
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The statement is self-evident from the character of a

typical element, Jij(x), of J(x) as can be seen below

Jij(x) = aij + kij/T

Since Zjaij < ],Zj[aij + kij/T] will also approach a

value below unity as T grows. The importance of this is obvious,

since a solution to (3.1) or, equivalently, (3.2) exists only
if the maximum eigenvalue of J(x) does not exceed unity [see
Persson (1980)].

4, DYNAMICS OF THE BIREGIONAL MODEL
4.1 Structure of the Biregional Model

The general form of the biregional model presented in
this section has been described in detail by Martellato (1982a),
(1982b). Our intention is to include the biregional model in

the dynamic framework presented in the preceding sections.

The model has two regions denoted by r,s€{1,2}. For each
region r the following quantity relation is assumed to hold

between demand and supply:?!)

<5 4+ nf = Brr[ArXr+qr+hr+er] +
(4.1)
+ B [a%x%+q5+hS+e5)
k _ k k k k k k k k k
where x = {xi},m = {mi},g = {gi},h = {hi},e = {ei},
Brk = {bik},Ak = {atj},k = r,s , and where for region k
k ,

X, = output from sector i,

mt = import of sector i products

g? = residual final demand for sector i products,

h? = investment deliveries from sector i,

1) This assumption is specific for the TIM-model, in which
the regions are Tuscany and the rest of Italy. See Martellato
(1982a), (1982b).
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e? = export of sector i products
a?j = input-output element
bik = trade coefficient referring to deliveries from

region r to region k of sector i products.

The balance equations in (4.1) should be compared with

those in (2.1). The assumption made implies that the delivery,
xis, of sector i products from region r to region s is determined

by the demand in region s as described below

rs _ . rs s _S [ 5 S
X, = bi [jZ_aijxj + g3 + hi + ei] (4.2)

Consider now the following two matrices:

B1] : B]Z
B = Taa VT Taa
B2] : B22
- (4.3)
A] :
A = Tt T Ty
: A2 i

1 2 ] 2 1 2 1 2
and let x = (x ,x"), h= (th ,h"), g= (g ,97), e = (e ,e7),

m= (m1,m2). Then we have

X =B[Ax + g+ h+e] - m (4.4)
. r _ r _Tr r r r
Finally, let Dy = Zaijxj + gl o+ hi + e;. From (4.17) we have
r r _ rr sr, T . . 11 21, 1
thatzhi +my o= Hbi + bi )Di which yields (bi + bi )Di +
22 12,..2 1 2 1 2
(bi + b2 )Di = Di + Di’ for any Di > 0 and Di > 0. Hence,
bi® = 1-Dbi", for r =1,2; r # s | (4.5)

4.2 Determining Capacity Change and Annual Investments

In this section we shall apply the framework introduced in
section 3.3 to the model structure presented in the preceding

section. Therefore, we define our investment matrix K as follows:



K
K= |—"~"7v-%
| KZ
k' = {kij} is a matrix of investment coefficients,
referring to region r.
Consider the linear formulation in (3.6). Let I be the

unit matrix and let < p > be another diagonal matrix of region-
ally specified removal rates. Then we can define D(x*) as

follows:!)

D(x*) = Ax* + g(T) + e(T) +
_ (4.6)
+(1/T)K[(I - T < p >)x* - x(0)]

where x* denotes the value of x associated with v*, and where
x(0) is the initially given capacity at time t = 0. From (4.6)
we may formulate a biregional version of (3.1) in the following

way

F (x)

[B - MB] [D(x) - g - e]
(4.7)
v = B[g + e} - MBg

where M is a diagonal matrix of import coefficients such that
the import vector, m, equals MB[Ax + g + h]. In this way one
obtains the system x = F(x) + v. From a solution to this

system we derive, as shown in (3.6), the net capacity change,
A§§(]) in year t = 1; from 0y and A§§(1) we determine the
investments, hi(O), in year t = 0 and the capacity, §§(1), in

year t = 1 for all i and r, as shown below:

r N IS o r-r
(4.8)

-r _ =r -r

xj(1) = xj(O) + ij(1)

1) Here we utilize the linear formulation of the capacity
change path, since the exercises presented in Appendix
were done with this version of the model.
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The derived solutions in (4.8) constitute inputs to the

determination of the annual short-term outcome.

4.3 Regional Capacities and Trade in the Short-term

Consider the system in (4.1) and introduce the auxiliary

variable yi. Together with (4.8) we obtain the system

mli' (t) + yi(t) = bir(t)ni(t) + b]i:sDi(t)

y: (£) > X7 (&) (4.9)

| A

x; (8) < Xj (t)

From this we can see that yi(t) > ii(t) implies excess
demand or shortage of regional capacity, and that yi(t) < ii(t)
implies excess capacity in the region. We shall assume that
the economy responds to such imbalances in two steps. First
the interregional trade coefficients are adjusted. To denote
this the interregional trade matrix may be expressed as
B=By.%,y = (v ,v).

If excess demand still remains after this adjustment, the
gap is closed by additional imports. Therefore, the short-term

1)

import vector, fi, is determined as follows:
fi = MB(y,x) [Ax + g + h] + max {(y-x),0} (4.10)

The major part of the import may be characterized as com-
plementary, while the adjustment part may be called competitive
or "gap determined"”. Combining (4.9) and (4.10) yields

r r _ .rr.r rs_.s
fﬁi+ x; = b; Dy + b;"DJ (4.11)
which represents the short-term solution, given that bir and

bis signify the adjusted trade coefficients.

1) If yi(t) > §§(t) for a non-tradeable good, balance can-

not be obtained through trade adjustments. 1Instead, final
demand has to be reduced, e.g., by decreasing private and
public consumption.
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4.4 Short- and Medium-term Adjustment of Interregional Trade

The complete scheme for the interaction between the short-
and medium-term perspective should include both (i) the capacity
constraint impact on short-term interregional trade, and (ii)

the impact on capital formation of adjustments in interregional

trade coefficients. Such an interaction is illustrated in
Figure 6.
cT T T T === — |
r€xogenous rannual invest- | MEDIUM-TERM
,final ! 'ment and capa- & BIREGIONAL
,demand | jcity limits | I/0 MODEL
_‘ ______ L - - p e e e - -
o ! i
: [ SHORT-TERM s
|| szmeszom | Medmterm
L I/0 MODEL ! ] :
o ! of ;
I x ' |
; o l____[_____ ’: (i) final demand
! : Adjustment I v . :
i ' of biregional Y l (ii)biregional |
! i i \ trade pattern
‘ . trade |
Lo . e et e e e e o=
. Adjustment
" of inter- '
' national !
' trade |
Figure 6. Interaction between short- and medium-term
adjustments.

The specification of the system in (4.7) must contain
matrices M and B which are assumed to be valid at time T. Let
these matrices be M(T) and B(T). For the short-term analysis
we need similar matrices M = M(0) and B = B(0), where the
latter may represent the trade pattern which obtains if the
short-term solution is characterized by interregional balance

without any adjustments.
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Combining (4.9) and (4.10) we may define

) ) = [1-M1B(®) ax
s©@ o 1-me© g + ny + B (4.12)
¢ (x) = F® (x) - max{ F°x) + £° - %),0}

(o)

where I denotes the identity matrix and B = B(0) before any

adjustments have occurred. From (4.12) we can express the

short-term problem as

x =6 (x) +£© (4.13)

(0) (0)

5 (@) are defined given B . The system in

where G and

(4.13) can be solved by means of the same type of iteration as

described in (3.2). Obviously G° is continuous and monotonous.

(o)

Having solved (4.13) given B it remains to examine whether

B(o) satisfies that criterion of interregional balance which we

wish to apply. Suppose that this is not fulfilled and that we

(o) to B(1). Then we have to solve the new
(n) = B(y(n_1),}-{),

(n-1) (X) + f (n-1) ,

are adjusting B
system x = G(1)(x) + f(1). If we signify B

(n~1)

where y equals the solution value of F

we obtain the general formulation

X = G(n)(x) + f(n), given that
(4.13")

B=38y" "%

This formulationhas the same solution properties as the initial
step in (4.13).

As regards the interregional trade balance, one may con-
template several types of criteria for the setting outlined in
(4.13" ). We shall mention two alternatives which are character-

ized further in a section of appendix 1.

The first alternative relates to a suggestion by Martellato
(1982b). 1In this case the interest is focused on the capacity

tension in each region, Yi, which is defined as follows



Yr = (y: - w ys)/yS
1 ~ 1_s iti i (4. 14)
wy = X3/%]

The approach suggested by Martellato relies on an estimated

functional relationship between each coefficient bis and the

associated capacity tension Yi so that bis = bis(yi). Referring
to the adjustment procedure indicated by (4.13'), the solution

to the short-term problem is obtained for balanced interregional

trade when

rs(n+1) - brs

bl i

(i (4.15)

A weaker criterion for interregional trade balance may be

stated with the help of the variable Ei = (§§ - xi) > 0 for
r = 1,2. With this criterion we accept a solution as balanced
if
. 1 2 .
(i) &, = £ = 0 , or otherwise
i i
. r . r (4.16)
(i1) zgi > 0 = Zyi = in

If a solution to (4.12) does not satisfy condition (4.16)
there must exist a surplus EE > 0 which can be distributed to
region s*r so that the total foreign import of sector i products
can be reduced.

With regard to the selection of target-year trade matrices
B(T), B(T+1), etc., we shall just point out that such a matrix
is used in (4.7) under explicit assumption about interregional
balance. A fundamental problem is that such a matrix implies
a specific investment process which is obvious from (4.6) and
(4.7). Hence, selecting a matrix B(T) is indeed a choice of

capacity location over the set of regions.



5. CONCLUDING REMARKS

It is important to observe that the approach we have
suggested in this paper raises many new questions for multi-
sectoral modeling. In particular, it suggests the possibility
of analyzing short-term stability problems and cycles as well
as economic stabilizing policies in a multisectoral framework.
It does so by connecting medium-term expectations and consis-
tency constraints with short-term consistency constraints and
adjustment processes, including explicitly recognizable economic
policies. In particular, one should note that short run capacity
tensions in the model can be interpreted as implicitly referring
to inflation-creating processes. Of course, this perspective
calls for a multisectoral model framework which includes rela-
tive prices (including wages and interest rates), labor and
capital markets. 1In fact, this defines a research program.



APPENDIX: Empirical Illustration

In this appendix we shall illustrate the model formula-
tion x = F(x) + v in (3.1) where F(x) and v have a biregional
specification as in (4.7). The first target year is 1980 for
which v* has been estimated. The target values v* (1981),
v*(1982) etc. have been obtained by applying different growth
rates of v* with v*¥(1980) as base so that v*(t) = v*(t-1) (1+2),
A>0. In this way investments have been calculated for 1975,...,
1979 and capacity change for the years 1976,...,1979. 1In table
A : 1 the total investments are calculated for three different
growth rates and compared with the realized sequence of aggre-

gate capital formation.

In table A : 2 capacity change for each sector in Tuscany
and the Rest of Italy are illustrated. The assumed annual
growth in final demand is 6 percent. One should observe that
with this specification the model gives higher investments and
lower net capacity increase than exhibited by observed series.
The explanation is simple: during 1975-1980 the rate of capa-
city removal was several percent lower than for the whole
period 1970-1980. 1In the model exercise of table A : 2 the
latter (and higher) pattern of removal was applied. The effect

of this is further illustrated in table A : 3, in which observed
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capacity levels* are compared with levels generated by the model.
Moreover, investment deliveries with regard to Tuscany 1977 are

described as calculated in the model and as observed.

Due to lack of recorded time series, no real evaluation of
the growth model has been possible. Therefore, the appendix
merely gives an arbitrary example of a sequential one-year

application of the medium-term model.

Table A:1 Total investment in Italy 1975-1979.

Annual investments in the Observed
model when the growth of annual
final demand (1980-1975) investments

has been set to:

4% 10% 6%
1975 17946 30866 21868 25776
1976 20354 35951 25069 26090
1977 22551 41119 28044 26214
1978 24530 heue2 30889 26127
1979 26361 52132 33651 27649

*The method for calculation of the "observed" capacity levels
is described in Westin, Johansson and Grassini (1982).
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Table A:2 Capacity change in Tuscany and the Rest of Italy
1976-79, according to growth model.

Net change of capacity in percent

1976 1977 1978 1979
1 Agriculture + 7 (+0) +7 (+1)y +6 (+2) + 6 (+ 3)
2 Coal and 0il + 1 (-18) + 3 (=17) + 3 (=16) + 4 (-15)
3 Other Energy + 1 (=3) +2 (=2) +3 ((+0) +4 (+1)
4 Minerals -3 (=12) -1 (-9 + 1 (-7) + 2 (- 5)
5 Non-metal -2 (=6) +0 (-4) + 2 (-1 + 3 (+0)
6 Chemicals -4 (-5 =3 (-3 -1 (1) +0 (+0)
7 Metal Products -1 (-7) +1 (-4 +3 (-2) + 4 (+0)
8 Machinery + 6 (-8) +7 (-5 + 7 (-3) + 7 (+0)
9 Other Machinery +11 (-11) +12 (- 8) +11 (= 5) +10 (- 3)
10 Electrical +11 (- 8) +10 (- 5) +10 (- 3) + 9 (- 1)
11 Transport + 7 (-4 + 7 (-1 + 7 (+0) + 7 (+ 2)
12 Meat +42 (+ 2) 426 (+ 3) 419 (+ 4) +15 (+ 4)
13 Milk +50 (+ 0) +29 (+ 1) +20 (+ 2) 415 (+ 3)
14 Other Food + 0 (+ 1) + 1 (+2) + 2 (+3) + 3 (+3)
15 Beverages + 2 (-1) +3 (+0) +3 (+1) +4 (+2)
16 Tobacco -2 (+5) -1 (+5) +1 (+6) + 2 (+6)
17 Textiles + 0 (+0) +1 (+1) 4+ 2 (+2) +3 (+3)
18 Footwear + 5 (+ 3) +5 (+3) 4+ 5 (+4) + 5 (+4)
19 Wood Products -2 (-6) +0 (-4 + 1 (-2) + 2 (+.0)
20 Paper Products -2 (=6 +0 (-4 +1 (-2 + 2 (-1)
21 Rubber Products -4 (-4) =2 (-2) =1 (+0) + 1 (+1)
22 Other Manufact. -3 (+2) -1 (+3) +0 (+3) +2 (+4u)
23 Construction + 4 (-=5) +5 (-2) +6 (+0) +6 (+2)
24 Commerce + U4 (+1) +5 (+2) +5 (+ 3) +5 (+4)
25 Hotels + 4 (+ 3) +4 (+4) +5 (+4) +5 (+5)
26 Transport + 1 (+0) 4+ 2 (+1) +3 (+2) +4 (+3)
27 Communication + 3 (+0) +4 (+1) 4+ 4 (+2) +5 (+ 3)
28 Credit -12 (-15) =12 (-14) <10 (-13) - 8 (-11)
29 Housing + 6 (-4) +6 (-3) +6 (1) + 6 (+0)
30 Services + 3 (+#12) + 4 (+10) + 4 (+ 9) + 5 (+ 8)

31 Non-market

Services + 0 (+4) + 1 (+4) + 2 (+4) + 3 (+5)
32 Total Economy + 2 (=5) 4+ 3 ((+ 1) +3 (+0) +4 (+2)
Remark: Results for "Rest of Italy" are given within brackets.

All calculations are based on an "expected" annual
growth rate of 6 percent in final demand 1980-1984.
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Table A:3 Comparison between model result and observed outcome.
Capacity in model Investment deliveries
divided by observed in Tuscany 1977
capacity. Percent 1978
TUSCANY REST OF ITALY In Model Observed
1 121 100 3 2
2 114 55
3 106 85
4 103 74
5 94 90 11 12
6 95 78
7 91 88 65 71
8 94 87 325 355
9 100 60 61 66
10 91 85 138 151
11 98 88 194 287
12 258 97
13 202 91
14 103 97
15 120 102
16 76 100
17 84 98
18 75 120 1 1
19 76 83 76 74
20 97 87
21 77 93 11 11
22 81 91 1 1
23 110 96 1390 1310
24 105 98 84 97
25 106 107
26 82 93 18 21
27 102 94
28 61 56
29 114 79
30 102 121
31 87 106
Total 96 90 2378 2461

Remark: For these calculations final demand has been assumed to
have an annual growth rate of 6 percent after 1980.
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